+ All Categories
Home > Documents > Research Article Lie Group Solution for Free Convective...

Research Article Lie Group Solution for Free Convective...

Date post: 03-Jul-2018
Category:
Upload: buithuy
View: 213 times
Download: 0 times
Share this document with a friend
22
Research Article Lie Group Solution for Free Convective Flow of a Nanofluid Past a Chemically Reacting Horizontal Plate in a Porous Media M. M. Rashidi, 1,2 E. Momoniat, 3 M. Ferdows, 4 and A. Basiriparsa 1,5 1 Mechanical Engineering Department, Engineering Faculty of Bu-Ali Sina University, Hamedan 65178-38695, Iran 2 Mechanical Engineering Department, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 201101, China 3 Centre for Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa 4 Department of Mathematics, Dhaka University, Dhaka 1000, Bangladesh 5 Young Researchers and Elites Club, Hamadan Branch, Islamic Azad University, Hamadan 65178-38695, Iran Correspondence should be addressed to M. M. Rashidi; mm [email protected] Received 13 August 2013; Accepted 4 November 2013; Published 11 February 2014 Academic Editor: Mohamed Abd El Aziz Copyright © 2014 M. M. Rashidi et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e optimal homotopy analysis method (OHAM) is employed to investigate the steady laminar incompressible free convective flow of a nanofluid past a chemically reacting upward facing horizontal plate in a porous medium taking into account heat generation/absorption and the thermal slip boundary condition. Using similarity transformations developed by Lie group analysis, the continuity, momentum, energy, and nanoparticle volume fraction equations are transformed into a set of coupled similarity equations. e OHAM solutions are obtained and verified by numerical results using a Runge-Kutta-Fehlberg fourth-fiſth order method. e effect of the emerging flow controlling parameters on the dimensionless velocity, temperature, and nanoparticle volume fraction have been presented graphically and discussed. Good agreement is found between analytical and numerical results of the present paper with published results. is close agreement supports our analysis and the accuracy of the numerical computations. is paper also includes a representative set of numerical results for reduced Nusselt and Sherwood numbers in a table for various values of the parameters. It is concluded that the reduced Nusselt number increases with the Lewis number and reaction parameter whist it decreases with the order of the chemical reaction, thermal slip, and generation parameters. 1. Introduction Research in micro- and nanofluids has become a popular area of research in engineering. At micro- and nanoscale, conventional ideas of classical fluid mechanics do not apply, and traditional approaches to fluid mechanics problems need to be changed to correctly reflect the importance of the interaction between a fluid and a solid boundary. Conven- tional heat transfer fluids like oil, water, and ethylene glycol mixtures are poor heat transfer fluids because of their poor thermal conductivity. Many attempts have been made by various investigators during the recent years to enhance the thermal conductivity of these fluids by suspending nano/microparticles in liquids [1, 2]. Researchers have observed that the thermal conductivity of a nanofluid is much higher than that of the base fluid even for low solid volume fraction of nanoparticles in the mixture [35]. e effect of temperature on thermal conductivity in a model has been considered by Kumar et al. [6]. Patel et al. [7] have improved the model given in [6] by incorporating the effect of microconvection due to particle movement. Nano- and microfluidics is a new area with significant potential for novel engineering applications, especially for the development of new biomedical devices and procedures [8]. Napoli et al. [9] reviewed applications of nanofluidic phe- nomena to various nanofabricated devices, in particular ones designed for biomolecule transport and manipulation. ere has been significant interest in nanofluids. is interest is due to its diverse applications, ranging from laser-assisted drug delivery to electronic chip cooling. Nanofluids are made of Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2014, Article ID 239082, 21 pages http://dx.doi.org/10.1155/2014/239082
Transcript

Research ArticleLie Group Solution for Free Convective Flow of a Nanofluid Pasta Chemically Reacting Horizontal Plate in a Porous Media

M M Rashidi12 E Momoniat3 M Ferdows4 and A Basiriparsa15

1 Mechanical Engineering Department Engineering Faculty of Bu-Ali Sina University Hamedan 65178-38695 Iran2Mechanical Engineering Department University of Michigan-Shanghai Jiao Tong University Joint InstituteShanghai Jiao Tong University Shanghai 201101 China

3 Centre for Differential Equations Continuum Mechanics and Applications School of Computational and Applied MathematicsUniversity of the Witwatersrand Johannesburg Private Bag 3 Wits 2050 South Africa

4Department of Mathematics Dhaka University Dhaka 1000 Bangladesh5 Young Researchers and Elites Club Hamadan Branch Islamic Azad University Hamadan 65178-38695 Iran

Correspondence should be addressed to M M Rashidi mm rashidiyahoocom

Received 13 August 2013 Accepted 4 November 2013 Published 11 February 2014

Academic Editor Mohamed Abd El Aziz

Copyright copy 2014 M M Rashidi et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

The optimal homotopy analysis method (OHAM) is employed to investigate the steady laminar incompressible free convectiveflow of a nanofluid past a chemically reacting upward facing horizontal plate in a porous medium taking into account heatgenerationabsorption and the thermal slip boundary condition Using similarity transformations developed by Lie group analysisthe continuity momentum energy and nanoparticle volume fraction equations are transformed into a set of coupled similarityequations The OHAM solutions are obtained and verified by numerical results using a Runge-Kutta-Fehlberg fourth-fifth ordermethod The effect of the emerging flow controlling parameters on the dimensionless velocity temperature and nanoparticlevolume fraction have been presented graphically and discussed Good agreement is found between analytical and numericalresults of the present paper with published results This close agreement supports our analysis and the accuracy of the numericalcomputations This paper also includes a representative set of numerical results for reduced Nusselt and Sherwood numbers in atable for various values of the parameters It is concluded that the reduced Nusselt number increases with the Lewis number andreaction parameter whist it decreases with the order of the chemical reaction thermal slip and generation parameters

1 Introduction

Research in micro- and nanofluids has become a populararea of research in engineering At micro- and nanoscaleconventional ideas of classical fluid mechanics do not applyand traditional approaches to fluidmechanics problems needto be changed to correctly reflect the importance of theinteraction between a fluid and a solid boundary Conven-tional heat transfer fluids like oil water and ethylene glycolmixtures are poor heat transfer fluids because of their poorthermal conductivity Many attempts have been made byvarious investigators during the recent years to enhancethe thermal conductivity of these fluids by suspendingnanomicroparticles in liquids [1 2] Researchers haveobserved that the thermal conductivity of a nanofluid is

much higher than that of the base fluid even for low solidvolume fraction of nanoparticles in the mixture [3ndash5] Theeffect of temperature on thermal conductivity in a model hasbeen considered by Kumar et al [6] Patel et al [7] haveimproved the model given in [6] by incorporating the effectof microconvection due to particle movement

Nano- and microfluidics is a new area with significantpotential for novel engineering applications especially for thedevelopment of new biomedical devices and procedures [8]Napoli et al [9] reviewed applications of nanofluidic phe-nomena to various nanofabricated devices in particular onesdesigned for biomolecule transport and manipulation Therehas been significant interest in nanofluidsThis interest is dueto its diverse applications ranging from laser-assisted drugdelivery to electronic chip cooling Nanofluids are made of

Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2014 Article ID 239082 21 pageshttpdxdoiorg1011552014239082

2 Mathematical Problems in Engineering

ultrafine nanoparticles (lt100 nm) suspended in a base fluidwhich can be water or an organic solvent Nanofluids possesssuperior thermophysical properties like high thermal con-ductivity minimal clogging in flow passages long term sta-bility and homogeneity Industrial applications of nanofluidinclude electronics automotive and nuclear applicationsNanobiotechnology is also a fast developing field of researchwith application in many domains such as medicine phar-macy cosmetics and agroindustry Many of these industrialprocesses involve nanofluid flow and nanoparticle volumefraction past various geometries In these applications thediffusing species can be generatedabsorbed due to chemicalreaction with the ambient fluid This can greatly affect theflow and hence the properties and quality of the final product[10 11]

Different industrial applications of internal heat gen-eration include polymer production and the manufactureof ceramics or glassware phase change processes thermalcombustion processes and the development of a metal wastefrom spent nuclear fuel [12] A review of convective transportin nanofluids was conducted by Buongiorno [13] Kuznetsovand Nield [14] presented a similarity solution of naturalconvective boundary-layer flow of a nanofluid past a verticalplate They have shown that the reduced Nusselt number isa decreasing function of the buoyancy-ratio number 119873119903 aBrownianmotion number119873119887 and a thermophoresis number119873119905 Godson et al [15] presented the recent experimental andtheoretical studies on convective heat transfer in nanofluidsand their thermophysical properties and applications andclarified the challenges and opportunities for future research

Convective flow in porous media has received the atten-tion of researchers over the last several decades due to itsmany applications in mechanical chemical and civil engi-neering Examples include fibrous insulation food processingand storage thermal insulation of buildings geophysical sys-tems electrochemistry metallurgy the design of pebble bednuclear reactors underground disposal of nuclear or nonnu-clear waste and cooling system of electronic devices Excel-lent reviews of the fundamental theoretical and experimentalworks can be found in the books by Nield and Bejan [16]Vadasz [17] Vafai [18] The Cheng-Minkowycz problem [19]was investigated by Nield and Kuznetsov [20] for nanofluidwhere the model involves the effect of Brownian motionand thermophoresis The classical problem of free convectiveflow in a porous medium near a horizontal flat plate wasfirst investigated by Cheng and Chang [21] Following himmany researchers such as Chang and Cheng [22] Shiunlinand Gebhart [23] Merkin and Zhang [24] and Chaudhary etal [25] have extended the problem in various aspects Gorlaand Chamkha [26] presented a similarity analysis of freeconvective flow of nanofluid past a horizontal upward facingplate in a porous medium numerically Khan and Pop [27]extended this problem for nanofluid Very recently Aziz et al[28] extended the same problem for a water-based nanofluidcontaining gyrotactic microorganisms

Lie group analysis has been used by many investigatorsto analyze various convective phenomena under variousflow configurations arising in fluidmechanics aerodynamicsplasma physics meteorology chemical engineering and

other engineering branches [29] This method has beenapplied by many investigators to study various transportproblems For example the symmetrical properties of theturbulent boundary-layer flows and other turbulent flowsare investigated by using the Lie group techniques byAvramenko et al [30] Kuznetsov et al [31] investigateda falling bioconvection plume in a deep chamber filledwith a fluid saturated porous medium theoretically Jalil etal [32] studied mixed convective flow with mass transferusing Lie group analysis The effect of thermal radiation andconvective surface boundary condition on the boundary-layer flow was investigated by Hamad et al [33] Aziz et al[34] studied MHD flow over an inclined radiating plate withthe temperature dependent thermal conductivity variablereactive index and heat generation using scaling group oftransformations Reviews for the fundamental theory andapplications of group theory to differential equations can befound in the texts by Hansen [35] Ames [36] Seshadri andNa [37] and Shang [38]

Most scientific problems and phenomena such as theboundary-layer problem occur nonlinearly For these non-linear problems we have difficulty in finding their exactanalytical solutions Analytical solutions to these nonlinearequations are of fundamental importance Where no analyti-cal solutions can be found researchers have resorted to otherapproaches One such approach is a perturbation method[39] that is strongly dependent upon the so-called ldquosmallparametersrdquo The perturbation method cannot provide uswith a simple way to adjust and control the convergenceregion and rate of convergence of a given approximate series

Another known method is the differential transformmethod that has been used in recent years [40ndash44] In 1992Liao introduced the basic ideas of the homotopy in topologyto propose a general analytic method for nonlinear problemsnamely homotopy analysismethod (HAM) [45] that does notneed any small parameterThis method has been successfullyapplied to solve many types of nonlinear problems by others[46ndash48] As this approach is based on the homotopy oftopology the validity of the HAM is independent of whetheror not there exists a small parameter in the consideredequation Therefore the HAM can overcome the foregoingrestrictions and limitations of perturbation methods [49]This method also provides us with great freedom to selectproper base functions to approximate solutions of nonlinearproblems Using one interesting property of homotopy onecan transform any nonlinear problem into an infinite numberof linear problems

In this paper the steady flow of an Ostwald-de Waelepower-law fluid induced by a steadily rotating infinite disk toa non-Darcian fluid-saturated porous medium is consideredThe coupled governing equations are transformed into ordi-nary differential equations in the boundary layerTheOHAMis applied to solve the ODEs The validity of our solutionsis verified by the numerical results (by using a fourth-orderRunge-Kutta and shooting method)

The aim of the present study is to investigate the effect ofhigher order chemical reaction internal heat generation andthe thermal slip boundary condition on the boundary-layerflow of a nanofluid past an upward facing horizontal plate

Mathematical Problems in Engineering 3

(i) Nanoparticle volume fraction (iii) Momentum boundary layers

Porous media

(i)

(iii)(ii)g Tinfin Cinfin uinfin = 0

T C q

(ii) Thermal

Figure 1 Coordinate system and flow model

Lie group analysis is used to develop the similarity transfor-mations and the corresponding similarity representations ofthe governing equations The coupled governing equationsare transformed into ordinary differential equations in theboundary layer The OHAM is applied to solve the ODEsThe obtained solutions are verified by the numerical results(obtained by using a Runge-Kutta-Fehlberg fourth-fifth orderand shooting method) The effect of relevant parameters ondimensionless fluid velocity temperature and nanoparticlevolume fraction are investigated and shown graphically anddiscussed A table containing data for the reduced Nusseltnumber and reduced Sherwood number is also provided toshow the effects of various parameters on them To the best ofour knowledge the effects of thermal slip boundary conditionwith internal heat generation and chemical reaction on theboundary-layer flow of a nanofluid past a horizontal plate inporous media have not been reported in the literature yet

The paper is divided up as follows In Section 2 themath-ematical formulation is presented In Section 3 we used theLie group method to reduce the system of partial differentialequations to a system of ordinary differential equations InSection 4 the basic idea of theHAM is presented In Section 5we derived the OHAM solution of the coupled system ofnonlinear ordinary differential equations In Section 6 wecompared our results with numerical solutions obtainedusing a Runge-Kutta-Fehlberg method In Section 7 weintroduced the physical quantities to be considered andcompared in this paper Section 8 contains the results anddiscussion The conclusions are summarized in Section 9

2 Formulation of the Problem

We consider a two-dimensional laminar free convectiveboundary-layer flow of a nanofluid past an upward facingchemically reacting horizontal plate in a porous media(Figure 1) We assume that a homogeneous isothermal irre-versible chemical reaction of order 119899 takes place betweenthe plate and nanofluid There is internal heat genera-tionabsorption within the fluid inside the boundary layer at

the volumetric rate 119902 Variation of density of the fluid is takeninto account using the Oberbeck-Boussinesq approximationThe conservation of mass momentum energy and nanopar-ticles describing the flow can be written in dimensional form(see [27])

nabla sdot = 0 (1)

120588119891

120576

120597

120597119905

= minus nabla119875 minus

120583

119896

+ [119862120588119875 + (1 minus 119862) 120588119891 (1 minus 120573 (119879 minus 119879infin))] 119892

(2)

(120588119862)119891

120597119879

120597119905

+ (120588119862)119891 sdot nabla119879

= 120581119898nabla2119879 + 120576(120588119862)119875 [119863119861 nabla119862 sdot nabla119879 + (

119863119879

119879infin

)nabla119879 sdot nabla119879] + 119902

(3)

120597119862

120597119905

+

1

120576

sdot nabla119862 = 119863119861nabla2119862 + (

119863119879

119879infin

)nabla2119879

minus 119896 (119909) (119862 minus 119862infin)119899

(4)

Theflow is assumed to be slow to ignore an advective termand a Forchheimer quadratic drag term in the momentumequation

We consider a steady flow where the Oberbeck-Boussinesq approximation is used In addition we assumethat the nanoparticle concentration is dilute With a suitablechoice for the reference pressure the momentum equationcan be linearized and (2) written as (see [50])

minus nabla119875 minus

120583

119896

+ [(120588119875 minus 120588119891infin) (119862 minus 119862infin)

+ (1 minus 119862infin) 120588119891infin120573 (119879 minus 119879infin)] 119892 = 0

(5)

We also consider the effect of temperature-dependentvolumetric heat generationabsorption in the flow region thatis given by Vajravelu and Hadjinicolaou [51] as

119902 =

Ra2311987601198714311990943

(119879 minus 119879infin) 119879 gt 119879infin(6)

where1198760 is the heat generationabsorption constant Also weconsider the case where the reaction rate varies as

119896 (119909) =

Ra2311989601198714311990943

(7)

where 1198960 is the constant reaction rate

4 Mathematical Problems in Engineering

With these assumptions along with standard boundary-layer approximation the governing equations can be writtenin dimensional form as

120597119906

120597119909

+

120597V120597119910

= 0 (8)

120597119875

120597119909

= minus

120583

119896

119906 (9)

120597119875

120597119910

= minus

120583

119896

V + [(1 minus 119862infin) 120588119891infin119892120573 (119879 minus 119879infin)

minus (120588119875 minus 120588119891infin) 119892 (119862 minus 119862infin)]

(10)

119906

120597119879

120597119909

+ V120597119879

120597119910

= 120572119898

1205972119879

1205971199102

+ 120591 [119863119861

120597119862

120597119910

120597119879

120597119910

+ (

119863119879

119879infin

)(

120597119879

120597119910

)

2

]

+

1198760

(120588119862)119891

Ra23

11987143

11990943

(119879 minus 119879infin)

(11)

119906

120597119862

120597119909

+ V120597119862

120597119910

= 119863119861

1205972119862

1205971199102+ (

119863119879

119879infin

)

1205972119879

1205971199102

minus

Ra2311989601198714311990943

(119862 minus 119862infin)119899

(12)

where 120572119898 = 119896119898(120588119888119875)119891 is the thermal diffusivity of the fluidand 120591 = 120576(120588119862)119901(120588119862)119891 is a parameter

The boundary conditions are taken to be

V = 0 119879 = 119879119908 + 1198631

120597119879

120597119910

119862 = 119862119908

at 119910 = 0

119906 997888rarr 0 119879 997888rarr 119879infin 119862 997888rarr 119862infin as 119910 997888rarr infin

(13)

where 1198631(119909) is the thermal slip factor with dimension(length)minus1 The following new nondimensional variables areintroduced to make (8)ndash(13) dimensionless

119909 =

119909

119871radicRa 119910 =

119910

119871

119906 =

119906119871

120572119898radicRa

V =V119871120572119898

120579 =

119879 minus 119879infin

Δ119879

120601 =

119862 minus 119862infin

Δ119862

Δ119879 = 119879119908 minus 119879infin Δ119862 = 119862119908 minus 119862infin

(14)

where Ra = 119892119896120573(1 minus 119862infin)Δ119879119871(120572119898]) is the Rayleigh numberbased on the characteristic length 119871 A stream function 120595

defined by

119906 =

120597120595

120597119910

V = minus120597 120595

120597119909

(15)

is introduced into (8)ndash(13) to reduce the number of depen-dent variables and the number of equations Note that (8) issatisfied identically Hence we have

Δ 1 equiv1205972120595

1205971199102+

120597120579

120597119909

minus 119873119903

120597120601

120597119909

= 0 (16)

Δ 2 equiv120597120595

120597119910

120597120579

120597119909

minus

120597120595

120597119909

120597120579

120597119910

minus

1205972120579

1205971199102minus 119873119887

120597120579

120597119910

120597120601

120597119910

minus 119873119905(

120597120579

120597119910

)

2

+

119876120579

11990943

= 0

(17)

Δ 3 equiv Le [120597120595

120597119910

120597120601

120597119909

minus

120597120595

120597119909

120597120601

120597119910

] minus

1205972120601

1205971199102

minus

119873119905

119873119887

1205972120579

1205971199102minus

119896120601119899

11990943

= 0

(18)

The boundary conditions become

120597120595

120597119909

= 0 120579 = 1 +

1198631 (119909)

119871

120597120579

120597119910

120601 = 1 at 119910 = 0

120597120595

120597119910

997888rarr 0 120579 997888rarr 0 120601 997888rarr 0 as 119910 997888rarr infin

(19)

The parameters in (16)ndash(19) are introduced in Nomencla-ture and defined by

119873119905 = 120591119863119879

Δ119879

120572119898

119879infin 119873119887 = 120591119863119861

Δ119862

120572119898

119873119903 =

(120588119875 minus 120588119891infin) Δ119862

120588119891infin

120573 (1 minus 119862infin) Δ119879

119876 =

11987601198712

120572119898(120588119862)119891

119870 =

11989601198712(Δ119862)119899minus1

120572119898

Le =120572119898

119863119861

(20)

3 Lie Group Analysis

We consider the following scaling group of transformationswhich is a special form of Lie group analysis [52]

Γ 119909lowast= 1199091198901205761205721 119910

lowast= 1199101198901205761205722

120595lowast= 1205951198901205761205723 120579

lowast= 1205791198901205761205724

120601lowast= 1206011198901205761205725 119863

lowast1 = 1198631119890

1205761205726

(21)

Here 120576 is the parameter of the group Γ and 120572119894 (119894 =

1 2 3 4 5 6) are arbitrary real numbers whose connec-tion will be determined by our analysis The transfor-mations in (21) can be considered as a point transfor-mation transforming the coordinates (119909 119910 120595 120579 120601 1198631) to

Mathematical Problems in Engineering 5

(119909lowast 119910lowast 120595lowast 120579lowast 120601lowast 119863lowast1 ) We now investigate the relationship

among the exponents 120572rsquos such that

Δ 119895 (119909lowast 119910lowast 120579lowast 120601lowast

1205973120595lowast

120597119910lowast3)

= 119867119895 (119909 119910 120579 120601 1205973120595

1205971199103 119886)

times Δ 119895 (119909 119910 120579 120601 1205973120595

1205971199103)

(119895 = 1 2 3)

(22)

Since this is the requirement that the differential formsΔ 1 Δ 2 and Δ 3 be reformed under the transformation groupin (19) by using (21) (16)ndash(18) are transformed to (see [3538])

Δ 1 equiv1205972120595lowast

120597119910lowast2

+

120597120579lowast

120597119909lowastminus 119873119903

120597120601lowast

120597119909lowast

= 119890120576(1205723minus21205722) 1205972120595

1205971199102+ 119890120576(1205724minus1205721) 120597120579

120597119909

minus 119890120576(1205725minus1205721) 120597120601

120597119909

Δ 2 equiv120597120595lowast

120597119910lowast

120597120579lowast

120597119909lowastminus

120597120595lowast

120597119909lowast

120597120579lowast

120597119910lowastminus

1205972120579lowast

120597119910lowast2minus 119873119887

120597120579lowast

120597119910lowast

120597120601lowast

120597119910lowast

minus 119873119905(

120597120579lowast

120597119910lowast)

2

+

119876120579lowast

119909lowast43

= 119890120576(1205723+1205724minus1205721minus1205722)[

120597120595

120597119910

120597120579

120597119909

minus

120597120595

120597119909

120597120579

120597119910

]

minus 119890120576(1205724minus21205722) 1205972120579

1205971199102minus 119890120576(1205724+1205725minus21205722)119873119887

120597120579

120597119910

120597120601

120597119910

minus 119890120576(21205724minus21205722)119873119905(

120597120579

120597119910

)

2

+ 119890120576(1205724minus(43)120572

1) 119876120579

11990943

Δ 3 equiv Le [120597120595lowast

120597119910lowast

120597120601lowast

120597119909lowastminus

120597120595lowast

120597119909lowast

120597120601lowast

120597119910lowast] minus

1205972120601lowast

120597119910lowast2

minus

119873119905

119873119887

1205972120579lowast

120597119910lowast2minus

119870120601lowast119899

119909lowast43

= minus 119890120576(1205725minus21205722) 1205972120601

1205971199102

+ 119890120576(1205723+1205725minus1205721minus1205722)Le [

120597120595

120597119910

120597120601

120597119909

minus

120597120595

120597119909

120597120601

120597119910

]

minus 119890120576(1205724minus21205722)119873119905

119873119887

1205972120579

1205971199102minus 119890120576(1198991205725minus(43)120572

1)119870120601119899

11990943

(23)

The system will remain invariant (structure of the equa-tions same) under the group transformation Γ if we have thefollowing relationship among the exponents

1205723 minus 21205722 = 1205724 minus 1205721 = 1205725 minus 1205721

1205723 + 1205724 minus 1205721 minus 1205722 = 1205724 minus 21205722 = 1205724 + 1205725 minus 21205722

= 21205724 minus 21205722 = 1205724 minus4

3

1205721

1205723 + 1205725 minus 1205721 minus 1205722 = 1205725 minus 21205722 = 1205724 minus 21205722

= 1205725 minus4

3

1205721

(24)

For invariance of the boundary conditions we have

1205724 = 0 = 1205724 + 1205726 minus 1205722 1205725 = 0 (25)

Solving (24) and (25) yields

1205724 = 1205725 = 0 1205721 =31205722

2

1205723 =1205722

2

1205726 = 1205722

(26)

The set of transformations Γ reduces to

119909lowast= 119909119890312057612057222 119910

lowast= 1199101198901205761205722

120595lowast= 12059511989012057612057222 120579

lowast= 120579

120601lowast= 120601 119863

lowast1 = 1198631119890

1205761205722

(27)

Expanding by the Taylorrsquos series in powers of 120576 andkeeping the terms up to the order 120576 yields

119909lowastminus 119909 = 3119909120576

1205722

2

119910lowastminus 119910 = 1205722119910

120595lowastminus 120595 = 120576120595

1205722

2

120579lowastminus 120579 = 0

120601lowastminus 120601 = 0 119863

lowast1 minus 119863 = 12057221198631

(28)

In terms of differentials we have

2119889119909

31205722119909=

119889119910

1205722119910=

2119889120595

1205722120595=

119889120579

0

=

119889120601

0

=

1198891198631

12057221198631

1205722 = 0

(29)

31 Similarity Transformations From (29) 211988911990931205722119909 =

1198891199101205722119910 which can be integrated to give

119910

11990923

= constant = 120578 (say) (30a)

Similarly 211988911990931205722119909 = 21198891205951205722120595 yields

120595

11990913

= constant = 119891 (120578) (say) that is 120595 = 11990913119891 (120578)

(30b)

6 Mathematical Problems in Engineering

where 119891 is an arbitrary function of 120578 From the equations211988911990931205722119909 = 1198891205790 and 211988911990931205722119909 = 1198891206010 we obtain byintegration

120579 = 120579 (120578) 120601 = 120601 (120578) (30c)

From the equation 211988911990931205722119909 = 119889119863112057221198631 we obtain byintegration

1198631 = (1198631)0119909minus23

(30d)

where (1198631)0 is a constant thermal slip factorThus from (30a)ndash(30d) we obtain

120578 = 119910119909minus23

120595 = 11990913119891 (120578)

120579 = 120579 (120578) 120601 = 120601 (120578) 1198631 = (1198631)0119909minus23

(31)

Here 120578 is the similarity variable and 119891 120579 120601 are dependentvariables Note that the similarity transformations in (31) areconsistent with the well-known similarity transformationsreported in the paper of Cheng and Chang [21] for 120582 = 0

in their paper Thus the dimensionless velocity components119906 V can be expressed as

119906 =

1198911015840

11990913 V = minus

1

311990923

(119891 minus 21205781198911015840) (32)

where primes indicate differentiation with respect to 120578

32 Similarity Equations On substituting the transforma-tions in (31) into the governing (16)ndash(18) we obtain thefollowing system of ordinary differential equations

11989110158401015840minus

2

3

120578 (1205791015840minus 119873119903120601

1015840) = 0 (33)

12057910158401015840+

1

3

1198911205791015840+ 119873119887120579

10158401206011015840+ 119873119905120579

10158402+ 119876120579 = 0 (34)

12060110158401015840+

Le3

1198911206011015840+

119873119905

119873119887

12057910158401015840minus 119870120601119899= 0 (35)

We have to solve the system equations (33)ndash(35) subjectto the boundary conditions

119891 (0) = 0 120579 (0) = 1 + 1198871205791015840(0) 120601 (0) = 1

1198911015840(infin) = 0 120579 (infin) = 0 120601 (infin) = 0

(36)

where 119887 = (1198631)0119871 is the thermal slip parameter

4 Basic Idea of the HAM

Let us consider the following differential equation

N [119906 (120591)] = 0 (37)

where N is a nonlinear operator 120591 denotes independentvariable and 119906(120591) is an unknown function respectively Forsimplicity we ignore all boundary or initial conditions whichcan be treated in the similar way By means of generalizing

the traditional homotopy method Liao [45] constructs theso-called zero-order deformation equation

(1 minus 119901)L [120593 (120591 119901) minus 1199060 (120591)] = 119901ℏ119867 (120591)N [120593 (120591 119901)] (38)

where 119901 isin [0 1] is the embedding parameter ℏ = 0 is anonzero auxiliary parameter 119867(120591) = 0 is an auxiliary func-tionL is an auxiliary linear operator 1199060(120591) is an initial guessof 119906(120591) and 120593(120591 119901) is an unknown function respectively Itis important that one has great freedom to choose auxiliarythings in the HAM Obviously when 119901 = 0 and 119901 = 1 itholds 120593(120591 0) = 1199060(120591) 120593(120591 1) = 119906(120591) respectively Thus as119901 increases from 0 to 1 the solution 120593(120591 119901) varies from theinitial guess 1199060(120591) to the solution 119906(120591) Expanding 120593(120591 119901) inTaylor series with respect to 119901 we have

120593 (120591 119901) = 1199060 (120591) +

+infin

sum

119898=1

119906119898 (120591) 119901119898 (39)

where

119906119898 (120591) =1

119898

120597119898120593 (120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(40)

If the auxiliary linear operator the initial guess theauxiliary parameter ℏ and the auxiliary function are soproperly chosen the series (39) converges at 119901 = 1 then wehave

119906 (120591) = 1199060 (120591) +

+infin

sum

119898=1

119906119898 (120591) (41)

which must be one of solutions of original nonlinear equa-tion as proved by Liao [45] As ℏ = minus1 and 119867(120591) = 1 (38)becomes

(1 minus 119901)L [120593 (120591 119901) minus 1199060 (120591)] + 119901N [120593 (120591 119901)] = 0 (42)

which is used mostly in the homotopy perturbation methodwhere the solution can be obtained directly without usingTaylor series

According to definition (39) the governing equationcan be deduced from the zero-order deformation equation(37) By defining the vector 119899 = 1199060(120591) 1199061(120591) 119906119899(120591)

and differentiating equation (37) 119898 times with respect tothe embedding parameter 119901 and then setting 119901 = 0 andfinally dividing them by119898 we have the so-called119898th-orderdeformation equation

L [119906119898 (120591) minus 120594119898119906119898minus1 (120591)] = ℏ119867 (120591) 119877119898 (119898minus1) (43)

where

119877119898 (119898minus1) =1

(119898 minus 1)

120597119898minus1N [120593(120591 119901)]

120597119901119898minus1

100381610038161003816100381610038161003816100381610038161003816119901=0

120594119898 = 0 119898 le 1

1 119898 gt 1

(44)

It should be emphasized that 119906119898(120591) for 119898 ge 1 isgoverned by the linear equation (39) with the linear boundaryconditions that come from original problem which canbe easily solved by symbolic computation software such asMAPLE and MATHEMATICA

Mathematical Problems in Engineering 7

0 05

0

05

1

15

2

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

minus2minus2

minus1

minus1

minus05

minus05

minus15

minus15minus25

f998400998400

(0)

Figure 2 The ℏ-curve of 11989110158401015840(0) given by the various HAM-orderapproximate solution

0 05

0

HAM order 12HAM order 8

HAM order 4

minus2

minus2

minus1

minus1

minus05

minus05

minus15

minus15

minus25

minus25

minus3

minus35

minus4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579998400 (0)

Figure 3 The ℏ-curve of 1205791015840(0) given by the various HAM-orderapproximate solution

5 HAM Solution

In this section we applied the HAM to obtain approx-imate analytical solutions of the effect of higher orderchemical reaction internal heat generation and the thermalslip boundary condition on the boundary-layer flow of ananofluid past an upward facing horizontal plate (33)ndash(35)

05

0

minus2

minus1

minus05

minus15

minus25

minus3

minus35

minus4minus2 minus1 minus05minus15 0

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120601998400 (0

)

Figure 4 The ℏ-curve of 1206011015840(0) given by the various HAM-orderapproximate solution

We start with the initial approximation 1198650(120578) = 0 Θ0(120578) =(1(119887 + 1))Exp[minus120578]Φ0(120578) = Exp[minus120578] and the linear operator

L [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205783

L [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

120597Θ (120578 119901)

120597120578

L [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

120597Φ (120578 119901)

120597120578

(45)

Furthermore from (33)ndash(35) we define the nonlinearoperators

N [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205782

minus

2

3

120578(

120597Θ (120578 119901)

120597120578

minus 119873119903

120597Φ (120578 119901)

120597120578

)

N [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

1

3

119865 (120578 119901)

120597Θ (120578 119901)

120597120578

+ 119873119887

120597Θ (120578 119901)

120597120578

120597Φ (120578 119901)

120597120578

+ 119873119905(

120597Θ (120578 119901)

120597120578

)

2

+ 119876Θ (120578 119901)

N [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

Le3

119865 (120578 119901)

120597Φ (120578 119901)

120597120578

+

119873119905

119873119887

1205972Θ(120578 119901)

1205971205782

minus 119870(Φ (120578 119901))119899

(46)

8 Mathematical Problems in Engineering

Using the above definition with assumption 119867119865(120591) = 1119867Θ(120591) = Exp[minus120578] and 119867Φ(120591) = Exp[minus120578] we construct the119911119890119903119900th-order deformation equation

(1 minus 119901)L [120593 (119909 119901) minus 1199060 (119909)] = 119867 (120591) 119901ℏN [120593 (119909 119901)]

(47)

Obviously when 119901 = 0 and 119901 = 1

120593 (119909 0) = 1199060 (119909) 120593 (119909 1) = 119906 (119909) (48)

Differentiating the 119911119890119903119900th-order deformation equation(47)119898 times with respect to 119901 and finally dividing by119898 wehave the119898th-order deformation equation

L [119865119898 (119909) minus 120594119898119865119898minus1 (119909)] = ℏ119877119898 (119898minus1)

L [Θ119898 (119909) minus 120594119898Θ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Θ119898minus1)

L [Φ119898 (119909) minus 120594119898Φ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Φ119898minus1)

(49)

subject to boundary condition

119865119898 = 0 Θ119898 = 1 + 119887Θ1015840119898 Φ119898 = 1 at 120578 = 0

1198651015840119898 997888rarr 0 Θ119898 997888rarr 0 Φ119898 997888rarr 0 as 120578 997888rarr infin

(50)

For 119899 = 1 (Newtonian fluid)

119877119898 (119898minus1) =1205972119865119898minus1 (120578)

1205971205782

minus

2

3

120578(

120597Θ119898minus1 (120578)

120597120578

minus 119873119903

120597Φ119898minus1 (120578)

120597120578

)

119877119898 (Θ119898minus1) =1205972Θ119898minus1 (120578)

1205971205782

+

1

3

119898minus1

sum

119895=0

119865119895 (120578)

120597Θ119898minus1minus119895 (120578)

120597120578

+ 119873119887

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Φ119898minus1minus119895 (120578)

120597120578

)

+ 119873119905

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Θ119898minus1minus119895 (120578)

120597120578

)

+ 119876Θ119898minus1 (120578)

(51)

For 119899 = 1

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870Φ119898minus1 (120578)

(52)

Table 1 The optimal values of ℏ for different values of119873119905119876 119899

119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00

Seriessolution119899 10 20 30Nt 01 005 01119876 01 00 01

1198911015840(120578) ℏOptimal = minus145 ℏOptimal = minus187 ℏOptimal = minus169

120579(120578) ℏOptimal = minus119 ℏOptimal = minus098 ℏOptimal = minus108

120601(120578) ℏOptimal = minus111 ℏOptimal = minus086 ℏOptimal = minus095

Also for 119899 = 2

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119895=0

Φ119895 (120578)Φ119898minus1minus119895 (120578)

(53)

and for 119899 = 3

119877119898 (Φ119898minus1)

=

1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119894=0

(Φ119898minus1minus119894 (120578)

119894minus1

sum

119895=0

(Φ119895 (120578)Φ119894minus119895 (120578)))

(54)

Obviously the solution of the 119898th-order deformationequations (49) for119898 ge 1 becomes

119865119898 (120578) = 119865119898minus1 (120578) + ℏLminus1[119877119898 (119898minus1)]

Θ119898 (120578) = Θ119898minus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Θ119898minus1)]

Φ119898 (120578) = Φmminus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Φ119898minus1)]

(55)

Mathematical Problems in Engineering 9

By using the symbolic software MATHEMATICA tosolve the system of linear equations (49) with the boundaryconditions (46) it can be obtained finally

1198651 (120578) = minus

4

3 (1 + 119887)

ℏ +

4119890minus120578

3 (1 + 119887)

ℏ +

4119873119903

3 (1 + 119887)

+

4119887119873119903

3 (1 + 119887)

ℏ minus

4119873119903119890minus120578

3 (1 + 119887)

ℏ minus

4119887119873119903119890minus120578

3 (1 + 119887)

+

2119890minus120578120578

3 (1 + 119887)

ℏ minus

2119873119903119890minus120578120578

3 (1 + 119887)

ℏ minus

2119887119873119903119890minus120578120578

3 (1 + 119887)

Θ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2(1 + 119887)2ℏ minus

119887119890minus120578

2(1 + 119887)2ℏ

minus

119873119887119890minus3120578

6(1 + 119887)2ℏ +

119887119873119887119890minus3120578

6(1 + 119887)2ℏ minus

119873119887119890minus120578

6(1 + 119887)2ℏ

minus

119887119873119887119890minus120578

6(1 + 119887)2ℏ +

119873119905119890minus3120578

6(1 + 119887)2ℏ minus

119873119905119890minus120578

6(1 + 119887)2ℏ

+

119876119890minus2120578

2 (1 + 119887)

ℏ minus

119876119890minus120578

2(1 + 119887)2ℏ minus

119887119876119890minus120578

2(1 + 119887)2ℏ

Φ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ +

119887119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2 (1 + 119887)

minus

119887119890minus120578

2 (1 + 119887)

ℏ minus

119870119890minus2120578

2 (1 + 119887)

ℏ minus

119887119870eminus2120578

2 (1 + 119887)

+

119870119890minus120578

2 (1 + 119887)

ℏ +

119887119870119890minus120578

2 (1 + 119887)

ℏ +

119873119905

119873119887

119890minus2120578

2 (1 + 119887)

minus

119873119905

119873119887

119890minus120578

2 (1 + 119887)

(56)

The higher orders solutions of 119865(120578) Θ(120578) and Φ(120578) weretoo long to be mentioned here therefore they are showngraphically

51 Convergence of the HAM Solution As mentioned by Liao[45] HAM provides us with great freedom in choosing thesolution of a nonlinear problem by different base functionsThis has a great effect on the convergence region because theconvergence region and rate of a series are chiefly determinedby the base functions used to express the solution We usedseveral terms in evaluating the approximate solution 119865app asympsum119899119894=0 119865119894Θapp asymp sum

119899119894=0Θ119894Φapp asymp sum

119899119894=0Φ119894 note that the solution

series contains the auxiliary parameter ℏ which provides uswith a simple way to adjust and control the convergence ofthe solution series Generally by means of the so-called ℏ-curve that is a curve of a versus ℏ As pointed by Liao [45]the valid region of ℏ is a horizontal line segment Figures2 3 and 4 show the ℏ-curve with the various order of theHAM for 11989110158401015840(0) 1205791015840(0) 1206011015840(0) respectively when 119873119887 = 01

0 2 4 6 8 10

0

00001

00002

00003

minus00001

minus00002

minus00003

120578

= minus135

= minus145 (optimal value)= minus15

Res (f998400 (120578))

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 5 The residual error of 1198911015840(120578) for (33) using 12th order ofapproximations

0 2 4 6 8 10

0

0001

0002

minus00001

minus00002

minus00003

minus00004

120578

= minus11

= minus119 (optimal value)= minus13

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Res (120579

(120578))

ℏℏ

Figure 6 The residual error of 120579(120578) for (34) using 12th order ofapproximations

119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10119887 = 00 It can be seen that when the order of series is 12 thesegment of the horizontal line is more than the other ordersFor example it can be found that for 11986510158401015840(0) the acceptablerange ofℏ is betweenminus05 andminus20 for 12th order of theHAMbut for 8th order of the HAM the acceptable range of ℏ isbetween minus10 and minus20 or minus10 and minus15 for 4th order of theHAM so horizontal line segment of 12th order of the HAM ismore than others Therefore it is straightforward to choosean appropriate range for ℏ which ensures the convergence

10 Mathematical Problems in Engineering

minus00002

120578

= minus10

= minus111 (optimal value)= minus12

Nt = 01Nr = 01

Q = 01Le = 10K = 10n = 10b = 00

0006

0004

0002

0

0 2 4 6 8 10

Nb = 01

Res (120601

(120578))

Figure 7 The residual error of 120601(120578) for (35) using 12th order ofapproximations

of the solution series To choose optimal value of auxiliaryparameter the averaged residual errors (see [53] for moredetails) are defined as

119864119865119898 =1

119870

119870

sum

119894=0

[N119865(119898

sum

119894=0

119865119894 (119894Δ119909))]

2

119864Θ119898 =1

119870

119870

sum

119894=0

[NΘ(119898

sum

119894=0

Θ119894 (119894Δ119909))]

2

119864Φ119898 =1

119870

119870

sum

119894=0

[NΦ(119898

sum

119894=0

Φ119894 (119894Δ119909))]

2

(57)

where Δ119909 = 10119870 and 119870 = 20 For given order ofapproximation 119898 and the optimal values ℏ are given bythe minimum of 119864119898 corresponding to nonlinear algebraicequations

119889119864119865119898

119889ℏ

= 0

119889119864Θ119898

119889ℏ

= 0

119889119864Φ119898

119889ℏ

= 0 (58)

It is noted that the optimal value of ℏ is replaced intothe equations Table 1 shows optimal values obtained for theauxiliary parameter ℏ for various quantities of119873119905 119876 and 119899when119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00 To see

the accuracy of the solutions the residual errors are definedfor the system as (for119898 order approximation)

Res119865119898

=

1198892119865119898

1198891205782minus

2

3

120578(

119889Θ119898

119889120578

minus 119873119903

119889Φ119898

119889120578

) (59)

ResΘ119898

=

1198892Θ119898

1198891205782+

1

3

119865119898

119889Θ119898

d120578+ 119873119887

119889Θ119898

119889120578

119889Φ119898

119889120578

+ 119873119905(

119889Θ119898

119889120578

)

2

+ 119876Θ119898

(60)

ResΦ119898

=

1198892Φ119898

1198891205782+

Le3

119865119898

119889Φ119898

119889120578

+

119873119905

119873119887

1198892Θ119898

1198891205782

minus 119870(

119889Φ119898

119889120578

)

119899

(61)

Figures 5 6 and 7 show the residual errors for 12th-orderdeformation solutions when 119873119887 = 01 119873119905 = 01 119873119903 = 01119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 For example ℏ =minus145 has the minimum range of residual curve in Figure 5and so on

Graphical representation of results is very useful todemonstrate the efficiency and accuracy of the HAM for theabove problem

6 Comparisons and Verification

It is worth citing that for isothermal plate (119887 = 0) and in theabsence of internal heat generationabsorption (119876 = 0) andchemical reaction (119870 = 0) our problem reduces to Gorla andChamkha [26] and Khan and Pop [27] To verify the accuracyof our results the present results are compared in Table 2with Gorla and Chamkha [26] and are found to be in goodagreement

7 Physical Quantities

Theparameters of physical interest of the present problem arethe local skin friction factor 119862119891119909 the local Nusselt numberNu119909 and the local Sherwood number Sh119909 respectivelyPhysically 119862119891119909 indicates wall shear stress Nu119909 indicates therate of wall heat transfer whilst Sh119909 indicates the rate ofwall nanoparticle volume fractionThe following relations areused to find these quantities

119862119891119909 =2120583

1205881198802119903

(

120597119906

120597119910

)

119910=0

Nu119909 =minus119909

119879119891 minus 119879infin

(

120597119879

120597119910

)

119910=0

Sh119909 =minus119909

119862119908 minus 119862infin

(

120597119862

120597119910

)

119910=0

(62)

Mathematical Problems in Engineering 11

Table 2 Comparison of present solution with Gorla and Chamkha[26] for different values of buoyancy and nanofluid parameters

Present results (HAM) Gorla and Chamkha [26]minus1205791015840(0) minus120601

1015840(0) minus120579

1015840(0) minus120601

1015840(0)

Nr 119873119887 = 03119873119905 = 01 Le = 10 119887 = 119870 = 119876 = 0

01 032578 148242 326119864 minus 01 148416402 032385 146704 325119864 minus 01 146816103 032188 145125 322119864 minus 01 145266404 031985 143503 321119864 minus 01 143639205 031777 141833 319119864 minus 01 1419499Nt 119873119887 = 03119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 031777 141833 319119864 minus 01 141949902 030486 141491 305119864 minus 01 141653603 02927 141561 293119864 minus 01 141686604 028125 141991 282119864 minus 01 142158205 027046 142737 271119864 minus 01 1429226Nb 119873119905 = 01119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 03672 132611 368119864 minus 01 132745402 034271 139216 343119864 minus 01 139361503 031777 141833 319119864 minus 01 141949904 029399 143428 294119864 minus 01 143546405 027161 144598 272119864 minus 01 144772

0 2 4 6 8 100

02

04

06

08

1

12

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

f998400 (120578

)

Figure 8 Comparison of dimensionless velocity profile 1198911015840(120578)

obtained by various orders of the HAM

By substituting from (14) and (31) into (37) it can beshown that physical quantities are putted in the followingdimensionless form

1

2

Ra119909Pr119862119891119909 = 11989110158401015840(0) Raminus13

119909Nu119909 = minus120579

1015840(0)

Raminus13119909

Sh119909 = minus1206011015840(0)

(63)

0 2 4 6 8 100

02

04

06

08

1

120578

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 9 Comparison of dimensionless temperature profile 120579(120578)obtained by various orders of the HAM

0 2 4 6 8 100

02

04

06

08

1

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

HAM order 4HAM order 8

HAM order 12Numerical

120578

120601(120578

)

Figure 10 Comparison of dimensionless concentration profile 120601(120578)obtained by various orders of the HAM

Here Ra119909 = 119892119870120573(1minus119862infin)Δ119879119909(120572119898]) is the local Rayleighnumber Pr = ]120572119898 is the Prandtl number and 119880119903 = (1 minus

119862infin)119892119870120573Δ119879120572119898 is the reference velocity

8 Results and Discussion

Graphical representation of results is very useful to discussthe physical features presented by the solutions This sectiondescribes the influence of some interesting parameters on

12 Mathematical Problems in Engineering

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

f998400 (120578)

120578

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 11 Effect of buoyancy ratio119873119903 on the dimensionless velocityprofile

0 2 4 6 8 10

02

04

06

08

1

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

120578

120579(120578

)

Figure 12 Effect of buoyancy ratio 119873119903 on the dimensionlesstemperature profile

the velocity and temperature fields Equations (33) to (35)with boundary conditions in (36) were solved analytically byHAM and numerically using Runge-Kutta-Fehlberg fourth-fifth order proposed by Aziz [54]

Figures 8 9 and 10 respectively for 1198911015840(120578) 120579(120578) and 120601(120578)show the comparisons between various order approximationof the optimal HAM and the numerical solutions for the case

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

120601(120578

)Figure 13 Effect of buoyancy ratio 119873119903 on the dimensionlessconcentration profile

0 2 4 6 8 10

02

04

06

08

1

12

NumericalNumerical

Numerical

f998400 (120578

)

120578

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 14 Effect of Brownian motion 119873119887 on the dimensionlessvelocity profile

119873119887 = 01 119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 For better presentation these results arepresented in Tables 3 4 and 5 Also Tables 6 7 and 8 presentthe comparisons between various order approximation of theoptimal HAM and the numerical solutions for the case119873119887 =03 119873119905 = 005 119873119903 = 03 119876 = 01 Le = 20 119870 = 05

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

2 Mathematical Problems in Engineering

ultrafine nanoparticles (lt100 nm) suspended in a base fluidwhich can be water or an organic solvent Nanofluids possesssuperior thermophysical properties like high thermal con-ductivity minimal clogging in flow passages long term sta-bility and homogeneity Industrial applications of nanofluidinclude electronics automotive and nuclear applicationsNanobiotechnology is also a fast developing field of researchwith application in many domains such as medicine phar-macy cosmetics and agroindustry Many of these industrialprocesses involve nanofluid flow and nanoparticle volumefraction past various geometries In these applications thediffusing species can be generatedabsorbed due to chemicalreaction with the ambient fluid This can greatly affect theflow and hence the properties and quality of the final product[10 11]

Different industrial applications of internal heat gen-eration include polymer production and the manufactureof ceramics or glassware phase change processes thermalcombustion processes and the development of a metal wastefrom spent nuclear fuel [12] A review of convective transportin nanofluids was conducted by Buongiorno [13] Kuznetsovand Nield [14] presented a similarity solution of naturalconvective boundary-layer flow of a nanofluid past a verticalplate They have shown that the reduced Nusselt number isa decreasing function of the buoyancy-ratio number 119873119903 aBrownianmotion number119873119887 and a thermophoresis number119873119905 Godson et al [15] presented the recent experimental andtheoretical studies on convective heat transfer in nanofluidsand their thermophysical properties and applications andclarified the challenges and opportunities for future research

Convective flow in porous media has received the atten-tion of researchers over the last several decades due to itsmany applications in mechanical chemical and civil engi-neering Examples include fibrous insulation food processingand storage thermal insulation of buildings geophysical sys-tems electrochemistry metallurgy the design of pebble bednuclear reactors underground disposal of nuclear or nonnu-clear waste and cooling system of electronic devices Excel-lent reviews of the fundamental theoretical and experimentalworks can be found in the books by Nield and Bejan [16]Vadasz [17] Vafai [18] The Cheng-Minkowycz problem [19]was investigated by Nield and Kuznetsov [20] for nanofluidwhere the model involves the effect of Brownian motionand thermophoresis The classical problem of free convectiveflow in a porous medium near a horizontal flat plate wasfirst investigated by Cheng and Chang [21] Following himmany researchers such as Chang and Cheng [22] Shiunlinand Gebhart [23] Merkin and Zhang [24] and Chaudhary etal [25] have extended the problem in various aspects Gorlaand Chamkha [26] presented a similarity analysis of freeconvective flow of nanofluid past a horizontal upward facingplate in a porous medium numerically Khan and Pop [27]extended this problem for nanofluid Very recently Aziz et al[28] extended the same problem for a water-based nanofluidcontaining gyrotactic microorganisms

Lie group analysis has been used by many investigatorsto analyze various convective phenomena under variousflow configurations arising in fluidmechanics aerodynamicsplasma physics meteorology chemical engineering and

other engineering branches [29] This method has beenapplied by many investigators to study various transportproblems For example the symmetrical properties of theturbulent boundary-layer flows and other turbulent flowsare investigated by using the Lie group techniques byAvramenko et al [30] Kuznetsov et al [31] investigateda falling bioconvection plume in a deep chamber filledwith a fluid saturated porous medium theoretically Jalil etal [32] studied mixed convective flow with mass transferusing Lie group analysis The effect of thermal radiation andconvective surface boundary condition on the boundary-layer flow was investigated by Hamad et al [33] Aziz et al[34] studied MHD flow over an inclined radiating plate withthe temperature dependent thermal conductivity variablereactive index and heat generation using scaling group oftransformations Reviews for the fundamental theory andapplications of group theory to differential equations can befound in the texts by Hansen [35] Ames [36] Seshadri andNa [37] and Shang [38]

Most scientific problems and phenomena such as theboundary-layer problem occur nonlinearly For these non-linear problems we have difficulty in finding their exactanalytical solutions Analytical solutions to these nonlinearequations are of fundamental importance Where no analyti-cal solutions can be found researchers have resorted to otherapproaches One such approach is a perturbation method[39] that is strongly dependent upon the so-called ldquosmallparametersrdquo The perturbation method cannot provide uswith a simple way to adjust and control the convergenceregion and rate of convergence of a given approximate series

Another known method is the differential transformmethod that has been used in recent years [40ndash44] In 1992Liao introduced the basic ideas of the homotopy in topologyto propose a general analytic method for nonlinear problemsnamely homotopy analysismethod (HAM) [45] that does notneed any small parameterThis method has been successfullyapplied to solve many types of nonlinear problems by others[46ndash48] As this approach is based on the homotopy oftopology the validity of the HAM is independent of whetheror not there exists a small parameter in the consideredequation Therefore the HAM can overcome the foregoingrestrictions and limitations of perturbation methods [49]This method also provides us with great freedom to selectproper base functions to approximate solutions of nonlinearproblems Using one interesting property of homotopy onecan transform any nonlinear problem into an infinite numberof linear problems

In this paper the steady flow of an Ostwald-de Waelepower-law fluid induced by a steadily rotating infinite disk toa non-Darcian fluid-saturated porous medium is consideredThe coupled governing equations are transformed into ordi-nary differential equations in the boundary layerTheOHAMis applied to solve the ODEs The validity of our solutionsis verified by the numerical results (by using a fourth-orderRunge-Kutta and shooting method)

The aim of the present study is to investigate the effect ofhigher order chemical reaction internal heat generation andthe thermal slip boundary condition on the boundary-layerflow of a nanofluid past an upward facing horizontal plate

Mathematical Problems in Engineering 3

(i) Nanoparticle volume fraction (iii) Momentum boundary layers

Porous media

(i)

(iii)(ii)g Tinfin Cinfin uinfin = 0

T C q

(ii) Thermal

Figure 1 Coordinate system and flow model

Lie group analysis is used to develop the similarity transfor-mations and the corresponding similarity representations ofthe governing equations The coupled governing equationsare transformed into ordinary differential equations in theboundary layer The OHAM is applied to solve the ODEsThe obtained solutions are verified by the numerical results(obtained by using a Runge-Kutta-Fehlberg fourth-fifth orderand shooting method) The effect of relevant parameters ondimensionless fluid velocity temperature and nanoparticlevolume fraction are investigated and shown graphically anddiscussed A table containing data for the reduced Nusseltnumber and reduced Sherwood number is also provided toshow the effects of various parameters on them To the best ofour knowledge the effects of thermal slip boundary conditionwith internal heat generation and chemical reaction on theboundary-layer flow of a nanofluid past a horizontal plate inporous media have not been reported in the literature yet

The paper is divided up as follows In Section 2 themath-ematical formulation is presented In Section 3 we used theLie group method to reduce the system of partial differentialequations to a system of ordinary differential equations InSection 4 the basic idea of theHAM is presented In Section 5we derived the OHAM solution of the coupled system ofnonlinear ordinary differential equations In Section 6 wecompared our results with numerical solutions obtainedusing a Runge-Kutta-Fehlberg method In Section 7 weintroduced the physical quantities to be considered andcompared in this paper Section 8 contains the results anddiscussion The conclusions are summarized in Section 9

2 Formulation of the Problem

We consider a two-dimensional laminar free convectiveboundary-layer flow of a nanofluid past an upward facingchemically reacting horizontal plate in a porous media(Figure 1) We assume that a homogeneous isothermal irre-versible chemical reaction of order 119899 takes place betweenthe plate and nanofluid There is internal heat genera-tionabsorption within the fluid inside the boundary layer at

the volumetric rate 119902 Variation of density of the fluid is takeninto account using the Oberbeck-Boussinesq approximationThe conservation of mass momentum energy and nanopar-ticles describing the flow can be written in dimensional form(see [27])

nabla sdot = 0 (1)

120588119891

120576

120597

120597119905

= minus nabla119875 minus

120583

119896

+ [119862120588119875 + (1 minus 119862) 120588119891 (1 minus 120573 (119879 minus 119879infin))] 119892

(2)

(120588119862)119891

120597119879

120597119905

+ (120588119862)119891 sdot nabla119879

= 120581119898nabla2119879 + 120576(120588119862)119875 [119863119861 nabla119862 sdot nabla119879 + (

119863119879

119879infin

)nabla119879 sdot nabla119879] + 119902

(3)

120597119862

120597119905

+

1

120576

sdot nabla119862 = 119863119861nabla2119862 + (

119863119879

119879infin

)nabla2119879

minus 119896 (119909) (119862 minus 119862infin)119899

(4)

Theflow is assumed to be slow to ignore an advective termand a Forchheimer quadratic drag term in the momentumequation

We consider a steady flow where the Oberbeck-Boussinesq approximation is used In addition we assumethat the nanoparticle concentration is dilute With a suitablechoice for the reference pressure the momentum equationcan be linearized and (2) written as (see [50])

minus nabla119875 minus

120583

119896

+ [(120588119875 minus 120588119891infin) (119862 minus 119862infin)

+ (1 minus 119862infin) 120588119891infin120573 (119879 minus 119879infin)] 119892 = 0

(5)

We also consider the effect of temperature-dependentvolumetric heat generationabsorption in the flow region thatis given by Vajravelu and Hadjinicolaou [51] as

119902 =

Ra2311987601198714311990943

(119879 minus 119879infin) 119879 gt 119879infin(6)

where1198760 is the heat generationabsorption constant Also weconsider the case where the reaction rate varies as

119896 (119909) =

Ra2311989601198714311990943

(7)

where 1198960 is the constant reaction rate

4 Mathematical Problems in Engineering

With these assumptions along with standard boundary-layer approximation the governing equations can be writtenin dimensional form as

120597119906

120597119909

+

120597V120597119910

= 0 (8)

120597119875

120597119909

= minus

120583

119896

119906 (9)

120597119875

120597119910

= minus

120583

119896

V + [(1 minus 119862infin) 120588119891infin119892120573 (119879 minus 119879infin)

minus (120588119875 minus 120588119891infin) 119892 (119862 minus 119862infin)]

(10)

119906

120597119879

120597119909

+ V120597119879

120597119910

= 120572119898

1205972119879

1205971199102

+ 120591 [119863119861

120597119862

120597119910

120597119879

120597119910

+ (

119863119879

119879infin

)(

120597119879

120597119910

)

2

]

+

1198760

(120588119862)119891

Ra23

11987143

11990943

(119879 minus 119879infin)

(11)

119906

120597119862

120597119909

+ V120597119862

120597119910

= 119863119861

1205972119862

1205971199102+ (

119863119879

119879infin

)

1205972119879

1205971199102

minus

Ra2311989601198714311990943

(119862 minus 119862infin)119899

(12)

where 120572119898 = 119896119898(120588119888119875)119891 is the thermal diffusivity of the fluidand 120591 = 120576(120588119862)119901(120588119862)119891 is a parameter

The boundary conditions are taken to be

V = 0 119879 = 119879119908 + 1198631

120597119879

120597119910

119862 = 119862119908

at 119910 = 0

119906 997888rarr 0 119879 997888rarr 119879infin 119862 997888rarr 119862infin as 119910 997888rarr infin

(13)

where 1198631(119909) is the thermal slip factor with dimension(length)minus1 The following new nondimensional variables areintroduced to make (8)ndash(13) dimensionless

119909 =

119909

119871radicRa 119910 =

119910

119871

119906 =

119906119871

120572119898radicRa

V =V119871120572119898

120579 =

119879 minus 119879infin

Δ119879

120601 =

119862 minus 119862infin

Δ119862

Δ119879 = 119879119908 minus 119879infin Δ119862 = 119862119908 minus 119862infin

(14)

where Ra = 119892119896120573(1 minus 119862infin)Δ119879119871(120572119898]) is the Rayleigh numberbased on the characteristic length 119871 A stream function 120595

defined by

119906 =

120597120595

120597119910

V = minus120597 120595

120597119909

(15)

is introduced into (8)ndash(13) to reduce the number of depen-dent variables and the number of equations Note that (8) issatisfied identically Hence we have

Δ 1 equiv1205972120595

1205971199102+

120597120579

120597119909

minus 119873119903

120597120601

120597119909

= 0 (16)

Δ 2 equiv120597120595

120597119910

120597120579

120597119909

minus

120597120595

120597119909

120597120579

120597119910

minus

1205972120579

1205971199102minus 119873119887

120597120579

120597119910

120597120601

120597119910

minus 119873119905(

120597120579

120597119910

)

2

+

119876120579

11990943

= 0

(17)

Δ 3 equiv Le [120597120595

120597119910

120597120601

120597119909

minus

120597120595

120597119909

120597120601

120597119910

] minus

1205972120601

1205971199102

minus

119873119905

119873119887

1205972120579

1205971199102minus

119896120601119899

11990943

= 0

(18)

The boundary conditions become

120597120595

120597119909

= 0 120579 = 1 +

1198631 (119909)

119871

120597120579

120597119910

120601 = 1 at 119910 = 0

120597120595

120597119910

997888rarr 0 120579 997888rarr 0 120601 997888rarr 0 as 119910 997888rarr infin

(19)

The parameters in (16)ndash(19) are introduced in Nomencla-ture and defined by

119873119905 = 120591119863119879

Δ119879

120572119898

119879infin 119873119887 = 120591119863119861

Δ119862

120572119898

119873119903 =

(120588119875 minus 120588119891infin) Δ119862

120588119891infin

120573 (1 minus 119862infin) Δ119879

119876 =

11987601198712

120572119898(120588119862)119891

119870 =

11989601198712(Δ119862)119899minus1

120572119898

Le =120572119898

119863119861

(20)

3 Lie Group Analysis

We consider the following scaling group of transformationswhich is a special form of Lie group analysis [52]

Γ 119909lowast= 1199091198901205761205721 119910

lowast= 1199101198901205761205722

120595lowast= 1205951198901205761205723 120579

lowast= 1205791198901205761205724

120601lowast= 1206011198901205761205725 119863

lowast1 = 1198631119890

1205761205726

(21)

Here 120576 is the parameter of the group Γ and 120572119894 (119894 =

1 2 3 4 5 6) are arbitrary real numbers whose connec-tion will be determined by our analysis The transfor-mations in (21) can be considered as a point transfor-mation transforming the coordinates (119909 119910 120595 120579 120601 1198631) to

Mathematical Problems in Engineering 5

(119909lowast 119910lowast 120595lowast 120579lowast 120601lowast 119863lowast1 ) We now investigate the relationship

among the exponents 120572rsquos such that

Δ 119895 (119909lowast 119910lowast 120579lowast 120601lowast

1205973120595lowast

120597119910lowast3)

= 119867119895 (119909 119910 120579 120601 1205973120595

1205971199103 119886)

times Δ 119895 (119909 119910 120579 120601 1205973120595

1205971199103)

(119895 = 1 2 3)

(22)

Since this is the requirement that the differential formsΔ 1 Δ 2 and Δ 3 be reformed under the transformation groupin (19) by using (21) (16)ndash(18) are transformed to (see [3538])

Δ 1 equiv1205972120595lowast

120597119910lowast2

+

120597120579lowast

120597119909lowastminus 119873119903

120597120601lowast

120597119909lowast

= 119890120576(1205723minus21205722) 1205972120595

1205971199102+ 119890120576(1205724minus1205721) 120597120579

120597119909

minus 119890120576(1205725minus1205721) 120597120601

120597119909

Δ 2 equiv120597120595lowast

120597119910lowast

120597120579lowast

120597119909lowastminus

120597120595lowast

120597119909lowast

120597120579lowast

120597119910lowastminus

1205972120579lowast

120597119910lowast2minus 119873119887

120597120579lowast

120597119910lowast

120597120601lowast

120597119910lowast

minus 119873119905(

120597120579lowast

120597119910lowast)

2

+

119876120579lowast

119909lowast43

= 119890120576(1205723+1205724minus1205721minus1205722)[

120597120595

120597119910

120597120579

120597119909

minus

120597120595

120597119909

120597120579

120597119910

]

minus 119890120576(1205724minus21205722) 1205972120579

1205971199102minus 119890120576(1205724+1205725minus21205722)119873119887

120597120579

120597119910

120597120601

120597119910

minus 119890120576(21205724minus21205722)119873119905(

120597120579

120597119910

)

2

+ 119890120576(1205724minus(43)120572

1) 119876120579

11990943

Δ 3 equiv Le [120597120595lowast

120597119910lowast

120597120601lowast

120597119909lowastminus

120597120595lowast

120597119909lowast

120597120601lowast

120597119910lowast] minus

1205972120601lowast

120597119910lowast2

minus

119873119905

119873119887

1205972120579lowast

120597119910lowast2minus

119870120601lowast119899

119909lowast43

= minus 119890120576(1205725minus21205722) 1205972120601

1205971199102

+ 119890120576(1205723+1205725minus1205721minus1205722)Le [

120597120595

120597119910

120597120601

120597119909

minus

120597120595

120597119909

120597120601

120597119910

]

minus 119890120576(1205724minus21205722)119873119905

119873119887

1205972120579

1205971199102minus 119890120576(1198991205725minus(43)120572

1)119870120601119899

11990943

(23)

The system will remain invariant (structure of the equa-tions same) under the group transformation Γ if we have thefollowing relationship among the exponents

1205723 minus 21205722 = 1205724 minus 1205721 = 1205725 minus 1205721

1205723 + 1205724 minus 1205721 minus 1205722 = 1205724 minus 21205722 = 1205724 + 1205725 minus 21205722

= 21205724 minus 21205722 = 1205724 minus4

3

1205721

1205723 + 1205725 minus 1205721 minus 1205722 = 1205725 minus 21205722 = 1205724 minus 21205722

= 1205725 minus4

3

1205721

(24)

For invariance of the boundary conditions we have

1205724 = 0 = 1205724 + 1205726 minus 1205722 1205725 = 0 (25)

Solving (24) and (25) yields

1205724 = 1205725 = 0 1205721 =31205722

2

1205723 =1205722

2

1205726 = 1205722

(26)

The set of transformations Γ reduces to

119909lowast= 119909119890312057612057222 119910

lowast= 1199101198901205761205722

120595lowast= 12059511989012057612057222 120579

lowast= 120579

120601lowast= 120601 119863

lowast1 = 1198631119890

1205761205722

(27)

Expanding by the Taylorrsquos series in powers of 120576 andkeeping the terms up to the order 120576 yields

119909lowastminus 119909 = 3119909120576

1205722

2

119910lowastminus 119910 = 1205722119910

120595lowastminus 120595 = 120576120595

1205722

2

120579lowastminus 120579 = 0

120601lowastminus 120601 = 0 119863

lowast1 minus 119863 = 12057221198631

(28)

In terms of differentials we have

2119889119909

31205722119909=

119889119910

1205722119910=

2119889120595

1205722120595=

119889120579

0

=

119889120601

0

=

1198891198631

12057221198631

1205722 = 0

(29)

31 Similarity Transformations From (29) 211988911990931205722119909 =

1198891199101205722119910 which can be integrated to give

119910

11990923

= constant = 120578 (say) (30a)

Similarly 211988911990931205722119909 = 21198891205951205722120595 yields

120595

11990913

= constant = 119891 (120578) (say) that is 120595 = 11990913119891 (120578)

(30b)

6 Mathematical Problems in Engineering

where 119891 is an arbitrary function of 120578 From the equations211988911990931205722119909 = 1198891205790 and 211988911990931205722119909 = 1198891206010 we obtain byintegration

120579 = 120579 (120578) 120601 = 120601 (120578) (30c)

From the equation 211988911990931205722119909 = 119889119863112057221198631 we obtain byintegration

1198631 = (1198631)0119909minus23

(30d)

where (1198631)0 is a constant thermal slip factorThus from (30a)ndash(30d) we obtain

120578 = 119910119909minus23

120595 = 11990913119891 (120578)

120579 = 120579 (120578) 120601 = 120601 (120578) 1198631 = (1198631)0119909minus23

(31)

Here 120578 is the similarity variable and 119891 120579 120601 are dependentvariables Note that the similarity transformations in (31) areconsistent with the well-known similarity transformationsreported in the paper of Cheng and Chang [21] for 120582 = 0

in their paper Thus the dimensionless velocity components119906 V can be expressed as

119906 =

1198911015840

11990913 V = minus

1

311990923

(119891 minus 21205781198911015840) (32)

where primes indicate differentiation with respect to 120578

32 Similarity Equations On substituting the transforma-tions in (31) into the governing (16)ndash(18) we obtain thefollowing system of ordinary differential equations

11989110158401015840minus

2

3

120578 (1205791015840minus 119873119903120601

1015840) = 0 (33)

12057910158401015840+

1

3

1198911205791015840+ 119873119887120579

10158401206011015840+ 119873119905120579

10158402+ 119876120579 = 0 (34)

12060110158401015840+

Le3

1198911206011015840+

119873119905

119873119887

12057910158401015840minus 119870120601119899= 0 (35)

We have to solve the system equations (33)ndash(35) subjectto the boundary conditions

119891 (0) = 0 120579 (0) = 1 + 1198871205791015840(0) 120601 (0) = 1

1198911015840(infin) = 0 120579 (infin) = 0 120601 (infin) = 0

(36)

where 119887 = (1198631)0119871 is the thermal slip parameter

4 Basic Idea of the HAM

Let us consider the following differential equation

N [119906 (120591)] = 0 (37)

where N is a nonlinear operator 120591 denotes independentvariable and 119906(120591) is an unknown function respectively Forsimplicity we ignore all boundary or initial conditions whichcan be treated in the similar way By means of generalizing

the traditional homotopy method Liao [45] constructs theso-called zero-order deformation equation

(1 minus 119901)L [120593 (120591 119901) minus 1199060 (120591)] = 119901ℏ119867 (120591)N [120593 (120591 119901)] (38)

where 119901 isin [0 1] is the embedding parameter ℏ = 0 is anonzero auxiliary parameter 119867(120591) = 0 is an auxiliary func-tionL is an auxiliary linear operator 1199060(120591) is an initial guessof 119906(120591) and 120593(120591 119901) is an unknown function respectively Itis important that one has great freedom to choose auxiliarythings in the HAM Obviously when 119901 = 0 and 119901 = 1 itholds 120593(120591 0) = 1199060(120591) 120593(120591 1) = 119906(120591) respectively Thus as119901 increases from 0 to 1 the solution 120593(120591 119901) varies from theinitial guess 1199060(120591) to the solution 119906(120591) Expanding 120593(120591 119901) inTaylor series with respect to 119901 we have

120593 (120591 119901) = 1199060 (120591) +

+infin

sum

119898=1

119906119898 (120591) 119901119898 (39)

where

119906119898 (120591) =1

119898

120597119898120593 (120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(40)

If the auxiliary linear operator the initial guess theauxiliary parameter ℏ and the auxiliary function are soproperly chosen the series (39) converges at 119901 = 1 then wehave

119906 (120591) = 1199060 (120591) +

+infin

sum

119898=1

119906119898 (120591) (41)

which must be one of solutions of original nonlinear equa-tion as proved by Liao [45] As ℏ = minus1 and 119867(120591) = 1 (38)becomes

(1 minus 119901)L [120593 (120591 119901) minus 1199060 (120591)] + 119901N [120593 (120591 119901)] = 0 (42)

which is used mostly in the homotopy perturbation methodwhere the solution can be obtained directly without usingTaylor series

According to definition (39) the governing equationcan be deduced from the zero-order deformation equation(37) By defining the vector 119899 = 1199060(120591) 1199061(120591) 119906119899(120591)

and differentiating equation (37) 119898 times with respect tothe embedding parameter 119901 and then setting 119901 = 0 andfinally dividing them by119898 we have the so-called119898th-orderdeformation equation

L [119906119898 (120591) minus 120594119898119906119898minus1 (120591)] = ℏ119867 (120591) 119877119898 (119898minus1) (43)

where

119877119898 (119898minus1) =1

(119898 minus 1)

120597119898minus1N [120593(120591 119901)]

120597119901119898minus1

100381610038161003816100381610038161003816100381610038161003816119901=0

120594119898 = 0 119898 le 1

1 119898 gt 1

(44)

It should be emphasized that 119906119898(120591) for 119898 ge 1 isgoverned by the linear equation (39) with the linear boundaryconditions that come from original problem which canbe easily solved by symbolic computation software such asMAPLE and MATHEMATICA

Mathematical Problems in Engineering 7

0 05

0

05

1

15

2

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

minus2minus2

minus1

minus1

minus05

minus05

minus15

minus15minus25

f998400998400

(0)

Figure 2 The ℏ-curve of 11989110158401015840(0) given by the various HAM-orderapproximate solution

0 05

0

HAM order 12HAM order 8

HAM order 4

minus2

minus2

minus1

minus1

minus05

minus05

minus15

minus15

minus25

minus25

minus3

minus35

minus4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579998400 (0)

Figure 3 The ℏ-curve of 1205791015840(0) given by the various HAM-orderapproximate solution

5 HAM Solution

In this section we applied the HAM to obtain approx-imate analytical solutions of the effect of higher orderchemical reaction internal heat generation and the thermalslip boundary condition on the boundary-layer flow of ananofluid past an upward facing horizontal plate (33)ndash(35)

05

0

minus2

minus1

minus05

minus15

minus25

minus3

minus35

minus4minus2 minus1 minus05minus15 0

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120601998400 (0

)

Figure 4 The ℏ-curve of 1206011015840(0) given by the various HAM-orderapproximate solution

We start with the initial approximation 1198650(120578) = 0 Θ0(120578) =(1(119887 + 1))Exp[minus120578]Φ0(120578) = Exp[minus120578] and the linear operator

L [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205783

L [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

120597Θ (120578 119901)

120597120578

L [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

120597Φ (120578 119901)

120597120578

(45)

Furthermore from (33)ndash(35) we define the nonlinearoperators

N [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205782

minus

2

3

120578(

120597Θ (120578 119901)

120597120578

minus 119873119903

120597Φ (120578 119901)

120597120578

)

N [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

1

3

119865 (120578 119901)

120597Θ (120578 119901)

120597120578

+ 119873119887

120597Θ (120578 119901)

120597120578

120597Φ (120578 119901)

120597120578

+ 119873119905(

120597Θ (120578 119901)

120597120578

)

2

+ 119876Θ (120578 119901)

N [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

Le3

119865 (120578 119901)

120597Φ (120578 119901)

120597120578

+

119873119905

119873119887

1205972Θ(120578 119901)

1205971205782

minus 119870(Φ (120578 119901))119899

(46)

8 Mathematical Problems in Engineering

Using the above definition with assumption 119867119865(120591) = 1119867Θ(120591) = Exp[minus120578] and 119867Φ(120591) = Exp[minus120578] we construct the119911119890119903119900th-order deformation equation

(1 minus 119901)L [120593 (119909 119901) minus 1199060 (119909)] = 119867 (120591) 119901ℏN [120593 (119909 119901)]

(47)

Obviously when 119901 = 0 and 119901 = 1

120593 (119909 0) = 1199060 (119909) 120593 (119909 1) = 119906 (119909) (48)

Differentiating the 119911119890119903119900th-order deformation equation(47)119898 times with respect to 119901 and finally dividing by119898 wehave the119898th-order deformation equation

L [119865119898 (119909) minus 120594119898119865119898minus1 (119909)] = ℏ119877119898 (119898minus1)

L [Θ119898 (119909) minus 120594119898Θ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Θ119898minus1)

L [Φ119898 (119909) minus 120594119898Φ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Φ119898minus1)

(49)

subject to boundary condition

119865119898 = 0 Θ119898 = 1 + 119887Θ1015840119898 Φ119898 = 1 at 120578 = 0

1198651015840119898 997888rarr 0 Θ119898 997888rarr 0 Φ119898 997888rarr 0 as 120578 997888rarr infin

(50)

For 119899 = 1 (Newtonian fluid)

119877119898 (119898minus1) =1205972119865119898minus1 (120578)

1205971205782

minus

2

3

120578(

120597Θ119898minus1 (120578)

120597120578

minus 119873119903

120597Φ119898minus1 (120578)

120597120578

)

119877119898 (Θ119898minus1) =1205972Θ119898minus1 (120578)

1205971205782

+

1

3

119898minus1

sum

119895=0

119865119895 (120578)

120597Θ119898minus1minus119895 (120578)

120597120578

+ 119873119887

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Φ119898minus1minus119895 (120578)

120597120578

)

+ 119873119905

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Θ119898minus1minus119895 (120578)

120597120578

)

+ 119876Θ119898minus1 (120578)

(51)

For 119899 = 1

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870Φ119898minus1 (120578)

(52)

Table 1 The optimal values of ℏ for different values of119873119905119876 119899

119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00

Seriessolution119899 10 20 30Nt 01 005 01119876 01 00 01

1198911015840(120578) ℏOptimal = minus145 ℏOptimal = minus187 ℏOptimal = minus169

120579(120578) ℏOptimal = minus119 ℏOptimal = minus098 ℏOptimal = minus108

120601(120578) ℏOptimal = minus111 ℏOptimal = minus086 ℏOptimal = minus095

Also for 119899 = 2

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119895=0

Φ119895 (120578)Φ119898minus1minus119895 (120578)

(53)

and for 119899 = 3

119877119898 (Φ119898minus1)

=

1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119894=0

(Φ119898minus1minus119894 (120578)

119894minus1

sum

119895=0

(Φ119895 (120578)Φ119894minus119895 (120578)))

(54)

Obviously the solution of the 119898th-order deformationequations (49) for119898 ge 1 becomes

119865119898 (120578) = 119865119898minus1 (120578) + ℏLminus1[119877119898 (119898minus1)]

Θ119898 (120578) = Θ119898minus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Θ119898minus1)]

Φ119898 (120578) = Φmminus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Φ119898minus1)]

(55)

Mathematical Problems in Engineering 9

By using the symbolic software MATHEMATICA tosolve the system of linear equations (49) with the boundaryconditions (46) it can be obtained finally

1198651 (120578) = minus

4

3 (1 + 119887)

ℏ +

4119890minus120578

3 (1 + 119887)

ℏ +

4119873119903

3 (1 + 119887)

+

4119887119873119903

3 (1 + 119887)

ℏ minus

4119873119903119890minus120578

3 (1 + 119887)

ℏ minus

4119887119873119903119890minus120578

3 (1 + 119887)

+

2119890minus120578120578

3 (1 + 119887)

ℏ minus

2119873119903119890minus120578120578

3 (1 + 119887)

ℏ minus

2119887119873119903119890minus120578120578

3 (1 + 119887)

Θ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2(1 + 119887)2ℏ minus

119887119890minus120578

2(1 + 119887)2ℏ

minus

119873119887119890minus3120578

6(1 + 119887)2ℏ +

119887119873119887119890minus3120578

6(1 + 119887)2ℏ minus

119873119887119890minus120578

6(1 + 119887)2ℏ

minus

119887119873119887119890minus120578

6(1 + 119887)2ℏ +

119873119905119890minus3120578

6(1 + 119887)2ℏ minus

119873119905119890minus120578

6(1 + 119887)2ℏ

+

119876119890minus2120578

2 (1 + 119887)

ℏ minus

119876119890minus120578

2(1 + 119887)2ℏ minus

119887119876119890minus120578

2(1 + 119887)2ℏ

Φ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ +

119887119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2 (1 + 119887)

minus

119887119890minus120578

2 (1 + 119887)

ℏ minus

119870119890minus2120578

2 (1 + 119887)

ℏ minus

119887119870eminus2120578

2 (1 + 119887)

+

119870119890minus120578

2 (1 + 119887)

ℏ +

119887119870119890minus120578

2 (1 + 119887)

ℏ +

119873119905

119873119887

119890minus2120578

2 (1 + 119887)

minus

119873119905

119873119887

119890minus120578

2 (1 + 119887)

(56)

The higher orders solutions of 119865(120578) Θ(120578) and Φ(120578) weretoo long to be mentioned here therefore they are showngraphically

51 Convergence of the HAM Solution As mentioned by Liao[45] HAM provides us with great freedom in choosing thesolution of a nonlinear problem by different base functionsThis has a great effect on the convergence region because theconvergence region and rate of a series are chiefly determinedby the base functions used to express the solution We usedseveral terms in evaluating the approximate solution 119865app asympsum119899119894=0 119865119894Θapp asymp sum

119899119894=0Θ119894Φapp asymp sum

119899119894=0Φ119894 note that the solution

series contains the auxiliary parameter ℏ which provides uswith a simple way to adjust and control the convergence ofthe solution series Generally by means of the so-called ℏ-curve that is a curve of a versus ℏ As pointed by Liao [45]the valid region of ℏ is a horizontal line segment Figures2 3 and 4 show the ℏ-curve with the various order of theHAM for 11989110158401015840(0) 1205791015840(0) 1206011015840(0) respectively when 119873119887 = 01

0 2 4 6 8 10

0

00001

00002

00003

minus00001

minus00002

minus00003

120578

= minus135

= minus145 (optimal value)= minus15

Res (f998400 (120578))

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 5 The residual error of 1198911015840(120578) for (33) using 12th order ofapproximations

0 2 4 6 8 10

0

0001

0002

minus00001

minus00002

minus00003

minus00004

120578

= minus11

= minus119 (optimal value)= minus13

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Res (120579

(120578))

ℏℏ

Figure 6 The residual error of 120579(120578) for (34) using 12th order ofapproximations

119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10119887 = 00 It can be seen that when the order of series is 12 thesegment of the horizontal line is more than the other ordersFor example it can be found that for 11986510158401015840(0) the acceptablerange ofℏ is betweenminus05 andminus20 for 12th order of theHAMbut for 8th order of the HAM the acceptable range of ℏ isbetween minus10 and minus20 or minus10 and minus15 for 4th order of theHAM so horizontal line segment of 12th order of the HAM ismore than others Therefore it is straightforward to choosean appropriate range for ℏ which ensures the convergence

10 Mathematical Problems in Engineering

minus00002

120578

= minus10

= minus111 (optimal value)= minus12

Nt = 01Nr = 01

Q = 01Le = 10K = 10n = 10b = 00

0006

0004

0002

0

0 2 4 6 8 10

Nb = 01

Res (120601

(120578))

Figure 7 The residual error of 120601(120578) for (35) using 12th order ofapproximations

of the solution series To choose optimal value of auxiliaryparameter the averaged residual errors (see [53] for moredetails) are defined as

119864119865119898 =1

119870

119870

sum

119894=0

[N119865(119898

sum

119894=0

119865119894 (119894Δ119909))]

2

119864Θ119898 =1

119870

119870

sum

119894=0

[NΘ(119898

sum

119894=0

Θ119894 (119894Δ119909))]

2

119864Φ119898 =1

119870

119870

sum

119894=0

[NΦ(119898

sum

119894=0

Φ119894 (119894Δ119909))]

2

(57)

where Δ119909 = 10119870 and 119870 = 20 For given order ofapproximation 119898 and the optimal values ℏ are given bythe minimum of 119864119898 corresponding to nonlinear algebraicequations

119889119864119865119898

119889ℏ

= 0

119889119864Θ119898

119889ℏ

= 0

119889119864Φ119898

119889ℏ

= 0 (58)

It is noted that the optimal value of ℏ is replaced intothe equations Table 1 shows optimal values obtained for theauxiliary parameter ℏ for various quantities of119873119905 119876 and 119899when119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00 To see

the accuracy of the solutions the residual errors are definedfor the system as (for119898 order approximation)

Res119865119898

=

1198892119865119898

1198891205782minus

2

3

120578(

119889Θ119898

119889120578

minus 119873119903

119889Φ119898

119889120578

) (59)

ResΘ119898

=

1198892Θ119898

1198891205782+

1

3

119865119898

119889Θ119898

d120578+ 119873119887

119889Θ119898

119889120578

119889Φ119898

119889120578

+ 119873119905(

119889Θ119898

119889120578

)

2

+ 119876Θ119898

(60)

ResΦ119898

=

1198892Φ119898

1198891205782+

Le3

119865119898

119889Φ119898

119889120578

+

119873119905

119873119887

1198892Θ119898

1198891205782

minus 119870(

119889Φ119898

119889120578

)

119899

(61)

Figures 5 6 and 7 show the residual errors for 12th-orderdeformation solutions when 119873119887 = 01 119873119905 = 01 119873119903 = 01119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 For example ℏ =minus145 has the minimum range of residual curve in Figure 5and so on

Graphical representation of results is very useful todemonstrate the efficiency and accuracy of the HAM for theabove problem

6 Comparisons and Verification

It is worth citing that for isothermal plate (119887 = 0) and in theabsence of internal heat generationabsorption (119876 = 0) andchemical reaction (119870 = 0) our problem reduces to Gorla andChamkha [26] and Khan and Pop [27] To verify the accuracyof our results the present results are compared in Table 2with Gorla and Chamkha [26] and are found to be in goodagreement

7 Physical Quantities

Theparameters of physical interest of the present problem arethe local skin friction factor 119862119891119909 the local Nusselt numberNu119909 and the local Sherwood number Sh119909 respectivelyPhysically 119862119891119909 indicates wall shear stress Nu119909 indicates therate of wall heat transfer whilst Sh119909 indicates the rate ofwall nanoparticle volume fractionThe following relations areused to find these quantities

119862119891119909 =2120583

1205881198802119903

(

120597119906

120597119910

)

119910=0

Nu119909 =minus119909

119879119891 minus 119879infin

(

120597119879

120597119910

)

119910=0

Sh119909 =minus119909

119862119908 minus 119862infin

(

120597119862

120597119910

)

119910=0

(62)

Mathematical Problems in Engineering 11

Table 2 Comparison of present solution with Gorla and Chamkha[26] for different values of buoyancy and nanofluid parameters

Present results (HAM) Gorla and Chamkha [26]minus1205791015840(0) minus120601

1015840(0) minus120579

1015840(0) minus120601

1015840(0)

Nr 119873119887 = 03119873119905 = 01 Le = 10 119887 = 119870 = 119876 = 0

01 032578 148242 326119864 minus 01 148416402 032385 146704 325119864 minus 01 146816103 032188 145125 322119864 minus 01 145266404 031985 143503 321119864 minus 01 143639205 031777 141833 319119864 minus 01 1419499Nt 119873119887 = 03119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 031777 141833 319119864 minus 01 141949902 030486 141491 305119864 minus 01 141653603 02927 141561 293119864 minus 01 141686604 028125 141991 282119864 minus 01 142158205 027046 142737 271119864 minus 01 1429226Nb 119873119905 = 01119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 03672 132611 368119864 minus 01 132745402 034271 139216 343119864 minus 01 139361503 031777 141833 319119864 minus 01 141949904 029399 143428 294119864 minus 01 143546405 027161 144598 272119864 minus 01 144772

0 2 4 6 8 100

02

04

06

08

1

12

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

f998400 (120578

)

Figure 8 Comparison of dimensionless velocity profile 1198911015840(120578)

obtained by various orders of the HAM

By substituting from (14) and (31) into (37) it can beshown that physical quantities are putted in the followingdimensionless form

1

2

Ra119909Pr119862119891119909 = 11989110158401015840(0) Raminus13

119909Nu119909 = minus120579

1015840(0)

Raminus13119909

Sh119909 = minus1206011015840(0)

(63)

0 2 4 6 8 100

02

04

06

08

1

120578

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 9 Comparison of dimensionless temperature profile 120579(120578)obtained by various orders of the HAM

0 2 4 6 8 100

02

04

06

08

1

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

HAM order 4HAM order 8

HAM order 12Numerical

120578

120601(120578

)

Figure 10 Comparison of dimensionless concentration profile 120601(120578)obtained by various orders of the HAM

Here Ra119909 = 119892119870120573(1minus119862infin)Δ119879119909(120572119898]) is the local Rayleighnumber Pr = ]120572119898 is the Prandtl number and 119880119903 = (1 minus

119862infin)119892119870120573Δ119879120572119898 is the reference velocity

8 Results and Discussion

Graphical representation of results is very useful to discussthe physical features presented by the solutions This sectiondescribes the influence of some interesting parameters on

12 Mathematical Problems in Engineering

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

f998400 (120578)

120578

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 11 Effect of buoyancy ratio119873119903 on the dimensionless velocityprofile

0 2 4 6 8 10

02

04

06

08

1

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

120578

120579(120578

)

Figure 12 Effect of buoyancy ratio 119873119903 on the dimensionlesstemperature profile

the velocity and temperature fields Equations (33) to (35)with boundary conditions in (36) were solved analytically byHAM and numerically using Runge-Kutta-Fehlberg fourth-fifth order proposed by Aziz [54]

Figures 8 9 and 10 respectively for 1198911015840(120578) 120579(120578) and 120601(120578)show the comparisons between various order approximationof the optimal HAM and the numerical solutions for the case

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

120601(120578

)Figure 13 Effect of buoyancy ratio 119873119903 on the dimensionlessconcentration profile

0 2 4 6 8 10

02

04

06

08

1

12

NumericalNumerical

Numerical

f998400 (120578

)

120578

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 14 Effect of Brownian motion 119873119887 on the dimensionlessvelocity profile

119873119887 = 01 119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 For better presentation these results arepresented in Tables 3 4 and 5 Also Tables 6 7 and 8 presentthe comparisons between various order approximation of theoptimal HAM and the numerical solutions for the case119873119887 =03 119873119905 = 005 119873119903 = 03 119876 = 01 Le = 20 119870 = 05

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Mathematical Problems in Engineering 3

(i) Nanoparticle volume fraction (iii) Momentum boundary layers

Porous media

(i)

(iii)(ii)g Tinfin Cinfin uinfin = 0

T C q

(ii) Thermal

Figure 1 Coordinate system and flow model

Lie group analysis is used to develop the similarity transfor-mations and the corresponding similarity representations ofthe governing equations The coupled governing equationsare transformed into ordinary differential equations in theboundary layer The OHAM is applied to solve the ODEsThe obtained solutions are verified by the numerical results(obtained by using a Runge-Kutta-Fehlberg fourth-fifth orderand shooting method) The effect of relevant parameters ondimensionless fluid velocity temperature and nanoparticlevolume fraction are investigated and shown graphically anddiscussed A table containing data for the reduced Nusseltnumber and reduced Sherwood number is also provided toshow the effects of various parameters on them To the best ofour knowledge the effects of thermal slip boundary conditionwith internal heat generation and chemical reaction on theboundary-layer flow of a nanofluid past a horizontal plate inporous media have not been reported in the literature yet

The paper is divided up as follows In Section 2 themath-ematical formulation is presented In Section 3 we used theLie group method to reduce the system of partial differentialequations to a system of ordinary differential equations InSection 4 the basic idea of theHAM is presented In Section 5we derived the OHAM solution of the coupled system ofnonlinear ordinary differential equations In Section 6 wecompared our results with numerical solutions obtainedusing a Runge-Kutta-Fehlberg method In Section 7 weintroduced the physical quantities to be considered andcompared in this paper Section 8 contains the results anddiscussion The conclusions are summarized in Section 9

2 Formulation of the Problem

We consider a two-dimensional laminar free convectiveboundary-layer flow of a nanofluid past an upward facingchemically reacting horizontal plate in a porous media(Figure 1) We assume that a homogeneous isothermal irre-versible chemical reaction of order 119899 takes place betweenthe plate and nanofluid There is internal heat genera-tionabsorption within the fluid inside the boundary layer at

the volumetric rate 119902 Variation of density of the fluid is takeninto account using the Oberbeck-Boussinesq approximationThe conservation of mass momentum energy and nanopar-ticles describing the flow can be written in dimensional form(see [27])

nabla sdot = 0 (1)

120588119891

120576

120597

120597119905

= minus nabla119875 minus

120583

119896

+ [119862120588119875 + (1 minus 119862) 120588119891 (1 minus 120573 (119879 minus 119879infin))] 119892

(2)

(120588119862)119891

120597119879

120597119905

+ (120588119862)119891 sdot nabla119879

= 120581119898nabla2119879 + 120576(120588119862)119875 [119863119861 nabla119862 sdot nabla119879 + (

119863119879

119879infin

)nabla119879 sdot nabla119879] + 119902

(3)

120597119862

120597119905

+

1

120576

sdot nabla119862 = 119863119861nabla2119862 + (

119863119879

119879infin

)nabla2119879

minus 119896 (119909) (119862 minus 119862infin)119899

(4)

Theflow is assumed to be slow to ignore an advective termand a Forchheimer quadratic drag term in the momentumequation

We consider a steady flow where the Oberbeck-Boussinesq approximation is used In addition we assumethat the nanoparticle concentration is dilute With a suitablechoice for the reference pressure the momentum equationcan be linearized and (2) written as (see [50])

minus nabla119875 minus

120583

119896

+ [(120588119875 minus 120588119891infin) (119862 minus 119862infin)

+ (1 minus 119862infin) 120588119891infin120573 (119879 minus 119879infin)] 119892 = 0

(5)

We also consider the effect of temperature-dependentvolumetric heat generationabsorption in the flow region thatis given by Vajravelu and Hadjinicolaou [51] as

119902 =

Ra2311987601198714311990943

(119879 minus 119879infin) 119879 gt 119879infin(6)

where1198760 is the heat generationabsorption constant Also weconsider the case where the reaction rate varies as

119896 (119909) =

Ra2311989601198714311990943

(7)

where 1198960 is the constant reaction rate

4 Mathematical Problems in Engineering

With these assumptions along with standard boundary-layer approximation the governing equations can be writtenin dimensional form as

120597119906

120597119909

+

120597V120597119910

= 0 (8)

120597119875

120597119909

= minus

120583

119896

119906 (9)

120597119875

120597119910

= minus

120583

119896

V + [(1 minus 119862infin) 120588119891infin119892120573 (119879 minus 119879infin)

minus (120588119875 minus 120588119891infin) 119892 (119862 minus 119862infin)]

(10)

119906

120597119879

120597119909

+ V120597119879

120597119910

= 120572119898

1205972119879

1205971199102

+ 120591 [119863119861

120597119862

120597119910

120597119879

120597119910

+ (

119863119879

119879infin

)(

120597119879

120597119910

)

2

]

+

1198760

(120588119862)119891

Ra23

11987143

11990943

(119879 minus 119879infin)

(11)

119906

120597119862

120597119909

+ V120597119862

120597119910

= 119863119861

1205972119862

1205971199102+ (

119863119879

119879infin

)

1205972119879

1205971199102

minus

Ra2311989601198714311990943

(119862 minus 119862infin)119899

(12)

where 120572119898 = 119896119898(120588119888119875)119891 is the thermal diffusivity of the fluidand 120591 = 120576(120588119862)119901(120588119862)119891 is a parameter

The boundary conditions are taken to be

V = 0 119879 = 119879119908 + 1198631

120597119879

120597119910

119862 = 119862119908

at 119910 = 0

119906 997888rarr 0 119879 997888rarr 119879infin 119862 997888rarr 119862infin as 119910 997888rarr infin

(13)

where 1198631(119909) is the thermal slip factor with dimension(length)minus1 The following new nondimensional variables areintroduced to make (8)ndash(13) dimensionless

119909 =

119909

119871radicRa 119910 =

119910

119871

119906 =

119906119871

120572119898radicRa

V =V119871120572119898

120579 =

119879 minus 119879infin

Δ119879

120601 =

119862 minus 119862infin

Δ119862

Δ119879 = 119879119908 minus 119879infin Δ119862 = 119862119908 minus 119862infin

(14)

where Ra = 119892119896120573(1 minus 119862infin)Δ119879119871(120572119898]) is the Rayleigh numberbased on the characteristic length 119871 A stream function 120595

defined by

119906 =

120597120595

120597119910

V = minus120597 120595

120597119909

(15)

is introduced into (8)ndash(13) to reduce the number of depen-dent variables and the number of equations Note that (8) issatisfied identically Hence we have

Δ 1 equiv1205972120595

1205971199102+

120597120579

120597119909

minus 119873119903

120597120601

120597119909

= 0 (16)

Δ 2 equiv120597120595

120597119910

120597120579

120597119909

minus

120597120595

120597119909

120597120579

120597119910

minus

1205972120579

1205971199102minus 119873119887

120597120579

120597119910

120597120601

120597119910

minus 119873119905(

120597120579

120597119910

)

2

+

119876120579

11990943

= 0

(17)

Δ 3 equiv Le [120597120595

120597119910

120597120601

120597119909

minus

120597120595

120597119909

120597120601

120597119910

] minus

1205972120601

1205971199102

minus

119873119905

119873119887

1205972120579

1205971199102minus

119896120601119899

11990943

= 0

(18)

The boundary conditions become

120597120595

120597119909

= 0 120579 = 1 +

1198631 (119909)

119871

120597120579

120597119910

120601 = 1 at 119910 = 0

120597120595

120597119910

997888rarr 0 120579 997888rarr 0 120601 997888rarr 0 as 119910 997888rarr infin

(19)

The parameters in (16)ndash(19) are introduced in Nomencla-ture and defined by

119873119905 = 120591119863119879

Δ119879

120572119898

119879infin 119873119887 = 120591119863119861

Δ119862

120572119898

119873119903 =

(120588119875 minus 120588119891infin) Δ119862

120588119891infin

120573 (1 minus 119862infin) Δ119879

119876 =

11987601198712

120572119898(120588119862)119891

119870 =

11989601198712(Δ119862)119899minus1

120572119898

Le =120572119898

119863119861

(20)

3 Lie Group Analysis

We consider the following scaling group of transformationswhich is a special form of Lie group analysis [52]

Γ 119909lowast= 1199091198901205761205721 119910

lowast= 1199101198901205761205722

120595lowast= 1205951198901205761205723 120579

lowast= 1205791198901205761205724

120601lowast= 1206011198901205761205725 119863

lowast1 = 1198631119890

1205761205726

(21)

Here 120576 is the parameter of the group Γ and 120572119894 (119894 =

1 2 3 4 5 6) are arbitrary real numbers whose connec-tion will be determined by our analysis The transfor-mations in (21) can be considered as a point transfor-mation transforming the coordinates (119909 119910 120595 120579 120601 1198631) to

Mathematical Problems in Engineering 5

(119909lowast 119910lowast 120595lowast 120579lowast 120601lowast 119863lowast1 ) We now investigate the relationship

among the exponents 120572rsquos such that

Δ 119895 (119909lowast 119910lowast 120579lowast 120601lowast

1205973120595lowast

120597119910lowast3)

= 119867119895 (119909 119910 120579 120601 1205973120595

1205971199103 119886)

times Δ 119895 (119909 119910 120579 120601 1205973120595

1205971199103)

(119895 = 1 2 3)

(22)

Since this is the requirement that the differential formsΔ 1 Δ 2 and Δ 3 be reformed under the transformation groupin (19) by using (21) (16)ndash(18) are transformed to (see [3538])

Δ 1 equiv1205972120595lowast

120597119910lowast2

+

120597120579lowast

120597119909lowastminus 119873119903

120597120601lowast

120597119909lowast

= 119890120576(1205723minus21205722) 1205972120595

1205971199102+ 119890120576(1205724minus1205721) 120597120579

120597119909

minus 119890120576(1205725minus1205721) 120597120601

120597119909

Δ 2 equiv120597120595lowast

120597119910lowast

120597120579lowast

120597119909lowastminus

120597120595lowast

120597119909lowast

120597120579lowast

120597119910lowastminus

1205972120579lowast

120597119910lowast2minus 119873119887

120597120579lowast

120597119910lowast

120597120601lowast

120597119910lowast

minus 119873119905(

120597120579lowast

120597119910lowast)

2

+

119876120579lowast

119909lowast43

= 119890120576(1205723+1205724minus1205721minus1205722)[

120597120595

120597119910

120597120579

120597119909

minus

120597120595

120597119909

120597120579

120597119910

]

minus 119890120576(1205724minus21205722) 1205972120579

1205971199102minus 119890120576(1205724+1205725minus21205722)119873119887

120597120579

120597119910

120597120601

120597119910

minus 119890120576(21205724minus21205722)119873119905(

120597120579

120597119910

)

2

+ 119890120576(1205724minus(43)120572

1) 119876120579

11990943

Δ 3 equiv Le [120597120595lowast

120597119910lowast

120597120601lowast

120597119909lowastminus

120597120595lowast

120597119909lowast

120597120601lowast

120597119910lowast] minus

1205972120601lowast

120597119910lowast2

minus

119873119905

119873119887

1205972120579lowast

120597119910lowast2minus

119870120601lowast119899

119909lowast43

= minus 119890120576(1205725minus21205722) 1205972120601

1205971199102

+ 119890120576(1205723+1205725minus1205721minus1205722)Le [

120597120595

120597119910

120597120601

120597119909

minus

120597120595

120597119909

120597120601

120597119910

]

minus 119890120576(1205724minus21205722)119873119905

119873119887

1205972120579

1205971199102minus 119890120576(1198991205725minus(43)120572

1)119870120601119899

11990943

(23)

The system will remain invariant (structure of the equa-tions same) under the group transformation Γ if we have thefollowing relationship among the exponents

1205723 minus 21205722 = 1205724 minus 1205721 = 1205725 minus 1205721

1205723 + 1205724 minus 1205721 minus 1205722 = 1205724 minus 21205722 = 1205724 + 1205725 minus 21205722

= 21205724 minus 21205722 = 1205724 minus4

3

1205721

1205723 + 1205725 minus 1205721 minus 1205722 = 1205725 minus 21205722 = 1205724 minus 21205722

= 1205725 minus4

3

1205721

(24)

For invariance of the boundary conditions we have

1205724 = 0 = 1205724 + 1205726 minus 1205722 1205725 = 0 (25)

Solving (24) and (25) yields

1205724 = 1205725 = 0 1205721 =31205722

2

1205723 =1205722

2

1205726 = 1205722

(26)

The set of transformations Γ reduces to

119909lowast= 119909119890312057612057222 119910

lowast= 1199101198901205761205722

120595lowast= 12059511989012057612057222 120579

lowast= 120579

120601lowast= 120601 119863

lowast1 = 1198631119890

1205761205722

(27)

Expanding by the Taylorrsquos series in powers of 120576 andkeeping the terms up to the order 120576 yields

119909lowastminus 119909 = 3119909120576

1205722

2

119910lowastminus 119910 = 1205722119910

120595lowastminus 120595 = 120576120595

1205722

2

120579lowastminus 120579 = 0

120601lowastminus 120601 = 0 119863

lowast1 minus 119863 = 12057221198631

(28)

In terms of differentials we have

2119889119909

31205722119909=

119889119910

1205722119910=

2119889120595

1205722120595=

119889120579

0

=

119889120601

0

=

1198891198631

12057221198631

1205722 = 0

(29)

31 Similarity Transformations From (29) 211988911990931205722119909 =

1198891199101205722119910 which can be integrated to give

119910

11990923

= constant = 120578 (say) (30a)

Similarly 211988911990931205722119909 = 21198891205951205722120595 yields

120595

11990913

= constant = 119891 (120578) (say) that is 120595 = 11990913119891 (120578)

(30b)

6 Mathematical Problems in Engineering

where 119891 is an arbitrary function of 120578 From the equations211988911990931205722119909 = 1198891205790 and 211988911990931205722119909 = 1198891206010 we obtain byintegration

120579 = 120579 (120578) 120601 = 120601 (120578) (30c)

From the equation 211988911990931205722119909 = 119889119863112057221198631 we obtain byintegration

1198631 = (1198631)0119909minus23

(30d)

where (1198631)0 is a constant thermal slip factorThus from (30a)ndash(30d) we obtain

120578 = 119910119909minus23

120595 = 11990913119891 (120578)

120579 = 120579 (120578) 120601 = 120601 (120578) 1198631 = (1198631)0119909minus23

(31)

Here 120578 is the similarity variable and 119891 120579 120601 are dependentvariables Note that the similarity transformations in (31) areconsistent with the well-known similarity transformationsreported in the paper of Cheng and Chang [21] for 120582 = 0

in their paper Thus the dimensionless velocity components119906 V can be expressed as

119906 =

1198911015840

11990913 V = minus

1

311990923

(119891 minus 21205781198911015840) (32)

where primes indicate differentiation with respect to 120578

32 Similarity Equations On substituting the transforma-tions in (31) into the governing (16)ndash(18) we obtain thefollowing system of ordinary differential equations

11989110158401015840minus

2

3

120578 (1205791015840minus 119873119903120601

1015840) = 0 (33)

12057910158401015840+

1

3

1198911205791015840+ 119873119887120579

10158401206011015840+ 119873119905120579

10158402+ 119876120579 = 0 (34)

12060110158401015840+

Le3

1198911206011015840+

119873119905

119873119887

12057910158401015840minus 119870120601119899= 0 (35)

We have to solve the system equations (33)ndash(35) subjectto the boundary conditions

119891 (0) = 0 120579 (0) = 1 + 1198871205791015840(0) 120601 (0) = 1

1198911015840(infin) = 0 120579 (infin) = 0 120601 (infin) = 0

(36)

where 119887 = (1198631)0119871 is the thermal slip parameter

4 Basic Idea of the HAM

Let us consider the following differential equation

N [119906 (120591)] = 0 (37)

where N is a nonlinear operator 120591 denotes independentvariable and 119906(120591) is an unknown function respectively Forsimplicity we ignore all boundary or initial conditions whichcan be treated in the similar way By means of generalizing

the traditional homotopy method Liao [45] constructs theso-called zero-order deformation equation

(1 minus 119901)L [120593 (120591 119901) minus 1199060 (120591)] = 119901ℏ119867 (120591)N [120593 (120591 119901)] (38)

where 119901 isin [0 1] is the embedding parameter ℏ = 0 is anonzero auxiliary parameter 119867(120591) = 0 is an auxiliary func-tionL is an auxiliary linear operator 1199060(120591) is an initial guessof 119906(120591) and 120593(120591 119901) is an unknown function respectively Itis important that one has great freedom to choose auxiliarythings in the HAM Obviously when 119901 = 0 and 119901 = 1 itholds 120593(120591 0) = 1199060(120591) 120593(120591 1) = 119906(120591) respectively Thus as119901 increases from 0 to 1 the solution 120593(120591 119901) varies from theinitial guess 1199060(120591) to the solution 119906(120591) Expanding 120593(120591 119901) inTaylor series with respect to 119901 we have

120593 (120591 119901) = 1199060 (120591) +

+infin

sum

119898=1

119906119898 (120591) 119901119898 (39)

where

119906119898 (120591) =1

119898

120597119898120593 (120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(40)

If the auxiliary linear operator the initial guess theauxiliary parameter ℏ and the auxiliary function are soproperly chosen the series (39) converges at 119901 = 1 then wehave

119906 (120591) = 1199060 (120591) +

+infin

sum

119898=1

119906119898 (120591) (41)

which must be one of solutions of original nonlinear equa-tion as proved by Liao [45] As ℏ = minus1 and 119867(120591) = 1 (38)becomes

(1 minus 119901)L [120593 (120591 119901) minus 1199060 (120591)] + 119901N [120593 (120591 119901)] = 0 (42)

which is used mostly in the homotopy perturbation methodwhere the solution can be obtained directly without usingTaylor series

According to definition (39) the governing equationcan be deduced from the zero-order deformation equation(37) By defining the vector 119899 = 1199060(120591) 1199061(120591) 119906119899(120591)

and differentiating equation (37) 119898 times with respect tothe embedding parameter 119901 and then setting 119901 = 0 andfinally dividing them by119898 we have the so-called119898th-orderdeformation equation

L [119906119898 (120591) minus 120594119898119906119898minus1 (120591)] = ℏ119867 (120591) 119877119898 (119898minus1) (43)

where

119877119898 (119898minus1) =1

(119898 minus 1)

120597119898minus1N [120593(120591 119901)]

120597119901119898minus1

100381610038161003816100381610038161003816100381610038161003816119901=0

120594119898 = 0 119898 le 1

1 119898 gt 1

(44)

It should be emphasized that 119906119898(120591) for 119898 ge 1 isgoverned by the linear equation (39) with the linear boundaryconditions that come from original problem which canbe easily solved by symbolic computation software such asMAPLE and MATHEMATICA

Mathematical Problems in Engineering 7

0 05

0

05

1

15

2

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

minus2minus2

minus1

minus1

minus05

minus05

minus15

minus15minus25

f998400998400

(0)

Figure 2 The ℏ-curve of 11989110158401015840(0) given by the various HAM-orderapproximate solution

0 05

0

HAM order 12HAM order 8

HAM order 4

minus2

minus2

minus1

minus1

minus05

minus05

minus15

minus15

minus25

minus25

minus3

minus35

minus4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579998400 (0)

Figure 3 The ℏ-curve of 1205791015840(0) given by the various HAM-orderapproximate solution

5 HAM Solution

In this section we applied the HAM to obtain approx-imate analytical solutions of the effect of higher orderchemical reaction internal heat generation and the thermalslip boundary condition on the boundary-layer flow of ananofluid past an upward facing horizontal plate (33)ndash(35)

05

0

minus2

minus1

minus05

minus15

minus25

minus3

minus35

minus4minus2 minus1 minus05minus15 0

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120601998400 (0

)

Figure 4 The ℏ-curve of 1206011015840(0) given by the various HAM-orderapproximate solution

We start with the initial approximation 1198650(120578) = 0 Θ0(120578) =(1(119887 + 1))Exp[minus120578]Φ0(120578) = Exp[minus120578] and the linear operator

L [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205783

L [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

120597Θ (120578 119901)

120597120578

L [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

120597Φ (120578 119901)

120597120578

(45)

Furthermore from (33)ndash(35) we define the nonlinearoperators

N [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205782

minus

2

3

120578(

120597Θ (120578 119901)

120597120578

minus 119873119903

120597Φ (120578 119901)

120597120578

)

N [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

1

3

119865 (120578 119901)

120597Θ (120578 119901)

120597120578

+ 119873119887

120597Θ (120578 119901)

120597120578

120597Φ (120578 119901)

120597120578

+ 119873119905(

120597Θ (120578 119901)

120597120578

)

2

+ 119876Θ (120578 119901)

N [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

Le3

119865 (120578 119901)

120597Φ (120578 119901)

120597120578

+

119873119905

119873119887

1205972Θ(120578 119901)

1205971205782

minus 119870(Φ (120578 119901))119899

(46)

8 Mathematical Problems in Engineering

Using the above definition with assumption 119867119865(120591) = 1119867Θ(120591) = Exp[minus120578] and 119867Φ(120591) = Exp[minus120578] we construct the119911119890119903119900th-order deformation equation

(1 minus 119901)L [120593 (119909 119901) minus 1199060 (119909)] = 119867 (120591) 119901ℏN [120593 (119909 119901)]

(47)

Obviously when 119901 = 0 and 119901 = 1

120593 (119909 0) = 1199060 (119909) 120593 (119909 1) = 119906 (119909) (48)

Differentiating the 119911119890119903119900th-order deformation equation(47)119898 times with respect to 119901 and finally dividing by119898 wehave the119898th-order deformation equation

L [119865119898 (119909) minus 120594119898119865119898minus1 (119909)] = ℏ119877119898 (119898minus1)

L [Θ119898 (119909) minus 120594119898Θ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Θ119898minus1)

L [Φ119898 (119909) minus 120594119898Φ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Φ119898minus1)

(49)

subject to boundary condition

119865119898 = 0 Θ119898 = 1 + 119887Θ1015840119898 Φ119898 = 1 at 120578 = 0

1198651015840119898 997888rarr 0 Θ119898 997888rarr 0 Φ119898 997888rarr 0 as 120578 997888rarr infin

(50)

For 119899 = 1 (Newtonian fluid)

119877119898 (119898minus1) =1205972119865119898minus1 (120578)

1205971205782

minus

2

3

120578(

120597Θ119898minus1 (120578)

120597120578

minus 119873119903

120597Φ119898minus1 (120578)

120597120578

)

119877119898 (Θ119898minus1) =1205972Θ119898minus1 (120578)

1205971205782

+

1

3

119898minus1

sum

119895=0

119865119895 (120578)

120597Θ119898minus1minus119895 (120578)

120597120578

+ 119873119887

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Φ119898minus1minus119895 (120578)

120597120578

)

+ 119873119905

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Θ119898minus1minus119895 (120578)

120597120578

)

+ 119876Θ119898minus1 (120578)

(51)

For 119899 = 1

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870Φ119898minus1 (120578)

(52)

Table 1 The optimal values of ℏ for different values of119873119905119876 119899

119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00

Seriessolution119899 10 20 30Nt 01 005 01119876 01 00 01

1198911015840(120578) ℏOptimal = minus145 ℏOptimal = minus187 ℏOptimal = minus169

120579(120578) ℏOptimal = minus119 ℏOptimal = minus098 ℏOptimal = minus108

120601(120578) ℏOptimal = minus111 ℏOptimal = minus086 ℏOptimal = minus095

Also for 119899 = 2

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119895=0

Φ119895 (120578)Φ119898minus1minus119895 (120578)

(53)

and for 119899 = 3

119877119898 (Φ119898minus1)

=

1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119894=0

(Φ119898minus1minus119894 (120578)

119894minus1

sum

119895=0

(Φ119895 (120578)Φ119894minus119895 (120578)))

(54)

Obviously the solution of the 119898th-order deformationequations (49) for119898 ge 1 becomes

119865119898 (120578) = 119865119898minus1 (120578) + ℏLminus1[119877119898 (119898minus1)]

Θ119898 (120578) = Θ119898minus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Θ119898minus1)]

Φ119898 (120578) = Φmminus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Φ119898minus1)]

(55)

Mathematical Problems in Engineering 9

By using the symbolic software MATHEMATICA tosolve the system of linear equations (49) with the boundaryconditions (46) it can be obtained finally

1198651 (120578) = minus

4

3 (1 + 119887)

ℏ +

4119890minus120578

3 (1 + 119887)

ℏ +

4119873119903

3 (1 + 119887)

+

4119887119873119903

3 (1 + 119887)

ℏ minus

4119873119903119890minus120578

3 (1 + 119887)

ℏ minus

4119887119873119903119890minus120578

3 (1 + 119887)

+

2119890minus120578120578

3 (1 + 119887)

ℏ minus

2119873119903119890minus120578120578

3 (1 + 119887)

ℏ minus

2119887119873119903119890minus120578120578

3 (1 + 119887)

Θ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2(1 + 119887)2ℏ minus

119887119890minus120578

2(1 + 119887)2ℏ

minus

119873119887119890minus3120578

6(1 + 119887)2ℏ +

119887119873119887119890minus3120578

6(1 + 119887)2ℏ minus

119873119887119890minus120578

6(1 + 119887)2ℏ

minus

119887119873119887119890minus120578

6(1 + 119887)2ℏ +

119873119905119890minus3120578

6(1 + 119887)2ℏ minus

119873119905119890minus120578

6(1 + 119887)2ℏ

+

119876119890minus2120578

2 (1 + 119887)

ℏ minus

119876119890minus120578

2(1 + 119887)2ℏ minus

119887119876119890minus120578

2(1 + 119887)2ℏ

Φ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ +

119887119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2 (1 + 119887)

minus

119887119890minus120578

2 (1 + 119887)

ℏ minus

119870119890minus2120578

2 (1 + 119887)

ℏ minus

119887119870eminus2120578

2 (1 + 119887)

+

119870119890minus120578

2 (1 + 119887)

ℏ +

119887119870119890minus120578

2 (1 + 119887)

ℏ +

119873119905

119873119887

119890minus2120578

2 (1 + 119887)

minus

119873119905

119873119887

119890minus120578

2 (1 + 119887)

(56)

The higher orders solutions of 119865(120578) Θ(120578) and Φ(120578) weretoo long to be mentioned here therefore they are showngraphically

51 Convergence of the HAM Solution As mentioned by Liao[45] HAM provides us with great freedom in choosing thesolution of a nonlinear problem by different base functionsThis has a great effect on the convergence region because theconvergence region and rate of a series are chiefly determinedby the base functions used to express the solution We usedseveral terms in evaluating the approximate solution 119865app asympsum119899119894=0 119865119894Θapp asymp sum

119899119894=0Θ119894Φapp asymp sum

119899119894=0Φ119894 note that the solution

series contains the auxiliary parameter ℏ which provides uswith a simple way to adjust and control the convergence ofthe solution series Generally by means of the so-called ℏ-curve that is a curve of a versus ℏ As pointed by Liao [45]the valid region of ℏ is a horizontal line segment Figures2 3 and 4 show the ℏ-curve with the various order of theHAM for 11989110158401015840(0) 1205791015840(0) 1206011015840(0) respectively when 119873119887 = 01

0 2 4 6 8 10

0

00001

00002

00003

minus00001

minus00002

minus00003

120578

= minus135

= minus145 (optimal value)= minus15

Res (f998400 (120578))

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 5 The residual error of 1198911015840(120578) for (33) using 12th order ofapproximations

0 2 4 6 8 10

0

0001

0002

minus00001

minus00002

minus00003

minus00004

120578

= minus11

= minus119 (optimal value)= minus13

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Res (120579

(120578))

ℏℏ

Figure 6 The residual error of 120579(120578) for (34) using 12th order ofapproximations

119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10119887 = 00 It can be seen that when the order of series is 12 thesegment of the horizontal line is more than the other ordersFor example it can be found that for 11986510158401015840(0) the acceptablerange ofℏ is betweenminus05 andminus20 for 12th order of theHAMbut for 8th order of the HAM the acceptable range of ℏ isbetween minus10 and minus20 or minus10 and minus15 for 4th order of theHAM so horizontal line segment of 12th order of the HAM ismore than others Therefore it is straightforward to choosean appropriate range for ℏ which ensures the convergence

10 Mathematical Problems in Engineering

minus00002

120578

= minus10

= minus111 (optimal value)= minus12

Nt = 01Nr = 01

Q = 01Le = 10K = 10n = 10b = 00

0006

0004

0002

0

0 2 4 6 8 10

Nb = 01

Res (120601

(120578))

Figure 7 The residual error of 120601(120578) for (35) using 12th order ofapproximations

of the solution series To choose optimal value of auxiliaryparameter the averaged residual errors (see [53] for moredetails) are defined as

119864119865119898 =1

119870

119870

sum

119894=0

[N119865(119898

sum

119894=0

119865119894 (119894Δ119909))]

2

119864Θ119898 =1

119870

119870

sum

119894=0

[NΘ(119898

sum

119894=0

Θ119894 (119894Δ119909))]

2

119864Φ119898 =1

119870

119870

sum

119894=0

[NΦ(119898

sum

119894=0

Φ119894 (119894Δ119909))]

2

(57)

where Δ119909 = 10119870 and 119870 = 20 For given order ofapproximation 119898 and the optimal values ℏ are given bythe minimum of 119864119898 corresponding to nonlinear algebraicequations

119889119864119865119898

119889ℏ

= 0

119889119864Θ119898

119889ℏ

= 0

119889119864Φ119898

119889ℏ

= 0 (58)

It is noted that the optimal value of ℏ is replaced intothe equations Table 1 shows optimal values obtained for theauxiliary parameter ℏ for various quantities of119873119905 119876 and 119899when119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00 To see

the accuracy of the solutions the residual errors are definedfor the system as (for119898 order approximation)

Res119865119898

=

1198892119865119898

1198891205782minus

2

3

120578(

119889Θ119898

119889120578

minus 119873119903

119889Φ119898

119889120578

) (59)

ResΘ119898

=

1198892Θ119898

1198891205782+

1

3

119865119898

119889Θ119898

d120578+ 119873119887

119889Θ119898

119889120578

119889Φ119898

119889120578

+ 119873119905(

119889Θ119898

119889120578

)

2

+ 119876Θ119898

(60)

ResΦ119898

=

1198892Φ119898

1198891205782+

Le3

119865119898

119889Φ119898

119889120578

+

119873119905

119873119887

1198892Θ119898

1198891205782

minus 119870(

119889Φ119898

119889120578

)

119899

(61)

Figures 5 6 and 7 show the residual errors for 12th-orderdeformation solutions when 119873119887 = 01 119873119905 = 01 119873119903 = 01119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 For example ℏ =minus145 has the minimum range of residual curve in Figure 5and so on

Graphical representation of results is very useful todemonstrate the efficiency and accuracy of the HAM for theabove problem

6 Comparisons and Verification

It is worth citing that for isothermal plate (119887 = 0) and in theabsence of internal heat generationabsorption (119876 = 0) andchemical reaction (119870 = 0) our problem reduces to Gorla andChamkha [26] and Khan and Pop [27] To verify the accuracyof our results the present results are compared in Table 2with Gorla and Chamkha [26] and are found to be in goodagreement

7 Physical Quantities

Theparameters of physical interest of the present problem arethe local skin friction factor 119862119891119909 the local Nusselt numberNu119909 and the local Sherwood number Sh119909 respectivelyPhysically 119862119891119909 indicates wall shear stress Nu119909 indicates therate of wall heat transfer whilst Sh119909 indicates the rate ofwall nanoparticle volume fractionThe following relations areused to find these quantities

119862119891119909 =2120583

1205881198802119903

(

120597119906

120597119910

)

119910=0

Nu119909 =minus119909

119879119891 minus 119879infin

(

120597119879

120597119910

)

119910=0

Sh119909 =minus119909

119862119908 minus 119862infin

(

120597119862

120597119910

)

119910=0

(62)

Mathematical Problems in Engineering 11

Table 2 Comparison of present solution with Gorla and Chamkha[26] for different values of buoyancy and nanofluid parameters

Present results (HAM) Gorla and Chamkha [26]minus1205791015840(0) minus120601

1015840(0) minus120579

1015840(0) minus120601

1015840(0)

Nr 119873119887 = 03119873119905 = 01 Le = 10 119887 = 119870 = 119876 = 0

01 032578 148242 326119864 minus 01 148416402 032385 146704 325119864 minus 01 146816103 032188 145125 322119864 minus 01 145266404 031985 143503 321119864 minus 01 143639205 031777 141833 319119864 minus 01 1419499Nt 119873119887 = 03119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 031777 141833 319119864 minus 01 141949902 030486 141491 305119864 minus 01 141653603 02927 141561 293119864 minus 01 141686604 028125 141991 282119864 minus 01 142158205 027046 142737 271119864 minus 01 1429226Nb 119873119905 = 01119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 03672 132611 368119864 minus 01 132745402 034271 139216 343119864 minus 01 139361503 031777 141833 319119864 minus 01 141949904 029399 143428 294119864 minus 01 143546405 027161 144598 272119864 minus 01 144772

0 2 4 6 8 100

02

04

06

08

1

12

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

f998400 (120578

)

Figure 8 Comparison of dimensionless velocity profile 1198911015840(120578)

obtained by various orders of the HAM

By substituting from (14) and (31) into (37) it can beshown that physical quantities are putted in the followingdimensionless form

1

2

Ra119909Pr119862119891119909 = 11989110158401015840(0) Raminus13

119909Nu119909 = minus120579

1015840(0)

Raminus13119909

Sh119909 = minus1206011015840(0)

(63)

0 2 4 6 8 100

02

04

06

08

1

120578

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 9 Comparison of dimensionless temperature profile 120579(120578)obtained by various orders of the HAM

0 2 4 6 8 100

02

04

06

08

1

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

HAM order 4HAM order 8

HAM order 12Numerical

120578

120601(120578

)

Figure 10 Comparison of dimensionless concentration profile 120601(120578)obtained by various orders of the HAM

Here Ra119909 = 119892119870120573(1minus119862infin)Δ119879119909(120572119898]) is the local Rayleighnumber Pr = ]120572119898 is the Prandtl number and 119880119903 = (1 minus

119862infin)119892119870120573Δ119879120572119898 is the reference velocity

8 Results and Discussion

Graphical representation of results is very useful to discussthe physical features presented by the solutions This sectiondescribes the influence of some interesting parameters on

12 Mathematical Problems in Engineering

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

f998400 (120578)

120578

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 11 Effect of buoyancy ratio119873119903 on the dimensionless velocityprofile

0 2 4 6 8 10

02

04

06

08

1

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

120578

120579(120578

)

Figure 12 Effect of buoyancy ratio 119873119903 on the dimensionlesstemperature profile

the velocity and temperature fields Equations (33) to (35)with boundary conditions in (36) were solved analytically byHAM and numerically using Runge-Kutta-Fehlberg fourth-fifth order proposed by Aziz [54]

Figures 8 9 and 10 respectively for 1198911015840(120578) 120579(120578) and 120601(120578)show the comparisons between various order approximationof the optimal HAM and the numerical solutions for the case

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

120601(120578

)Figure 13 Effect of buoyancy ratio 119873119903 on the dimensionlessconcentration profile

0 2 4 6 8 10

02

04

06

08

1

12

NumericalNumerical

Numerical

f998400 (120578

)

120578

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 14 Effect of Brownian motion 119873119887 on the dimensionlessvelocity profile

119873119887 = 01 119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 For better presentation these results arepresented in Tables 3 4 and 5 Also Tables 6 7 and 8 presentthe comparisons between various order approximation of theoptimal HAM and the numerical solutions for the case119873119887 =03 119873119905 = 005 119873119903 = 03 119876 = 01 Le = 20 119870 = 05

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

4 Mathematical Problems in Engineering

With these assumptions along with standard boundary-layer approximation the governing equations can be writtenin dimensional form as

120597119906

120597119909

+

120597V120597119910

= 0 (8)

120597119875

120597119909

= minus

120583

119896

119906 (9)

120597119875

120597119910

= minus

120583

119896

V + [(1 minus 119862infin) 120588119891infin119892120573 (119879 minus 119879infin)

minus (120588119875 minus 120588119891infin) 119892 (119862 minus 119862infin)]

(10)

119906

120597119879

120597119909

+ V120597119879

120597119910

= 120572119898

1205972119879

1205971199102

+ 120591 [119863119861

120597119862

120597119910

120597119879

120597119910

+ (

119863119879

119879infin

)(

120597119879

120597119910

)

2

]

+

1198760

(120588119862)119891

Ra23

11987143

11990943

(119879 minus 119879infin)

(11)

119906

120597119862

120597119909

+ V120597119862

120597119910

= 119863119861

1205972119862

1205971199102+ (

119863119879

119879infin

)

1205972119879

1205971199102

minus

Ra2311989601198714311990943

(119862 minus 119862infin)119899

(12)

where 120572119898 = 119896119898(120588119888119875)119891 is the thermal diffusivity of the fluidand 120591 = 120576(120588119862)119901(120588119862)119891 is a parameter

The boundary conditions are taken to be

V = 0 119879 = 119879119908 + 1198631

120597119879

120597119910

119862 = 119862119908

at 119910 = 0

119906 997888rarr 0 119879 997888rarr 119879infin 119862 997888rarr 119862infin as 119910 997888rarr infin

(13)

where 1198631(119909) is the thermal slip factor with dimension(length)minus1 The following new nondimensional variables areintroduced to make (8)ndash(13) dimensionless

119909 =

119909

119871radicRa 119910 =

119910

119871

119906 =

119906119871

120572119898radicRa

V =V119871120572119898

120579 =

119879 minus 119879infin

Δ119879

120601 =

119862 minus 119862infin

Δ119862

Δ119879 = 119879119908 minus 119879infin Δ119862 = 119862119908 minus 119862infin

(14)

where Ra = 119892119896120573(1 minus 119862infin)Δ119879119871(120572119898]) is the Rayleigh numberbased on the characteristic length 119871 A stream function 120595

defined by

119906 =

120597120595

120597119910

V = minus120597 120595

120597119909

(15)

is introduced into (8)ndash(13) to reduce the number of depen-dent variables and the number of equations Note that (8) issatisfied identically Hence we have

Δ 1 equiv1205972120595

1205971199102+

120597120579

120597119909

minus 119873119903

120597120601

120597119909

= 0 (16)

Δ 2 equiv120597120595

120597119910

120597120579

120597119909

minus

120597120595

120597119909

120597120579

120597119910

minus

1205972120579

1205971199102minus 119873119887

120597120579

120597119910

120597120601

120597119910

minus 119873119905(

120597120579

120597119910

)

2

+

119876120579

11990943

= 0

(17)

Δ 3 equiv Le [120597120595

120597119910

120597120601

120597119909

minus

120597120595

120597119909

120597120601

120597119910

] minus

1205972120601

1205971199102

minus

119873119905

119873119887

1205972120579

1205971199102minus

119896120601119899

11990943

= 0

(18)

The boundary conditions become

120597120595

120597119909

= 0 120579 = 1 +

1198631 (119909)

119871

120597120579

120597119910

120601 = 1 at 119910 = 0

120597120595

120597119910

997888rarr 0 120579 997888rarr 0 120601 997888rarr 0 as 119910 997888rarr infin

(19)

The parameters in (16)ndash(19) are introduced in Nomencla-ture and defined by

119873119905 = 120591119863119879

Δ119879

120572119898

119879infin 119873119887 = 120591119863119861

Δ119862

120572119898

119873119903 =

(120588119875 minus 120588119891infin) Δ119862

120588119891infin

120573 (1 minus 119862infin) Δ119879

119876 =

11987601198712

120572119898(120588119862)119891

119870 =

11989601198712(Δ119862)119899minus1

120572119898

Le =120572119898

119863119861

(20)

3 Lie Group Analysis

We consider the following scaling group of transformationswhich is a special form of Lie group analysis [52]

Γ 119909lowast= 1199091198901205761205721 119910

lowast= 1199101198901205761205722

120595lowast= 1205951198901205761205723 120579

lowast= 1205791198901205761205724

120601lowast= 1206011198901205761205725 119863

lowast1 = 1198631119890

1205761205726

(21)

Here 120576 is the parameter of the group Γ and 120572119894 (119894 =

1 2 3 4 5 6) are arbitrary real numbers whose connec-tion will be determined by our analysis The transfor-mations in (21) can be considered as a point transfor-mation transforming the coordinates (119909 119910 120595 120579 120601 1198631) to

Mathematical Problems in Engineering 5

(119909lowast 119910lowast 120595lowast 120579lowast 120601lowast 119863lowast1 ) We now investigate the relationship

among the exponents 120572rsquos such that

Δ 119895 (119909lowast 119910lowast 120579lowast 120601lowast

1205973120595lowast

120597119910lowast3)

= 119867119895 (119909 119910 120579 120601 1205973120595

1205971199103 119886)

times Δ 119895 (119909 119910 120579 120601 1205973120595

1205971199103)

(119895 = 1 2 3)

(22)

Since this is the requirement that the differential formsΔ 1 Δ 2 and Δ 3 be reformed under the transformation groupin (19) by using (21) (16)ndash(18) are transformed to (see [3538])

Δ 1 equiv1205972120595lowast

120597119910lowast2

+

120597120579lowast

120597119909lowastminus 119873119903

120597120601lowast

120597119909lowast

= 119890120576(1205723minus21205722) 1205972120595

1205971199102+ 119890120576(1205724minus1205721) 120597120579

120597119909

minus 119890120576(1205725minus1205721) 120597120601

120597119909

Δ 2 equiv120597120595lowast

120597119910lowast

120597120579lowast

120597119909lowastminus

120597120595lowast

120597119909lowast

120597120579lowast

120597119910lowastminus

1205972120579lowast

120597119910lowast2minus 119873119887

120597120579lowast

120597119910lowast

120597120601lowast

120597119910lowast

minus 119873119905(

120597120579lowast

120597119910lowast)

2

+

119876120579lowast

119909lowast43

= 119890120576(1205723+1205724minus1205721minus1205722)[

120597120595

120597119910

120597120579

120597119909

minus

120597120595

120597119909

120597120579

120597119910

]

minus 119890120576(1205724minus21205722) 1205972120579

1205971199102minus 119890120576(1205724+1205725minus21205722)119873119887

120597120579

120597119910

120597120601

120597119910

minus 119890120576(21205724minus21205722)119873119905(

120597120579

120597119910

)

2

+ 119890120576(1205724minus(43)120572

1) 119876120579

11990943

Δ 3 equiv Le [120597120595lowast

120597119910lowast

120597120601lowast

120597119909lowastminus

120597120595lowast

120597119909lowast

120597120601lowast

120597119910lowast] minus

1205972120601lowast

120597119910lowast2

minus

119873119905

119873119887

1205972120579lowast

120597119910lowast2minus

119870120601lowast119899

119909lowast43

= minus 119890120576(1205725minus21205722) 1205972120601

1205971199102

+ 119890120576(1205723+1205725minus1205721minus1205722)Le [

120597120595

120597119910

120597120601

120597119909

minus

120597120595

120597119909

120597120601

120597119910

]

minus 119890120576(1205724minus21205722)119873119905

119873119887

1205972120579

1205971199102minus 119890120576(1198991205725minus(43)120572

1)119870120601119899

11990943

(23)

The system will remain invariant (structure of the equa-tions same) under the group transformation Γ if we have thefollowing relationship among the exponents

1205723 minus 21205722 = 1205724 minus 1205721 = 1205725 minus 1205721

1205723 + 1205724 minus 1205721 minus 1205722 = 1205724 minus 21205722 = 1205724 + 1205725 minus 21205722

= 21205724 minus 21205722 = 1205724 minus4

3

1205721

1205723 + 1205725 minus 1205721 minus 1205722 = 1205725 minus 21205722 = 1205724 minus 21205722

= 1205725 minus4

3

1205721

(24)

For invariance of the boundary conditions we have

1205724 = 0 = 1205724 + 1205726 minus 1205722 1205725 = 0 (25)

Solving (24) and (25) yields

1205724 = 1205725 = 0 1205721 =31205722

2

1205723 =1205722

2

1205726 = 1205722

(26)

The set of transformations Γ reduces to

119909lowast= 119909119890312057612057222 119910

lowast= 1199101198901205761205722

120595lowast= 12059511989012057612057222 120579

lowast= 120579

120601lowast= 120601 119863

lowast1 = 1198631119890

1205761205722

(27)

Expanding by the Taylorrsquos series in powers of 120576 andkeeping the terms up to the order 120576 yields

119909lowastminus 119909 = 3119909120576

1205722

2

119910lowastminus 119910 = 1205722119910

120595lowastminus 120595 = 120576120595

1205722

2

120579lowastminus 120579 = 0

120601lowastminus 120601 = 0 119863

lowast1 minus 119863 = 12057221198631

(28)

In terms of differentials we have

2119889119909

31205722119909=

119889119910

1205722119910=

2119889120595

1205722120595=

119889120579

0

=

119889120601

0

=

1198891198631

12057221198631

1205722 = 0

(29)

31 Similarity Transformations From (29) 211988911990931205722119909 =

1198891199101205722119910 which can be integrated to give

119910

11990923

= constant = 120578 (say) (30a)

Similarly 211988911990931205722119909 = 21198891205951205722120595 yields

120595

11990913

= constant = 119891 (120578) (say) that is 120595 = 11990913119891 (120578)

(30b)

6 Mathematical Problems in Engineering

where 119891 is an arbitrary function of 120578 From the equations211988911990931205722119909 = 1198891205790 and 211988911990931205722119909 = 1198891206010 we obtain byintegration

120579 = 120579 (120578) 120601 = 120601 (120578) (30c)

From the equation 211988911990931205722119909 = 119889119863112057221198631 we obtain byintegration

1198631 = (1198631)0119909minus23

(30d)

where (1198631)0 is a constant thermal slip factorThus from (30a)ndash(30d) we obtain

120578 = 119910119909minus23

120595 = 11990913119891 (120578)

120579 = 120579 (120578) 120601 = 120601 (120578) 1198631 = (1198631)0119909minus23

(31)

Here 120578 is the similarity variable and 119891 120579 120601 are dependentvariables Note that the similarity transformations in (31) areconsistent with the well-known similarity transformationsreported in the paper of Cheng and Chang [21] for 120582 = 0

in their paper Thus the dimensionless velocity components119906 V can be expressed as

119906 =

1198911015840

11990913 V = minus

1

311990923

(119891 minus 21205781198911015840) (32)

where primes indicate differentiation with respect to 120578

32 Similarity Equations On substituting the transforma-tions in (31) into the governing (16)ndash(18) we obtain thefollowing system of ordinary differential equations

11989110158401015840minus

2

3

120578 (1205791015840minus 119873119903120601

1015840) = 0 (33)

12057910158401015840+

1

3

1198911205791015840+ 119873119887120579

10158401206011015840+ 119873119905120579

10158402+ 119876120579 = 0 (34)

12060110158401015840+

Le3

1198911206011015840+

119873119905

119873119887

12057910158401015840minus 119870120601119899= 0 (35)

We have to solve the system equations (33)ndash(35) subjectto the boundary conditions

119891 (0) = 0 120579 (0) = 1 + 1198871205791015840(0) 120601 (0) = 1

1198911015840(infin) = 0 120579 (infin) = 0 120601 (infin) = 0

(36)

where 119887 = (1198631)0119871 is the thermal slip parameter

4 Basic Idea of the HAM

Let us consider the following differential equation

N [119906 (120591)] = 0 (37)

where N is a nonlinear operator 120591 denotes independentvariable and 119906(120591) is an unknown function respectively Forsimplicity we ignore all boundary or initial conditions whichcan be treated in the similar way By means of generalizing

the traditional homotopy method Liao [45] constructs theso-called zero-order deformation equation

(1 minus 119901)L [120593 (120591 119901) minus 1199060 (120591)] = 119901ℏ119867 (120591)N [120593 (120591 119901)] (38)

where 119901 isin [0 1] is the embedding parameter ℏ = 0 is anonzero auxiliary parameter 119867(120591) = 0 is an auxiliary func-tionL is an auxiliary linear operator 1199060(120591) is an initial guessof 119906(120591) and 120593(120591 119901) is an unknown function respectively Itis important that one has great freedom to choose auxiliarythings in the HAM Obviously when 119901 = 0 and 119901 = 1 itholds 120593(120591 0) = 1199060(120591) 120593(120591 1) = 119906(120591) respectively Thus as119901 increases from 0 to 1 the solution 120593(120591 119901) varies from theinitial guess 1199060(120591) to the solution 119906(120591) Expanding 120593(120591 119901) inTaylor series with respect to 119901 we have

120593 (120591 119901) = 1199060 (120591) +

+infin

sum

119898=1

119906119898 (120591) 119901119898 (39)

where

119906119898 (120591) =1

119898

120597119898120593 (120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(40)

If the auxiliary linear operator the initial guess theauxiliary parameter ℏ and the auxiliary function are soproperly chosen the series (39) converges at 119901 = 1 then wehave

119906 (120591) = 1199060 (120591) +

+infin

sum

119898=1

119906119898 (120591) (41)

which must be one of solutions of original nonlinear equa-tion as proved by Liao [45] As ℏ = minus1 and 119867(120591) = 1 (38)becomes

(1 minus 119901)L [120593 (120591 119901) minus 1199060 (120591)] + 119901N [120593 (120591 119901)] = 0 (42)

which is used mostly in the homotopy perturbation methodwhere the solution can be obtained directly without usingTaylor series

According to definition (39) the governing equationcan be deduced from the zero-order deformation equation(37) By defining the vector 119899 = 1199060(120591) 1199061(120591) 119906119899(120591)

and differentiating equation (37) 119898 times with respect tothe embedding parameter 119901 and then setting 119901 = 0 andfinally dividing them by119898 we have the so-called119898th-orderdeformation equation

L [119906119898 (120591) minus 120594119898119906119898minus1 (120591)] = ℏ119867 (120591) 119877119898 (119898minus1) (43)

where

119877119898 (119898minus1) =1

(119898 minus 1)

120597119898minus1N [120593(120591 119901)]

120597119901119898minus1

100381610038161003816100381610038161003816100381610038161003816119901=0

120594119898 = 0 119898 le 1

1 119898 gt 1

(44)

It should be emphasized that 119906119898(120591) for 119898 ge 1 isgoverned by the linear equation (39) with the linear boundaryconditions that come from original problem which canbe easily solved by symbolic computation software such asMAPLE and MATHEMATICA

Mathematical Problems in Engineering 7

0 05

0

05

1

15

2

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

minus2minus2

minus1

minus1

minus05

minus05

minus15

minus15minus25

f998400998400

(0)

Figure 2 The ℏ-curve of 11989110158401015840(0) given by the various HAM-orderapproximate solution

0 05

0

HAM order 12HAM order 8

HAM order 4

minus2

minus2

minus1

minus1

minus05

minus05

minus15

minus15

minus25

minus25

minus3

minus35

minus4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579998400 (0)

Figure 3 The ℏ-curve of 1205791015840(0) given by the various HAM-orderapproximate solution

5 HAM Solution

In this section we applied the HAM to obtain approx-imate analytical solutions of the effect of higher orderchemical reaction internal heat generation and the thermalslip boundary condition on the boundary-layer flow of ananofluid past an upward facing horizontal plate (33)ndash(35)

05

0

minus2

minus1

minus05

minus15

minus25

minus3

minus35

minus4minus2 minus1 minus05minus15 0

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120601998400 (0

)

Figure 4 The ℏ-curve of 1206011015840(0) given by the various HAM-orderapproximate solution

We start with the initial approximation 1198650(120578) = 0 Θ0(120578) =(1(119887 + 1))Exp[minus120578]Φ0(120578) = Exp[minus120578] and the linear operator

L [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205783

L [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

120597Θ (120578 119901)

120597120578

L [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

120597Φ (120578 119901)

120597120578

(45)

Furthermore from (33)ndash(35) we define the nonlinearoperators

N [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205782

minus

2

3

120578(

120597Θ (120578 119901)

120597120578

minus 119873119903

120597Φ (120578 119901)

120597120578

)

N [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

1

3

119865 (120578 119901)

120597Θ (120578 119901)

120597120578

+ 119873119887

120597Θ (120578 119901)

120597120578

120597Φ (120578 119901)

120597120578

+ 119873119905(

120597Θ (120578 119901)

120597120578

)

2

+ 119876Θ (120578 119901)

N [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

Le3

119865 (120578 119901)

120597Φ (120578 119901)

120597120578

+

119873119905

119873119887

1205972Θ(120578 119901)

1205971205782

minus 119870(Φ (120578 119901))119899

(46)

8 Mathematical Problems in Engineering

Using the above definition with assumption 119867119865(120591) = 1119867Θ(120591) = Exp[minus120578] and 119867Φ(120591) = Exp[minus120578] we construct the119911119890119903119900th-order deformation equation

(1 minus 119901)L [120593 (119909 119901) minus 1199060 (119909)] = 119867 (120591) 119901ℏN [120593 (119909 119901)]

(47)

Obviously when 119901 = 0 and 119901 = 1

120593 (119909 0) = 1199060 (119909) 120593 (119909 1) = 119906 (119909) (48)

Differentiating the 119911119890119903119900th-order deformation equation(47)119898 times with respect to 119901 and finally dividing by119898 wehave the119898th-order deformation equation

L [119865119898 (119909) minus 120594119898119865119898minus1 (119909)] = ℏ119877119898 (119898minus1)

L [Θ119898 (119909) minus 120594119898Θ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Θ119898minus1)

L [Φ119898 (119909) minus 120594119898Φ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Φ119898minus1)

(49)

subject to boundary condition

119865119898 = 0 Θ119898 = 1 + 119887Θ1015840119898 Φ119898 = 1 at 120578 = 0

1198651015840119898 997888rarr 0 Θ119898 997888rarr 0 Φ119898 997888rarr 0 as 120578 997888rarr infin

(50)

For 119899 = 1 (Newtonian fluid)

119877119898 (119898minus1) =1205972119865119898minus1 (120578)

1205971205782

minus

2

3

120578(

120597Θ119898minus1 (120578)

120597120578

minus 119873119903

120597Φ119898minus1 (120578)

120597120578

)

119877119898 (Θ119898minus1) =1205972Θ119898minus1 (120578)

1205971205782

+

1

3

119898minus1

sum

119895=0

119865119895 (120578)

120597Θ119898minus1minus119895 (120578)

120597120578

+ 119873119887

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Φ119898minus1minus119895 (120578)

120597120578

)

+ 119873119905

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Θ119898minus1minus119895 (120578)

120597120578

)

+ 119876Θ119898minus1 (120578)

(51)

For 119899 = 1

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870Φ119898minus1 (120578)

(52)

Table 1 The optimal values of ℏ for different values of119873119905119876 119899

119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00

Seriessolution119899 10 20 30Nt 01 005 01119876 01 00 01

1198911015840(120578) ℏOptimal = minus145 ℏOptimal = minus187 ℏOptimal = minus169

120579(120578) ℏOptimal = minus119 ℏOptimal = minus098 ℏOptimal = minus108

120601(120578) ℏOptimal = minus111 ℏOptimal = minus086 ℏOptimal = minus095

Also for 119899 = 2

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119895=0

Φ119895 (120578)Φ119898minus1minus119895 (120578)

(53)

and for 119899 = 3

119877119898 (Φ119898minus1)

=

1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119894=0

(Φ119898minus1minus119894 (120578)

119894minus1

sum

119895=0

(Φ119895 (120578)Φ119894minus119895 (120578)))

(54)

Obviously the solution of the 119898th-order deformationequations (49) for119898 ge 1 becomes

119865119898 (120578) = 119865119898minus1 (120578) + ℏLminus1[119877119898 (119898minus1)]

Θ119898 (120578) = Θ119898minus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Θ119898minus1)]

Φ119898 (120578) = Φmminus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Φ119898minus1)]

(55)

Mathematical Problems in Engineering 9

By using the symbolic software MATHEMATICA tosolve the system of linear equations (49) with the boundaryconditions (46) it can be obtained finally

1198651 (120578) = minus

4

3 (1 + 119887)

ℏ +

4119890minus120578

3 (1 + 119887)

ℏ +

4119873119903

3 (1 + 119887)

+

4119887119873119903

3 (1 + 119887)

ℏ minus

4119873119903119890minus120578

3 (1 + 119887)

ℏ minus

4119887119873119903119890minus120578

3 (1 + 119887)

+

2119890minus120578120578

3 (1 + 119887)

ℏ minus

2119873119903119890minus120578120578

3 (1 + 119887)

ℏ minus

2119887119873119903119890minus120578120578

3 (1 + 119887)

Θ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2(1 + 119887)2ℏ minus

119887119890minus120578

2(1 + 119887)2ℏ

minus

119873119887119890minus3120578

6(1 + 119887)2ℏ +

119887119873119887119890minus3120578

6(1 + 119887)2ℏ minus

119873119887119890minus120578

6(1 + 119887)2ℏ

minus

119887119873119887119890minus120578

6(1 + 119887)2ℏ +

119873119905119890minus3120578

6(1 + 119887)2ℏ minus

119873119905119890minus120578

6(1 + 119887)2ℏ

+

119876119890minus2120578

2 (1 + 119887)

ℏ minus

119876119890minus120578

2(1 + 119887)2ℏ minus

119887119876119890minus120578

2(1 + 119887)2ℏ

Φ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ +

119887119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2 (1 + 119887)

minus

119887119890minus120578

2 (1 + 119887)

ℏ minus

119870119890minus2120578

2 (1 + 119887)

ℏ minus

119887119870eminus2120578

2 (1 + 119887)

+

119870119890minus120578

2 (1 + 119887)

ℏ +

119887119870119890minus120578

2 (1 + 119887)

ℏ +

119873119905

119873119887

119890minus2120578

2 (1 + 119887)

minus

119873119905

119873119887

119890minus120578

2 (1 + 119887)

(56)

The higher orders solutions of 119865(120578) Θ(120578) and Φ(120578) weretoo long to be mentioned here therefore they are showngraphically

51 Convergence of the HAM Solution As mentioned by Liao[45] HAM provides us with great freedom in choosing thesolution of a nonlinear problem by different base functionsThis has a great effect on the convergence region because theconvergence region and rate of a series are chiefly determinedby the base functions used to express the solution We usedseveral terms in evaluating the approximate solution 119865app asympsum119899119894=0 119865119894Θapp asymp sum

119899119894=0Θ119894Φapp asymp sum

119899119894=0Φ119894 note that the solution

series contains the auxiliary parameter ℏ which provides uswith a simple way to adjust and control the convergence ofthe solution series Generally by means of the so-called ℏ-curve that is a curve of a versus ℏ As pointed by Liao [45]the valid region of ℏ is a horizontal line segment Figures2 3 and 4 show the ℏ-curve with the various order of theHAM for 11989110158401015840(0) 1205791015840(0) 1206011015840(0) respectively when 119873119887 = 01

0 2 4 6 8 10

0

00001

00002

00003

minus00001

minus00002

minus00003

120578

= minus135

= minus145 (optimal value)= minus15

Res (f998400 (120578))

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 5 The residual error of 1198911015840(120578) for (33) using 12th order ofapproximations

0 2 4 6 8 10

0

0001

0002

minus00001

minus00002

minus00003

minus00004

120578

= minus11

= minus119 (optimal value)= minus13

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Res (120579

(120578))

ℏℏ

Figure 6 The residual error of 120579(120578) for (34) using 12th order ofapproximations

119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10119887 = 00 It can be seen that when the order of series is 12 thesegment of the horizontal line is more than the other ordersFor example it can be found that for 11986510158401015840(0) the acceptablerange ofℏ is betweenminus05 andminus20 for 12th order of theHAMbut for 8th order of the HAM the acceptable range of ℏ isbetween minus10 and minus20 or minus10 and minus15 for 4th order of theHAM so horizontal line segment of 12th order of the HAM ismore than others Therefore it is straightforward to choosean appropriate range for ℏ which ensures the convergence

10 Mathematical Problems in Engineering

minus00002

120578

= minus10

= minus111 (optimal value)= minus12

Nt = 01Nr = 01

Q = 01Le = 10K = 10n = 10b = 00

0006

0004

0002

0

0 2 4 6 8 10

Nb = 01

Res (120601

(120578))

Figure 7 The residual error of 120601(120578) for (35) using 12th order ofapproximations

of the solution series To choose optimal value of auxiliaryparameter the averaged residual errors (see [53] for moredetails) are defined as

119864119865119898 =1

119870

119870

sum

119894=0

[N119865(119898

sum

119894=0

119865119894 (119894Δ119909))]

2

119864Θ119898 =1

119870

119870

sum

119894=0

[NΘ(119898

sum

119894=0

Θ119894 (119894Δ119909))]

2

119864Φ119898 =1

119870

119870

sum

119894=0

[NΦ(119898

sum

119894=0

Φ119894 (119894Δ119909))]

2

(57)

where Δ119909 = 10119870 and 119870 = 20 For given order ofapproximation 119898 and the optimal values ℏ are given bythe minimum of 119864119898 corresponding to nonlinear algebraicequations

119889119864119865119898

119889ℏ

= 0

119889119864Θ119898

119889ℏ

= 0

119889119864Φ119898

119889ℏ

= 0 (58)

It is noted that the optimal value of ℏ is replaced intothe equations Table 1 shows optimal values obtained for theauxiliary parameter ℏ for various quantities of119873119905 119876 and 119899when119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00 To see

the accuracy of the solutions the residual errors are definedfor the system as (for119898 order approximation)

Res119865119898

=

1198892119865119898

1198891205782minus

2

3

120578(

119889Θ119898

119889120578

minus 119873119903

119889Φ119898

119889120578

) (59)

ResΘ119898

=

1198892Θ119898

1198891205782+

1

3

119865119898

119889Θ119898

d120578+ 119873119887

119889Θ119898

119889120578

119889Φ119898

119889120578

+ 119873119905(

119889Θ119898

119889120578

)

2

+ 119876Θ119898

(60)

ResΦ119898

=

1198892Φ119898

1198891205782+

Le3

119865119898

119889Φ119898

119889120578

+

119873119905

119873119887

1198892Θ119898

1198891205782

minus 119870(

119889Φ119898

119889120578

)

119899

(61)

Figures 5 6 and 7 show the residual errors for 12th-orderdeformation solutions when 119873119887 = 01 119873119905 = 01 119873119903 = 01119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 For example ℏ =minus145 has the minimum range of residual curve in Figure 5and so on

Graphical representation of results is very useful todemonstrate the efficiency and accuracy of the HAM for theabove problem

6 Comparisons and Verification

It is worth citing that for isothermal plate (119887 = 0) and in theabsence of internal heat generationabsorption (119876 = 0) andchemical reaction (119870 = 0) our problem reduces to Gorla andChamkha [26] and Khan and Pop [27] To verify the accuracyof our results the present results are compared in Table 2with Gorla and Chamkha [26] and are found to be in goodagreement

7 Physical Quantities

Theparameters of physical interest of the present problem arethe local skin friction factor 119862119891119909 the local Nusselt numberNu119909 and the local Sherwood number Sh119909 respectivelyPhysically 119862119891119909 indicates wall shear stress Nu119909 indicates therate of wall heat transfer whilst Sh119909 indicates the rate ofwall nanoparticle volume fractionThe following relations areused to find these quantities

119862119891119909 =2120583

1205881198802119903

(

120597119906

120597119910

)

119910=0

Nu119909 =minus119909

119879119891 minus 119879infin

(

120597119879

120597119910

)

119910=0

Sh119909 =minus119909

119862119908 minus 119862infin

(

120597119862

120597119910

)

119910=0

(62)

Mathematical Problems in Engineering 11

Table 2 Comparison of present solution with Gorla and Chamkha[26] for different values of buoyancy and nanofluid parameters

Present results (HAM) Gorla and Chamkha [26]minus1205791015840(0) minus120601

1015840(0) minus120579

1015840(0) minus120601

1015840(0)

Nr 119873119887 = 03119873119905 = 01 Le = 10 119887 = 119870 = 119876 = 0

01 032578 148242 326119864 minus 01 148416402 032385 146704 325119864 minus 01 146816103 032188 145125 322119864 minus 01 145266404 031985 143503 321119864 minus 01 143639205 031777 141833 319119864 minus 01 1419499Nt 119873119887 = 03119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 031777 141833 319119864 minus 01 141949902 030486 141491 305119864 minus 01 141653603 02927 141561 293119864 minus 01 141686604 028125 141991 282119864 minus 01 142158205 027046 142737 271119864 minus 01 1429226Nb 119873119905 = 01119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 03672 132611 368119864 minus 01 132745402 034271 139216 343119864 minus 01 139361503 031777 141833 319119864 minus 01 141949904 029399 143428 294119864 minus 01 143546405 027161 144598 272119864 minus 01 144772

0 2 4 6 8 100

02

04

06

08

1

12

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

f998400 (120578

)

Figure 8 Comparison of dimensionless velocity profile 1198911015840(120578)

obtained by various orders of the HAM

By substituting from (14) and (31) into (37) it can beshown that physical quantities are putted in the followingdimensionless form

1

2

Ra119909Pr119862119891119909 = 11989110158401015840(0) Raminus13

119909Nu119909 = minus120579

1015840(0)

Raminus13119909

Sh119909 = minus1206011015840(0)

(63)

0 2 4 6 8 100

02

04

06

08

1

120578

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 9 Comparison of dimensionless temperature profile 120579(120578)obtained by various orders of the HAM

0 2 4 6 8 100

02

04

06

08

1

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

HAM order 4HAM order 8

HAM order 12Numerical

120578

120601(120578

)

Figure 10 Comparison of dimensionless concentration profile 120601(120578)obtained by various orders of the HAM

Here Ra119909 = 119892119870120573(1minus119862infin)Δ119879119909(120572119898]) is the local Rayleighnumber Pr = ]120572119898 is the Prandtl number and 119880119903 = (1 minus

119862infin)119892119870120573Δ119879120572119898 is the reference velocity

8 Results and Discussion

Graphical representation of results is very useful to discussthe physical features presented by the solutions This sectiondescribes the influence of some interesting parameters on

12 Mathematical Problems in Engineering

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

f998400 (120578)

120578

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 11 Effect of buoyancy ratio119873119903 on the dimensionless velocityprofile

0 2 4 6 8 10

02

04

06

08

1

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

120578

120579(120578

)

Figure 12 Effect of buoyancy ratio 119873119903 on the dimensionlesstemperature profile

the velocity and temperature fields Equations (33) to (35)with boundary conditions in (36) were solved analytically byHAM and numerically using Runge-Kutta-Fehlberg fourth-fifth order proposed by Aziz [54]

Figures 8 9 and 10 respectively for 1198911015840(120578) 120579(120578) and 120601(120578)show the comparisons between various order approximationof the optimal HAM and the numerical solutions for the case

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

120601(120578

)Figure 13 Effect of buoyancy ratio 119873119903 on the dimensionlessconcentration profile

0 2 4 6 8 10

02

04

06

08

1

12

NumericalNumerical

Numerical

f998400 (120578

)

120578

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 14 Effect of Brownian motion 119873119887 on the dimensionlessvelocity profile

119873119887 = 01 119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 For better presentation these results arepresented in Tables 3 4 and 5 Also Tables 6 7 and 8 presentthe comparisons between various order approximation of theoptimal HAM and the numerical solutions for the case119873119887 =03 119873119905 = 005 119873119903 = 03 119876 = 01 Le = 20 119870 = 05

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Mathematical Problems in Engineering 5

(119909lowast 119910lowast 120595lowast 120579lowast 120601lowast 119863lowast1 ) We now investigate the relationship

among the exponents 120572rsquos such that

Δ 119895 (119909lowast 119910lowast 120579lowast 120601lowast

1205973120595lowast

120597119910lowast3)

= 119867119895 (119909 119910 120579 120601 1205973120595

1205971199103 119886)

times Δ 119895 (119909 119910 120579 120601 1205973120595

1205971199103)

(119895 = 1 2 3)

(22)

Since this is the requirement that the differential formsΔ 1 Δ 2 and Δ 3 be reformed under the transformation groupin (19) by using (21) (16)ndash(18) are transformed to (see [3538])

Δ 1 equiv1205972120595lowast

120597119910lowast2

+

120597120579lowast

120597119909lowastminus 119873119903

120597120601lowast

120597119909lowast

= 119890120576(1205723minus21205722) 1205972120595

1205971199102+ 119890120576(1205724minus1205721) 120597120579

120597119909

minus 119890120576(1205725minus1205721) 120597120601

120597119909

Δ 2 equiv120597120595lowast

120597119910lowast

120597120579lowast

120597119909lowastminus

120597120595lowast

120597119909lowast

120597120579lowast

120597119910lowastminus

1205972120579lowast

120597119910lowast2minus 119873119887

120597120579lowast

120597119910lowast

120597120601lowast

120597119910lowast

minus 119873119905(

120597120579lowast

120597119910lowast)

2

+

119876120579lowast

119909lowast43

= 119890120576(1205723+1205724minus1205721minus1205722)[

120597120595

120597119910

120597120579

120597119909

minus

120597120595

120597119909

120597120579

120597119910

]

minus 119890120576(1205724minus21205722) 1205972120579

1205971199102minus 119890120576(1205724+1205725minus21205722)119873119887

120597120579

120597119910

120597120601

120597119910

minus 119890120576(21205724minus21205722)119873119905(

120597120579

120597119910

)

2

+ 119890120576(1205724minus(43)120572

1) 119876120579

11990943

Δ 3 equiv Le [120597120595lowast

120597119910lowast

120597120601lowast

120597119909lowastminus

120597120595lowast

120597119909lowast

120597120601lowast

120597119910lowast] minus

1205972120601lowast

120597119910lowast2

minus

119873119905

119873119887

1205972120579lowast

120597119910lowast2minus

119870120601lowast119899

119909lowast43

= minus 119890120576(1205725minus21205722) 1205972120601

1205971199102

+ 119890120576(1205723+1205725minus1205721minus1205722)Le [

120597120595

120597119910

120597120601

120597119909

minus

120597120595

120597119909

120597120601

120597119910

]

minus 119890120576(1205724minus21205722)119873119905

119873119887

1205972120579

1205971199102minus 119890120576(1198991205725minus(43)120572

1)119870120601119899

11990943

(23)

The system will remain invariant (structure of the equa-tions same) under the group transformation Γ if we have thefollowing relationship among the exponents

1205723 minus 21205722 = 1205724 minus 1205721 = 1205725 minus 1205721

1205723 + 1205724 minus 1205721 minus 1205722 = 1205724 minus 21205722 = 1205724 + 1205725 minus 21205722

= 21205724 minus 21205722 = 1205724 minus4

3

1205721

1205723 + 1205725 minus 1205721 minus 1205722 = 1205725 minus 21205722 = 1205724 minus 21205722

= 1205725 minus4

3

1205721

(24)

For invariance of the boundary conditions we have

1205724 = 0 = 1205724 + 1205726 minus 1205722 1205725 = 0 (25)

Solving (24) and (25) yields

1205724 = 1205725 = 0 1205721 =31205722

2

1205723 =1205722

2

1205726 = 1205722

(26)

The set of transformations Γ reduces to

119909lowast= 119909119890312057612057222 119910

lowast= 1199101198901205761205722

120595lowast= 12059511989012057612057222 120579

lowast= 120579

120601lowast= 120601 119863

lowast1 = 1198631119890

1205761205722

(27)

Expanding by the Taylorrsquos series in powers of 120576 andkeeping the terms up to the order 120576 yields

119909lowastminus 119909 = 3119909120576

1205722

2

119910lowastminus 119910 = 1205722119910

120595lowastminus 120595 = 120576120595

1205722

2

120579lowastminus 120579 = 0

120601lowastminus 120601 = 0 119863

lowast1 minus 119863 = 12057221198631

(28)

In terms of differentials we have

2119889119909

31205722119909=

119889119910

1205722119910=

2119889120595

1205722120595=

119889120579

0

=

119889120601

0

=

1198891198631

12057221198631

1205722 = 0

(29)

31 Similarity Transformations From (29) 211988911990931205722119909 =

1198891199101205722119910 which can be integrated to give

119910

11990923

= constant = 120578 (say) (30a)

Similarly 211988911990931205722119909 = 21198891205951205722120595 yields

120595

11990913

= constant = 119891 (120578) (say) that is 120595 = 11990913119891 (120578)

(30b)

6 Mathematical Problems in Engineering

where 119891 is an arbitrary function of 120578 From the equations211988911990931205722119909 = 1198891205790 and 211988911990931205722119909 = 1198891206010 we obtain byintegration

120579 = 120579 (120578) 120601 = 120601 (120578) (30c)

From the equation 211988911990931205722119909 = 119889119863112057221198631 we obtain byintegration

1198631 = (1198631)0119909minus23

(30d)

where (1198631)0 is a constant thermal slip factorThus from (30a)ndash(30d) we obtain

120578 = 119910119909minus23

120595 = 11990913119891 (120578)

120579 = 120579 (120578) 120601 = 120601 (120578) 1198631 = (1198631)0119909minus23

(31)

Here 120578 is the similarity variable and 119891 120579 120601 are dependentvariables Note that the similarity transformations in (31) areconsistent with the well-known similarity transformationsreported in the paper of Cheng and Chang [21] for 120582 = 0

in their paper Thus the dimensionless velocity components119906 V can be expressed as

119906 =

1198911015840

11990913 V = minus

1

311990923

(119891 minus 21205781198911015840) (32)

where primes indicate differentiation with respect to 120578

32 Similarity Equations On substituting the transforma-tions in (31) into the governing (16)ndash(18) we obtain thefollowing system of ordinary differential equations

11989110158401015840minus

2

3

120578 (1205791015840minus 119873119903120601

1015840) = 0 (33)

12057910158401015840+

1

3

1198911205791015840+ 119873119887120579

10158401206011015840+ 119873119905120579

10158402+ 119876120579 = 0 (34)

12060110158401015840+

Le3

1198911206011015840+

119873119905

119873119887

12057910158401015840minus 119870120601119899= 0 (35)

We have to solve the system equations (33)ndash(35) subjectto the boundary conditions

119891 (0) = 0 120579 (0) = 1 + 1198871205791015840(0) 120601 (0) = 1

1198911015840(infin) = 0 120579 (infin) = 0 120601 (infin) = 0

(36)

where 119887 = (1198631)0119871 is the thermal slip parameter

4 Basic Idea of the HAM

Let us consider the following differential equation

N [119906 (120591)] = 0 (37)

where N is a nonlinear operator 120591 denotes independentvariable and 119906(120591) is an unknown function respectively Forsimplicity we ignore all boundary or initial conditions whichcan be treated in the similar way By means of generalizing

the traditional homotopy method Liao [45] constructs theso-called zero-order deformation equation

(1 minus 119901)L [120593 (120591 119901) minus 1199060 (120591)] = 119901ℏ119867 (120591)N [120593 (120591 119901)] (38)

where 119901 isin [0 1] is the embedding parameter ℏ = 0 is anonzero auxiliary parameter 119867(120591) = 0 is an auxiliary func-tionL is an auxiliary linear operator 1199060(120591) is an initial guessof 119906(120591) and 120593(120591 119901) is an unknown function respectively Itis important that one has great freedom to choose auxiliarythings in the HAM Obviously when 119901 = 0 and 119901 = 1 itholds 120593(120591 0) = 1199060(120591) 120593(120591 1) = 119906(120591) respectively Thus as119901 increases from 0 to 1 the solution 120593(120591 119901) varies from theinitial guess 1199060(120591) to the solution 119906(120591) Expanding 120593(120591 119901) inTaylor series with respect to 119901 we have

120593 (120591 119901) = 1199060 (120591) +

+infin

sum

119898=1

119906119898 (120591) 119901119898 (39)

where

119906119898 (120591) =1

119898

120597119898120593 (120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(40)

If the auxiliary linear operator the initial guess theauxiliary parameter ℏ and the auxiliary function are soproperly chosen the series (39) converges at 119901 = 1 then wehave

119906 (120591) = 1199060 (120591) +

+infin

sum

119898=1

119906119898 (120591) (41)

which must be one of solutions of original nonlinear equa-tion as proved by Liao [45] As ℏ = minus1 and 119867(120591) = 1 (38)becomes

(1 minus 119901)L [120593 (120591 119901) minus 1199060 (120591)] + 119901N [120593 (120591 119901)] = 0 (42)

which is used mostly in the homotopy perturbation methodwhere the solution can be obtained directly without usingTaylor series

According to definition (39) the governing equationcan be deduced from the zero-order deformation equation(37) By defining the vector 119899 = 1199060(120591) 1199061(120591) 119906119899(120591)

and differentiating equation (37) 119898 times with respect tothe embedding parameter 119901 and then setting 119901 = 0 andfinally dividing them by119898 we have the so-called119898th-orderdeformation equation

L [119906119898 (120591) minus 120594119898119906119898minus1 (120591)] = ℏ119867 (120591) 119877119898 (119898minus1) (43)

where

119877119898 (119898minus1) =1

(119898 minus 1)

120597119898minus1N [120593(120591 119901)]

120597119901119898minus1

100381610038161003816100381610038161003816100381610038161003816119901=0

120594119898 = 0 119898 le 1

1 119898 gt 1

(44)

It should be emphasized that 119906119898(120591) for 119898 ge 1 isgoverned by the linear equation (39) with the linear boundaryconditions that come from original problem which canbe easily solved by symbolic computation software such asMAPLE and MATHEMATICA

Mathematical Problems in Engineering 7

0 05

0

05

1

15

2

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

minus2minus2

minus1

minus1

minus05

minus05

minus15

minus15minus25

f998400998400

(0)

Figure 2 The ℏ-curve of 11989110158401015840(0) given by the various HAM-orderapproximate solution

0 05

0

HAM order 12HAM order 8

HAM order 4

minus2

minus2

minus1

minus1

minus05

minus05

minus15

minus15

minus25

minus25

minus3

minus35

minus4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579998400 (0)

Figure 3 The ℏ-curve of 1205791015840(0) given by the various HAM-orderapproximate solution

5 HAM Solution

In this section we applied the HAM to obtain approx-imate analytical solutions of the effect of higher orderchemical reaction internal heat generation and the thermalslip boundary condition on the boundary-layer flow of ananofluid past an upward facing horizontal plate (33)ndash(35)

05

0

minus2

minus1

minus05

minus15

minus25

minus3

minus35

minus4minus2 minus1 minus05minus15 0

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120601998400 (0

)

Figure 4 The ℏ-curve of 1206011015840(0) given by the various HAM-orderapproximate solution

We start with the initial approximation 1198650(120578) = 0 Θ0(120578) =(1(119887 + 1))Exp[minus120578]Φ0(120578) = Exp[minus120578] and the linear operator

L [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205783

L [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

120597Θ (120578 119901)

120597120578

L [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

120597Φ (120578 119901)

120597120578

(45)

Furthermore from (33)ndash(35) we define the nonlinearoperators

N [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205782

minus

2

3

120578(

120597Θ (120578 119901)

120597120578

minus 119873119903

120597Φ (120578 119901)

120597120578

)

N [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

1

3

119865 (120578 119901)

120597Θ (120578 119901)

120597120578

+ 119873119887

120597Θ (120578 119901)

120597120578

120597Φ (120578 119901)

120597120578

+ 119873119905(

120597Θ (120578 119901)

120597120578

)

2

+ 119876Θ (120578 119901)

N [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

Le3

119865 (120578 119901)

120597Φ (120578 119901)

120597120578

+

119873119905

119873119887

1205972Θ(120578 119901)

1205971205782

minus 119870(Φ (120578 119901))119899

(46)

8 Mathematical Problems in Engineering

Using the above definition with assumption 119867119865(120591) = 1119867Θ(120591) = Exp[minus120578] and 119867Φ(120591) = Exp[minus120578] we construct the119911119890119903119900th-order deformation equation

(1 minus 119901)L [120593 (119909 119901) minus 1199060 (119909)] = 119867 (120591) 119901ℏN [120593 (119909 119901)]

(47)

Obviously when 119901 = 0 and 119901 = 1

120593 (119909 0) = 1199060 (119909) 120593 (119909 1) = 119906 (119909) (48)

Differentiating the 119911119890119903119900th-order deformation equation(47)119898 times with respect to 119901 and finally dividing by119898 wehave the119898th-order deformation equation

L [119865119898 (119909) minus 120594119898119865119898minus1 (119909)] = ℏ119877119898 (119898minus1)

L [Θ119898 (119909) minus 120594119898Θ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Θ119898minus1)

L [Φ119898 (119909) minus 120594119898Φ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Φ119898minus1)

(49)

subject to boundary condition

119865119898 = 0 Θ119898 = 1 + 119887Θ1015840119898 Φ119898 = 1 at 120578 = 0

1198651015840119898 997888rarr 0 Θ119898 997888rarr 0 Φ119898 997888rarr 0 as 120578 997888rarr infin

(50)

For 119899 = 1 (Newtonian fluid)

119877119898 (119898minus1) =1205972119865119898minus1 (120578)

1205971205782

minus

2

3

120578(

120597Θ119898minus1 (120578)

120597120578

minus 119873119903

120597Φ119898minus1 (120578)

120597120578

)

119877119898 (Θ119898minus1) =1205972Θ119898minus1 (120578)

1205971205782

+

1

3

119898minus1

sum

119895=0

119865119895 (120578)

120597Θ119898minus1minus119895 (120578)

120597120578

+ 119873119887

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Φ119898minus1minus119895 (120578)

120597120578

)

+ 119873119905

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Θ119898minus1minus119895 (120578)

120597120578

)

+ 119876Θ119898minus1 (120578)

(51)

For 119899 = 1

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870Φ119898minus1 (120578)

(52)

Table 1 The optimal values of ℏ for different values of119873119905119876 119899

119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00

Seriessolution119899 10 20 30Nt 01 005 01119876 01 00 01

1198911015840(120578) ℏOptimal = minus145 ℏOptimal = minus187 ℏOptimal = minus169

120579(120578) ℏOptimal = minus119 ℏOptimal = minus098 ℏOptimal = minus108

120601(120578) ℏOptimal = minus111 ℏOptimal = minus086 ℏOptimal = minus095

Also for 119899 = 2

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119895=0

Φ119895 (120578)Φ119898minus1minus119895 (120578)

(53)

and for 119899 = 3

119877119898 (Φ119898minus1)

=

1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119894=0

(Φ119898minus1minus119894 (120578)

119894minus1

sum

119895=0

(Φ119895 (120578)Φ119894minus119895 (120578)))

(54)

Obviously the solution of the 119898th-order deformationequations (49) for119898 ge 1 becomes

119865119898 (120578) = 119865119898minus1 (120578) + ℏLminus1[119877119898 (119898minus1)]

Θ119898 (120578) = Θ119898minus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Θ119898minus1)]

Φ119898 (120578) = Φmminus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Φ119898minus1)]

(55)

Mathematical Problems in Engineering 9

By using the symbolic software MATHEMATICA tosolve the system of linear equations (49) with the boundaryconditions (46) it can be obtained finally

1198651 (120578) = minus

4

3 (1 + 119887)

ℏ +

4119890minus120578

3 (1 + 119887)

ℏ +

4119873119903

3 (1 + 119887)

+

4119887119873119903

3 (1 + 119887)

ℏ minus

4119873119903119890minus120578

3 (1 + 119887)

ℏ minus

4119887119873119903119890minus120578

3 (1 + 119887)

+

2119890minus120578120578

3 (1 + 119887)

ℏ minus

2119873119903119890minus120578120578

3 (1 + 119887)

ℏ minus

2119887119873119903119890minus120578120578

3 (1 + 119887)

Θ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2(1 + 119887)2ℏ minus

119887119890minus120578

2(1 + 119887)2ℏ

minus

119873119887119890minus3120578

6(1 + 119887)2ℏ +

119887119873119887119890minus3120578

6(1 + 119887)2ℏ minus

119873119887119890minus120578

6(1 + 119887)2ℏ

minus

119887119873119887119890minus120578

6(1 + 119887)2ℏ +

119873119905119890minus3120578

6(1 + 119887)2ℏ minus

119873119905119890minus120578

6(1 + 119887)2ℏ

+

119876119890minus2120578

2 (1 + 119887)

ℏ minus

119876119890minus120578

2(1 + 119887)2ℏ minus

119887119876119890minus120578

2(1 + 119887)2ℏ

Φ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ +

119887119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2 (1 + 119887)

minus

119887119890minus120578

2 (1 + 119887)

ℏ minus

119870119890minus2120578

2 (1 + 119887)

ℏ minus

119887119870eminus2120578

2 (1 + 119887)

+

119870119890minus120578

2 (1 + 119887)

ℏ +

119887119870119890minus120578

2 (1 + 119887)

ℏ +

119873119905

119873119887

119890minus2120578

2 (1 + 119887)

minus

119873119905

119873119887

119890minus120578

2 (1 + 119887)

(56)

The higher orders solutions of 119865(120578) Θ(120578) and Φ(120578) weretoo long to be mentioned here therefore they are showngraphically

51 Convergence of the HAM Solution As mentioned by Liao[45] HAM provides us with great freedom in choosing thesolution of a nonlinear problem by different base functionsThis has a great effect on the convergence region because theconvergence region and rate of a series are chiefly determinedby the base functions used to express the solution We usedseveral terms in evaluating the approximate solution 119865app asympsum119899119894=0 119865119894Θapp asymp sum

119899119894=0Θ119894Φapp asymp sum

119899119894=0Φ119894 note that the solution

series contains the auxiliary parameter ℏ which provides uswith a simple way to adjust and control the convergence ofthe solution series Generally by means of the so-called ℏ-curve that is a curve of a versus ℏ As pointed by Liao [45]the valid region of ℏ is a horizontal line segment Figures2 3 and 4 show the ℏ-curve with the various order of theHAM for 11989110158401015840(0) 1205791015840(0) 1206011015840(0) respectively when 119873119887 = 01

0 2 4 6 8 10

0

00001

00002

00003

minus00001

minus00002

minus00003

120578

= minus135

= minus145 (optimal value)= minus15

Res (f998400 (120578))

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 5 The residual error of 1198911015840(120578) for (33) using 12th order ofapproximations

0 2 4 6 8 10

0

0001

0002

minus00001

minus00002

minus00003

minus00004

120578

= minus11

= minus119 (optimal value)= minus13

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Res (120579

(120578))

ℏℏ

Figure 6 The residual error of 120579(120578) for (34) using 12th order ofapproximations

119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10119887 = 00 It can be seen that when the order of series is 12 thesegment of the horizontal line is more than the other ordersFor example it can be found that for 11986510158401015840(0) the acceptablerange ofℏ is betweenminus05 andminus20 for 12th order of theHAMbut for 8th order of the HAM the acceptable range of ℏ isbetween minus10 and minus20 or minus10 and minus15 for 4th order of theHAM so horizontal line segment of 12th order of the HAM ismore than others Therefore it is straightforward to choosean appropriate range for ℏ which ensures the convergence

10 Mathematical Problems in Engineering

minus00002

120578

= minus10

= minus111 (optimal value)= minus12

Nt = 01Nr = 01

Q = 01Le = 10K = 10n = 10b = 00

0006

0004

0002

0

0 2 4 6 8 10

Nb = 01

Res (120601

(120578))

Figure 7 The residual error of 120601(120578) for (35) using 12th order ofapproximations

of the solution series To choose optimal value of auxiliaryparameter the averaged residual errors (see [53] for moredetails) are defined as

119864119865119898 =1

119870

119870

sum

119894=0

[N119865(119898

sum

119894=0

119865119894 (119894Δ119909))]

2

119864Θ119898 =1

119870

119870

sum

119894=0

[NΘ(119898

sum

119894=0

Θ119894 (119894Δ119909))]

2

119864Φ119898 =1

119870

119870

sum

119894=0

[NΦ(119898

sum

119894=0

Φ119894 (119894Δ119909))]

2

(57)

where Δ119909 = 10119870 and 119870 = 20 For given order ofapproximation 119898 and the optimal values ℏ are given bythe minimum of 119864119898 corresponding to nonlinear algebraicequations

119889119864119865119898

119889ℏ

= 0

119889119864Θ119898

119889ℏ

= 0

119889119864Φ119898

119889ℏ

= 0 (58)

It is noted that the optimal value of ℏ is replaced intothe equations Table 1 shows optimal values obtained for theauxiliary parameter ℏ for various quantities of119873119905 119876 and 119899when119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00 To see

the accuracy of the solutions the residual errors are definedfor the system as (for119898 order approximation)

Res119865119898

=

1198892119865119898

1198891205782minus

2

3

120578(

119889Θ119898

119889120578

minus 119873119903

119889Φ119898

119889120578

) (59)

ResΘ119898

=

1198892Θ119898

1198891205782+

1

3

119865119898

119889Θ119898

d120578+ 119873119887

119889Θ119898

119889120578

119889Φ119898

119889120578

+ 119873119905(

119889Θ119898

119889120578

)

2

+ 119876Θ119898

(60)

ResΦ119898

=

1198892Φ119898

1198891205782+

Le3

119865119898

119889Φ119898

119889120578

+

119873119905

119873119887

1198892Θ119898

1198891205782

minus 119870(

119889Φ119898

119889120578

)

119899

(61)

Figures 5 6 and 7 show the residual errors for 12th-orderdeformation solutions when 119873119887 = 01 119873119905 = 01 119873119903 = 01119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 For example ℏ =minus145 has the minimum range of residual curve in Figure 5and so on

Graphical representation of results is very useful todemonstrate the efficiency and accuracy of the HAM for theabove problem

6 Comparisons and Verification

It is worth citing that for isothermal plate (119887 = 0) and in theabsence of internal heat generationabsorption (119876 = 0) andchemical reaction (119870 = 0) our problem reduces to Gorla andChamkha [26] and Khan and Pop [27] To verify the accuracyof our results the present results are compared in Table 2with Gorla and Chamkha [26] and are found to be in goodagreement

7 Physical Quantities

Theparameters of physical interest of the present problem arethe local skin friction factor 119862119891119909 the local Nusselt numberNu119909 and the local Sherwood number Sh119909 respectivelyPhysically 119862119891119909 indicates wall shear stress Nu119909 indicates therate of wall heat transfer whilst Sh119909 indicates the rate ofwall nanoparticle volume fractionThe following relations areused to find these quantities

119862119891119909 =2120583

1205881198802119903

(

120597119906

120597119910

)

119910=0

Nu119909 =minus119909

119879119891 minus 119879infin

(

120597119879

120597119910

)

119910=0

Sh119909 =minus119909

119862119908 minus 119862infin

(

120597119862

120597119910

)

119910=0

(62)

Mathematical Problems in Engineering 11

Table 2 Comparison of present solution with Gorla and Chamkha[26] for different values of buoyancy and nanofluid parameters

Present results (HAM) Gorla and Chamkha [26]minus1205791015840(0) minus120601

1015840(0) minus120579

1015840(0) minus120601

1015840(0)

Nr 119873119887 = 03119873119905 = 01 Le = 10 119887 = 119870 = 119876 = 0

01 032578 148242 326119864 minus 01 148416402 032385 146704 325119864 minus 01 146816103 032188 145125 322119864 minus 01 145266404 031985 143503 321119864 minus 01 143639205 031777 141833 319119864 minus 01 1419499Nt 119873119887 = 03119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 031777 141833 319119864 minus 01 141949902 030486 141491 305119864 minus 01 141653603 02927 141561 293119864 minus 01 141686604 028125 141991 282119864 minus 01 142158205 027046 142737 271119864 minus 01 1429226Nb 119873119905 = 01119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 03672 132611 368119864 minus 01 132745402 034271 139216 343119864 minus 01 139361503 031777 141833 319119864 minus 01 141949904 029399 143428 294119864 minus 01 143546405 027161 144598 272119864 minus 01 144772

0 2 4 6 8 100

02

04

06

08

1

12

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

f998400 (120578

)

Figure 8 Comparison of dimensionless velocity profile 1198911015840(120578)

obtained by various orders of the HAM

By substituting from (14) and (31) into (37) it can beshown that physical quantities are putted in the followingdimensionless form

1

2

Ra119909Pr119862119891119909 = 11989110158401015840(0) Raminus13

119909Nu119909 = minus120579

1015840(0)

Raminus13119909

Sh119909 = minus1206011015840(0)

(63)

0 2 4 6 8 100

02

04

06

08

1

120578

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 9 Comparison of dimensionless temperature profile 120579(120578)obtained by various orders of the HAM

0 2 4 6 8 100

02

04

06

08

1

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

HAM order 4HAM order 8

HAM order 12Numerical

120578

120601(120578

)

Figure 10 Comparison of dimensionless concentration profile 120601(120578)obtained by various orders of the HAM

Here Ra119909 = 119892119870120573(1minus119862infin)Δ119879119909(120572119898]) is the local Rayleighnumber Pr = ]120572119898 is the Prandtl number and 119880119903 = (1 minus

119862infin)119892119870120573Δ119879120572119898 is the reference velocity

8 Results and Discussion

Graphical representation of results is very useful to discussthe physical features presented by the solutions This sectiondescribes the influence of some interesting parameters on

12 Mathematical Problems in Engineering

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

f998400 (120578)

120578

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 11 Effect of buoyancy ratio119873119903 on the dimensionless velocityprofile

0 2 4 6 8 10

02

04

06

08

1

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

120578

120579(120578

)

Figure 12 Effect of buoyancy ratio 119873119903 on the dimensionlesstemperature profile

the velocity and temperature fields Equations (33) to (35)with boundary conditions in (36) were solved analytically byHAM and numerically using Runge-Kutta-Fehlberg fourth-fifth order proposed by Aziz [54]

Figures 8 9 and 10 respectively for 1198911015840(120578) 120579(120578) and 120601(120578)show the comparisons between various order approximationof the optimal HAM and the numerical solutions for the case

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

120601(120578

)Figure 13 Effect of buoyancy ratio 119873119903 on the dimensionlessconcentration profile

0 2 4 6 8 10

02

04

06

08

1

12

NumericalNumerical

Numerical

f998400 (120578

)

120578

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 14 Effect of Brownian motion 119873119887 on the dimensionlessvelocity profile

119873119887 = 01 119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 For better presentation these results arepresented in Tables 3 4 and 5 Also Tables 6 7 and 8 presentthe comparisons between various order approximation of theoptimal HAM and the numerical solutions for the case119873119887 =03 119873119905 = 005 119873119903 = 03 119876 = 01 Le = 20 119870 = 05

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

6 Mathematical Problems in Engineering

where 119891 is an arbitrary function of 120578 From the equations211988911990931205722119909 = 1198891205790 and 211988911990931205722119909 = 1198891206010 we obtain byintegration

120579 = 120579 (120578) 120601 = 120601 (120578) (30c)

From the equation 211988911990931205722119909 = 119889119863112057221198631 we obtain byintegration

1198631 = (1198631)0119909minus23

(30d)

where (1198631)0 is a constant thermal slip factorThus from (30a)ndash(30d) we obtain

120578 = 119910119909minus23

120595 = 11990913119891 (120578)

120579 = 120579 (120578) 120601 = 120601 (120578) 1198631 = (1198631)0119909minus23

(31)

Here 120578 is the similarity variable and 119891 120579 120601 are dependentvariables Note that the similarity transformations in (31) areconsistent with the well-known similarity transformationsreported in the paper of Cheng and Chang [21] for 120582 = 0

in their paper Thus the dimensionless velocity components119906 V can be expressed as

119906 =

1198911015840

11990913 V = minus

1

311990923

(119891 minus 21205781198911015840) (32)

where primes indicate differentiation with respect to 120578

32 Similarity Equations On substituting the transforma-tions in (31) into the governing (16)ndash(18) we obtain thefollowing system of ordinary differential equations

11989110158401015840minus

2

3

120578 (1205791015840minus 119873119903120601

1015840) = 0 (33)

12057910158401015840+

1

3

1198911205791015840+ 119873119887120579

10158401206011015840+ 119873119905120579

10158402+ 119876120579 = 0 (34)

12060110158401015840+

Le3

1198911206011015840+

119873119905

119873119887

12057910158401015840minus 119870120601119899= 0 (35)

We have to solve the system equations (33)ndash(35) subjectto the boundary conditions

119891 (0) = 0 120579 (0) = 1 + 1198871205791015840(0) 120601 (0) = 1

1198911015840(infin) = 0 120579 (infin) = 0 120601 (infin) = 0

(36)

where 119887 = (1198631)0119871 is the thermal slip parameter

4 Basic Idea of the HAM

Let us consider the following differential equation

N [119906 (120591)] = 0 (37)

where N is a nonlinear operator 120591 denotes independentvariable and 119906(120591) is an unknown function respectively Forsimplicity we ignore all boundary or initial conditions whichcan be treated in the similar way By means of generalizing

the traditional homotopy method Liao [45] constructs theso-called zero-order deformation equation

(1 minus 119901)L [120593 (120591 119901) minus 1199060 (120591)] = 119901ℏ119867 (120591)N [120593 (120591 119901)] (38)

where 119901 isin [0 1] is the embedding parameter ℏ = 0 is anonzero auxiliary parameter 119867(120591) = 0 is an auxiliary func-tionL is an auxiliary linear operator 1199060(120591) is an initial guessof 119906(120591) and 120593(120591 119901) is an unknown function respectively Itis important that one has great freedom to choose auxiliarythings in the HAM Obviously when 119901 = 0 and 119901 = 1 itholds 120593(120591 0) = 1199060(120591) 120593(120591 1) = 119906(120591) respectively Thus as119901 increases from 0 to 1 the solution 120593(120591 119901) varies from theinitial guess 1199060(120591) to the solution 119906(120591) Expanding 120593(120591 119901) inTaylor series with respect to 119901 we have

120593 (120591 119901) = 1199060 (120591) +

+infin

sum

119898=1

119906119898 (120591) 119901119898 (39)

where

119906119898 (120591) =1

119898

120597119898120593 (120591 119901)

120597119901119898

100381610038161003816100381610038161003816100381610038161003816119901=0

(40)

If the auxiliary linear operator the initial guess theauxiliary parameter ℏ and the auxiliary function are soproperly chosen the series (39) converges at 119901 = 1 then wehave

119906 (120591) = 1199060 (120591) +

+infin

sum

119898=1

119906119898 (120591) (41)

which must be one of solutions of original nonlinear equa-tion as proved by Liao [45] As ℏ = minus1 and 119867(120591) = 1 (38)becomes

(1 minus 119901)L [120593 (120591 119901) minus 1199060 (120591)] + 119901N [120593 (120591 119901)] = 0 (42)

which is used mostly in the homotopy perturbation methodwhere the solution can be obtained directly without usingTaylor series

According to definition (39) the governing equationcan be deduced from the zero-order deformation equation(37) By defining the vector 119899 = 1199060(120591) 1199061(120591) 119906119899(120591)

and differentiating equation (37) 119898 times with respect tothe embedding parameter 119901 and then setting 119901 = 0 andfinally dividing them by119898 we have the so-called119898th-orderdeformation equation

L [119906119898 (120591) minus 120594119898119906119898minus1 (120591)] = ℏ119867 (120591) 119877119898 (119898minus1) (43)

where

119877119898 (119898minus1) =1

(119898 minus 1)

120597119898minus1N [120593(120591 119901)]

120597119901119898minus1

100381610038161003816100381610038161003816100381610038161003816119901=0

120594119898 = 0 119898 le 1

1 119898 gt 1

(44)

It should be emphasized that 119906119898(120591) for 119898 ge 1 isgoverned by the linear equation (39) with the linear boundaryconditions that come from original problem which canbe easily solved by symbolic computation software such asMAPLE and MATHEMATICA

Mathematical Problems in Engineering 7

0 05

0

05

1

15

2

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

minus2minus2

minus1

minus1

minus05

minus05

minus15

minus15minus25

f998400998400

(0)

Figure 2 The ℏ-curve of 11989110158401015840(0) given by the various HAM-orderapproximate solution

0 05

0

HAM order 12HAM order 8

HAM order 4

minus2

minus2

minus1

minus1

minus05

minus05

minus15

minus15

minus25

minus25

minus3

minus35

minus4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579998400 (0)

Figure 3 The ℏ-curve of 1205791015840(0) given by the various HAM-orderapproximate solution

5 HAM Solution

In this section we applied the HAM to obtain approx-imate analytical solutions of the effect of higher orderchemical reaction internal heat generation and the thermalslip boundary condition on the boundary-layer flow of ananofluid past an upward facing horizontal plate (33)ndash(35)

05

0

minus2

minus1

minus05

minus15

minus25

minus3

minus35

minus4minus2 minus1 minus05minus15 0

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120601998400 (0

)

Figure 4 The ℏ-curve of 1206011015840(0) given by the various HAM-orderapproximate solution

We start with the initial approximation 1198650(120578) = 0 Θ0(120578) =(1(119887 + 1))Exp[minus120578]Φ0(120578) = Exp[minus120578] and the linear operator

L [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205783

L [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

120597Θ (120578 119901)

120597120578

L [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

120597Φ (120578 119901)

120597120578

(45)

Furthermore from (33)ndash(35) we define the nonlinearoperators

N [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205782

minus

2

3

120578(

120597Θ (120578 119901)

120597120578

minus 119873119903

120597Φ (120578 119901)

120597120578

)

N [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

1

3

119865 (120578 119901)

120597Θ (120578 119901)

120597120578

+ 119873119887

120597Θ (120578 119901)

120597120578

120597Φ (120578 119901)

120597120578

+ 119873119905(

120597Θ (120578 119901)

120597120578

)

2

+ 119876Θ (120578 119901)

N [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

Le3

119865 (120578 119901)

120597Φ (120578 119901)

120597120578

+

119873119905

119873119887

1205972Θ(120578 119901)

1205971205782

minus 119870(Φ (120578 119901))119899

(46)

8 Mathematical Problems in Engineering

Using the above definition with assumption 119867119865(120591) = 1119867Θ(120591) = Exp[minus120578] and 119867Φ(120591) = Exp[minus120578] we construct the119911119890119903119900th-order deformation equation

(1 minus 119901)L [120593 (119909 119901) minus 1199060 (119909)] = 119867 (120591) 119901ℏN [120593 (119909 119901)]

(47)

Obviously when 119901 = 0 and 119901 = 1

120593 (119909 0) = 1199060 (119909) 120593 (119909 1) = 119906 (119909) (48)

Differentiating the 119911119890119903119900th-order deformation equation(47)119898 times with respect to 119901 and finally dividing by119898 wehave the119898th-order deformation equation

L [119865119898 (119909) minus 120594119898119865119898minus1 (119909)] = ℏ119877119898 (119898minus1)

L [Θ119898 (119909) minus 120594119898Θ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Θ119898minus1)

L [Φ119898 (119909) minus 120594119898Φ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Φ119898minus1)

(49)

subject to boundary condition

119865119898 = 0 Θ119898 = 1 + 119887Θ1015840119898 Φ119898 = 1 at 120578 = 0

1198651015840119898 997888rarr 0 Θ119898 997888rarr 0 Φ119898 997888rarr 0 as 120578 997888rarr infin

(50)

For 119899 = 1 (Newtonian fluid)

119877119898 (119898minus1) =1205972119865119898minus1 (120578)

1205971205782

minus

2

3

120578(

120597Θ119898minus1 (120578)

120597120578

minus 119873119903

120597Φ119898minus1 (120578)

120597120578

)

119877119898 (Θ119898minus1) =1205972Θ119898minus1 (120578)

1205971205782

+

1

3

119898minus1

sum

119895=0

119865119895 (120578)

120597Θ119898minus1minus119895 (120578)

120597120578

+ 119873119887

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Φ119898minus1minus119895 (120578)

120597120578

)

+ 119873119905

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Θ119898minus1minus119895 (120578)

120597120578

)

+ 119876Θ119898minus1 (120578)

(51)

For 119899 = 1

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870Φ119898minus1 (120578)

(52)

Table 1 The optimal values of ℏ for different values of119873119905119876 119899

119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00

Seriessolution119899 10 20 30Nt 01 005 01119876 01 00 01

1198911015840(120578) ℏOptimal = minus145 ℏOptimal = minus187 ℏOptimal = minus169

120579(120578) ℏOptimal = minus119 ℏOptimal = minus098 ℏOptimal = minus108

120601(120578) ℏOptimal = minus111 ℏOptimal = minus086 ℏOptimal = minus095

Also for 119899 = 2

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119895=0

Φ119895 (120578)Φ119898minus1minus119895 (120578)

(53)

and for 119899 = 3

119877119898 (Φ119898minus1)

=

1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119894=0

(Φ119898minus1minus119894 (120578)

119894minus1

sum

119895=0

(Φ119895 (120578)Φ119894minus119895 (120578)))

(54)

Obviously the solution of the 119898th-order deformationequations (49) for119898 ge 1 becomes

119865119898 (120578) = 119865119898minus1 (120578) + ℏLminus1[119877119898 (119898minus1)]

Θ119898 (120578) = Θ119898minus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Θ119898minus1)]

Φ119898 (120578) = Φmminus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Φ119898minus1)]

(55)

Mathematical Problems in Engineering 9

By using the symbolic software MATHEMATICA tosolve the system of linear equations (49) with the boundaryconditions (46) it can be obtained finally

1198651 (120578) = minus

4

3 (1 + 119887)

ℏ +

4119890minus120578

3 (1 + 119887)

ℏ +

4119873119903

3 (1 + 119887)

+

4119887119873119903

3 (1 + 119887)

ℏ minus

4119873119903119890minus120578

3 (1 + 119887)

ℏ minus

4119887119873119903119890minus120578

3 (1 + 119887)

+

2119890minus120578120578

3 (1 + 119887)

ℏ minus

2119873119903119890minus120578120578

3 (1 + 119887)

ℏ minus

2119887119873119903119890minus120578120578

3 (1 + 119887)

Θ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2(1 + 119887)2ℏ minus

119887119890minus120578

2(1 + 119887)2ℏ

minus

119873119887119890minus3120578

6(1 + 119887)2ℏ +

119887119873119887119890minus3120578

6(1 + 119887)2ℏ minus

119873119887119890minus120578

6(1 + 119887)2ℏ

minus

119887119873119887119890minus120578

6(1 + 119887)2ℏ +

119873119905119890minus3120578

6(1 + 119887)2ℏ minus

119873119905119890minus120578

6(1 + 119887)2ℏ

+

119876119890minus2120578

2 (1 + 119887)

ℏ minus

119876119890minus120578

2(1 + 119887)2ℏ minus

119887119876119890minus120578

2(1 + 119887)2ℏ

Φ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ +

119887119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2 (1 + 119887)

minus

119887119890minus120578

2 (1 + 119887)

ℏ minus

119870119890minus2120578

2 (1 + 119887)

ℏ minus

119887119870eminus2120578

2 (1 + 119887)

+

119870119890minus120578

2 (1 + 119887)

ℏ +

119887119870119890minus120578

2 (1 + 119887)

ℏ +

119873119905

119873119887

119890minus2120578

2 (1 + 119887)

minus

119873119905

119873119887

119890minus120578

2 (1 + 119887)

(56)

The higher orders solutions of 119865(120578) Θ(120578) and Φ(120578) weretoo long to be mentioned here therefore they are showngraphically

51 Convergence of the HAM Solution As mentioned by Liao[45] HAM provides us with great freedom in choosing thesolution of a nonlinear problem by different base functionsThis has a great effect on the convergence region because theconvergence region and rate of a series are chiefly determinedby the base functions used to express the solution We usedseveral terms in evaluating the approximate solution 119865app asympsum119899119894=0 119865119894Θapp asymp sum

119899119894=0Θ119894Φapp asymp sum

119899119894=0Φ119894 note that the solution

series contains the auxiliary parameter ℏ which provides uswith a simple way to adjust and control the convergence ofthe solution series Generally by means of the so-called ℏ-curve that is a curve of a versus ℏ As pointed by Liao [45]the valid region of ℏ is a horizontal line segment Figures2 3 and 4 show the ℏ-curve with the various order of theHAM for 11989110158401015840(0) 1205791015840(0) 1206011015840(0) respectively when 119873119887 = 01

0 2 4 6 8 10

0

00001

00002

00003

minus00001

minus00002

minus00003

120578

= minus135

= minus145 (optimal value)= minus15

Res (f998400 (120578))

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 5 The residual error of 1198911015840(120578) for (33) using 12th order ofapproximations

0 2 4 6 8 10

0

0001

0002

minus00001

minus00002

minus00003

minus00004

120578

= minus11

= minus119 (optimal value)= minus13

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Res (120579

(120578))

ℏℏ

Figure 6 The residual error of 120579(120578) for (34) using 12th order ofapproximations

119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10119887 = 00 It can be seen that when the order of series is 12 thesegment of the horizontal line is more than the other ordersFor example it can be found that for 11986510158401015840(0) the acceptablerange ofℏ is betweenminus05 andminus20 for 12th order of theHAMbut for 8th order of the HAM the acceptable range of ℏ isbetween minus10 and minus20 or minus10 and minus15 for 4th order of theHAM so horizontal line segment of 12th order of the HAM ismore than others Therefore it is straightforward to choosean appropriate range for ℏ which ensures the convergence

10 Mathematical Problems in Engineering

minus00002

120578

= minus10

= minus111 (optimal value)= minus12

Nt = 01Nr = 01

Q = 01Le = 10K = 10n = 10b = 00

0006

0004

0002

0

0 2 4 6 8 10

Nb = 01

Res (120601

(120578))

Figure 7 The residual error of 120601(120578) for (35) using 12th order ofapproximations

of the solution series To choose optimal value of auxiliaryparameter the averaged residual errors (see [53] for moredetails) are defined as

119864119865119898 =1

119870

119870

sum

119894=0

[N119865(119898

sum

119894=0

119865119894 (119894Δ119909))]

2

119864Θ119898 =1

119870

119870

sum

119894=0

[NΘ(119898

sum

119894=0

Θ119894 (119894Δ119909))]

2

119864Φ119898 =1

119870

119870

sum

119894=0

[NΦ(119898

sum

119894=0

Φ119894 (119894Δ119909))]

2

(57)

where Δ119909 = 10119870 and 119870 = 20 For given order ofapproximation 119898 and the optimal values ℏ are given bythe minimum of 119864119898 corresponding to nonlinear algebraicequations

119889119864119865119898

119889ℏ

= 0

119889119864Θ119898

119889ℏ

= 0

119889119864Φ119898

119889ℏ

= 0 (58)

It is noted that the optimal value of ℏ is replaced intothe equations Table 1 shows optimal values obtained for theauxiliary parameter ℏ for various quantities of119873119905 119876 and 119899when119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00 To see

the accuracy of the solutions the residual errors are definedfor the system as (for119898 order approximation)

Res119865119898

=

1198892119865119898

1198891205782minus

2

3

120578(

119889Θ119898

119889120578

minus 119873119903

119889Φ119898

119889120578

) (59)

ResΘ119898

=

1198892Θ119898

1198891205782+

1

3

119865119898

119889Θ119898

d120578+ 119873119887

119889Θ119898

119889120578

119889Φ119898

119889120578

+ 119873119905(

119889Θ119898

119889120578

)

2

+ 119876Θ119898

(60)

ResΦ119898

=

1198892Φ119898

1198891205782+

Le3

119865119898

119889Φ119898

119889120578

+

119873119905

119873119887

1198892Θ119898

1198891205782

minus 119870(

119889Φ119898

119889120578

)

119899

(61)

Figures 5 6 and 7 show the residual errors for 12th-orderdeformation solutions when 119873119887 = 01 119873119905 = 01 119873119903 = 01119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 For example ℏ =minus145 has the minimum range of residual curve in Figure 5and so on

Graphical representation of results is very useful todemonstrate the efficiency and accuracy of the HAM for theabove problem

6 Comparisons and Verification

It is worth citing that for isothermal plate (119887 = 0) and in theabsence of internal heat generationabsorption (119876 = 0) andchemical reaction (119870 = 0) our problem reduces to Gorla andChamkha [26] and Khan and Pop [27] To verify the accuracyof our results the present results are compared in Table 2with Gorla and Chamkha [26] and are found to be in goodagreement

7 Physical Quantities

Theparameters of physical interest of the present problem arethe local skin friction factor 119862119891119909 the local Nusselt numberNu119909 and the local Sherwood number Sh119909 respectivelyPhysically 119862119891119909 indicates wall shear stress Nu119909 indicates therate of wall heat transfer whilst Sh119909 indicates the rate ofwall nanoparticle volume fractionThe following relations areused to find these quantities

119862119891119909 =2120583

1205881198802119903

(

120597119906

120597119910

)

119910=0

Nu119909 =minus119909

119879119891 minus 119879infin

(

120597119879

120597119910

)

119910=0

Sh119909 =minus119909

119862119908 minus 119862infin

(

120597119862

120597119910

)

119910=0

(62)

Mathematical Problems in Engineering 11

Table 2 Comparison of present solution with Gorla and Chamkha[26] for different values of buoyancy and nanofluid parameters

Present results (HAM) Gorla and Chamkha [26]minus1205791015840(0) minus120601

1015840(0) minus120579

1015840(0) minus120601

1015840(0)

Nr 119873119887 = 03119873119905 = 01 Le = 10 119887 = 119870 = 119876 = 0

01 032578 148242 326119864 minus 01 148416402 032385 146704 325119864 minus 01 146816103 032188 145125 322119864 minus 01 145266404 031985 143503 321119864 minus 01 143639205 031777 141833 319119864 minus 01 1419499Nt 119873119887 = 03119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 031777 141833 319119864 minus 01 141949902 030486 141491 305119864 minus 01 141653603 02927 141561 293119864 minus 01 141686604 028125 141991 282119864 minus 01 142158205 027046 142737 271119864 minus 01 1429226Nb 119873119905 = 01119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 03672 132611 368119864 minus 01 132745402 034271 139216 343119864 minus 01 139361503 031777 141833 319119864 minus 01 141949904 029399 143428 294119864 minus 01 143546405 027161 144598 272119864 minus 01 144772

0 2 4 6 8 100

02

04

06

08

1

12

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

f998400 (120578

)

Figure 8 Comparison of dimensionless velocity profile 1198911015840(120578)

obtained by various orders of the HAM

By substituting from (14) and (31) into (37) it can beshown that physical quantities are putted in the followingdimensionless form

1

2

Ra119909Pr119862119891119909 = 11989110158401015840(0) Raminus13

119909Nu119909 = minus120579

1015840(0)

Raminus13119909

Sh119909 = minus1206011015840(0)

(63)

0 2 4 6 8 100

02

04

06

08

1

120578

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 9 Comparison of dimensionless temperature profile 120579(120578)obtained by various orders of the HAM

0 2 4 6 8 100

02

04

06

08

1

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

HAM order 4HAM order 8

HAM order 12Numerical

120578

120601(120578

)

Figure 10 Comparison of dimensionless concentration profile 120601(120578)obtained by various orders of the HAM

Here Ra119909 = 119892119870120573(1minus119862infin)Δ119879119909(120572119898]) is the local Rayleighnumber Pr = ]120572119898 is the Prandtl number and 119880119903 = (1 minus

119862infin)119892119870120573Δ119879120572119898 is the reference velocity

8 Results and Discussion

Graphical representation of results is very useful to discussthe physical features presented by the solutions This sectiondescribes the influence of some interesting parameters on

12 Mathematical Problems in Engineering

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

f998400 (120578)

120578

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 11 Effect of buoyancy ratio119873119903 on the dimensionless velocityprofile

0 2 4 6 8 10

02

04

06

08

1

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

120578

120579(120578

)

Figure 12 Effect of buoyancy ratio 119873119903 on the dimensionlesstemperature profile

the velocity and temperature fields Equations (33) to (35)with boundary conditions in (36) were solved analytically byHAM and numerically using Runge-Kutta-Fehlberg fourth-fifth order proposed by Aziz [54]

Figures 8 9 and 10 respectively for 1198911015840(120578) 120579(120578) and 120601(120578)show the comparisons between various order approximationof the optimal HAM and the numerical solutions for the case

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

120601(120578

)Figure 13 Effect of buoyancy ratio 119873119903 on the dimensionlessconcentration profile

0 2 4 6 8 10

02

04

06

08

1

12

NumericalNumerical

Numerical

f998400 (120578

)

120578

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 14 Effect of Brownian motion 119873119887 on the dimensionlessvelocity profile

119873119887 = 01 119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 For better presentation these results arepresented in Tables 3 4 and 5 Also Tables 6 7 and 8 presentthe comparisons between various order approximation of theoptimal HAM and the numerical solutions for the case119873119887 =03 119873119905 = 005 119873119903 = 03 119876 = 01 Le = 20 119870 = 05

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Mathematical Problems in Engineering 7

0 05

0

05

1

15

2

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

minus2minus2

minus1

minus1

minus05

minus05

minus15

minus15minus25

f998400998400

(0)

Figure 2 The ℏ-curve of 11989110158401015840(0) given by the various HAM-orderapproximate solution

0 05

0

HAM order 12HAM order 8

HAM order 4

minus2

minus2

minus1

minus1

minus05

minus05

minus15

minus15

minus25

minus25

minus3

minus35

minus4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579998400 (0)

Figure 3 The ℏ-curve of 1205791015840(0) given by the various HAM-orderapproximate solution

5 HAM Solution

In this section we applied the HAM to obtain approx-imate analytical solutions of the effect of higher orderchemical reaction internal heat generation and the thermalslip boundary condition on the boundary-layer flow of ananofluid past an upward facing horizontal plate (33)ndash(35)

05

0

minus2

minus1

minus05

minus15

minus25

minus3

minus35

minus4minus2 minus1 minus05minus15 0

HAM order 12HAM order 8

HAM order 4

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120601998400 (0

)

Figure 4 The ℏ-curve of 1206011015840(0) given by the various HAM-orderapproximate solution

We start with the initial approximation 1198650(120578) = 0 Θ0(120578) =(1(119887 + 1))Exp[minus120578]Φ0(120578) = Exp[minus120578] and the linear operator

L [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205783

L [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

120597Θ (120578 119901)

120597120578

L [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

120597Φ (120578 119901)

120597120578

(45)

Furthermore from (33)ndash(35) we define the nonlinearoperators

N [119865 (120578 119901)] =

1205972119865 (120578 119901)

1205971205782

minus

2

3

120578(

120597Θ (120578 119901)

120597120578

minus 119873119903

120597Φ (120578 119901)

120597120578

)

N [Θ (120578 119901)] =

1205972Θ(120578 119901)

1205971205782

+

1

3

119865 (120578 119901)

120597Θ (120578 119901)

120597120578

+ 119873119887

120597Θ (120578 119901)

120597120578

120597Φ (120578 119901)

120597120578

+ 119873119905(

120597Θ (120578 119901)

120597120578

)

2

+ 119876Θ (120578 119901)

N [Φ (120578 119901)] =

1205972Φ(120578 119901)

1205971205782

+

Le3

119865 (120578 119901)

120597Φ (120578 119901)

120597120578

+

119873119905

119873119887

1205972Θ(120578 119901)

1205971205782

minus 119870(Φ (120578 119901))119899

(46)

8 Mathematical Problems in Engineering

Using the above definition with assumption 119867119865(120591) = 1119867Θ(120591) = Exp[minus120578] and 119867Φ(120591) = Exp[minus120578] we construct the119911119890119903119900th-order deformation equation

(1 minus 119901)L [120593 (119909 119901) minus 1199060 (119909)] = 119867 (120591) 119901ℏN [120593 (119909 119901)]

(47)

Obviously when 119901 = 0 and 119901 = 1

120593 (119909 0) = 1199060 (119909) 120593 (119909 1) = 119906 (119909) (48)

Differentiating the 119911119890119903119900th-order deformation equation(47)119898 times with respect to 119901 and finally dividing by119898 wehave the119898th-order deformation equation

L [119865119898 (119909) minus 120594119898119865119898minus1 (119909)] = ℏ119877119898 (119898minus1)

L [Θ119898 (119909) minus 120594119898Θ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Θ119898minus1)

L [Φ119898 (119909) minus 120594119898Φ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Φ119898minus1)

(49)

subject to boundary condition

119865119898 = 0 Θ119898 = 1 + 119887Θ1015840119898 Φ119898 = 1 at 120578 = 0

1198651015840119898 997888rarr 0 Θ119898 997888rarr 0 Φ119898 997888rarr 0 as 120578 997888rarr infin

(50)

For 119899 = 1 (Newtonian fluid)

119877119898 (119898minus1) =1205972119865119898minus1 (120578)

1205971205782

minus

2

3

120578(

120597Θ119898minus1 (120578)

120597120578

minus 119873119903

120597Φ119898minus1 (120578)

120597120578

)

119877119898 (Θ119898minus1) =1205972Θ119898minus1 (120578)

1205971205782

+

1

3

119898minus1

sum

119895=0

119865119895 (120578)

120597Θ119898minus1minus119895 (120578)

120597120578

+ 119873119887

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Φ119898minus1minus119895 (120578)

120597120578

)

+ 119873119905

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Θ119898minus1minus119895 (120578)

120597120578

)

+ 119876Θ119898minus1 (120578)

(51)

For 119899 = 1

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870Φ119898minus1 (120578)

(52)

Table 1 The optimal values of ℏ for different values of119873119905119876 119899

119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00

Seriessolution119899 10 20 30Nt 01 005 01119876 01 00 01

1198911015840(120578) ℏOptimal = minus145 ℏOptimal = minus187 ℏOptimal = minus169

120579(120578) ℏOptimal = minus119 ℏOptimal = minus098 ℏOptimal = minus108

120601(120578) ℏOptimal = minus111 ℏOptimal = minus086 ℏOptimal = minus095

Also for 119899 = 2

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119895=0

Φ119895 (120578)Φ119898minus1minus119895 (120578)

(53)

and for 119899 = 3

119877119898 (Φ119898minus1)

=

1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119894=0

(Φ119898minus1minus119894 (120578)

119894minus1

sum

119895=0

(Φ119895 (120578)Φ119894minus119895 (120578)))

(54)

Obviously the solution of the 119898th-order deformationequations (49) for119898 ge 1 becomes

119865119898 (120578) = 119865119898minus1 (120578) + ℏLminus1[119877119898 (119898minus1)]

Θ119898 (120578) = Θ119898minus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Θ119898minus1)]

Φ119898 (120578) = Φmminus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Φ119898minus1)]

(55)

Mathematical Problems in Engineering 9

By using the symbolic software MATHEMATICA tosolve the system of linear equations (49) with the boundaryconditions (46) it can be obtained finally

1198651 (120578) = minus

4

3 (1 + 119887)

ℏ +

4119890minus120578

3 (1 + 119887)

ℏ +

4119873119903

3 (1 + 119887)

+

4119887119873119903

3 (1 + 119887)

ℏ minus

4119873119903119890minus120578

3 (1 + 119887)

ℏ minus

4119887119873119903119890minus120578

3 (1 + 119887)

+

2119890minus120578120578

3 (1 + 119887)

ℏ minus

2119873119903119890minus120578120578

3 (1 + 119887)

ℏ minus

2119887119873119903119890minus120578120578

3 (1 + 119887)

Θ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2(1 + 119887)2ℏ minus

119887119890minus120578

2(1 + 119887)2ℏ

minus

119873119887119890minus3120578

6(1 + 119887)2ℏ +

119887119873119887119890minus3120578

6(1 + 119887)2ℏ minus

119873119887119890minus120578

6(1 + 119887)2ℏ

minus

119887119873119887119890minus120578

6(1 + 119887)2ℏ +

119873119905119890minus3120578

6(1 + 119887)2ℏ minus

119873119905119890minus120578

6(1 + 119887)2ℏ

+

119876119890minus2120578

2 (1 + 119887)

ℏ minus

119876119890minus120578

2(1 + 119887)2ℏ minus

119887119876119890minus120578

2(1 + 119887)2ℏ

Φ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ +

119887119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2 (1 + 119887)

minus

119887119890minus120578

2 (1 + 119887)

ℏ minus

119870119890minus2120578

2 (1 + 119887)

ℏ minus

119887119870eminus2120578

2 (1 + 119887)

+

119870119890minus120578

2 (1 + 119887)

ℏ +

119887119870119890minus120578

2 (1 + 119887)

ℏ +

119873119905

119873119887

119890minus2120578

2 (1 + 119887)

minus

119873119905

119873119887

119890minus120578

2 (1 + 119887)

(56)

The higher orders solutions of 119865(120578) Θ(120578) and Φ(120578) weretoo long to be mentioned here therefore they are showngraphically

51 Convergence of the HAM Solution As mentioned by Liao[45] HAM provides us with great freedom in choosing thesolution of a nonlinear problem by different base functionsThis has a great effect on the convergence region because theconvergence region and rate of a series are chiefly determinedby the base functions used to express the solution We usedseveral terms in evaluating the approximate solution 119865app asympsum119899119894=0 119865119894Θapp asymp sum

119899119894=0Θ119894Φapp asymp sum

119899119894=0Φ119894 note that the solution

series contains the auxiliary parameter ℏ which provides uswith a simple way to adjust and control the convergence ofthe solution series Generally by means of the so-called ℏ-curve that is a curve of a versus ℏ As pointed by Liao [45]the valid region of ℏ is a horizontal line segment Figures2 3 and 4 show the ℏ-curve with the various order of theHAM for 11989110158401015840(0) 1205791015840(0) 1206011015840(0) respectively when 119873119887 = 01

0 2 4 6 8 10

0

00001

00002

00003

minus00001

minus00002

minus00003

120578

= minus135

= minus145 (optimal value)= minus15

Res (f998400 (120578))

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 5 The residual error of 1198911015840(120578) for (33) using 12th order ofapproximations

0 2 4 6 8 10

0

0001

0002

minus00001

minus00002

minus00003

minus00004

120578

= minus11

= minus119 (optimal value)= minus13

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Res (120579

(120578))

ℏℏ

Figure 6 The residual error of 120579(120578) for (34) using 12th order ofapproximations

119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10119887 = 00 It can be seen that when the order of series is 12 thesegment of the horizontal line is more than the other ordersFor example it can be found that for 11986510158401015840(0) the acceptablerange ofℏ is betweenminus05 andminus20 for 12th order of theHAMbut for 8th order of the HAM the acceptable range of ℏ isbetween minus10 and minus20 or minus10 and minus15 for 4th order of theHAM so horizontal line segment of 12th order of the HAM ismore than others Therefore it is straightforward to choosean appropriate range for ℏ which ensures the convergence

10 Mathematical Problems in Engineering

minus00002

120578

= minus10

= minus111 (optimal value)= minus12

Nt = 01Nr = 01

Q = 01Le = 10K = 10n = 10b = 00

0006

0004

0002

0

0 2 4 6 8 10

Nb = 01

Res (120601

(120578))

Figure 7 The residual error of 120601(120578) for (35) using 12th order ofapproximations

of the solution series To choose optimal value of auxiliaryparameter the averaged residual errors (see [53] for moredetails) are defined as

119864119865119898 =1

119870

119870

sum

119894=0

[N119865(119898

sum

119894=0

119865119894 (119894Δ119909))]

2

119864Θ119898 =1

119870

119870

sum

119894=0

[NΘ(119898

sum

119894=0

Θ119894 (119894Δ119909))]

2

119864Φ119898 =1

119870

119870

sum

119894=0

[NΦ(119898

sum

119894=0

Φ119894 (119894Δ119909))]

2

(57)

where Δ119909 = 10119870 and 119870 = 20 For given order ofapproximation 119898 and the optimal values ℏ are given bythe minimum of 119864119898 corresponding to nonlinear algebraicequations

119889119864119865119898

119889ℏ

= 0

119889119864Θ119898

119889ℏ

= 0

119889119864Φ119898

119889ℏ

= 0 (58)

It is noted that the optimal value of ℏ is replaced intothe equations Table 1 shows optimal values obtained for theauxiliary parameter ℏ for various quantities of119873119905 119876 and 119899when119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00 To see

the accuracy of the solutions the residual errors are definedfor the system as (for119898 order approximation)

Res119865119898

=

1198892119865119898

1198891205782minus

2

3

120578(

119889Θ119898

119889120578

minus 119873119903

119889Φ119898

119889120578

) (59)

ResΘ119898

=

1198892Θ119898

1198891205782+

1

3

119865119898

119889Θ119898

d120578+ 119873119887

119889Θ119898

119889120578

119889Φ119898

119889120578

+ 119873119905(

119889Θ119898

119889120578

)

2

+ 119876Θ119898

(60)

ResΦ119898

=

1198892Φ119898

1198891205782+

Le3

119865119898

119889Φ119898

119889120578

+

119873119905

119873119887

1198892Θ119898

1198891205782

minus 119870(

119889Φ119898

119889120578

)

119899

(61)

Figures 5 6 and 7 show the residual errors for 12th-orderdeformation solutions when 119873119887 = 01 119873119905 = 01 119873119903 = 01119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 For example ℏ =minus145 has the minimum range of residual curve in Figure 5and so on

Graphical representation of results is very useful todemonstrate the efficiency and accuracy of the HAM for theabove problem

6 Comparisons and Verification

It is worth citing that for isothermal plate (119887 = 0) and in theabsence of internal heat generationabsorption (119876 = 0) andchemical reaction (119870 = 0) our problem reduces to Gorla andChamkha [26] and Khan and Pop [27] To verify the accuracyof our results the present results are compared in Table 2with Gorla and Chamkha [26] and are found to be in goodagreement

7 Physical Quantities

Theparameters of physical interest of the present problem arethe local skin friction factor 119862119891119909 the local Nusselt numberNu119909 and the local Sherwood number Sh119909 respectivelyPhysically 119862119891119909 indicates wall shear stress Nu119909 indicates therate of wall heat transfer whilst Sh119909 indicates the rate ofwall nanoparticle volume fractionThe following relations areused to find these quantities

119862119891119909 =2120583

1205881198802119903

(

120597119906

120597119910

)

119910=0

Nu119909 =minus119909

119879119891 minus 119879infin

(

120597119879

120597119910

)

119910=0

Sh119909 =minus119909

119862119908 minus 119862infin

(

120597119862

120597119910

)

119910=0

(62)

Mathematical Problems in Engineering 11

Table 2 Comparison of present solution with Gorla and Chamkha[26] for different values of buoyancy and nanofluid parameters

Present results (HAM) Gorla and Chamkha [26]minus1205791015840(0) minus120601

1015840(0) minus120579

1015840(0) minus120601

1015840(0)

Nr 119873119887 = 03119873119905 = 01 Le = 10 119887 = 119870 = 119876 = 0

01 032578 148242 326119864 minus 01 148416402 032385 146704 325119864 minus 01 146816103 032188 145125 322119864 minus 01 145266404 031985 143503 321119864 minus 01 143639205 031777 141833 319119864 minus 01 1419499Nt 119873119887 = 03119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 031777 141833 319119864 minus 01 141949902 030486 141491 305119864 minus 01 141653603 02927 141561 293119864 minus 01 141686604 028125 141991 282119864 minus 01 142158205 027046 142737 271119864 minus 01 1429226Nb 119873119905 = 01119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 03672 132611 368119864 minus 01 132745402 034271 139216 343119864 minus 01 139361503 031777 141833 319119864 minus 01 141949904 029399 143428 294119864 minus 01 143546405 027161 144598 272119864 minus 01 144772

0 2 4 6 8 100

02

04

06

08

1

12

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

f998400 (120578

)

Figure 8 Comparison of dimensionless velocity profile 1198911015840(120578)

obtained by various orders of the HAM

By substituting from (14) and (31) into (37) it can beshown that physical quantities are putted in the followingdimensionless form

1

2

Ra119909Pr119862119891119909 = 11989110158401015840(0) Raminus13

119909Nu119909 = minus120579

1015840(0)

Raminus13119909

Sh119909 = minus1206011015840(0)

(63)

0 2 4 6 8 100

02

04

06

08

1

120578

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 9 Comparison of dimensionless temperature profile 120579(120578)obtained by various orders of the HAM

0 2 4 6 8 100

02

04

06

08

1

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

HAM order 4HAM order 8

HAM order 12Numerical

120578

120601(120578

)

Figure 10 Comparison of dimensionless concentration profile 120601(120578)obtained by various orders of the HAM

Here Ra119909 = 119892119870120573(1minus119862infin)Δ119879119909(120572119898]) is the local Rayleighnumber Pr = ]120572119898 is the Prandtl number and 119880119903 = (1 minus

119862infin)119892119870120573Δ119879120572119898 is the reference velocity

8 Results and Discussion

Graphical representation of results is very useful to discussthe physical features presented by the solutions This sectiondescribes the influence of some interesting parameters on

12 Mathematical Problems in Engineering

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

f998400 (120578)

120578

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 11 Effect of buoyancy ratio119873119903 on the dimensionless velocityprofile

0 2 4 6 8 10

02

04

06

08

1

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

120578

120579(120578

)

Figure 12 Effect of buoyancy ratio 119873119903 on the dimensionlesstemperature profile

the velocity and temperature fields Equations (33) to (35)with boundary conditions in (36) were solved analytically byHAM and numerically using Runge-Kutta-Fehlberg fourth-fifth order proposed by Aziz [54]

Figures 8 9 and 10 respectively for 1198911015840(120578) 120579(120578) and 120601(120578)show the comparisons between various order approximationof the optimal HAM and the numerical solutions for the case

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

120601(120578

)Figure 13 Effect of buoyancy ratio 119873119903 on the dimensionlessconcentration profile

0 2 4 6 8 10

02

04

06

08

1

12

NumericalNumerical

Numerical

f998400 (120578

)

120578

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 14 Effect of Brownian motion 119873119887 on the dimensionlessvelocity profile

119873119887 = 01 119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 For better presentation these results arepresented in Tables 3 4 and 5 Also Tables 6 7 and 8 presentthe comparisons between various order approximation of theoptimal HAM and the numerical solutions for the case119873119887 =03 119873119905 = 005 119873119903 = 03 119876 = 01 Le = 20 119870 = 05

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

8 Mathematical Problems in Engineering

Using the above definition with assumption 119867119865(120591) = 1119867Θ(120591) = Exp[minus120578] and 119867Φ(120591) = Exp[minus120578] we construct the119911119890119903119900th-order deformation equation

(1 minus 119901)L [120593 (119909 119901) minus 1199060 (119909)] = 119867 (120591) 119901ℏN [120593 (119909 119901)]

(47)

Obviously when 119901 = 0 and 119901 = 1

120593 (119909 0) = 1199060 (119909) 120593 (119909 1) = 119906 (119909) (48)

Differentiating the 119911119890119903119900th-order deformation equation(47)119898 times with respect to 119901 and finally dividing by119898 wehave the119898th-order deformation equation

L [119865119898 (119909) minus 120594119898119865119898minus1 (119909)] = ℏ119877119898 (119898minus1)

L [Θ119898 (119909) minus 120594119898Θ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Θ119898minus1)

L [Φ119898 (119909) minus 120594119898Φ119898minus1 (119909)] = Exp [minus120578] ℏ119877119898 (Φ119898minus1)

(49)

subject to boundary condition

119865119898 = 0 Θ119898 = 1 + 119887Θ1015840119898 Φ119898 = 1 at 120578 = 0

1198651015840119898 997888rarr 0 Θ119898 997888rarr 0 Φ119898 997888rarr 0 as 120578 997888rarr infin

(50)

For 119899 = 1 (Newtonian fluid)

119877119898 (119898minus1) =1205972119865119898minus1 (120578)

1205971205782

minus

2

3

120578(

120597Θ119898minus1 (120578)

120597120578

minus 119873119903

120597Φ119898minus1 (120578)

120597120578

)

119877119898 (Θ119898minus1) =1205972Θ119898minus1 (120578)

1205971205782

+

1

3

119898minus1

sum

119895=0

119865119895 (120578)

120597Θ119898minus1minus119895 (120578)

120597120578

+ 119873119887

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Φ119898minus1minus119895 (120578)

120597120578

)

+ 119873119905

119898minus1

sum

119895=0

(

120597Θ119895 (120578)

120597120578

120597Θ119898minus1minus119895 (120578)

120597120578

)

+ 119876Θ119898minus1 (120578)

(51)

For 119899 = 1

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870Φ119898minus1 (120578)

(52)

Table 1 The optimal values of ℏ for different values of119873119905119876 119899

119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00

Seriessolution119899 10 20 30Nt 01 005 01119876 01 00 01

1198911015840(120578) ℏOptimal = minus145 ℏOptimal = minus187 ℏOptimal = minus169

120579(120578) ℏOptimal = minus119 ℏOptimal = minus098 ℏOptimal = minus108

120601(120578) ℏOptimal = minus111 ℏOptimal = minus086 ℏOptimal = minus095

Also for 119899 = 2

119877119898 (Φ119898minus1) =1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119895=0

Φ119895 (120578)Φ119898minus1minus119895 (120578)

(53)

and for 119899 = 3

119877119898 (Φ119898minus1)

=

1205972Φ119898minus1 (120578)

1205971205782

+

Le3

119898minus1

sum

119895=0

119865119895 (120578)

120597Φ119898minus1minus119895 (120578)

120597120578

+

119873119905

119873119887

1205972Θ119898minus1 (120578)

1205971205782

minus 119870

119898minus1

sum

119894=0

(Φ119898minus1minus119894 (120578)

119894minus1

sum

119895=0

(Φ119895 (120578)Φ119894minus119895 (120578)))

(54)

Obviously the solution of the 119898th-order deformationequations (49) for119898 ge 1 becomes

119865119898 (120578) = 119865119898minus1 (120578) + ℏLminus1[119877119898 (119898minus1)]

Θ119898 (120578) = Θ119898minus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Θ119898minus1)]

Φ119898 (120578) = Φmminus1 (120578) + Exp [minus120578] ℏL minus1 [119877119898 (Φ119898minus1)]

(55)

Mathematical Problems in Engineering 9

By using the symbolic software MATHEMATICA tosolve the system of linear equations (49) with the boundaryconditions (46) it can be obtained finally

1198651 (120578) = minus

4

3 (1 + 119887)

ℏ +

4119890minus120578

3 (1 + 119887)

ℏ +

4119873119903

3 (1 + 119887)

+

4119887119873119903

3 (1 + 119887)

ℏ minus

4119873119903119890minus120578

3 (1 + 119887)

ℏ minus

4119887119873119903119890minus120578

3 (1 + 119887)

+

2119890minus120578120578

3 (1 + 119887)

ℏ minus

2119873119903119890minus120578120578

3 (1 + 119887)

ℏ minus

2119887119873119903119890minus120578120578

3 (1 + 119887)

Θ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2(1 + 119887)2ℏ minus

119887119890minus120578

2(1 + 119887)2ℏ

minus

119873119887119890minus3120578

6(1 + 119887)2ℏ +

119887119873119887119890minus3120578

6(1 + 119887)2ℏ minus

119873119887119890minus120578

6(1 + 119887)2ℏ

minus

119887119873119887119890minus120578

6(1 + 119887)2ℏ +

119873119905119890minus3120578

6(1 + 119887)2ℏ minus

119873119905119890minus120578

6(1 + 119887)2ℏ

+

119876119890minus2120578

2 (1 + 119887)

ℏ minus

119876119890minus120578

2(1 + 119887)2ℏ minus

119887119876119890minus120578

2(1 + 119887)2ℏ

Φ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ +

119887119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2 (1 + 119887)

minus

119887119890minus120578

2 (1 + 119887)

ℏ minus

119870119890minus2120578

2 (1 + 119887)

ℏ minus

119887119870eminus2120578

2 (1 + 119887)

+

119870119890minus120578

2 (1 + 119887)

ℏ +

119887119870119890minus120578

2 (1 + 119887)

ℏ +

119873119905

119873119887

119890minus2120578

2 (1 + 119887)

minus

119873119905

119873119887

119890minus120578

2 (1 + 119887)

(56)

The higher orders solutions of 119865(120578) Θ(120578) and Φ(120578) weretoo long to be mentioned here therefore they are showngraphically

51 Convergence of the HAM Solution As mentioned by Liao[45] HAM provides us with great freedom in choosing thesolution of a nonlinear problem by different base functionsThis has a great effect on the convergence region because theconvergence region and rate of a series are chiefly determinedby the base functions used to express the solution We usedseveral terms in evaluating the approximate solution 119865app asympsum119899119894=0 119865119894Θapp asymp sum

119899119894=0Θ119894Φapp asymp sum

119899119894=0Φ119894 note that the solution

series contains the auxiliary parameter ℏ which provides uswith a simple way to adjust and control the convergence ofthe solution series Generally by means of the so-called ℏ-curve that is a curve of a versus ℏ As pointed by Liao [45]the valid region of ℏ is a horizontal line segment Figures2 3 and 4 show the ℏ-curve with the various order of theHAM for 11989110158401015840(0) 1205791015840(0) 1206011015840(0) respectively when 119873119887 = 01

0 2 4 6 8 10

0

00001

00002

00003

minus00001

minus00002

minus00003

120578

= minus135

= minus145 (optimal value)= minus15

Res (f998400 (120578))

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 5 The residual error of 1198911015840(120578) for (33) using 12th order ofapproximations

0 2 4 6 8 10

0

0001

0002

minus00001

minus00002

minus00003

minus00004

120578

= minus11

= minus119 (optimal value)= minus13

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Res (120579

(120578))

ℏℏ

Figure 6 The residual error of 120579(120578) for (34) using 12th order ofapproximations

119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10119887 = 00 It can be seen that when the order of series is 12 thesegment of the horizontal line is more than the other ordersFor example it can be found that for 11986510158401015840(0) the acceptablerange ofℏ is betweenminus05 andminus20 for 12th order of theHAMbut for 8th order of the HAM the acceptable range of ℏ isbetween minus10 and minus20 or minus10 and minus15 for 4th order of theHAM so horizontal line segment of 12th order of the HAM ismore than others Therefore it is straightforward to choosean appropriate range for ℏ which ensures the convergence

10 Mathematical Problems in Engineering

minus00002

120578

= minus10

= minus111 (optimal value)= minus12

Nt = 01Nr = 01

Q = 01Le = 10K = 10n = 10b = 00

0006

0004

0002

0

0 2 4 6 8 10

Nb = 01

Res (120601

(120578))

Figure 7 The residual error of 120601(120578) for (35) using 12th order ofapproximations

of the solution series To choose optimal value of auxiliaryparameter the averaged residual errors (see [53] for moredetails) are defined as

119864119865119898 =1

119870

119870

sum

119894=0

[N119865(119898

sum

119894=0

119865119894 (119894Δ119909))]

2

119864Θ119898 =1

119870

119870

sum

119894=0

[NΘ(119898

sum

119894=0

Θ119894 (119894Δ119909))]

2

119864Φ119898 =1

119870

119870

sum

119894=0

[NΦ(119898

sum

119894=0

Φ119894 (119894Δ119909))]

2

(57)

where Δ119909 = 10119870 and 119870 = 20 For given order ofapproximation 119898 and the optimal values ℏ are given bythe minimum of 119864119898 corresponding to nonlinear algebraicequations

119889119864119865119898

119889ℏ

= 0

119889119864Θ119898

119889ℏ

= 0

119889119864Φ119898

119889ℏ

= 0 (58)

It is noted that the optimal value of ℏ is replaced intothe equations Table 1 shows optimal values obtained for theauxiliary parameter ℏ for various quantities of119873119905 119876 and 119899when119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00 To see

the accuracy of the solutions the residual errors are definedfor the system as (for119898 order approximation)

Res119865119898

=

1198892119865119898

1198891205782minus

2

3

120578(

119889Θ119898

119889120578

minus 119873119903

119889Φ119898

119889120578

) (59)

ResΘ119898

=

1198892Θ119898

1198891205782+

1

3

119865119898

119889Θ119898

d120578+ 119873119887

119889Θ119898

119889120578

119889Φ119898

119889120578

+ 119873119905(

119889Θ119898

119889120578

)

2

+ 119876Θ119898

(60)

ResΦ119898

=

1198892Φ119898

1198891205782+

Le3

119865119898

119889Φ119898

119889120578

+

119873119905

119873119887

1198892Θ119898

1198891205782

minus 119870(

119889Φ119898

119889120578

)

119899

(61)

Figures 5 6 and 7 show the residual errors for 12th-orderdeformation solutions when 119873119887 = 01 119873119905 = 01 119873119903 = 01119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 For example ℏ =minus145 has the minimum range of residual curve in Figure 5and so on

Graphical representation of results is very useful todemonstrate the efficiency and accuracy of the HAM for theabove problem

6 Comparisons and Verification

It is worth citing that for isothermal plate (119887 = 0) and in theabsence of internal heat generationabsorption (119876 = 0) andchemical reaction (119870 = 0) our problem reduces to Gorla andChamkha [26] and Khan and Pop [27] To verify the accuracyof our results the present results are compared in Table 2with Gorla and Chamkha [26] and are found to be in goodagreement

7 Physical Quantities

Theparameters of physical interest of the present problem arethe local skin friction factor 119862119891119909 the local Nusselt numberNu119909 and the local Sherwood number Sh119909 respectivelyPhysically 119862119891119909 indicates wall shear stress Nu119909 indicates therate of wall heat transfer whilst Sh119909 indicates the rate ofwall nanoparticle volume fractionThe following relations areused to find these quantities

119862119891119909 =2120583

1205881198802119903

(

120597119906

120597119910

)

119910=0

Nu119909 =minus119909

119879119891 minus 119879infin

(

120597119879

120597119910

)

119910=0

Sh119909 =minus119909

119862119908 minus 119862infin

(

120597119862

120597119910

)

119910=0

(62)

Mathematical Problems in Engineering 11

Table 2 Comparison of present solution with Gorla and Chamkha[26] for different values of buoyancy and nanofluid parameters

Present results (HAM) Gorla and Chamkha [26]minus1205791015840(0) minus120601

1015840(0) minus120579

1015840(0) minus120601

1015840(0)

Nr 119873119887 = 03119873119905 = 01 Le = 10 119887 = 119870 = 119876 = 0

01 032578 148242 326119864 minus 01 148416402 032385 146704 325119864 minus 01 146816103 032188 145125 322119864 minus 01 145266404 031985 143503 321119864 minus 01 143639205 031777 141833 319119864 minus 01 1419499Nt 119873119887 = 03119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 031777 141833 319119864 minus 01 141949902 030486 141491 305119864 minus 01 141653603 02927 141561 293119864 minus 01 141686604 028125 141991 282119864 minus 01 142158205 027046 142737 271119864 minus 01 1429226Nb 119873119905 = 01119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 03672 132611 368119864 minus 01 132745402 034271 139216 343119864 minus 01 139361503 031777 141833 319119864 minus 01 141949904 029399 143428 294119864 minus 01 143546405 027161 144598 272119864 minus 01 144772

0 2 4 6 8 100

02

04

06

08

1

12

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

f998400 (120578

)

Figure 8 Comparison of dimensionless velocity profile 1198911015840(120578)

obtained by various orders of the HAM

By substituting from (14) and (31) into (37) it can beshown that physical quantities are putted in the followingdimensionless form

1

2

Ra119909Pr119862119891119909 = 11989110158401015840(0) Raminus13

119909Nu119909 = minus120579

1015840(0)

Raminus13119909

Sh119909 = minus1206011015840(0)

(63)

0 2 4 6 8 100

02

04

06

08

1

120578

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 9 Comparison of dimensionless temperature profile 120579(120578)obtained by various orders of the HAM

0 2 4 6 8 100

02

04

06

08

1

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

HAM order 4HAM order 8

HAM order 12Numerical

120578

120601(120578

)

Figure 10 Comparison of dimensionless concentration profile 120601(120578)obtained by various orders of the HAM

Here Ra119909 = 119892119870120573(1minus119862infin)Δ119879119909(120572119898]) is the local Rayleighnumber Pr = ]120572119898 is the Prandtl number and 119880119903 = (1 minus

119862infin)119892119870120573Δ119879120572119898 is the reference velocity

8 Results and Discussion

Graphical representation of results is very useful to discussthe physical features presented by the solutions This sectiondescribes the influence of some interesting parameters on

12 Mathematical Problems in Engineering

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

f998400 (120578)

120578

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 11 Effect of buoyancy ratio119873119903 on the dimensionless velocityprofile

0 2 4 6 8 10

02

04

06

08

1

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

120578

120579(120578

)

Figure 12 Effect of buoyancy ratio 119873119903 on the dimensionlesstemperature profile

the velocity and temperature fields Equations (33) to (35)with boundary conditions in (36) were solved analytically byHAM and numerically using Runge-Kutta-Fehlberg fourth-fifth order proposed by Aziz [54]

Figures 8 9 and 10 respectively for 1198911015840(120578) 120579(120578) and 120601(120578)show the comparisons between various order approximationof the optimal HAM and the numerical solutions for the case

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

120601(120578

)Figure 13 Effect of buoyancy ratio 119873119903 on the dimensionlessconcentration profile

0 2 4 6 8 10

02

04

06

08

1

12

NumericalNumerical

Numerical

f998400 (120578

)

120578

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 14 Effect of Brownian motion 119873119887 on the dimensionlessvelocity profile

119873119887 = 01 119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 For better presentation these results arepresented in Tables 3 4 and 5 Also Tables 6 7 and 8 presentthe comparisons between various order approximation of theoptimal HAM and the numerical solutions for the case119873119887 =03 119873119905 = 005 119873119903 = 03 119876 = 01 Le = 20 119870 = 05

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Mathematical Problems in Engineering 9

By using the symbolic software MATHEMATICA tosolve the system of linear equations (49) with the boundaryconditions (46) it can be obtained finally

1198651 (120578) = minus

4

3 (1 + 119887)

ℏ +

4119890minus120578

3 (1 + 119887)

ℏ +

4119873119903

3 (1 + 119887)

+

4119887119873119903

3 (1 + 119887)

ℏ minus

4119873119903119890minus120578

3 (1 + 119887)

ℏ minus

4119887119873119903119890minus120578

3 (1 + 119887)

+

2119890minus120578120578

3 (1 + 119887)

ℏ minus

2119873119903119890minus120578120578

3 (1 + 119887)

ℏ minus

2119887119873119903119890minus120578120578

3 (1 + 119887)

Θ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2(1 + 119887)2ℏ minus

119887119890minus120578

2(1 + 119887)2ℏ

minus

119873119887119890minus3120578

6(1 + 119887)2ℏ +

119887119873119887119890minus3120578

6(1 + 119887)2ℏ minus

119873119887119890minus120578

6(1 + 119887)2ℏ

minus

119887119873119887119890minus120578

6(1 + 119887)2ℏ +

119873119905119890minus3120578

6(1 + 119887)2ℏ minus

119873119905119890minus120578

6(1 + 119887)2ℏ

+

119876119890minus2120578

2 (1 + 119887)

ℏ minus

119876119890minus120578

2(1 + 119887)2ℏ minus

119887119876119890minus120578

2(1 + 119887)2ℏ

Φ1 (120578) =119890minus2120578

2 (1 + 119887)

ℏ +

119887119890minus2120578

2 (1 + 119887)

ℏ minus

119890minus120578

2 (1 + 119887)

minus

119887119890minus120578

2 (1 + 119887)

ℏ minus

119870119890minus2120578

2 (1 + 119887)

ℏ minus

119887119870eminus2120578

2 (1 + 119887)

+

119870119890minus120578

2 (1 + 119887)

ℏ +

119887119870119890minus120578

2 (1 + 119887)

ℏ +

119873119905

119873119887

119890minus2120578

2 (1 + 119887)

minus

119873119905

119873119887

119890minus120578

2 (1 + 119887)

(56)

The higher orders solutions of 119865(120578) Θ(120578) and Φ(120578) weretoo long to be mentioned here therefore they are showngraphically

51 Convergence of the HAM Solution As mentioned by Liao[45] HAM provides us with great freedom in choosing thesolution of a nonlinear problem by different base functionsThis has a great effect on the convergence region because theconvergence region and rate of a series are chiefly determinedby the base functions used to express the solution We usedseveral terms in evaluating the approximate solution 119865app asympsum119899119894=0 119865119894Θapp asymp sum

119899119894=0Θ119894Φapp asymp sum

119899119894=0Φ119894 note that the solution

series contains the auxiliary parameter ℏ which provides uswith a simple way to adjust and control the convergence ofthe solution series Generally by means of the so-called ℏ-curve that is a curve of a versus ℏ As pointed by Liao [45]the valid region of ℏ is a horizontal line segment Figures2 3 and 4 show the ℏ-curve with the various order of theHAM for 11989110158401015840(0) 1205791015840(0) 1206011015840(0) respectively when 119873119887 = 01

0 2 4 6 8 10

0

00001

00002

00003

minus00001

minus00002

minus00003

120578

= minus135

= minus145 (optimal value)= minus15

Res (f998400 (120578))

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 5 The residual error of 1198911015840(120578) for (33) using 12th order ofapproximations

0 2 4 6 8 10

0

0001

0002

minus00001

minus00002

minus00003

minus00004

120578

= minus11

= minus119 (optimal value)= minus13

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Res (120579

(120578))

ℏℏ

Figure 6 The residual error of 120579(120578) for (34) using 12th order ofapproximations

119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10119887 = 00 It can be seen that when the order of series is 12 thesegment of the horizontal line is more than the other ordersFor example it can be found that for 11986510158401015840(0) the acceptablerange ofℏ is betweenminus05 andminus20 for 12th order of theHAMbut for 8th order of the HAM the acceptable range of ℏ isbetween minus10 and minus20 or minus10 and minus15 for 4th order of theHAM so horizontal line segment of 12th order of the HAM ismore than others Therefore it is straightforward to choosean appropriate range for ℏ which ensures the convergence

10 Mathematical Problems in Engineering

minus00002

120578

= minus10

= minus111 (optimal value)= minus12

Nt = 01Nr = 01

Q = 01Le = 10K = 10n = 10b = 00

0006

0004

0002

0

0 2 4 6 8 10

Nb = 01

Res (120601

(120578))

Figure 7 The residual error of 120601(120578) for (35) using 12th order ofapproximations

of the solution series To choose optimal value of auxiliaryparameter the averaged residual errors (see [53] for moredetails) are defined as

119864119865119898 =1

119870

119870

sum

119894=0

[N119865(119898

sum

119894=0

119865119894 (119894Δ119909))]

2

119864Θ119898 =1

119870

119870

sum

119894=0

[NΘ(119898

sum

119894=0

Θ119894 (119894Δ119909))]

2

119864Φ119898 =1

119870

119870

sum

119894=0

[NΦ(119898

sum

119894=0

Φ119894 (119894Δ119909))]

2

(57)

where Δ119909 = 10119870 and 119870 = 20 For given order ofapproximation 119898 and the optimal values ℏ are given bythe minimum of 119864119898 corresponding to nonlinear algebraicequations

119889119864119865119898

119889ℏ

= 0

119889119864Θ119898

119889ℏ

= 0

119889119864Φ119898

119889ℏ

= 0 (58)

It is noted that the optimal value of ℏ is replaced intothe equations Table 1 shows optimal values obtained for theauxiliary parameter ℏ for various quantities of119873119905 119876 and 119899when119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00 To see

the accuracy of the solutions the residual errors are definedfor the system as (for119898 order approximation)

Res119865119898

=

1198892119865119898

1198891205782minus

2

3

120578(

119889Θ119898

119889120578

minus 119873119903

119889Φ119898

119889120578

) (59)

ResΘ119898

=

1198892Θ119898

1198891205782+

1

3

119865119898

119889Θ119898

d120578+ 119873119887

119889Θ119898

119889120578

119889Φ119898

119889120578

+ 119873119905(

119889Θ119898

119889120578

)

2

+ 119876Θ119898

(60)

ResΦ119898

=

1198892Φ119898

1198891205782+

Le3

119865119898

119889Φ119898

119889120578

+

119873119905

119873119887

1198892Θ119898

1198891205782

minus 119870(

119889Φ119898

119889120578

)

119899

(61)

Figures 5 6 and 7 show the residual errors for 12th-orderdeformation solutions when 119873119887 = 01 119873119905 = 01 119873119903 = 01119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 For example ℏ =minus145 has the minimum range of residual curve in Figure 5and so on

Graphical representation of results is very useful todemonstrate the efficiency and accuracy of the HAM for theabove problem

6 Comparisons and Verification

It is worth citing that for isothermal plate (119887 = 0) and in theabsence of internal heat generationabsorption (119876 = 0) andchemical reaction (119870 = 0) our problem reduces to Gorla andChamkha [26] and Khan and Pop [27] To verify the accuracyof our results the present results are compared in Table 2with Gorla and Chamkha [26] and are found to be in goodagreement

7 Physical Quantities

Theparameters of physical interest of the present problem arethe local skin friction factor 119862119891119909 the local Nusselt numberNu119909 and the local Sherwood number Sh119909 respectivelyPhysically 119862119891119909 indicates wall shear stress Nu119909 indicates therate of wall heat transfer whilst Sh119909 indicates the rate ofwall nanoparticle volume fractionThe following relations areused to find these quantities

119862119891119909 =2120583

1205881198802119903

(

120597119906

120597119910

)

119910=0

Nu119909 =minus119909

119879119891 minus 119879infin

(

120597119879

120597119910

)

119910=0

Sh119909 =minus119909

119862119908 minus 119862infin

(

120597119862

120597119910

)

119910=0

(62)

Mathematical Problems in Engineering 11

Table 2 Comparison of present solution with Gorla and Chamkha[26] for different values of buoyancy and nanofluid parameters

Present results (HAM) Gorla and Chamkha [26]minus1205791015840(0) minus120601

1015840(0) minus120579

1015840(0) minus120601

1015840(0)

Nr 119873119887 = 03119873119905 = 01 Le = 10 119887 = 119870 = 119876 = 0

01 032578 148242 326119864 minus 01 148416402 032385 146704 325119864 minus 01 146816103 032188 145125 322119864 minus 01 145266404 031985 143503 321119864 minus 01 143639205 031777 141833 319119864 minus 01 1419499Nt 119873119887 = 03119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 031777 141833 319119864 minus 01 141949902 030486 141491 305119864 minus 01 141653603 02927 141561 293119864 minus 01 141686604 028125 141991 282119864 minus 01 142158205 027046 142737 271119864 minus 01 1429226Nb 119873119905 = 01119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 03672 132611 368119864 minus 01 132745402 034271 139216 343119864 minus 01 139361503 031777 141833 319119864 minus 01 141949904 029399 143428 294119864 minus 01 143546405 027161 144598 272119864 minus 01 144772

0 2 4 6 8 100

02

04

06

08

1

12

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

f998400 (120578

)

Figure 8 Comparison of dimensionless velocity profile 1198911015840(120578)

obtained by various orders of the HAM

By substituting from (14) and (31) into (37) it can beshown that physical quantities are putted in the followingdimensionless form

1

2

Ra119909Pr119862119891119909 = 11989110158401015840(0) Raminus13

119909Nu119909 = minus120579

1015840(0)

Raminus13119909

Sh119909 = minus1206011015840(0)

(63)

0 2 4 6 8 100

02

04

06

08

1

120578

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 9 Comparison of dimensionless temperature profile 120579(120578)obtained by various orders of the HAM

0 2 4 6 8 100

02

04

06

08

1

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

HAM order 4HAM order 8

HAM order 12Numerical

120578

120601(120578

)

Figure 10 Comparison of dimensionless concentration profile 120601(120578)obtained by various orders of the HAM

Here Ra119909 = 119892119870120573(1minus119862infin)Δ119879119909(120572119898]) is the local Rayleighnumber Pr = ]120572119898 is the Prandtl number and 119880119903 = (1 minus

119862infin)119892119870120573Δ119879120572119898 is the reference velocity

8 Results and Discussion

Graphical representation of results is very useful to discussthe physical features presented by the solutions This sectiondescribes the influence of some interesting parameters on

12 Mathematical Problems in Engineering

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

f998400 (120578)

120578

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 11 Effect of buoyancy ratio119873119903 on the dimensionless velocityprofile

0 2 4 6 8 10

02

04

06

08

1

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

120578

120579(120578

)

Figure 12 Effect of buoyancy ratio 119873119903 on the dimensionlesstemperature profile

the velocity and temperature fields Equations (33) to (35)with boundary conditions in (36) were solved analytically byHAM and numerically using Runge-Kutta-Fehlberg fourth-fifth order proposed by Aziz [54]

Figures 8 9 and 10 respectively for 1198911015840(120578) 120579(120578) and 120601(120578)show the comparisons between various order approximationof the optimal HAM and the numerical solutions for the case

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

120601(120578

)Figure 13 Effect of buoyancy ratio 119873119903 on the dimensionlessconcentration profile

0 2 4 6 8 10

02

04

06

08

1

12

NumericalNumerical

Numerical

f998400 (120578

)

120578

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 14 Effect of Brownian motion 119873119887 on the dimensionlessvelocity profile

119873119887 = 01 119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 For better presentation these results arepresented in Tables 3 4 and 5 Also Tables 6 7 and 8 presentthe comparisons between various order approximation of theoptimal HAM and the numerical solutions for the case119873119887 =03 119873119905 = 005 119873119903 = 03 119876 = 01 Le = 20 119870 = 05

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

10 Mathematical Problems in Engineering

minus00002

120578

= minus10

= minus111 (optimal value)= minus12

Nt = 01Nr = 01

Q = 01Le = 10K = 10n = 10b = 00

0006

0004

0002

0

0 2 4 6 8 10

Nb = 01

Res (120601

(120578))

Figure 7 The residual error of 120601(120578) for (35) using 12th order ofapproximations

of the solution series To choose optimal value of auxiliaryparameter the averaged residual errors (see [53] for moredetails) are defined as

119864119865119898 =1

119870

119870

sum

119894=0

[N119865(119898

sum

119894=0

119865119894 (119894Δ119909))]

2

119864Θ119898 =1

119870

119870

sum

119894=0

[NΘ(119898

sum

119894=0

Θ119894 (119894Δ119909))]

2

119864Φ119898 =1

119870

119870

sum

119894=0

[NΦ(119898

sum

119894=0

Φ119894 (119894Δ119909))]

2

(57)

where Δ119909 = 10119870 and 119870 = 20 For given order ofapproximation 119898 and the optimal values ℏ are given bythe minimum of 119864119898 corresponding to nonlinear algebraicequations

119889119864119865119898

119889ℏ

= 0

119889119864Θ119898

119889ℏ

= 0

119889119864Φ119898

119889ℏ

= 0 (58)

It is noted that the optimal value of ℏ is replaced intothe equations Table 1 shows optimal values obtained for theauxiliary parameter ℏ for various quantities of119873119905 119876 and 119899when119873119887 = 01119873119903 = 01 Le = 10 119870 = 10 119887 = 00 To see

the accuracy of the solutions the residual errors are definedfor the system as (for119898 order approximation)

Res119865119898

=

1198892119865119898

1198891205782minus

2

3

120578(

119889Θ119898

119889120578

minus 119873119903

119889Φ119898

119889120578

) (59)

ResΘ119898

=

1198892Θ119898

1198891205782+

1

3

119865119898

119889Θ119898

d120578+ 119873119887

119889Θ119898

119889120578

119889Φ119898

119889120578

+ 119873119905(

119889Θ119898

119889120578

)

2

+ 119876Θ119898

(60)

ResΦ119898

=

1198892Φ119898

1198891205782+

Le3

119865119898

119889Φ119898

119889120578

+

119873119905

119873119887

1198892Θ119898

1198891205782

minus 119870(

119889Φ119898

119889120578

)

119899

(61)

Figures 5 6 and 7 show the residual errors for 12th-orderdeformation solutions when 119873119887 = 01 119873119905 = 01 119873119903 = 01119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 For example ℏ =minus145 has the minimum range of residual curve in Figure 5and so on

Graphical representation of results is very useful todemonstrate the efficiency and accuracy of the HAM for theabove problem

6 Comparisons and Verification

It is worth citing that for isothermal plate (119887 = 0) and in theabsence of internal heat generationabsorption (119876 = 0) andchemical reaction (119870 = 0) our problem reduces to Gorla andChamkha [26] and Khan and Pop [27] To verify the accuracyof our results the present results are compared in Table 2with Gorla and Chamkha [26] and are found to be in goodagreement

7 Physical Quantities

Theparameters of physical interest of the present problem arethe local skin friction factor 119862119891119909 the local Nusselt numberNu119909 and the local Sherwood number Sh119909 respectivelyPhysically 119862119891119909 indicates wall shear stress Nu119909 indicates therate of wall heat transfer whilst Sh119909 indicates the rate ofwall nanoparticle volume fractionThe following relations areused to find these quantities

119862119891119909 =2120583

1205881198802119903

(

120597119906

120597119910

)

119910=0

Nu119909 =minus119909

119879119891 minus 119879infin

(

120597119879

120597119910

)

119910=0

Sh119909 =minus119909

119862119908 minus 119862infin

(

120597119862

120597119910

)

119910=0

(62)

Mathematical Problems in Engineering 11

Table 2 Comparison of present solution with Gorla and Chamkha[26] for different values of buoyancy and nanofluid parameters

Present results (HAM) Gorla and Chamkha [26]minus1205791015840(0) minus120601

1015840(0) minus120579

1015840(0) minus120601

1015840(0)

Nr 119873119887 = 03119873119905 = 01 Le = 10 119887 = 119870 = 119876 = 0

01 032578 148242 326119864 minus 01 148416402 032385 146704 325119864 minus 01 146816103 032188 145125 322119864 minus 01 145266404 031985 143503 321119864 minus 01 143639205 031777 141833 319119864 minus 01 1419499Nt 119873119887 = 03119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 031777 141833 319119864 minus 01 141949902 030486 141491 305119864 minus 01 141653603 02927 141561 293119864 minus 01 141686604 028125 141991 282119864 minus 01 142158205 027046 142737 271119864 minus 01 1429226Nb 119873119905 = 01119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 03672 132611 368119864 minus 01 132745402 034271 139216 343119864 minus 01 139361503 031777 141833 319119864 minus 01 141949904 029399 143428 294119864 minus 01 143546405 027161 144598 272119864 minus 01 144772

0 2 4 6 8 100

02

04

06

08

1

12

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

f998400 (120578

)

Figure 8 Comparison of dimensionless velocity profile 1198911015840(120578)

obtained by various orders of the HAM

By substituting from (14) and (31) into (37) it can beshown that physical quantities are putted in the followingdimensionless form

1

2

Ra119909Pr119862119891119909 = 11989110158401015840(0) Raminus13

119909Nu119909 = minus120579

1015840(0)

Raminus13119909

Sh119909 = minus1206011015840(0)

(63)

0 2 4 6 8 100

02

04

06

08

1

120578

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 9 Comparison of dimensionless temperature profile 120579(120578)obtained by various orders of the HAM

0 2 4 6 8 100

02

04

06

08

1

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

HAM order 4HAM order 8

HAM order 12Numerical

120578

120601(120578

)

Figure 10 Comparison of dimensionless concentration profile 120601(120578)obtained by various orders of the HAM

Here Ra119909 = 119892119870120573(1minus119862infin)Δ119879119909(120572119898]) is the local Rayleighnumber Pr = ]120572119898 is the Prandtl number and 119880119903 = (1 minus

119862infin)119892119870120573Δ119879120572119898 is the reference velocity

8 Results and Discussion

Graphical representation of results is very useful to discussthe physical features presented by the solutions This sectiondescribes the influence of some interesting parameters on

12 Mathematical Problems in Engineering

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

f998400 (120578)

120578

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 11 Effect of buoyancy ratio119873119903 on the dimensionless velocityprofile

0 2 4 6 8 10

02

04

06

08

1

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

120578

120579(120578

)

Figure 12 Effect of buoyancy ratio 119873119903 on the dimensionlesstemperature profile

the velocity and temperature fields Equations (33) to (35)with boundary conditions in (36) were solved analytically byHAM and numerically using Runge-Kutta-Fehlberg fourth-fifth order proposed by Aziz [54]

Figures 8 9 and 10 respectively for 1198911015840(120578) 120579(120578) and 120601(120578)show the comparisons between various order approximationof the optimal HAM and the numerical solutions for the case

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

120601(120578

)Figure 13 Effect of buoyancy ratio 119873119903 on the dimensionlessconcentration profile

0 2 4 6 8 10

02

04

06

08

1

12

NumericalNumerical

Numerical

f998400 (120578

)

120578

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 14 Effect of Brownian motion 119873119887 on the dimensionlessvelocity profile

119873119887 = 01 119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 For better presentation these results arepresented in Tables 3 4 and 5 Also Tables 6 7 and 8 presentthe comparisons between various order approximation of theoptimal HAM and the numerical solutions for the case119873119887 =03 119873119905 = 005 119873119903 = 03 119876 = 01 Le = 20 119870 = 05

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Mathematical Problems in Engineering 11

Table 2 Comparison of present solution with Gorla and Chamkha[26] for different values of buoyancy and nanofluid parameters

Present results (HAM) Gorla and Chamkha [26]minus1205791015840(0) minus120601

1015840(0) minus120579

1015840(0) minus120601

1015840(0)

Nr 119873119887 = 03119873119905 = 01 Le = 10 119887 = 119870 = 119876 = 0

01 032578 148242 326119864 minus 01 148416402 032385 146704 325119864 minus 01 146816103 032188 145125 322119864 minus 01 145266404 031985 143503 321119864 minus 01 143639205 031777 141833 319119864 minus 01 1419499Nt 119873119887 = 03119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 031777 141833 319119864 minus 01 141949902 030486 141491 305119864 minus 01 141653603 02927 141561 293119864 minus 01 141686604 028125 141991 282119864 minus 01 142158205 027046 142737 271119864 minus 01 1429226Nb 119873119905 = 01119873119903 = 05 Le = 10 119887 = 119870 = 119876 = 0

01 03672 132611 368119864 minus 01 132745402 034271 139216 343119864 minus 01 139361503 031777 141833 319119864 minus 01 141949904 029399 143428 294119864 minus 01 143546405 027161 144598 272119864 minus 01 144772

0 2 4 6 8 100

02

04

06

08

1

12

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

f998400 (120578

)

Figure 8 Comparison of dimensionless velocity profile 1198911015840(120578)

obtained by various orders of the HAM

By substituting from (14) and (31) into (37) it can beshown that physical quantities are putted in the followingdimensionless form

1

2

Ra119909Pr119862119891119909 = 11989110158401015840(0) Raminus13

119909Nu119909 = minus120579

1015840(0)

Raminus13119909

Sh119909 = minus1206011015840(0)

(63)

0 2 4 6 8 100

02

04

06

08

1

120578

HAM order 4HAM order 8

HAM order 12Numerical

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 9 Comparison of dimensionless temperature profile 120579(120578)obtained by various orders of the HAM

0 2 4 6 8 100

02

04

06

08

1

Nt = 01Nr = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

HAM order 4HAM order 8

HAM order 12Numerical

120578

120601(120578

)

Figure 10 Comparison of dimensionless concentration profile 120601(120578)obtained by various orders of the HAM

Here Ra119909 = 119892119870120573(1minus119862infin)Δ119879119909(120572119898]) is the local Rayleighnumber Pr = ]120572119898 is the Prandtl number and 119880119903 = (1 minus

119862infin)119892119870120573Δ119879120572119898 is the reference velocity

8 Results and Discussion

Graphical representation of results is very useful to discussthe physical features presented by the solutions This sectiondescribes the influence of some interesting parameters on

12 Mathematical Problems in Engineering

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

f998400 (120578)

120578

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 11 Effect of buoyancy ratio119873119903 on the dimensionless velocityprofile

0 2 4 6 8 10

02

04

06

08

1

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

120578

120579(120578

)

Figure 12 Effect of buoyancy ratio 119873119903 on the dimensionlesstemperature profile

the velocity and temperature fields Equations (33) to (35)with boundary conditions in (36) were solved analytically byHAM and numerically using Runge-Kutta-Fehlberg fourth-fifth order proposed by Aziz [54]

Figures 8 9 and 10 respectively for 1198911015840(120578) 120579(120578) and 120601(120578)show the comparisons between various order approximationof the optimal HAM and the numerical solutions for the case

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

120601(120578

)Figure 13 Effect of buoyancy ratio 119873119903 on the dimensionlessconcentration profile

0 2 4 6 8 10

02

04

06

08

1

12

NumericalNumerical

Numerical

f998400 (120578

)

120578

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 14 Effect of Brownian motion 119873119887 on the dimensionlessvelocity profile

119873119887 = 01 119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 For better presentation these results arepresented in Tables 3 4 and 5 Also Tables 6 7 and 8 presentthe comparisons between various order approximation of theoptimal HAM and the numerical solutions for the case119873119887 =03 119873119905 = 005 119873119903 = 03 119876 = 01 Le = 20 119870 = 05

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

12 Mathematical Problems in Engineering

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

f998400 (120578)

120578

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 11 Effect of buoyancy ratio119873119903 on the dimensionless velocityprofile

0 2 4 6 8 10

02

04

06

08

1

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

120578

120579(120578

)

Figure 12 Effect of buoyancy ratio 119873119903 on the dimensionlesstemperature profile

the velocity and temperature fields Equations (33) to (35)with boundary conditions in (36) were solved analytically byHAM and numerically using Runge-Kutta-Fehlberg fourth-fifth order proposed by Aziz [54]

Figures 8 9 and 10 respectively for 1198911015840(120578) 120579(120578) and 120601(120578)show the comparisons between various order approximationof the optimal HAM and the numerical solutions for the case

0 2 4 6 8 10

02

04

06

08

1

Nr = 01Numerical

Numerical

NumericalNr = 03Nr = 05

Nt = 01Nb = 01Q = 01Le = 10K = 10n = 10b = 00

120578

120601(120578

)Figure 13 Effect of buoyancy ratio 119873119903 on the dimensionlessconcentration profile

0 2 4 6 8 10

02

04

06

08

1

12

NumericalNumerical

Numerical

f998400 (120578

)

120578

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

Figure 14 Effect of Brownian motion 119873119887 on the dimensionlessvelocity profile

119873119887 = 01 119873119905 = 01 119873119903 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 For better presentation these results arepresented in Tables 3 4 and 5 Also Tables 6 7 and 8 presentthe comparisons between various order approximation of theoptimal HAM and the numerical solutions for the case119873119887 =03 119873119905 = 005 119873119903 = 03 119876 = 01 Le = 20 119870 = 05

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Mathematical Problems in Engineering 13

0 2 4 6 8 10

02

04

06

08

1

0

120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120579(120578

)

Figure 15 Effect of Brownian motion 119873119887 on the dimensionlesstemperature profile

02

04

06

08

1

00

2 4 6 8 10120578

NumericalNumerical

Numerical

Nb = 01

Nb = 03

Nb = 05

Nt = 01Nr = 01Q = 01Le = 10K = 10n = 10b = 00

120601(120578

)

Figure 16 Effect of Brownian motion 119873119887 on the dimensionlessconcentration profile

119899 = 20 119887 = 01 It is observed that the results of 12th-order approximation of the optimal HAM are very close tothe numerical solutions which confirm the validity of thesemethods

In the following figures effects of various physicalparameters on the dimensionless velocity temperature and

Table 3 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 01119873119905 =

01119873119903 = 01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 088267 100955 108826 10883110 075049 09014 099093 09910320 046074 059671 070078 07008730 023608 031739 039214 03923140 01104 015062 019027 01903650 004904 006729 008572 00857960 00211 002901 003707 003716

Table 4 Comparison of values of 120579(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 060691 06461 066369 06635720 027401 031754 035115 03512230 010855 013105 015384 01539140 004102 00503 006065 00607250 001524 001879 002289 00229760 000563 000695 00085 00089

Table 5 Comparison of values of 120601(120578) obtained by various orders ofthe HAM with numerical solution when119873119887 = 01119873119905 = 01119873119903 =01 119876 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 10 10 10 1010 041163 036407 03442 034382 018283 016764 015287 0152833 007338 007232 008158 0081544 002792 002848 004155 0041495 00104 001075 001918 0019126 000384 0004 000821 000816

temperature profiles will be investigated These results havebeen obtained by 12th order of the HAM and have beenvalidated by numerical results Figures 11ndash13 respectivelyrepresent that the comparison of solutions of 1198911015840(120578) 120579(120578)and 120601(120578) for fix values 119873119887 = 01 119873119905 = 01 119876 = 01Le = 10 119870 = 10 119899 = 10 119887 = 00 and different values ofbuoyancy ratio119873119903 In Figure 11 it is clear that velocity of thefluid tremendously decreases in the near of horizontal platewith an increase in the buoyancy ratio It is observed that thetemperature increases slightly but concentration of the fluiddoes not vary sensibly (Figures 12 and 13) The effects of theBrownian motion 119873119887 are depicted in Figures 14 15 and 16when119873119903 = 01119873119905 = 01119876 = 01 Le = 10119870 = 10 119899 = 10

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

14 Mathematical Problems in Engineering

Table 6 Comparison of values of 1198911015840(120578) obtained by various ordersof the HAM with numerical solution when 119873119887 = 03119873119905 =

005119873119903 = 03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

1205781198911015840(120578)

Order 4 Order 8 Order 12 Numerical00 093747 101946 103856 10383310 086389 091983 099064 09925220 067859 071873 075376 07598830 024894 040252 045987 04609940 0149487 019832 023701 02393350 004859 007928 011094 01129560 000845 001837 004967 004982

Table 7 Comparison of values of 120579(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120579(120578)

Order 4 Order 8 Order 12 Numerical00 089657 095221 097467 09763210 050975 066165 067598 06787520 029868 035284 037256 03741430 010858 015647 017187 01738240 004869 005079 007075 00728450 000958 001094 002486 00287060 000608 000490 000957 001074

Table 8 Comparison of values of 120601(120578) obtained by various orders ofthe HAMwith numerical solution when119873119887 = 03119873119905 = 005119873119903 =03 119876 = 01 Le = 20 119870 = 05 119899 = 20 119887 = 01

120578120601(120578)

Order 4 Order 8 Order 12 Numerical00 1 1 1 110 045775 034755 032674 0324402 021848 018589 008345 0081173 013859 010958 002375 0021364 001985 001847 000746 0007165 000974 000857 000489 0002746 000285 000486 000289 000106

119887 = 00 If 119873119887 increases 1198911015840(120578) and 120579(120578) increase lightly and120601(120578) decreases The dimensionless velocity dimensionlesstemperature and dimensionless concentration profiles fordifferent values of thermophoresis 119873119905 with constant values119873119903 = 01 119873119887 = 01 119876 = 01 Le = 10 119870 = 10119899 = 10 119887 = 00 are presented in Figures 17 18 and19 It is observed that the velocity and temperature of thefluid are not impressible from119873119905 but concentration increasesslightly In Figures 20 21 and 22 respectively comparison ofsolutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 01 119873119887 = 01119873119905 = 01 Le = 10 119870 = 10 119899 = 10 119887 = 00 anddifferent values of heat generationabsorption parameter 119876are shown It is observed that in presence of heat source1198911015840(120578) 120579(120578) both increase while heat sink causes that 1198911015840(120578)

120579(120578) both decrease extremely These effects are more visible

Table 9 Values of reduced Nusselt number and Sherwood numberobtained by HAM for different values of the parameters Le 119870 119899 119887and 119876 when119873119887 = 119873119903 = 119873119905 = 01

Le 119899 119870 119887 119876 Nur Shr1 1 01 01 01 0274760 04561325 1 01 01 01 0279814 107270210 1 01 01 01 0279925 15394315 2 01 01 01 0279805 10542035 3 01 01 01 0279804 10467085 1 02 01 01 0279818 11188385 1 03 01 01 0279822 11633335 1 01 02 01 0268552 10663935 1 01 03 01 0258247 10604055 1 01 01 011 0270438 10827995 1 01 01 015 0233428 1129999

0 2 4 6 8

1

f998400 (120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 17 Effect of thermophoresis 119873119905 on the dimensionlessvelocity profile

for temperature distribution For 120601(120578) the effect of changing119876 is seen to be almost insignificant This is in agreementwith the physical factThe dimensionless profiles for differentvalues of Lewis number Le with constant parameters 119873119903 =01 119873119887 = 01 119873119905 = 01 119876 = 01 119870 = 10 119899 = 10119887 = 00 are shown in Figures 23 24 and 25 It is clear that forthese constant parameters variation of Lewis number has anyconsiderable effect on the velocity and temperature profilesbut concentration profile decreases with the increase of Lewisnumber What is similar to these results can be detected inFigures 26 27 and 28 for chemical reaction parameter 119870Figures 29 30 and 31 respectively present the comparisonof solutions of 1198911015840(120578) 120579(120578) and 120601(120578) for 119873119903 = 05 119873119887 = 05119873119905 = 01 119876 = 001 Le = 10 119870 = 10 119887 = 00 and differentvalues of order of chemical reaction 119899 It is observed that

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Mathematical Problems in Engineering 15

0 2 4 6 80

1

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01

120579(120578

)

Nr = 01

Figure 18 Effect of thermophoresis 119873119905 on the dimensionlesstemperature profile

0 2 4 6 80

1

120601(120578

)

120578

Nt = 00

Nt = 005

Nt = 10NumericalNumerical

Numerical

08

06

04

02

10

Q = 01Le = 10K = 10n = 10b = 00

Nb = 01Nr = 01

Figure 19 Effect of thermophoresis 119873119905 on the dimensionlessconcentration profile

for higher order of chemical reaction velocity decreases andtemperature and concentration profiles increase extremelyUltimately Figures 32 33 and 34 depict the effect of thermalslip parameter 119887 on velocity temperature and concentrationfunctions when 119873119903 = 01 119873119887 = 01 119873119905 = 01 119876 = 01Le = 20 119870 = 15 119899 = 10 It is seen that the velocityand temperature of the fluid decrease with the increase of the

0 2 4 6 80

1

12

10

02

04

06

08

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numericalf998400 (120578

)

120578

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 20 Effect of generationabsorption heat parameter119876 on thedimensionless velocity profile

0 2 4 6 8 100

02

04

06

08

1

120579(120578

)

120578

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 21 Effect of generationabsorption heat parameter 119876 on thedimensionless temperature profile

thermal slip parameter in the near of horizontal plate whilethe concentration of the fluid does not vary patently

Also for investigation of the parameters of physicalinterest Table 9 is presented In this table numerical valuesof reduced Nusselt number and Sherwood number obtainedby HAM for different values of the parameters 119890 119870 119899 119887 and119876 can be compared when119873119887 = 119873119903 = 119873119905 = 01

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

16 Mathematical Problems in Engineering

10

02

04

06

08

0 2 4 6 80

1

120578

120601(120578

)

Q = minus01

Q = 00

Q = 01NumericalNumerical

Numerical

Nt = 01Nr = 01Nb = 01Le = 10K = 10n = 10b = 00

Figure 22 Effect of generationabsorption heat parameter119876 on thedimensionless concentration profile

0 2 4 6 80

1

12

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 23 Effect of Lewis number Le on the dimensionless velocityprofile

9 Conclusions

In this paper we studied the steady laminar incompressiblefree convective flow of a nanofluid past a chemically reactingupward facing horizontal plate in porous medium takinginto account heat generation and the thermal slip boundarycondition

0 2 4 6 80

1

120579(120578

)

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 24 Effect of Lewis number Le on the dimensionlesstemperature profile

0 2 4 6 80

1

Le = 10

Le = 20Le = 50NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01K = 10n = 10b = 00

Figure 25 Effect of Lewis number Le on the dimensionlessconcentration profile

The governing partial differential equations have beentransformed by similarity transformations into a system ofordinary differential equations which are solved by OHAMand numerical method (fourth-order Runge-Kutta schemewith the shooting method) Dimensionless velocity temper-ature and concentration functions are presented for various

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Mathematical Problems in Engineering 17

0 2 4 6 80

1

12

K = 00

K = 05

K = 10NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 26 Effect of chemical reaction parameter 119870 on the dimen-sionless velocity profile

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 27 Effect of chemical reaction parameter 119870 on the dimen-sionless temperature profile

values of parameters for the problem for example buoy-ancy ratio 119873119903 Brownian motion 119873119887 thermophoresis 119873119905heat generationabsorption parameter 119876 Lewis number Lechemical reaction parameter119870 order of chemical reaction 119899and thermal slip parameter 119887 From the present investigationthe following may be concluded

(i) The velocity 1198911015840(120578) increases with increasing 119873119887 anddecreases with increasing119873119903 119899 and 119887

0 2 4 6 80

1

K = 00

K = 05

K = 10NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 01Nb = 01Q = 01Le = 10n = 10b = 00

Figure 28 Effect of chemical reaction parameter 119870 on the dimen-sionless concentration profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 29 Effect of order of chemical reaction 119899 on the dimension-less velocity profile

(ii) The temperature 120579(120578) increases with 119873119903 119873119887 119899 anddecreases with 119887

(iii) Parameters of119873119905 Le and119870 have no effect on velocityand temperature profiles

(iv) The concentration distribution 120601(120578) increases withincreasing N119905 119899 and decreases with 119873119887 Le and 119870but119873119903 119876 and 119887 are not affected by it

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

18 Mathematical Problems in Engineering

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 30 Effect of order of chemical reaction 119899 on the dimension-less temperature profile

0 2 4 6 80

1

n = 10

n = 20

n = 30

Numerical

NumericalNumerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01Nr = 05Nb = 05Q = 01Le = 10K = 10b = 00

Figure 31 Effect of order of chemical reaction 119899 on the dimension-less concentration profile

(v) In presence of heat source (119876 gt 0) 1198911015840(120578) 120579(120578) bothincrease while heat sink (119876 lt 0) causes that 1198911015840(120578)120579(120578) both decrease extremely These effects are morevisible for temperature distribution

In addition numerical results for the reducedNusselt andSherwood numbers are tabulated It is concluded that thereduced Nusselt number increases with the Lewis numberand reaction parameter whist it decreases with the order of

0 2 4 6 8

1

12

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

f998400 (120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 32 Effect of order of thermal slip parameter 119887 on thedimensionless velocity profile

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120579(120578

)

120578

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 33 Effect of order of thermal slip parameter 119887 on thedimensionless temperature profile

chemical reaction thermal slip and generation parametersIt is further concluded that the reduced Sherwood numberenhances with the Lewis number generation and reactionparameters whist it suppresses with thermal slip and orderof chemical reaction

The convergence of the solution series and the power ofHAM in controlling and adjusting the convergence regionand rate of solution series were discussed The proper range

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Mathematical Problems in Engineering 19

0 2 4 6 80

1

b = 10

b = 20

b = 00

NumericalNumerical

Numerical

120578

120601(120578

)

08

06

04

02

10

Nt = 01

Nr = 01Nb = 01

Q = 01Le = 10K = 10n = 10

Figure 34 Effect of order of thermal slip parameter 119887 on thedimensionless concentration profile

of auxiliary parameter ℏ to ensure the convergence of thesolution series was obtained through the so called ℏ-curveThe HAM provides us with a convenient way to control theconvergence of approximation series which is a fundamentalqualitative difference in analysis between the HAM andother methods The numerical results of the above problemsdisplay a fast convergence with minimal calculations Thisshows that the HAM is a very efficient method Finally theagreement between analytical and numerical results of thepresent study with previous published results is excellent

Nomenclature

119887 Thermal slip parameter119862 Dimensional concentration119862119891 Skin friction factor1198631 Thermal slip factor119863119861 Brownian diffusion coefficient119863119879 Thermophoretic diffusion coefficient119891 Dimensionless velocity functions119892 Gravitation acceleration119870 Chemical reaction parameter119896 Permeability of the porous media1198960 The constant reaction rate119896119898 Effective thermal conductivity of the porous

medium119896(119909) Variable reaction rateL Linear operator of the HAM119871 Length of horizontal plateLe Lewis numberN Nonlinear operator of the HAM

119899 Order of chemical reaction119873119887 Brownian motion119873119903 Buoyancy ratio119873119905 ThermophoresisNu Nusselt number119875 PressurePr Prandtl number119876 Heat generationabsorption parameter1198760 Heat generationabsorption constant119902 Internal heat generation rate

Ra Rayleigh numberSh Sherwood number119879 Temperature119905 Time119906 Velocity in 119909-direction119880119903 Reference velocity Velocity vectorV Velocity in 119910-direction119909 Distance along the surface119910 Distance normal to the surface

Greek Letters

120572119898 Thermal diffusivity120573 Volumetric expansion coefficient of nanofluid120576 Porosity of the porous media120601 Dimensionless concentration120578 Similarity variable120583 Dynamic viscosity120579 Dimensionless temperature120588119891 Density of the base fluid120588119901 Density of the nanoparticles(120588119862)119891 Effective heat capacity of the fluid(120588119862)119875 Effective heat capacity of the nanoparticle material120595 Stream function

Subscript Superscript

infin Conditions far away from the surface1015840 Differentiation with respect to 120578

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

M M Rashidi wishes to thank the Centre for DifferentialEquations Continuum Mechanics and Applications Schoolof Computational and Applied Mathematics University ofthe Witwatersrand for the hospitality during his visit EMomoniat thanks theNational Research Foundation of SouthAfrica for their support

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

20 Mathematical Problems in Engineering

References

[1] E Abu-Nada F O Hakan and I Pop ldquoBuoyancy inducedflow in a nanofluid filled enclosure partially exposed to forcedconvectionrdquo Superlattices and Microstructures vol 51 no 3 pp381ndash395 2012

[2] S Kakac and A Pramuanjaroenkij ldquoReview of convective heattransfer enhancement with nanofluidsrdquo International Journal ofHeat and Mass Transfer vol 52 no 13-14 pp 3187ndash3196 2009

[3] J A Eastman S U S Choi S Li W Yu and L J ThompsonldquoAnomalously increased effective thermal conductivities ofethylene glycol-based nanofluids containing copper nanoparti-clesrdquo Applied Physics Letters vol 78 no 6 pp 718ndash720 2001

[4] Y Xuan and Q Li ldquoHeat transfer enhancement of nanofluidsrdquoInternational Journal of Heat and Fluid Flow vol 21 no 1 pp58ndash64 2000

[5] S K Das N Putra P Thiesen and W Roetzel ldquoTemperaturedependence of thermal conductivity enhancement for nanoflu-idsrdquo Journal of Heat Transfer vol 125 no 4 pp 567ndash574 2003

[6] D H Kumar H E Patel V R R Kumar T SundararajanT Pradeep and S K Das ldquoModel for heat conduction innanofluidsrdquo Physical Review Letters vol 93 no 14 Article ID144301 2004

[7] H E Patel T Sundararajan T Pradeep A Dasgupta NDasgupta and S K Das ldquoA micro-convection model forthermal conductivity of nanofluidsrdquo Pramana vol 65 no 5 pp863ndash869 2005

[8] A V Kuznetsov ldquoNon-oscillatory and oscillatory nanofluidbio-thermal convection in a horizontal layer of finite depthrdquoEuropean Journal of Mechanics vol 30 no 2 pp 156ndash165 2011

[9] M Napoli J C T Eijkel and S Pennathur ldquoNanofluidictechnology for biomolecule applications a critical reviewrdquo Labon a Chip vol 10 no 8 pp 957ndash985 2010

[10] J C Crepeau and R Clarksean ldquoSimilarity solutions of naturalconvection with internal heat generationrdquo Journal of HeatTransfer vol 119 no 1 pp 183ndash185 1997

[11] A Z Sahin ldquoTransient heat conduction in semi-infinite solidwith spatially decaying exponential heat generationrdquo Interna-tional Communications in Heat andMass Transfer vol 19 no 3pp 349ndash358 1992

[12] O D Makind and A Aziz ldquoMixed convection from a con-vectively heated vertical plate to a fluid with internal heatgenerationrdquo Journal of Heat Transfer vol 133 Article ID 1225016 pages 2011

[13] J Buongiorno ldquoConvective transport in nanofluidsrdquo Journal ofHeat Transfer vol 128 no 3 pp 240ndash250 2006

[14] AV Kuznetsov andDANield ldquoNatural convective boundary-layer flow of a nanofluid past a vertical platerdquo InternationalJournal of Thermal Sciences vol 49 no 2 pp 243ndash247 2010

[15] L B Godson D Raja L D Mohan and S WongwisescldquoEnhancement of heat transfer using nanofluids-an overviewrdquoRenewable and Sustainable Energy Reviews vol 14 no 2 pp629ndash641 2010

[16] D A Nield and A BejanConvection in PorousMedia SpringerNew York NY USA 3rd edition 2006

[17] P Vadasz Emerging Topics in Heat and Mass Transfer in PorousMedia Springer New York NY USA 2008

[18] K Vafai Porous Media Applications in Biological Systems andBiotechnology CRC Press New York NY USA 2010

[19] P Cheng andW JMinkowycz ldquoFree convection about a verticalflat plate embedded in a porous medium with application to

heat transfer from a dikerdquo Journal of Geophysical Research vol82 no 14 pp 2040ndash2044 1977

[20] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for natural convective boundary-layer flow in a porousmedium saturated by a nanofluidrdquo International Journal of Heatand Mass Transfer vol 52 no 25-26 pp 5792ndash5795 2009

[21] P Cheng and I D Chang ldquoBuoyancy induced flows in asaturated porous medium adjacent to impermeable horizontalsurfacesrdquo International Journal of Heat and Mass Transfer vol19 no 11 pp 1267ndash1272 1976

[22] I D Chang and P Cheng ldquoMatched asymptotic expansionsfor free convection about an impermeable horizontal surfacein a porous mediumrdquo International Journal of Heat and MassTransfer vol 26 no 2 pp 163ndash174 1983

[23] D S Shiunlin and B Gebhart ldquoBuoyancy-induced flow adja-cent to a horizontal surface submerged in porous mediumsaturated with cold waterrdquo International Journal of Heat andMass Transfer vol 29 no 4 pp 611ndash623 1986

[24] J H Merkin and G Zhang ldquoOn the similarity solutions for freeconvection in a saturated porousmedium adjacent to imperme-able horizontal surfacesrdquoWarme- und Stoffubertragung vol 25no 3 pp 179ndash184 1990

[25] M A Chaudhary J H Merkin and I Pop ldquoNatural convectionfrom a horizontal permeable surface in a porous mediummdashnumerical and asymptotic solutionsrdquo Transport in PorousMedia vol 22 no 3 pp 327ndash344 1996

[26] R S R Gorla and A Chamkha ldquoNatural convective boundarylayer flow over a nonisothermal vertical plate embedded ina porous medium saturated with a nanofluidrdquo Nanoscale andMicroscale Thermophysical Engineering vol 15 no 2 pp 81ndash942011

[27] W A Khan and I Pop ldquoFree convection boundary layer flowpast a horizontal flat plate embedded in a porous medium filledwith a nanofluidrdquo Journal of Heat Transfer vol 133 no 9 ArticleID 094501 2011

[28] A Aziz W A Khan and I Pop ldquoFree convection boundarylayer flow past a horizontal flat plate embedded in porousmedium filled by nanofluid containing gyrotactic microorgan-ismsrdquo International Journal of Thermal Sciences vol 56 pp 48ndash57 2012

[29] G W Bluman and S C Anco Symmetry and IntegrationMethods for Differential Equations Springer New York NYUSA 2009

[30] A A Avramenko S G Kobzar I V Shevchuk A V Kuznetsovand L T Iwanisov ldquoSymmetry of turbulent boundary-layerflows investigation of different eddy viscosity modelsrdquo ActaMechanica vol 151 no 1-2 pp 1ndash14 2001

[31] A V Kuznetsov A A Avramenko and P Geng ldquoAnalyticalinvestigation of a falling plume caused by bioconvection ofoxytactic bacteria in a fluid saturated porous mediumrdquo Inter-national Journal of Engineering Science vol 42 no 5-6 pp 557ndash569 2004

[32] M Jalil S Asghar and M Mushtaq ldquoLie group analysis ofmixed convection flow with mass transfer over a stretchingsurface with suction or injectionrdquo Mathematical Problems inEngineering vol 2010 Article ID 264901 14 pages 2010

[33] M A A Hamad M J Uddin and A I M Ismail ldquoRadiationeffects on heat and mass transfer in MHD stagnation-pointflow over a permeable flat plate with thermal convectivesurface boundary condition temperature dependent viscosityand thermal conductivityrdquoNuclear Engineering and Design vol242 pp 194ndash200 2012

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Mathematical Problems in Engineering 21

[34] A Aziz M J Uddin M A A Hamad and A I MdIsmail ldquoMHD flow over an inclined radiating plate with thetemperature-dependent thermal conductivity variable reactiveindex and heat generationrdquoHeat Transfer vol 41 no 3 pp 241ndash259 2012

[35] A G Hansen Similarity Analysis of Boundary Layer Problemsin Engineering Prentice Hall Englewood Cliffs NJ USA 1964

[36] W FAmesNonlinear Partial Differential Equations in Engineer-ing Academic Press New York NY USA 1972

[37] R Seshadri and T Y Na Group Invariance in EngineeringBoundary Value Problems Springer New York NY USA 1985

[38] D Shang Theory of Heat Transfer with Forced Convection FilmFlows vol 3 of Heat and Mass Transfer 2010

[39] AHNayfehPerturbationMethodsWileyNewYorkNYUSA2000

[40] E Erfani M M Rashidi and A B Parsa ldquoThe modifieddifferential transform method for solving off-centered stag-nation flow toward a rotating discrdquo International Journal ofComputational Methods vol 7 no 4 pp 655ndash670 2010

[41] M M Rashidi N Laraqi and A Basiri Parsa ldquoAnalyticalmodeling of heat convection in magnetized micropolar fluid byusing modified differential transform methodrdquo Heat Transfervol 40 no 3 pp 187ndash204 2011

[42] M M Rashidi and M Keimanesh ldquoUsing differential trans-form method and pade approximant for solving mhd flow ina laminar liquid film from a horizontal stretching surfacerdquoMathematical Problems in Engineering vol 2010 Article ID491319 14 pages 2010

[43] M M Rashidi and G Domairry ldquoNew analytical solution ofthe three-dimensional NavierStokes equationsrdquoModern PhysicsLetters B vol 23 no 26 pp 3147ndash3155 2009

[44] M M Rashidi M Keimanesh O A Beg and T K HungldquoMagnetohydrodynamic biorheological transport phenomenain a porous medium a simulation of magnetic blood flowcontrol and filtrationrdquo International Journal for NumericalMethods in Biomedical Engineering vol 27 no 6 pp 805ndash8212011

[45] S J Liao The proposed homotopy analysis technique for thesolution of nonlinear problems [PhD thesis] Shanghai Jiao TongUniversity 1992

[46] M M Rashidi G Domairry and S Dinarvand ldquoApproximatesolutions for the Burger and regularized long wave equationsby means of the homotopy analysis methodrdquo CommunicationsinNonlinear Science andNumerical Simulation vol 14 no 3 pp708ndash717 2009

[47] Z Ziabakhsh and G Domairry ldquoAnalytic solution of naturalconvection flow of a non-Newtonian fluid between two verticalflat plates using homotopy analysis methodrdquo Communicationsin Nonlinear Science and Numerical Simulation vol 14 no 5pp 1868ndash1880 2009

[48] M M Rashidi S A Mohimanian Pour T Hayat and SObaidat ldquoAnalytic approximate solutions for steady flow over arotating disk in porousmediumwith heat transfer by homotopyanalysis methodrdquo Computers and Fluids vol 54 no 1 pp 1ndash92012

[49] M Sajid T Hayat and S Asghar ldquoComparison between theHAM and HPM solutions of thin film flows of non-Newtonianfluids on a moving beltrdquo Nonlinear Dynamics vol 50 no 1-2pp 27ndash35 2007

[50] D A Nield and A V Kuznetsov ldquoThe Cheng-Minkowyczproblem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluidrdquoInternational Journal of Heat and Mass Transfer vol 54 no 1-3pp 374ndash378 2011

[51] K Vajravelu and A Hadjinicolaou ldquoConvective heat transferin an electrically conducting fluid at a stretching surfacewith uniform free streamrdquo International Journal of EngineeringScience vol 35 pp 1237ndash1244 1997

[52] S Mukhopadhyay and G C Layek ldquoEffects of variable fluidviscosity on flow past a heated stretching sheet embedded ina porous medium in presence of heat sourcesinkrdquo Meccanicavol 47 no 4 pp 863ndash876 2012

[53] S J Liao ldquoAn optimal homotopy-analysis approach for stronglynonlinear differential equationsrdquo Communications in NonlinearScience and Numerical Simulation vol 15 no 8 pp 2003ndash20162010

[54] A Aziz ldquoA similarity solution for laminar thermal boundarylayer over a flat plate with a convective surface boundary con-ditionrdquo Communications in Nonlinear Science and NumericalSimulation vol 14 no 4 pp 1064ndash1068 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended