+ All Categories
Home > Documents > Research Article Mineralogy, Geochemistry, and Origin of...

Research Article Mineralogy, Geochemistry, and Origin of...

Date post: 28-Jul-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
12
Research Article Mineralogy, Geochemistry, and Origin of Buyukmahal Manganese Mineralization in the Artova Ophiolitic Complex, Yozgat, Turkey Nursel Öksüz and Neslihan Okuyucu Department of Geological Engineering, Faculty of Engineering & Architecture, Bozok University, 66100 Yozgat, Turkey Correspondence should be addressed to Nursel ¨ Oks¨ uz; [email protected] Received 13 May 2013; Revised 8 December 2013; Accepted 17 December 2013; Published 6 February 2014 Academic Editor: Chengshuai Liu Copyright © 2014 N. ¨ Oks¨ uz and N. Okuyucu. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e Artova ophiolite complex (AOC) is exposed along the northwestern and eastern margins of Yozgat area in Turkey. e Mn- deposit in the Buyukmahal area is part of this ophiolite complex. e deposit is in banded and lenticular forms and hosted by a radiolarite unit overlying the volcanics. Pyrolusite and magnetite are the main minerals of the manganese ore in the Buyukmahal (Yozgat) area. e gang minerals in the deposit are composed only of quartz and calcite. In this study, mineralogy, major oxide, trace element and REE contents of Buyukmahal manganese mineralization are evaluated. e geochemical data indicate that Buyukmahal mineralization does not originate from a pure hydrothermal or pure hydrogenous source but from a system consisting of both sources. It is also asserted that the mineralization was first developed on a sea floor spreading center within the Alpine Ophiolite System and then obducted as part of the AOC. 1. Introduction e Alpine Ophiolite System (AOC) is exposed along the northwestern and eastern margins of the Yozgat region in Turkey. e Mn mineralization in the Buyukmahal is a part of this ophiolite complex. e mineralization in this area is highly firm and generally fractured and folded, developed in banded and lenticular shape, and syngenetic with radiolarite cherts. Mineralizations are chiefly NW-SW trending and small anticline structures are observed in some parts. Although mineralization in the Buyukmahal area has not been studied, Derbent and Eymir manganese deposits within the AOC were investigated recently by ¨ Oks¨ uz [1, 2]. ese deposits were operated from time to time by local miners, but lately none of the deposits is mined out due to low reserve potential. e Eymir manganese deposit which is genetically linked to Buyukmahal mineralization occurs within radiolarite cherts of the lower Cretaceous ophiolite complex [1]. Major and trace element contents of the Eymir ore indicate that the deposit is of a hydrothermal- hydrogenous type volcano sedimentary mineralization and both oxic and anoxic sedimentation conditions prevailed. e Derbent manganese mineralization, another manganese deposit in the Yozgat region, occurs as two separate ore bodies [2]. Chemical data yield that hydrothermal and hydrogenous- diagenetic processes played important role in formation of Derbent mineralization. e geochemical characteristics of these deposits are consistent with those of several other manganese mineralizations such as Waziristan, Hazara [3], Baby Bare [4], Baſt Ophiolitic melange Kerman (Iran) [5], Wakasa [6], C ¸ ayırlı [7], and Kasıma˘ ga [8] deposits. Partic- ularly Waziristan (Pakistan) and C ¸ayırlı (Turkey) deposits are regarded as hydrothermal exhalative manganese deposits occurring on seafloor spreading centers associated with ophiolite units [9, 10]. e Buyukmahal deposit under inves- tigation is also thought to be a hydrothermal exhalative manganese mineralization. e aim of this study is to discuss the mineralogical and geochemical mechanisms responsible for development of manganese ore in the Buyukmahal area. 2. Geological Setting Turkey comprising the border between Eurasia at the north and Gondwana at the south is an E-W elongating component Hindawi Publishing Corporation Journal of Chemistry Volume 2014, Article ID 837972, 11 pages http://dx.doi.org/10.1155/2014/837972
Transcript
Page 1: Research Article Mineralogy, Geochemistry, and Origin of ...downloads.hindawi.com/journals/jchem/2014/837972.pdf · of hydrothermal exhalative manganese deposits in ophiolitic regions

Research ArticleMineralogy Geochemistry and Origin of BuyukmahalManganese Mineralization in the Artova Ophiolitic ComplexYozgat Turkey

Nursel Oumlksuumlz and Neslihan Okuyucu

Department of Geological Engineering Faculty of Engineering amp Architecture Bozok University 66100 Yozgat Turkey

Correspondence should be addressed to Nursel Oksuz nurseloksuzgmailcom

Received 13 May 2013 Revised 8 December 2013 Accepted 17 December 2013 Published 6 February 2014

Academic Editor Chengshuai Liu

Copyright copy 2014 N Oksuz and N Okuyucu This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

The Artova ophiolite complex (AOC) is exposed along the northwestern and eastern margins of Yozgat area in Turkey The Mn-deposit in the Buyukmahal area is part of this ophiolite complex The deposit is in banded and lenticular forms and hosted by aradiolarite unit overlying the volcanics Pyrolusite and magnetite are the main minerals of the manganese ore in the Buyukmahal(Yozgat) areaThe gangminerals in the deposit are composed only of quartz and calcite In this studymineralogy major oxide traceelement andREE contents of Buyukmahalmanganesemineralization are evaluatedThegeochemical data indicate that Buyukmahalmineralization does not originate from a pure hydrothermal or pure hydrogenous source but from a system consisting of bothsources It is also asserted that the mineralization was first developed on a sea floor spreading center within the Alpine OphioliteSystem and then obducted as part of the AOC

1 Introduction

The Alpine Ophiolite System (AOC) is exposed along thenorthwestern and eastern margins of the Yozgat region inTurkey The Mn mineralization in the Buyukmahal is apart of this ophiolite complex The mineralization in thisarea is highly firm and generally fractured and foldeddeveloped in banded and lenticular shape and syngeneticwith radiolarite cherts Mineralizations are chiefly NW-SWtrending and small anticline structures are observed in someparts Although mineralization in the Buyukmahal area hasnot been studied Derbent and Eymir manganese depositswithin the AOC were investigated recently by Oksuz [12] These deposits were operated from time to time bylocal miners but lately none of the deposits is mined outdue to low reserve potential The Eymir manganese depositwhich is genetically linked to Buyukmahal mineralizationoccurs within radiolarite cherts of the lower Cretaceousophiolite complex [1] Major and trace element contents ofthe Eymir ore indicate that the deposit is of a hydrothermal-hydrogenous type volcano sedimentary mineralization andboth oxic and anoxic sedimentation conditions prevailed

The Derbent manganese mineralization another manganesedeposit in theYozgat region occurs as two separate ore bodies[2] Chemical data yield that hydrothermal and hydrogenous-diagenetic processes played important role in formation ofDerbent mineralization The geochemical characteristics ofthese deposits are consistent with those of several othermanganese mineralizations such as Waziristan Hazara [3]Baby Bare [4] Baft Ophiolitic melange Kerman (Iran) [5]Wakasa [6] Cayırlı [7] and Kasımaga [8] deposits Partic-ularly Waziristan (Pakistan) and Cayırlı (Turkey) depositsare regarded as hydrothermal exhalative manganese depositsoccurring on seafloor spreading centers associated withophiolite units [9 10] The Buyukmahal deposit under inves-tigation is also thought to be a hydrothermal exhalativemanganese mineralizationThe aim of this study is to discussthe mineralogical and geochemical mechanisms responsiblefor development of manganese ore in the Buyukmahal area

2 Geological Setting

Turkey comprising the border between Eurasia at the northand Gondwana at the south is an E-W elongating component

Hindawi Publishing CorporationJournal of ChemistryVolume 2014 Article ID 837972 11 pageshttpdxdoiorg1011552014837972

2 Journal of Chemistry

of the Alpine-Himalayan Orogenic zone The Alpine Oro-genic system is formed by the closure of a different branchof the Tethys Ocean During the closure of Tethys Oceancontinental parts of the Gondwana and Laurasia continentscollided Turkey as an orogenic mosaic (orogenic collage) isa part of these continental parts including remnant materialsbetween these continentals [11] The AOC is included to theAlpine Orogenic system The AOC of Upper Cretaceous ageshows a wide distribution and hosts several ore mineraliza-tions

Darmik formation of Upper Cretaceous age consistsof Boyalik limestone Akcadag sandstone and a radi-olarite member Sarimbey volcanic assemblage (spiliticbasalt andesite unit) Artova ophiolite complex (serpentineharzburgite dunite gabbro diabase chert) and Cretaceouslimestone blocks are also observed in the area Artovaophiolite complex is unconformably overlain by conglom-erate sandstone mudstone and gypsum levels of the Incikformation of terrestrial character [12] (Figure 1)

Ore bodies in the study area occur as laminated bandedand lenticular forms (Figures 2(a) 2(b) 2(c) and 2(d)) Themineralization is entirely associated with radiolarite chertsand thickness of lamina and bands is in the range of 1 to90 cm Manganese ores are quite fractured and fissured andshow an irregular structure (Figure 2(a)) Polished sectiondeterminations indicate that ore assemblage is composed ofhematite and pyrolusite whilst quartz and calcite are thegangue minerals Pyrolusite and magnetite are the mainminerals in the Buyukmahal deposit Hematite peaks wererecorded in XRD analysis but it could not be observed in oremicroscopy and Raman spectroscopy determinations

3 Material and Methods

Twenty ore samples (500 g each) were collected from theBuyukmahalmanganese depositThewhole section of the orefrom top to bottomwas sampled systematically Samples weretaken at 30 cm intervals

Powders of 12 samples under 200 mesh were analyzed atACME Laboratories Major oxide and trace element contentswere determined with ICP-ES and REEs were analyzed withthe ICP-MS method 30 g sample was powdered into 100 120583mfor geochemical analysis 05 g sample was processed in HCl-HNO

3-H2Osolution atsim95∘C for 1 hour and then the amount

of sample was increased 10mL for the final filtering Resultsof analysis are given in Tables 1 2 and 3 In addition inorder to determine paragenesis and textural characteristicsof mineralization 10 polished sections were studied withore microscopy XRD analysis for six samples was doneat TPAO (Turkish Petroleum Corporation) laboratories ARigaku DMAX IIIC model X-Ray diffractometer with a Cutarget (2ndash70∘ 2120579) was used in the analyses Ore minerals werealso studied withThermo Scientific DXR RamanMicroscopeat the Geological Department of the Ankara UniversityThe Raman spectrums obtained were evaluated with Crys-tal Sleuth program to determine the mineral paragenesisChemical composition of pyrolusite was determined withmicroprobe analysis conducted at Montan Universitat inLeoben (Austria) The results are shown in Table 4

4 Mineralogy

Mineral paragenesis in the study area was investigated withore microscopy studies as well as XRD Raman spectroscopyand microprobe analysis for pyrolusite Results show thatpyrolusite and magnetite are the main ore minerals in theBuyukmahal area accompanied by little amount of hematiteGangue minerals are quartz and calcite Results of micro-probe analysis performed on four points in a pyrolusitecrystal are shown in Table 4

41 Pyrolusite (MnO2) It is mostly precipitated from low-

temperature hydrothermal fluids Pyrolusite is a commonalternation mineral in oxidized marine environments Pyro-lusite and magnetite forming the main components of theBuyukmahal area with a whitish yellow color are distinctwith their strong anisotropic character Pyrolusite mineralsdevelop in small veins and characteristic with anhedraland subhedral cutaways Ore microscopy and Raman spec-troscopy images of pyrolusite are shown in Figure 3 Usingthe results of microprobe analysis the structural formula ofpyrolusite (on the basis of two oxygen) is calculated asMn

169-

Fe007

-Si009

-Al002

-Ca001

O2(Table 4)

42 Magnetite (Fe3O4) Magnetite occurs as small scattered

crystals or veins Vein magnetite is observed cutting thepyrolusite (Figure 4) In single nicol magnetite is seen inbrown and gray colors and in the crossed nicols it is inanisotropic character Samples are slightly magnetic Oremicroscopy andRaman spectroscopy images ofmagnetite areshown in Figure 4

5 Geochemistry

Geochemical data are used to determine the origin ofmineralization (eg hydrothermal hydrogenous and dia-genetic) The chemical composition of Buyukmahal depositis SiO

2 8540 to 1032 wt MnO

2 6854 to 679wt and

Fe2O3 1673 to 231 wt Fe and Mn are characteristically

fractionated on precipitation from a hydrothermal solutionproducing high or lowMnFe rations in exhalative sediments[13] MnFe rations of the deposit range from 2589 to090wt (Table 1) These values are conformable with thoseof hydrothermal exhalative manganese deposits in ophioliticregions and recent submarine spreading centers [1 14 15]

The Si-Al discrimination diagram proposed by Peters[16] is used to distinguish hydrothermal from hydrogenousMn-oxide deposits Buyukmahal ore samples are almostwithin the field of hydrothermal field with only one samplewithin the field of hydrogenous deposits (Figure 5)

Ba contents of Waziristan [6] Hazara (Pakistan) [3]Binkılıc [17] Cayırlı [7] and Kasımaga (Turkey) [8] regionsare very high (415 6304 6892 1229 and 2719 resp) indi-cating a sedimentary contribution High Ba content of theBuyukmahal deposit (ave 3659) is also indicative of sedi-mentary origin Modern submarine hydrothermal Mn-oxidedeposits are more enriched in Cu Zn Ni and Co contentsin comparison to pelagic sediments However they are lower

Journal of Chemistry 3

KK

Kirim

ozu

Rive

r

Turkmensarilar

Dagyenicesi

Buyukmahal

Mn

Yozgat-I33-A2Yozgat-I33-B1

Yozgat-I33-B4Yozgat-I33-A3

1350

Yozgat-I33-B2

Yozgat-I33-B3

Buyukmahal

Yozgat

Yozgat

Derbent

Cihanpasa

Baltasarilar

Kutlu hill

Yassi huyuk

Sapanli hill

Kisla village

34∘56

998400

39∘57

998400

Mn

Quaternary alluvionDarmik formation Artova ophiolite complex

(serpentine harzburgite dunite gabbro diabase radiolarite chert)

Manganese mineralisation

Road

Cretaceous limestone blocks

1km

100 km

Boyalik limestone member(limestone clayey limestone)Akcadag sandstone member(sandstone)Radiolarite member(radiolarite chert shale)

Incik formation(sandstone mudstone)Sarimbey volcanite assemblage(spilite basalt basalt andesite)

Irak

karadenizBulgaristan

Yunanistan Gurristan

Ermenistan

Iran

Akdeniz Suriye

EGE

Den

izi

Figure 1 Location and geology map of study area (modified from [12])

than hydrogenous deposits [13 18] Choi and Hariya [6] dis-criminated hydrogeneous deposits and submarine hydrother-mal Mn-deposits on a Ni-Zn-Co ternary diagram On thisdiagram five samples are plotted near hydrogenous fields andseven samples are close to hydrogenous field (Figure 6) InFe-(Ni + Co + Cu) lowast 10-Mn triangular diagram [9 10 19]all samples are plotted in hydrothermal and diagenetic fields

(Figure 7) Correlation data on major oxide and some traceelements contents of ore samples are given in Table 5

The correlation coefficients indicate the presence ofstrong positive relations between major oxides and varioustrace elements (Al

2O3-Fe2O3 119903 = 095 Al

2O3-TiO2 119903 =

099 TiO2-Fe2O3 119903 = 094) and the contribution of mafic

terrigenous material to the deposition environment

4 Journal of Chemistry

Table 1 Major oxide contents of Buyukmahal ore ()

Sample SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 Mn Fe MnFe LOI TotalN1 4193 628 1221 230 241 032 142 030 017 2359 001 1827 854 214 860 9957N2 4356 791 1673 157 652 038 173 034 023 1361 001 1054 1170 090 700 9965NT1 7037 069 320 008 024 005 006 002 003 2053 010 1590 224 710 430 9971NT2 8291 172 368 030 016 007 036 007 002 765 011 592 257 230 270 9982NT3 8540 156 293 025 019 004 036 006 006 679 014 526 205 257 200 9985NT4 7296 202 343 031 021 006 065 009 004 1568 010 1214 240 506 370 9931M1 8121 210 231 032 020 007 060 011 004 950 000 736 162 454 310 9957M2 2577 438 749 201 563 025 058 021 017 4179 000 3237 524 618 1080 9913M3 3143 602 975 342 315 039 136 028 020 3052 000 2364 682 347 1120 9771M4 2083 341 689 125 885 014 002 013 007 4689 000 3632 482 754 1100 9951M5 2877 524 806 301 629 026 053 023 015 3639 000 2818 564 500 1040 9933M6 1032 259 293 087 147 009 040 008 013 6854 001 5308 205 2589 1170 9912Min 1032 069 231 008 016 004 002 002 002 679 000 526 162 090 200 9771Max 8540 791 1673 342 885 039 173 034 023 6854 014 5308 1170 2589 1170 9985Ave 4962 366 663 131 294 018 067 016 011 2679 004 2075 464 606 721 9936

Rad

Rad

Radmn

mn

(a)

Rad

Rad

mn

mn

(b)

Rad

Radmn

mn

mn

(c)

Rad Radmn

(d)

Figure 2 Laminated banded ((a) (b) (c)) and lenticular forms (d) in the ore bodies (mn manganese rad radiolarite)

Major oxide trace and REE geochemistry are very usefulfor understanding the formation conditions of ore depositsREE contents of 12 samples collected from the Buyukmahalmanganese mineralization are shown in Table 6

REE contents of the hydrothermal and hydrogenousferromanganese and manganese deposits differ considerablyand thus can provide great information on the genetic

processes involved in the formation of submarine man-ganese and ferromanganese ores [20ndash23] REE patterns ofthe studied deposit (Figure 8(a)) are compared with thoseof other hydrogenous and hydrothermal manganese deposits(Figure 8(b)) Results indicate that hydrogenous ferroman-ganese deposits are more enriched in REEs than theirhydrothermal equivalents Hydrogenous ferromanganese

Journal of Chemistry 5

Table2Tracee

lementscontentsof

Buyukm

ahalore(pp

m)

Sample

BaBe

Co

CsHf

Nb

RbSr

TaTh

UV

ZrMo

CuPb

ZnNi

As

Cd

SbBi

Ag

AuN1

10390

20

5632

28

23

74525

2962

05

7229

4980

926

59

4160

334

1160

2047

378

01

05

03

125

26

N2

8920

104349

29

32

152

606

1676

1187

21

3930

1319

124

2826

379

920

1992

435

01

02

05

56

05

NT1

9590

20

735

02

04

1221

3100

01

04

54

1260

175

258

12100

46

320

3410

295

01

22

01

104

50

NT2

9110

10802

1207

25

162

1311

01

1110

640

314

123

4898

153

210

4234

179

01

1001

01

24

NT3

10280

10359

1110

25

133

1840

01

1310

530

354

125

2436

202

130

4880

138

01

05

01

01

15NT4

50680

20

633

1207

23

171

6440

02

1924

1320

271

171

3292

361

300

3513

172

01

07

02

81

10M1

26120

20

507

22

08

26

264

3423

03

1821

860

285

59

3046

97310

259

7301

03

01

01

10M2

54080

30

1478

09

1323

183

7661

02

43

183460

651

83

4099

307

1190

2385

167

02

05

03

01

29

M3

168550

20

1346

25

20

51

466

16701

04

57

20

2600

830

101

3744

383

1280

2552

162

02

03

04

01

21

M4

7400

20

14321

01

09

1408

3212

01

26

29

9830

468

255

2331

292

1200

3427

451

03

04

02

01

79M5

33550

40

4173

1015

30

167

5120

02

47

21

3110

656

56

3728

366

1520

3200

116

02

04

04

01

29

M6

50360

50

9756

03

07

07

725528

01

1487

1830

315

159

7441

176

1280

1743

307

02

05

02

01

43

Min

7400

10359

01

04

07

08

1311

01

04

10530

175

56

2331

46

130

259

7301

02

01

01

05

Max

168550

50

14321

29

32

152

606

16701

1187

87

9830

1319

258

12100

383

1520

4880

451

03

22

05

125

79Av

e36586

23

3674

1413

39

232

4915

03

34

29

2863

547

131

4508

258

818

2804

239

02

06

02

31

28

6 Journal of Chemistry

Table3RE

Econtentsof

Buyukm

ahalore(pp

m)

Sample

LaCe

PrNd

SmEu

Gd

TbDy

Ho

ErTm

YbLu

YYHo

Ce a

nom

Dy N

Yb N

LaNN

d NN1

5090

5250

1447

6030

1114

275

1160

180

980

196

571

079

490

073

5460

2786minus034

130

164

N2

5330

7710

1739

7200

1544

376

1515

248

1359

264

740

104

648

089

6830

2587minus021

136

143

NT1

430

490

122

590

096

020

087

013

064

013

037

006

046

008

410

3154minus032

090

141

NT2

2250

1720

681

2760

427

094

339

053

260

049

129

020

117

016

640

1306minus048

144

158

NT3

1420

1770

352

1590

287

071

292

046

252

054

152

021

128

018

1270

2352minus026

128

173

NT4

1600

3030

420

1770

308

074

296

046

267

053

154

022

136

021

1330

2509minus007

128

175

M1

1310

2340

333

1350

254

061

272

043

265

053

146

021

142

021

790

1491minus009

121

188

M2

3980

3710

974

4010

781

190

792

127

734

155

445

064

406

061

4490

2897minus037

118

192

M3

4170

4270

1024

4320

835

195

874

139

786

161

487

070

438

067

4830

3000minus033

117

187

M4

2660

2360

553

2200

427

104

424

070

413

086

265

042

265

040

2320

2698minus038

101

234

M5

3780

3750

977

3990

765

183

716

116

663

131

381

055

369

054

3810

2908minus035

117

184

M6

3060

2660

650

2590

462

114

440

070

445

088

285

047

311

049

2330

2648minus039

093

229

Min

430

490

122

590

096

020

087

013

064

013

037

006

046

008

410

1306minus048

090

141

Max

5330

7710

1739

7200

1544

376

1515

248

1359

264

740

104

648

089

6830

3154minus007

144

234

Ave

2923

3255

773

3200

608

146

601

096

541

109

316

046

291

043

2876

2528minus030

119

181

Ce ano

m=log[3timesCe N

(2timesLa

N+Nd N

)]

Journal of Chemistry 7

975 905 835 765 695 625 555 485 415 345

Reference peak

Measured peak

Py

Py

Py

30120583m

Raman shift (cmminus1)

Figure 3 Ore microscopy and Raman spectroscopy images ofpyrolusite

deposits show positive Ce anomaly but hydrothermal fer-romanganese deposits are characteristic with negative Ceanomaly [22ndash24] All samples of the Buyukmahal manganesemineralization show strong negative Ce anomalies whichresemble the pattern of typical submarine hydrothermaldeposits (Figure 8(a)) However the Ce anomaly depends onthe temperature of the fluid the proximity to the hydrother-mal source and redox conditions [23 25 26] Eu also showsnegative anomaly in all samples indicating contaminationfrom the continental crust andor sediment contribution viadehydration [27]

In hydrothermal solutions LaNNdN ratio is 30ndash74 (aver-age 45) and DyNYbN ratio is 06ndash21 (average 12) Theseratios inMn-oxide crusts are 27ndash43 and 04ndash12 respectively[4] These rations in hydrogenous deposits are 090ndash150and 03ndash191 respectively [24] The ranges of LaNNdN andDyNYbN ratios for the Buyukmahal manganese mineraliza-tion are 141ndash234 (average 182) and 090ndash144 (average 118)(Table 6) These values imply that Buyukmahal mineraliza-tion might be a hydrogenous deposit

YHo ratios in the area range from 1306 to 3154 (average2505) High YHo ratios are indicative of multienvironmentsfor the mineral deposition In this respect both deep marineenvironments and terrigenous materials may be effective forprecipitation [30]

Data computed with the formula of Ceanom = log [3 timesCeN(2 times LaN + NdN)] also yield information on the originof mineralization For example in the case of Ceanom gt minus01Ce is said to be enriched which reflects an anoxic characterfor the water body of sedimentation If Ceanom lt minus01 there is

820 760 700 640 580 520 460 400 340

Reference peak

Measured peak

Mag

Mag

Py

PyPy

20120583m

RefRefereerencence pepeakak

MeaMeasursured ed peapeakk

Raman shift (cmminus1)

Figure 4 Ore microscopy and Raman spectroscopy images ofmagnetite mag magnetite py pyrolusite

Hydrothermal

Hydrogenous

Detrial-diagenetic

50

40

30

20

10

Al ()

Si (

)

0 2 4 6 8 10

Figure 5 SiAl diagram [16]

a negative Ce anomaly which indicates an oxic nature for thewater body of sedimentation [31] Ce anomalies in all samplesat Buyukmahal are found to be Ceanom lt minus01 indicating anoxic character for the sedimentation environment

6 Discussions and Conclusions

The AOC of Upper Cretaceous age is located along thenorthwestern and eastern margins in Yozgat (Turkey) and

8 Journal of Chemistry

Table 4 Composition of pyrolusite (pr) samples of Buyukmahal ore

(a)

Si Ti Al Fe Mn Mg Ca Na K Ba Ag Znpr48 261 008 061 326 7571 009 060 000 005 025 000 000pr49 226 010 043 270 8048 004 055 006 005 095 001 006pr50 152 019 042 300 7490 008 049 003 009 020 002 006pr51 232 008 059 302 7644 006 040 005 016 032 002 000Ave 218 011 051 299 7688 007 051 003 009 043 001 003

(b)

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O BaO Ag2O ZnOpr48 558 013 115 466 9776 015 008 000 006 028 000 000pr49 483 017 081 386 10392 007 077 008 006 106 001 007pr50 325 032 079 429 9671 013 069 004 011 022 002 007pr51 496 013 111 432 9870 010 056 007 019 036 002 000

(c)

Number of ions calculated on the basis of 2 (O)Coef Si Ti Al Fe Mn Mg Ca Na K Total

pr48 120 011 000 003 008 165 000 000 000 000 187pr49 116 009 000 002 006 170 000 002 000 000 190pr50 127 007 001 002 008 173 000 002 000 000 192pr51 120 010 000 003 007 167 000 001 000 000 189Ave 121 009 000 002 007 169 000 001 000 000 190

Ni Co

Zn

50

50

50

Hydrothermal

Hydrogenous

Figure 6 Ni-Zn-Co discrimination diagram [6]

is included to the Alpine Orogenic system Mineralizationin the Buyukmahal area observed in banded and lenticularforms occurs in a close associationwith radiolarite cherts andis intensely affected by the tectonism

Based on the results of major and trace element datamineralization in the study area was probably formed fromhydrothermal solutions associated with a sea floor spreadingcenter However ore minerals at Buyukmahal were not

HydrothermalFe Mn

Diagenetic

Hydrogenous

50

5050

(Ni + Co + Cu) times 10

Figure 7 Fe-(Ni + Co + Cu) times 10-Mn discrimination diagram [910 19]

precipitated entirely from a purely hydrothermal or purelyhydrogenous fluid but certainly from a mixture of thesetwo For instance Ti is generally immobile in hydrothermalsolutions and could be a measure of clastic input [32] Thegood correlation observed between Al

2O3and TiO

2(119903 =

099) can be attributed to the mixing of detrital materialsduring precipitation [6]

Journal of Chemistry 9

Table 5 Correlation relations for major oxides

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3

SiO2 100 minus056 minus043 minus067 minus071 minus055 minus017 minus049 minus068 minus089 078Al2O3 100 095 081 064 097 084 099 093 014 minus065Fe2O3 100 066 063 092 082 094 085 000 minus050MgO 100 059 088 055 082 081 036 minus067CaO 100 059 016 058 057 045 minus063Na2O 100 082 097 093 014 minus063K2O 100 087 077 minus021 minus038TiO2 100 091 006 minus064P2O5 100 033 minus065MnO 100 minus059Cr2O3 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

Table 6 Correlation relations for trace elements

Ba Co Rb Sr U Zr Mo Cu Pb Zn Ni As Bi AgBa 100 minus019 026 098 000 016 minus021 minus008 039 037 minus017 minus034 037 minus027Co 100 minus019 minus014 045 014 037 minus010 018 059 minus012 071 016 minus012Rb 100 021 minus033 085 minus057 minus037 054 023 minus042 018 069 030Sr 100 001 016 minus017 minus006 042 044 minus016 minus030 039 minus022U 100 minus027 042 067 minus035 025 minus029 036 minus014 017Zr 100 minus041 minus040 072 054 minus028 042 090 016Mo 100 047 minus032 minus022 039 050 minus037 019Cu 100 minus061 minus013 002 012 minus032 038Pb 100 060 002 018 083 004Zn 100 minus032 031 072 minus017Ni 100 minus005 minus026 minus003As 100 027 042Bi 100 005Ag 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

1

10

100

1000

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Sam

ple

cond

rite

(a)

Hydrothermal

Hydrogenous

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

REE

cond

rite

1000

100

10

1

(b)

Figure 8 (a) Chondrite normalized REE diagram for ore samples (normalization values are from Evensen et al [28]) (b) REE diagramshowing hydrogenous [29] and hydrothermal [29] fields

10 Journal of Chemistry

Fe compounds (less stable than Mn) precipitate prox-imal parts whilst Mn compounds precipitate distal partsof hydrothermal vents along the sea floor spreading cen-ters [33 34] Eh andor pH of the hydrothermal solutionalso exert controls on the precipitation of Mn and Fe andtheir compounds [34ndash37] Mn is more mobile relative toFe during low Eh andor pH conditions The fractionationof Mn compounds from Fe compounds suggests a spatialvariation in Eh andor pH [34] Considering Fe and Mnconcentrations of the mineralization in the study area it canbe asserted that Buyukmahal deposit was formed from ahydrothermal source in addition considering the high Fecontent mineralization might be formed in a proximal siteof the hydrothermal vent

Although mineralization at Buyukmahal is of a hydro-thermal type it does not originate from a pure hydrothermalor pure hydrogenous source Geochemical data support asystem contributed from both sources The mineralizationwas developed on a sea floor spreading center within theAlpin Ophiolite system and then obducted as part of theAOC

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This study constitutes a part of MS degree thesis of NeslihanOkuyucu The Scientific and Technical Research Council ofTurkey (TUBITAK Project no 109Y167) and the Bozok Uni-versity (Grant no BFFM2009-06) are greatly acknowledgedfor financial support Dr Ibrahim Uysal is kindly appreciatedfor his help in EMP analysisThe authors also thank ProfessorYusuf K Kadıoglu and Cumhur O Kılıc for the Ramanspectroscopy analysis

References

[1] N Oksuz ldquoGeochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit Turkeyrdquo Journal of Rare Earths vol29 no 3 pp 287ndash296 2011

[2] N Oksuz ldquoGeochemistry and the origin of manganese min-eralizations in Derbent (Yozgat) Regionrdquo Bulletin of the EarthSciences Application and Research Centre of Hacettepe Universitvol 32 no 3 pp 213ndash234 2011

[3] M Tahir Shah andC JMoon ldquoManganese and ferromanganeseores from different tectonic settings in the NW HimalayasPakistanrdquo Journal of Asian Earth Sciences vol 29 no 2-3 pp455ndash465 2007

[4] C E Fitzgerald and K M Gillis ldquoHydrothermal manganeseoxide deposits from Baby Bare seamount in the NortheastPacific Oceanrdquo Marine Geology vol 225 no 1ndash4 pp 145ndash1562006

[5] K Heshmatbehzadi and J Shahabpour ldquoMetallogeny of man-ganese and ferromanganese ores in baft ophiolitic MelangeKerman Iranrdquo Australian Journal of Basic and Applied Sciencesvol 4 no 2 pp 302ndash313 2010

[6] J H Choi and Y Hariya ldquoGeochemistry and depositional envi-ronment of Mn oxide deposits in the Tokoro Belt northeasternHokkaido Japanrdquo Economic Geology vol 87 no 5 pp 1265ndash1274 1992

[7] A Karakus B Yavuz and S Koc ldquoMineralogy and major-traceelement geochemistry of the Haymana manganese mineraliza-tions Ankara Turkeyrdquo Geochemistry International vol 48 no10 pp 1014ndash1027 2010

[8] S Koc O Ozmen and N Oksuz ldquoGeochemistry characteristicof kasimaga (Keskin-Kırıkkale) manganese oxide mineraliza-tionsrdquo Mineral Research and Exploration Magazine vol 122 p107 2000

[9] E Bonatti T Kraemer and H Rydell ldquoClassification andgenesis of submarine iron-manganese depositsrdquo in Ferroman-ganese Deposits on the Ocean Flor International Decade onOcean Exploration D Horn Ed pp 149ndash166 National ScienceFoundation Washington DC USA 1972

[10] D A Crerar J Namson M S Chyi L Williams and I MFeigenson ldquoManganiferous cherts of the Fransiscan assem-blage I General geology ancient and modern analogues andimplications for hydrothermal convection at oceanic spreadingcentersrdquo Economic Geology vol 77 pp 519ndash540 1982

[11] AOkay andOTuysuz ldquoTethyan sutures of northernTurkeyrdquo inTheMediterranean Basins Tertiary ExtensionWithin the AlpineOrogen B Durand L Jolivet F Horvath and M Serrane Edsvol 156 pp 475ndash515 Geological Society London UK 1999

[12] A E AkcayMDonmezHKara A F Yergok andK Esenturkldquo1100 000 scale geologicalmaps of Turkey Yozgat-I33 threaderrdquoMTA Ankara vol 80 pp 1ndash16 2007

[13] M T Shah and A Khan ldquoGeochemistry and origin of Mn-deposits in theWaziristan ophiolite complex northWaziristanPakistanrdquoMineraliumDeposita vol 34 no 7 pp 697ndash704 1999

[14] X Jiancheng S Weidong D Jianguo et al ldquoGeochemical stud-ies on Permian manganese deposits in Guichi eastern ChinaImplications for their origin and formative environmentsrdquoJournal of Asian Earth Science vol 74 pp 155ndash166 2013

[15] A Sasmaz B Turkyilmaz N Ozturk et al ldquoGeology and geo-chemistry of middle eocene maden complex ferromanganesedeposits from Elazıg-Malatya Region Eastern Turkeyrdquo OreGeology Reviews vol 56 pp 352ndash372 2014

[16] T Peters ldquoGeochemistry of manganese-bearing cherts associ-ated with Alpine ophiolites and the Hawasina formations inOmanrdquoMarine Geology vol 84 no 3-4 pp 229ndash238 1988

[17] A H Gultekin ldquoGeochemistry and origin of the OligoceneBinkılıc manganese deposit Thrace basin Turkeyrdquo TurkishJournal of Earth Sciences vol 7 p 11 1998

[18] D S Cronan ldquoUnderwater mineralsrdquo Academic Press LondonUK 1980

[19] J R Hein S S Marjorie and L M Gein ldquoCentral Pasificcobalt rich ferromanganese crusts Historical perspective andregional variabilityrdquo in Geology and Offshore Mineral Resourcesof the Central Pasific Basin SircumPasific Council for Energy andMineral Resources B H Keating and B R Balton Eds vol 14of Earth science series Springer New York NY USA 1992

[20] J R Toth ldquoDeposition of submarine crusts rich in manganeseand ironrdquo Geological Society of America Bulletin vol 91 no 1pp 44ndash54 1980

[21] D E Ruhlin andRMOwen ldquoThe rare earth element geochem-istry of hydrothermal sediments from the East Pacific Riseexamination of a seawater scavenging mechanismrdquo Geochimicaet Cosmochimica Acta vol 50 no 3 pp 393ndash400 1986

Journal of Chemistry 11

[22] J DWonder P G Spry and K EWindom ldquoGeochemistry andorigin of manganese-rich rocks related to iron-formation andsulfide deposits western Georgiardquo Economic Geology vol 83no 5 pp 1070ndash1081 1988

[23] J R Hein A Kochinsky P Halbach et al ldquoIron andmanganeseoxide mineralization in the Pacificrdquo in Manganese Mineraliza-tion Geochemistry and Mineralogy of Terrestrial and MarineDeposits K Nicholson J R Hein B Buhn and S DasguptaEds vol 119 pp 123ndash138 Geological Society London UK 1997

[24] H Elderfield C J Hawkesworth M J Greaves and S ECalvert ldquoRare earth element geochemistry of oceanic ferro-manganese nodules and associated sedimentsrdquo Geochimica etCosmochimica Acta vol 45 no 4 pp 513ndash528 1981

[25] N Clauer P Stille C Bonnot-Courtois and W S Moore ldquoNd-Sr isotopic and REE constraints on the genesis of hydrothermalmanganese crusts in the Galapagosrdquo Nature vol 311 no 5988pp 743ndash745 1984

[26] J R Hein Y Hsueh-Wen S H Gunn A E Gibbs and WChung-ho ldquoComposition and origin of hydrothermal iron-stones from central Pacific seamountsrdquo Geochimica et Cosmo-chimica Acta vol 58 no 1 pp 179ndash189 1994

[27] S S Sun and W F McDonough ldquoChemical and isotopic sys-tematics of oceanic basalts implications formantle compositionand processesrdquo inMagmatism in Ocean Basins A D Saundersand M J Norry Eds pp 313ndash345 Geological Society LondonUK 1989

[28] N M Evensen P J Hamilton and R K OrsquoNions ldquoRare-earthabundances in chondritic meteoritesrdquoGeochimica et Cosmochi-mica Acta vol 42 no 8 pp 1199ndash1212 1978

[29] U Von Stackelberg ldquoGrowth history of manganese nodules andcrusts of the Peru BasinrdquoGeological Society vol 119 pp 153ndash1761997

[30] J Nayan J Rongfen andW ZiyuPermain Palaeogeography andGeochemical Environment in Lower Yangtze Region PetroleumIndustry Press Beijing China 1994

[31] J Wright H Schrader andW T Holser ldquoPaleoredox variationsin ancient oceans recorded by rare earth elements in fossilapatiterdquo Geochimica et Cosmochimica Acta vol 51 no 3 pp631ndash644 1987

[32] R Sugisaki ldquoRelation between chemical composition andsedimentation rate of Pacific ocean-floor sediments depositedsince the middle Cretaceous basic evidence for chemicalconstraints on depositional environments of ancient sediments(plate tectonic orogenic model)rdquo Journal of Geology vol 92 no3 pp 235ndash259 1984

[33] AG Panagos and S PVaranavas ldquoOn the genesis of someman-ganese deposits from eastern Greecerdquo Syngenesis and Epigenesisin the Formation of Mineral Deposits pp 553ndash561 1984

[34] S Roy ldquoEnvironments and processes of manganese depositionrdquoEconomic Geology vol 87 no 5 pp 1218ndash1236 1992

[35] K B Krauskopf ldquoSeparation of manganese from iron in sedi-mentary processesrdquo Geochimica et Cosmochimica Acta vol 12no 1-2 pp 61ndash84 1957

[36] J D Hem ldquoChemical factors that influence that influence theavailability of iron and manganese in aqueous systemsrdquo Geo-logical Society of America Bulletin vol 83 pp 443ndash450 1972

[37] L Frakes and B Bolton ldquoEffects of ocean chemistry sealevel and climate on the formation of primary sedimentarymanganese ore depositsrdquo Economic Geology vol 87 no 5 pp1207ndash1217 1992

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 2: Research Article Mineralogy, Geochemistry, and Origin of ...downloads.hindawi.com/journals/jchem/2014/837972.pdf · of hydrothermal exhalative manganese deposits in ophiolitic regions

2 Journal of Chemistry

of the Alpine-Himalayan Orogenic zone The Alpine Oro-genic system is formed by the closure of a different branchof the Tethys Ocean During the closure of Tethys Oceancontinental parts of the Gondwana and Laurasia continentscollided Turkey as an orogenic mosaic (orogenic collage) isa part of these continental parts including remnant materialsbetween these continentals [11] The AOC is included to theAlpine Orogenic system The AOC of Upper Cretaceous ageshows a wide distribution and hosts several ore mineraliza-tions

Darmik formation of Upper Cretaceous age consistsof Boyalik limestone Akcadag sandstone and a radi-olarite member Sarimbey volcanic assemblage (spiliticbasalt andesite unit) Artova ophiolite complex (serpentineharzburgite dunite gabbro diabase chert) and Cretaceouslimestone blocks are also observed in the area Artovaophiolite complex is unconformably overlain by conglom-erate sandstone mudstone and gypsum levels of the Incikformation of terrestrial character [12] (Figure 1)

Ore bodies in the study area occur as laminated bandedand lenticular forms (Figures 2(a) 2(b) 2(c) and 2(d)) Themineralization is entirely associated with radiolarite chertsand thickness of lamina and bands is in the range of 1 to90 cm Manganese ores are quite fractured and fissured andshow an irregular structure (Figure 2(a)) Polished sectiondeterminations indicate that ore assemblage is composed ofhematite and pyrolusite whilst quartz and calcite are thegangue minerals Pyrolusite and magnetite are the mainminerals in the Buyukmahal deposit Hematite peaks wererecorded in XRD analysis but it could not be observed in oremicroscopy and Raman spectroscopy determinations

3 Material and Methods

Twenty ore samples (500 g each) were collected from theBuyukmahalmanganese depositThewhole section of the orefrom top to bottomwas sampled systematically Samples weretaken at 30 cm intervals

Powders of 12 samples under 200 mesh were analyzed atACME Laboratories Major oxide and trace element contentswere determined with ICP-ES and REEs were analyzed withthe ICP-MS method 30 g sample was powdered into 100 120583mfor geochemical analysis 05 g sample was processed in HCl-HNO

3-H2Osolution atsim95∘C for 1 hour and then the amount

of sample was increased 10mL for the final filtering Resultsof analysis are given in Tables 1 2 and 3 In addition inorder to determine paragenesis and textural characteristicsof mineralization 10 polished sections were studied withore microscopy XRD analysis for six samples was doneat TPAO (Turkish Petroleum Corporation) laboratories ARigaku DMAX IIIC model X-Ray diffractometer with a Cutarget (2ndash70∘ 2120579) was used in the analyses Ore minerals werealso studied withThermo Scientific DXR RamanMicroscopeat the Geological Department of the Ankara UniversityThe Raman spectrums obtained were evaluated with Crys-tal Sleuth program to determine the mineral paragenesisChemical composition of pyrolusite was determined withmicroprobe analysis conducted at Montan Universitat inLeoben (Austria) The results are shown in Table 4

4 Mineralogy

Mineral paragenesis in the study area was investigated withore microscopy studies as well as XRD Raman spectroscopyand microprobe analysis for pyrolusite Results show thatpyrolusite and magnetite are the main ore minerals in theBuyukmahal area accompanied by little amount of hematiteGangue minerals are quartz and calcite Results of micro-probe analysis performed on four points in a pyrolusitecrystal are shown in Table 4

41 Pyrolusite (MnO2) It is mostly precipitated from low-

temperature hydrothermal fluids Pyrolusite is a commonalternation mineral in oxidized marine environments Pyro-lusite and magnetite forming the main components of theBuyukmahal area with a whitish yellow color are distinctwith their strong anisotropic character Pyrolusite mineralsdevelop in small veins and characteristic with anhedraland subhedral cutaways Ore microscopy and Raman spec-troscopy images of pyrolusite are shown in Figure 3 Usingthe results of microprobe analysis the structural formula ofpyrolusite (on the basis of two oxygen) is calculated asMn

169-

Fe007

-Si009

-Al002

-Ca001

O2(Table 4)

42 Magnetite (Fe3O4) Magnetite occurs as small scattered

crystals or veins Vein magnetite is observed cutting thepyrolusite (Figure 4) In single nicol magnetite is seen inbrown and gray colors and in the crossed nicols it is inanisotropic character Samples are slightly magnetic Oremicroscopy andRaman spectroscopy images ofmagnetite areshown in Figure 4

5 Geochemistry

Geochemical data are used to determine the origin ofmineralization (eg hydrothermal hydrogenous and dia-genetic) The chemical composition of Buyukmahal depositis SiO

2 8540 to 1032 wt MnO

2 6854 to 679wt and

Fe2O3 1673 to 231 wt Fe and Mn are characteristically

fractionated on precipitation from a hydrothermal solutionproducing high or lowMnFe rations in exhalative sediments[13] MnFe rations of the deposit range from 2589 to090wt (Table 1) These values are conformable with thoseof hydrothermal exhalative manganese deposits in ophioliticregions and recent submarine spreading centers [1 14 15]

The Si-Al discrimination diagram proposed by Peters[16] is used to distinguish hydrothermal from hydrogenousMn-oxide deposits Buyukmahal ore samples are almostwithin the field of hydrothermal field with only one samplewithin the field of hydrogenous deposits (Figure 5)

Ba contents of Waziristan [6] Hazara (Pakistan) [3]Binkılıc [17] Cayırlı [7] and Kasımaga (Turkey) [8] regionsare very high (415 6304 6892 1229 and 2719 resp) indi-cating a sedimentary contribution High Ba content of theBuyukmahal deposit (ave 3659) is also indicative of sedi-mentary origin Modern submarine hydrothermal Mn-oxidedeposits are more enriched in Cu Zn Ni and Co contentsin comparison to pelagic sediments However they are lower

Journal of Chemistry 3

KK

Kirim

ozu

Rive

r

Turkmensarilar

Dagyenicesi

Buyukmahal

Mn

Yozgat-I33-A2Yozgat-I33-B1

Yozgat-I33-B4Yozgat-I33-A3

1350

Yozgat-I33-B2

Yozgat-I33-B3

Buyukmahal

Yozgat

Yozgat

Derbent

Cihanpasa

Baltasarilar

Kutlu hill

Yassi huyuk

Sapanli hill

Kisla village

34∘56

998400

39∘57

998400

Mn

Quaternary alluvionDarmik formation Artova ophiolite complex

(serpentine harzburgite dunite gabbro diabase radiolarite chert)

Manganese mineralisation

Road

Cretaceous limestone blocks

1km

100 km

Boyalik limestone member(limestone clayey limestone)Akcadag sandstone member(sandstone)Radiolarite member(radiolarite chert shale)

Incik formation(sandstone mudstone)Sarimbey volcanite assemblage(spilite basalt basalt andesite)

Irak

karadenizBulgaristan

Yunanistan Gurristan

Ermenistan

Iran

Akdeniz Suriye

EGE

Den

izi

Figure 1 Location and geology map of study area (modified from [12])

than hydrogenous deposits [13 18] Choi and Hariya [6] dis-criminated hydrogeneous deposits and submarine hydrother-mal Mn-deposits on a Ni-Zn-Co ternary diagram On thisdiagram five samples are plotted near hydrogenous fields andseven samples are close to hydrogenous field (Figure 6) InFe-(Ni + Co + Cu) lowast 10-Mn triangular diagram [9 10 19]all samples are plotted in hydrothermal and diagenetic fields

(Figure 7) Correlation data on major oxide and some traceelements contents of ore samples are given in Table 5

The correlation coefficients indicate the presence ofstrong positive relations between major oxides and varioustrace elements (Al

2O3-Fe2O3 119903 = 095 Al

2O3-TiO2 119903 =

099 TiO2-Fe2O3 119903 = 094) and the contribution of mafic

terrigenous material to the deposition environment

4 Journal of Chemistry

Table 1 Major oxide contents of Buyukmahal ore ()

Sample SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 Mn Fe MnFe LOI TotalN1 4193 628 1221 230 241 032 142 030 017 2359 001 1827 854 214 860 9957N2 4356 791 1673 157 652 038 173 034 023 1361 001 1054 1170 090 700 9965NT1 7037 069 320 008 024 005 006 002 003 2053 010 1590 224 710 430 9971NT2 8291 172 368 030 016 007 036 007 002 765 011 592 257 230 270 9982NT3 8540 156 293 025 019 004 036 006 006 679 014 526 205 257 200 9985NT4 7296 202 343 031 021 006 065 009 004 1568 010 1214 240 506 370 9931M1 8121 210 231 032 020 007 060 011 004 950 000 736 162 454 310 9957M2 2577 438 749 201 563 025 058 021 017 4179 000 3237 524 618 1080 9913M3 3143 602 975 342 315 039 136 028 020 3052 000 2364 682 347 1120 9771M4 2083 341 689 125 885 014 002 013 007 4689 000 3632 482 754 1100 9951M5 2877 524 806 301 629 026 053 023 015 3639 000 2818 564 500 1040 9933M6 1032 259 293 087 147 009 040 008 013 6854 001 5308 205 2589 1170 9912Min 1032 069 231 008 016 004 002 002 002 679 000 526 162 090 200 9771Max 8540 791 1673 342 885 039 173 034 023 6854 014 5308 1170 2589 1170 9985Ave 4962 366 663 131 294 018 067 016 011 2679 004 2075 464 606 721 9936

Rad

Rad

Radmn

mn

(a)

Rad

Rad

mn

mn

(b)

Rad

Radmn

mn

mn

(c)

Rad Radmn

(d)

Figure 2 Laminated banded ((a) (b) (c)) and lenticular forms (d) in the ore bodies (mn manganese rad radiolarite)

Major oxide trace and REE geochemistry are very usefulfor understanding the formation conditions of ore depositsREE contents of 12 samples collected from the Buyukmahalmanganese mineralization are shown in Table 6

REE contents of the hydrothermal and hydrogenousferromanganese and manganese deposits differ considerablyand thus can provide great information on the genetic

processes involved in the formation of submarine man-ganese and ferromanganese ores [20ndash23] REE patterns ofthe studied deposit (Figure 8(a)) are compared with thoseof other hydrogenous and hydrothermal manganese deposits(Figure 8(b)) Results indicate that hydrogenous ferroman-ganese deposits are more enriched in REEs than theirhydrothermal equivalents Hydrogenous ferromanganese

Journal of Chemistry 5

Table2Tracee

lementscontentsof

Buyukm

ahalore(pp

m)

Sample

BaBe

Co

CsHf

Nb

RbSr

TaTh

UV

ZrMo

CuPb

ZnNi

As

Cd

SbBi

Ag

AuN1

10390

20

5632

28

23

74525

2962

05

7229

4980

926

59

4160

334

1160

2047

378

01

05

03

125

26

N2

8920

104349

29

32

152

606

1676

1187

21

3930

1319

124

2826

379

920

1992

435

01

02

05

56

05

NT1

9590

20

735

02

04

1221

3100

01

04

54

1260

175

258

12100

46

320

3410

295

01

22

01

104

50

NT2

9110

10802

1207

25

162

1311

01

1110

640

314

123

4898

153

210

4234

179

01

1001

01

24

NT3

10280

10359

1110

25

133

1840

01

1310

530

354

125

2436

202

130

4880

138

01

05

01

01

15NT4

50680

20

633

1207

23

171

6440

02

1924

1320

271

171

3292

361

300

3513

172

01

07

02

81

10M1

26120

20

507

22

08

26

264

3423

03

1821

860

285

59

3046

97310

259

7301

03

01

01

10M2

54080

30

1478

09

1323

183

7661

02

43

183460

651

83

4099

307

1190

2385

167

02

05

03

01

29

M3

168550

20

1346

25

20

51

466

16701

04

57

20

2600

830

101

3744

383

1280

2552

162

02

03

04

01

21

M4

7400

20

14321

01

09

1408

3212

01

26

29

9830

468

255

2331

292

1200

3427

451

03

04

02

01

79M5

33550

40

4173

1015

30

167

5120

02

47

21

3110

656

56

3728

366

1520

3200

116

02

04

04

01

29

M6

50360

50

9756

03

07

07

725528

01

1487

1830

315

159

7441

176

1280

1743

307

02

05

02

01

43

Min

7400

10359

01

04

07

08

1311

01

04

10530

175

56

2331

46

130

259

7301

02

01

01

05

Max

168550

50

14321

29

32

152

606

16701

1187

87

9830

1319

258

12100

383

1520

4880

451

03

22

05

125

79Av

e36586

23

3674

1413

39

232

4915

03

34

29

2863

547

131

4508

258

818

2804

239

02

06

02

31

28

6 Journal of Chemistry

Table3RE

Econtentsof

Buyukm

ahalore(pp

m)

Sample

LaCe

PrNd

SmEu

Gd

TbDy

Ho

ErTm

YbLu

YYHo

Ce a

nom

Dy N

Yb N

LaNN

d NN1

5090

5250

1447

6030

1114

275

1160

180

980

196

571

079

490

073

5460

2786minus034

130

164

N2

5330

7710

1739

7200

1544

376

1515

248

1359

264

740

104

648

089

6830

2587minus021

136

143

NT1

430

490

122

590

096

020

087

013

064

013

037

006

046

008

410

3154minus032

090

141

NT2

2250

1720

681

2760

427

094

339

053

260

049

129

020

117

016

640

1306minus048

144

158

NT3

1420

1770

352

1590

287

071

292

046

252

054

152

021

128

018

1270

2352minus026

128

173

NT4

1600

3030

420

1770

308

074

296

046

267

053

154

022

136

021

1330

2509minus007

128

175

M1

1310

2340

333

1350

254

061

272

043

265

053

146

021

142

021

790

1491minus009

121

188

M2

3980

3710

974

4010

781

190

792

127

734

155

445

064

406

061

4490

2897minus037

118

192

M3

4170

4270

1024

4320

835

195

874

139

786

161

487

070

438

067

4830

3000minus033

117

187

M4

2660

2360

553

2200

427

104

424

070

413

086

265

042

265

040

2320

2698minus038

101

234

M5

3780

3750

977

3990

765

183

716

116

663

131

381

055

369

054

3810

2908minus035

117

184

M6

3060

2660

650

2590

462

114

440

070

445

088

285

047

311

049

2330

2648minus039

093

229

Min

430

490

122

590

096

020

087

013

064

013

037

006

046

008

410

1306minus048

090

141

Max

5330

7710

1739

7200

1544

376

1515

248

1359

264

740

104

648

089

6830

3154minus007

144

234

Ave

2923

3255

773

3200

608

146

601

096

541

109

316

046

291

043

2876

2528minus030

119

181

Ce ano

m=log[3timesCe N

(2timesLa

N+Nd N

)]

Journal of Chemistry 7

975 905 835 765 695 625 555 485 415 345

Reference peak

Measured peak

Py

Py

Py

30120583m

Raman shift (cmminus1)

Figure 3 Ore microscopy and Raman spectroscopy images ofpyrolusite

deposits show positive Ce anomaly but hydrothermal fer-romanganese deposits are characteristic with negative Ceanomaly [22ndash24] All samples of the Buyukmahal manganesemineralization show strong negative Ce anomalies whichresemble the pattern of typical submarine hydrothermaldeposits (Figure 8(a)) However the Ce anomaly depends onthe temperature of the fluid the proximity to the hydrother-mal source and redox conditions [23 25 26] Eu also showsnegative anomaly in all samples indicating contaminationfrom the continental crust andor sediment contribution viadehydration [27]

In hydrothermal solutions LaNNdN ratio is 30ndash74 (aver-age 45) and DyNYbN ratio is 06ndash21 (average 12) Theseratios inMn-oxide crusts are 27ndash43 and 04ndash12 respectively[4] These rations in hydrogenous deposits are 090ndash150and 03ndash191 respectively [24] The ranges of LaNNdN andDyNYbN ratios for the Buyukmahal manganese mineraliza-tion are 141ndash234 (average 182) and 090ndash144 (average 118)(Table 6) These values imply that Buyukmahal mineraliza-tion might be a hydrogenous deposit

YHo ratios in the area range from 1306 to 3154 (average2505) High YHo ratios are indicative of multienvironmentsfor the mineral deposition In this respect both deep marineenvironments and terrigenous materials may be effective forprecipitation [30]

Data computed with the formula of Ceanom = log [3 timesCeN(2 times LaN + NdN)] also yield information on the originof mineralization For example in the case of Ceanom gt minus01Ce is said to be enriched which reflects an anoxic characterfor the water body of sedimentation If Ceanom lt minus01 there is

820 760 700 640 580 520 460 400 340

Reference peak

Measured peak

Mag

Mag

Py

PyPy

20120583m

RefRefereerencence pepeakak

MeaMeasursured ed peapeakk

Raman shift (cmminus1)

Figure 4 Ore microscopy and Raman spectroscopy images ofmagnetite mag magnetite py pyrolusite

Hydrothermal

Hydrogenous

Detrial-diagenetic

50

40

30

20

10

Al ()

Si (

)

0 2 4 6 8 10

Figure 5 SiAl diagram [16]

a negative Ce anomaly which indicates an oxic nature for thewater body of sedimentation [31] Ce anomalies in all samplesat Buyukmahal are found to be Ceanom lt minus01 indicating anoxic character for the sedimentation environment

6 Discussions and Conclusions

The AOC of Upper Cretaceous age is located along thenorthwestern and eastern margins in Yozgat (Turkey) and

8 Journal of Chemistry

Table 4 Composition of pyrolusite (pr) samples of Buyukmahal ore

(a)

Si Ti Al Fe Mn Mg Ca Na K Ba Ag Znpr48 261 008 061 326 7571 009 060 000 005 025 000 000pr49 226 010 043 270 8048 004 055 006 005 095 001 006pr50 152 019 042 300 7490 008 049 003 009 020 002 006pr51 232 008 059 302 7644 006 040 005 016 032 002 000Ave 218 011 051 299 7688 007 051 003 009 043 001 003

(b)

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O BaO Ag2O ZnOpr48 558 013 115 466 9776 015 008 000 006 028 000 000pr49 483 017 081 386 10392 007 077 008 006 106 001 007pr50 325 032 079 429 9671 013 069 004 011 022 002 007pr51 496 013 111 432 9870 010 056 007 019 036 002 000

(c)

Number of ions calculated on the basis of 2 (O)Coef Si Ti Al Fe Mn Mg Ca Na K Total

pr48 120 011 000 003 008 165 000 000 000 000 187pr49 116 009 000 002 006 170 000 002 000 000 190pr50 127 007 001 002 008 173 000 002 000 000 192pr51 120 010 000 003 007 167 000 001 000 000 189Ave 121 009 000 002 007 169 000 001 000 000 190

Ni Co

Zn

50

50

50

Hydrothermal

Hydrogenous

Figure 6 Ni-Zn-Co discrimination diagram [6]

is included to the Alpine Orogenic system Mineralizationin the Buyukmahal area observed in banded and lenticularforms occurs in a close associationwith radiolarite cherts andis intensely affected by the tectonism

Based on the results of major and trace element datamineralization in the study area was probably formed fromhydrothermal solutions associated with a sea floor spreadingcenter However ore minerals at Buyukmahal were not

HydrothermalFe Mn

Diagenetic

Hydrogenous

50

5050

(Ni + Co + Cu) times 10

Figure 7 Fe-(Ni + Co + Cu) times 10-Mn discrimination diagram [910 19]

precipitated entirely from a purely hydrothermal or purelyhydrogenous fluid but certainly from a mixture of thesetwo For instance Ti is generally immobile in hydrothermalsolutions and could be a measure of clastic input [32] Thegood correlation observed between Al

2O3and TiO

2(119903 =

099) can be attributed to the mixing of detrital materialsduring precipitation [6]

Journal of Chemistry 9

Table 5 Correlation relations for major oxides

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3

SiO2 100 minus056 minus043 minus067 minus071 minus055 minus017 minus049 minus068 minus089 078Al2O3 100 095 081 064 097 084 099 093 014 minus065Fe2O3 100 066 063 092 082 094 085 000 minus050MgO 100 059 088 055 082 081 036 minus067CaO 100 059 016 058 057 045 minus063Na2O 100 082 097 093 014 minus063K2O 100 087 077 minus021 minus038TiO2 100 091 006 minus064P2O5 100 033 minus065MnO 100 minus059Cr2O3 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

Table 6 Correlation relations for trace elements

Ba Co Rb Sr U Zr Mo Cu Pb Zn Ni As Bi AgBa 100 minus019 026 098 000 016 minus021 minus008 039 037 minus017 minus034 037 minus027Co 100 minus019 minus014 045 014 037 minus010 018 059 minus012 071 016 minus012Rb 100 021 minus033 085 minus057 minus037 054 023 minus042 018 069 030Sr 100 001 016 minus017 minus006 042 044 minus016 minus030 039 minus022U 100 minus027 042 067 minus035 025 minus029 036 minus014 017Zr 100 minus041 minus040 072 054 minus028 042 090 016Mo 100 047 minus032 minus022 039 050 minus037 019Cu 100 minus061 minus013 002 012 minus032 038Pb 100 060 002 018 083 004Zn 100 minus032 031 072 minus017Ni 100 minus005 minus026 minus003As 100 027 042Bi 100 005Ag 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

1

10

100

1000

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Sam

ple

cond

rite

(a)

Hydrothermal

Hydrogenous

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

REE

cond

rite

1000

100

10

1

(b)

Figure 8 (a) Chondrite normalized REE diagram for ore samples (normalization values are from Evensen et al [28]) (b) REE diagramshowing hydrogenous [29] and hydrothermal [29] fields

10 Journal of Chemistry

Fe compounds (less stable than Mn) precipitate prox-imal parts whilst Mn compounds precipitate distal partsof hydrothermal vents along the sea floor spreading cen-ters [33 34] Eh andor pH of the hydrothermal solutionalso exert controls on the precipitation of Mn and Fe andtheir compounds [34ndash37] Mn is more mobile relative toFe during low Eh andor pH conditions The fractionationof Mn compounds from Fe compounds suggests a spatialvariation in Eh andor pH [34] Considering Fe and Mnconcentrations of the mineralization in the study area it canbe asserted that Buyukmahal deposit was formed from ahydrothermal source in addition considering the high Fecontent mineralization might be formed in a proximal siteof the hydrothermal vent

Although mineralization at Buyukmahal is of a hydro-thermal type it does not originate from a pure hydrothermalor pure hydrogenous source Geochemical data support asystem contributed from both sources The mineralizationwas developed on a sea floor spreading center within theAlpin Ophiolite system and then obducted as part of theAOC

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This study constitutes a part of MS degree thesis of NeslihanOkuyucu The Scientific and Technical Research Council ofTurkey (TUBITAK Project no 109Y167) and the Bozok Uni-versity (Grant no BFFM2009-06) are greatly acknowledgedfor financial support Dr Ibrahim Uysal is kindly appreciatedfor his help in EMP analysisThe authors also thank ProfessorYusuf K Kadıoglu and Cumhur O Kılıc for the Ramanspectroscopy analysis

References

[1] N Oksuz ldquoGeochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit Turkeyrdquo Journal of Rare Earths vol29 no 3 pp 287ndash296 2011

[2] N Oksuz ldquoGeochemistry and the origin of manganese min-eralizations in Derbent (Yozgat) Regionrdquo Bulletin of the EarthSciences Application and Research Centre of Hacettepe Universitvol 32 no 3 pp 213ndash234 2011

[3] M Tahir Shah andC JMoon ldquoManganese and ferromanganeseores from different tectonic settings in the NW HimalayasPakistanrdquo Journal of Asian Earth Sciences vol 29 no 2-3 pp455ndash465 2007

[4] C E Fitzgerald and K M Gillis ldquoHydrothermal manganeseoxide deposits from Baby Bare seamount in the NortheastPacific Oceanrdquo Marine Geology vol 225 no 1ndash4 pp 145ndash1562006

[5] K Heshmatbehzadi and J Shahabpour ldquoMetallogeny of man-ganese and ferromanganese ores in baft ophiolitic MelangeKerman Iranrdquo Australian Journal of Basic and Applied Sciencesvol 4 no 2 pp 302ndash313 2010

[6] J H Choi and Y Hariya ldquoGeochemistry and depositional envi-ronment of Mn oxide deposits in the Tokoro Belt northeasternHokkaido Japanrdquo Economic Geology vol 87 no 5 pp 1265ndash1274 1992

[7] A Karakus B Yavuz and S Koc ldquoMineralogy and major-traceelement geochemistry of the Haymana manganese mineraliza-tions Ankara Turkeyrdquo Geochemistry International vol 48 no10 pp 1014ndash1027 2010

[8] S Koc O Ozmen and N Oksuz ldquoGeochemistry characteristicof kasimaga (Keskin-Kırıkkale) manganese oxide mineraliza-tionsrdquo Mineral Research and Exploration Magazine vol 122 p107 2000

[9] E Bonatti T Kraemer and H Rydell ldquoClassification andgenesis of submarine iron-manganese depositsrdquo in Ferroman-ganese Deposits on the Ocean Flor International Decade onOcean Exploration D Horn Ed pp 149ndash166 National ScienceFoundation Washington DC USA 1972

[10] D A Crerar J Namson M S Chyi L Williams and I MFeigenson ldquoManganiferous cherts of the Fransiscan assem-blage I General geology ancient and modern analogues andimplications for hydrothermal convection at oceanic spreadingcentersrdquo Economic Geology vol 77 pp 519ndash540 1982

[11] AOkay andOTuysuz ldquoTethyan sutures of northernTurkeyrdquo inTheMediterranean Basins Tertiary ExtensionWithin the AlpineOrogen B Durand L Jolivet F Horvath and M Serrane Edsvol 156 pp 475ndash515 Geological Society London UK 1999

[12] A E AkcayMDonmezHKara A F Yergok andK Esenturkldquo1100 000 scale geologicalmaps of Turkey Yozgat-I33 threaderrdquoMTA Ankara vol 80 pp 1ndash16 2007

[13] M T Shah and A Khan ldquoGeochemistry and origin of Mn-deposits in theWaziristan ophiolite complex northWaziristanPakistanrdquoMineraliumDeposita vol 34 no 7 pp 697ndash704 1999

[14] X Jiancheng S Weidong D Jianguo et al ldquoGeochemical stud-ies on Permian manganese deposits in Guichi eastern ChinaImplications for their origin and formative environmentsrdquoJournal of Asian Earth Science vol 74 pp 155ndash166 2013

[15] A Sasmaz B Turkyilmaz N Ozturk et al ldquoGeology and geo-chemistry of middle eocene maden complex ferromanganesedeposits from Elazıg-Malatya Region Eastern Turkeyrdquo OreGeology Reviews vol 56 pp 352ndash372 2014

[16] T Peters ldquoGeochemistry of manganese-bearing cherts associ-ated with Alpine ophiolites and the Hawasina formations inOmanrdquoMarine Geology vol 84 no 3-4 pp 229ndash238 1988

[17] A H Gultekin ldquoGeochemistry and origin of the OligoceneBinkılıc manganese deposit Thrace basin Turkeyrdquo TurkishJournal of Earth Sciences vol 7 p 11 1998

[18] D S Cronan ldquoUnderwater mineralsrdquo Academic Press LondonUK 1980

[19] J R Hein S S Marjorie and L M Gein ldquoCentral Pasificcobalt rich ferromanganese crusts Historical perspective andregional variabilityrdquo in Geology and Offshore Mineral Resourcesof the Central Pasific Basin SircumPasific Council for Energy andMineral Resources B H Keating and B R Balton Eds vol 14of Earth science series Springer New York NY USA 1992

[20] J R Toth ldquoDeposition of submarine crusts rich in manganeseand ironrdquo Geological Society of America Bulletin vol 91 no 1pp 44ndash54 1980

[21] D E Ruhlin andRMOwen ldquoThe rare earth element geochem-istry of hydrothermal sediments from the East Pacific Riseexamination of a seawater scavenging mechanismrdquo Geochimicaet Cosmochimica Acta vol 50 no 3 pp 393ndash400 1986

Journal of Chemistry 11

[22] J DWonder P G Spry and K EWindom ldquoGeochemistry andorigin of manganese-rich rocks related to iron-formation andsulfide deposits western Georgiardquo Economic Geology vol 83no 5 pp 1070ndash1081 1988

[23] J R Hein A Kochinsky P Halbach et al ldquoIron andmanganeseoxide mineralization in the Pacificrdquo in Manganese Mineraliza-tion Geochemistry and Mineralogy of Terrestrial and MarineDeposits K Nicholson J R Hein B Buhn and S DasguptaEds vol 119 pp 123ndash138 Geological Society London UK 1997

[24] H Elderfield C J Hawkesworth M J Greaves and S ECalvert ldquoRare earth element geochemistry of oceanic ferro-manganese nodules and associated sedimentsrdquo Geochimica etCosmochimica Acta vol 45 no 4 pp 513ndash528 1981

[25] N Clauer P Stille C Bonnot-Courtois and W S Moore ldquoNd-Sr isotopic and REE constraints on the genesis of hydrothermalmanganese crusts in the Galapagosrdquo Nature vol 311 no 5988pp 743ndash745 1984

[26] J R Hein Y Hsueh-Wen S H Gunn A E Gibbs and WChung-ho ldquoComposition and origin of hydrothermal iron-stones from central Pacific seamountsrdquo Geochimica et Cosmo-chimica Acta vol 58 no 1 pp 179ndash189 1994

[27] S S Sun and W F McDonough ldquoChemical and isotopic sys-tematics of oceanic basalts implications formantle compositionand processesrdquo inMagmatism in Ocean Basins A D Saundersand M J Norry Eds pp 313ndash345 Geological Society LondonUK 1989

[28] N M Evensen P J Hamilton and R K OrsquoNions ldquoRare-earthabundances in chondritic meteoritesrdquoGeochimica et Cosmochi-mica Acta vol 42 no 8 pp 1199ndash1212 1978

[29] U Von Stackelberg ldquoGrowth history of manganese nodules andcrusts of the Peru BasinrdquoGeological Society vol 119 pp 153ndash1761997

[30] J Nayan J Rongfen andW ZiyuPermain Palaeogeography andGeochemical Environment in Lower Yangtze Region PetroleumIndustry Press Beijing China 1994

[31] J Wright H Schrader andW T Holser ldquoPaleoredox variationsin ancient oceans recorded by rare earth elements in fossilapatiterdquo Geochimica et Cosmochimica Acta vol 51 no 3 pp631ndash644 1987

[32] R Sugisaki ldquoRelation between chemical composition andsedimentation rate of Pacific ocean-floor sediments depositedsince the middle Cretaceous basic evidence for chemicalconstraints on depositional environments of ancient sediments(plate tectonic orogenic model)rdquo Journal of Geology vol 92 no3 pp 235ndash259 1984

[33] AG Panagos and S PVaranavas ldquoOn the genesis of someman-ganese deposits from eastern Greecerdquo Syngenesis and Epigenesisin the Formation of Mineral Deposits pp 553ndash561 1984

[34] S Roy ldquoEnvironments and processes of manganese depositionrdquoEconomic Geology vol 87 no 5 pp 1218ndash1236 1992

[35] K B Krauskopf ldquoSeparation of manganese from iron in sedi-mentary processesrdquo Geochimica et Cosmochimica Acta vol 12no 1-2 pp 61ndash84 1957

[36] J D Hem ldquoChemical factors that influence that influence theavailability of iron and manganese in aqueous systemsrdquo Geo-logical Society of America Bulletin vol 83 pp 443ndash450 1972

[37] L Frakes and B Bolton ldquoEffects of ocean chemistry sealevel and climate on the formation of primary sedimentarymanganese ore depositsrdquo Economic Geology vol 87 no 5 pp1207ndash1217 1992

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 3: Research Article Mineralogy, Geochemistry, and Origin of ...downloads.hindawi.com/journals/jchem/2014/837972.pdf · of hydrothermal exhalative manganese deposits in ophiolitic regions

Journal of Chemistry 3

KK

Kirim

ozu

Rive

r

Turkmensarilar

Dagyenicesi

Buyukmahal

Mn

Yozgat-I33-A2Yozgat-I33-B1

Yozgat-I33-B4Yozgat-I33-A3

1350

Yozgat-I33-B2

Yozgat-I33-B3

Buyukmahal

Yozgat

Yozgat

Derbent

Cihanpasa

Baltasarilar

Kutlu hill

Yassi huyuk

Sapanli hill

Kisla village

34∘56

998400

39∘57

998400

Mn

Quaternary alluvionDarmik formation Artova ophiolite complex

(serpentine harzburgite dunite gabbro diabase radiolarite chert)

Manganese mineralisation

Road

Cretaceous limestone blocks

1km

100 km

Boyalik limestone member(limestone clayey limestone)Akcadag sandstone member(sandstone)Radiolarite member(radiolarite chert shale)

Incik formation(sandstone mudstone)Sarimbey volcanite assemblage(spilite basalt basalt andesite)

Irak

karadenizBulgaristan

Yunanistan Gurristan

Ermenistan

Iran

Akdeniz Suriye

EGE

Den

izi

Figure 1 Location and geology map of study area (modified from [12])

than hydrogenous deposits [13 18] Choi and Hariya [6] dis-criminated hydrogeneous deposits and submarine hydrother-mal Mn-deposits on a Ni-Zn-Co ternary diagram On thisdiagram five samples are plotted near hydrogenous fields andseven samples are close to hydrogenous field (Figure 6) InFe-(Ni + Co + Cu) lowast 10-Mn triangular diagram [9 10 19]all samples are plotted in hydrothermal and diagenetic fields

(Figure 7) Correlation data on major oxide and some traceelements contents of ore samples are given in Table 5

The correlation coefficients indicate the presence ofstrong positive relations between major oxides and varioustrace elements (Al

2O3-Fe2O3 119903 = 095 Al

2O3-TiO2 119903 =

099 TiO2-Fe2O3 119903 = 094) and the contribution of mafic

terrigenous material to the deposition environment

4 Journal of Chemistry

Table 1 Major oxide contents of Buyukmahal ore ()

Sample SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 Mn Fe MnFe LOI TotalN1 4193 628 1221 230 241 032 142 030 017 2359 001 1827 854 214 860 9957N2 4356 791 1673 157 652 038 173 034 023 1361 001 1054 1170 090 700 9965NT1 7037 069 320 008 024 005 006 002 003 2053 010 1590 224 710 430 9971NT2 8291 172 368 030 016 007 036 007 002 765 011 592 257 230 270 9982NT3 8540 156 293 025 019 004 036 006 006 679 014 526 205 257 200 9985NT4 7296 202 343 031 021 006 065 009 004 1568 010 1214 240 506 370 9931M1 8121 210 231 032 020 007 060 011 004 950 000 736 162 454 310 9957M2 2577 438 749 201 563 025 058 021 017 4179 000 3237 524 618 1080 9913M3 3143 602 975 342 315 039 136 028 020 3052 000 2364 682 347 1120 9771M4 2083 341 689 125 885 014 002 013 007 4689 000 3632 482 754 1100 9951M5 2877 524 806 301 629 026 053 023 015 3639 000 2818 564 500 1040 9933M6 1032 259 293 087 147 009 040 008 013 6854 001 5308 205 2589 1170 9912Min 1032 069 231 008 016 004 002 002 002 679 000 526 162 090 200 9771Max 8540 791 1673 342 885 039 173 034 023 6854 014 5308 1170 2589 1170 9985Ave 4962 366 663 131 294 018 067 016 011 2679 004 2075 464 606 721 9936

Rad

Rad

Radmn

mn

(a)

Rad

Rad

mn

mn

(b)

Rad

Radmn

mn

mn

(c)

Rad Radmn

(d)

Figure 2 Laminated banded ((a) (b) (c)) and lenticular forms (d) in the ore bodies (mn manganese rad radiolarite)

Major oxide trace and REE geochemistry are very usefulfor understanding the formation conditions of ore depositsREE contents of 12 samples collected from the Buyukmahalmanganese mineralization are shown in Table 6

REE contents of the hydrothermal and hydrogenousferromanganese and manganese deposits differ considerablyand thus can provide great information on the genetic

processes involved in the formation of submarine man-ganese and ferromanganese ores [20ndash23] REE patterns ofthe studied deposit (Figure 8(a)) are compared with thoseof other hydrogenous and hydrothermal manganese deposits(Figure 8(b)) Results indicate that hydrogenous ferroman-ganese deposits are more enriched in REEs than theirhydrothermal equivalents Hydrogenous ferromanganese

Journal of Chemistry 5

Table2Tracee

lementscontentsof

Buyukm

ahalore(pp

m)

Sample

BaBe

Co

CsHf

Nb

RbSr

TaTh

UV

ZrMo

CuPb

ZnNi

As

Cd

SbBi

Ag

AuN1

10390

20

5632

28

23

74525

2962

05

7229

4980

926

59

4160

334

1160

2047

378

01

05

03

125

26

N2

8920

104349

29

32

152

606

1676

1187

21

3930

1319

124

2826

379

920

1992

435

01

02

05

56

05

NT1

9590

20

735

02

04

1221

3100

01

04

54

1260

175

258

12100

46

320

3410

295

01

22

01

104

50

NT2

9110

10802

1207

25

162

1311

01

1110

640

314

123

4898

153

210

4234

179

01

1001

01

24

NT3

10280

10359

1110

25

133

1840

01

1310

530

354

125

2436

202

130

4880

138

01

05

01

01

15NT4

50680

20

633

1207

23

171

6440

02

1924

1320

271

171

3292

361

300

3513

172

01

07

02

81

10M1

26120

20

507

22

08

26

264

3423

03

1821

860

285

59

3046

97310

259

7301

03

01

01

10M2

54080

30

1478

09

1323

183

7661

02

43

183460

651

83

4099

307

1190

2385

167

02

05

03

01

29

M3

168550

20

1346

25

20

51

466

16701

04

57

20

2600

830

101

3744

383

1280

2552

162

02

03

04

01

21

M4

7400

20

14321

01

09

1408

3212

01

26

29

9830

468

255

2331

292

1200

3427

451

03

04

02

01

79M5

33550

40

4173

1015

30

167

5120

02

47

21

3110

656

56

3728

366

1520

3200

116

02

04

04

01

29

M6

50360

50

9756

03

07

07

725528

01

1487

1830

315

159

7441

176

1280

1743

307

02

05

02

01

43

Min

7400

10359

01

04

07

08

1311

01

04

10530

175

56

2331

46

130

259

7301

02

01

01

05

Max

168550

50

14321

29

32

152

606

16701

1187

87

9830

1319

258

12100

383

1520

4880

451

03

22

05

125

79Av

e36586

23

3674

1413

39

232

4915

03

34

29

2863

547

131

4508

258

818

2804

239

02

06

02

31

28

6 Journal of Chemistry

Table3RE

Econtentsof

Buyukm

ahalore(pp

m)

Sample

LaCe

PrNd

SmEu

Gd

TbDy

Ho

ErTm

YbLu

YYHo

Ce a

nom

Dy N

Yb N

LaNN

d NN1

5090

5250

1447

6030

1114

275

1160

180

980

196

571

079

490

073

5460

2786minus034

130

164

N2

5330

7710

1739

7200

1544

376

1515

248

1359

264

740

104

648

089

6830

2587minus021

136

143

NT1

430

490

122

590

096

020

087

013

064

013

037

006

046

008

410

3154minus032

090

141

NT2

2250

1720

681

2760

427

094

339

053

260

049

129

020

117

016

640

1306minus048

144

158

NT3

1420

1770

352

1590

287

071

292

046

252

054

152

021

128

018

1270

2352minus026

128

173

NT4

1600

3030

420

1770

308

074

296

046

267

053

154

022

136

021

1330

2509minus007

128

175

M1

1310

2340

333

1350

254

061

272

043

265

053

146

021

142

021

790

1491minus009

121

188

M2

3980

3710

974

4010

781

190

792

127

734

155

445

064

406

061

4490

2897minus037

118

192

M3

4170

4270

1024

4320

835

195

874

139

786

161

487

070

438

067

4830

3000minus033

117

187

M4

2660

2360

553

2200

427

104

424

070

413

086

265

042

265

040

2320

2698minus038

101

234

M5

3780

3750

977

3990

765

183

716

116

663

131

381

055

369

054

3810

2908minus035

117

184

M6

3060

2660

650

2590

462

114

440

070

445

088

285

047

311

049

2330

2648minus039

093

229

Min

430

490

122

590

096

020

087

013

064

013

037

006

046

008

410

1306minus048

090

141

Max

5330

7710

1739

7200

1544

376

1515

248

1359

264

740

104

648

089

6830

3154minus007

144

234

Ave

2923

3255

773

3200

608

146

601

096

541

109

316

046

291

043

2876

2528minus030

119

181

Ce ano

m=log[3timesCe N

(2timesLa

N+Nd N

)]

Journal of Chemistry 7

975 905 835 765 695 625 555 485 415 345

Reference peak

Measured peak

Py

Py

Py

30120583m

Raman shift (cmminus1)

Figure 3 Ore microscopy and Raman spectroscopy images ofpyrolusite

deposits show positive Ce anomaly but hydrothermal fer-romanganese deposits are characteristic with negative Ceanomaly [22ndash24] All samples of the Buyukmahal manganesemineralization show strong negative Ce anomalies whichresemble the pattern of typical submarine hydrothermaldeposits (Figure 8(a)) However the Ce anomaly depends onthe temperature of the fluid the proximity to the hydrother-mal source and redox conditions [23 25 26] Eu also showsnegative anomaly in all samples indicating contaminationfrom the continental crust andor sediment contribution viadehydration [27]

In hydrothermal solutions LaNNdN ratio is 30ndash74 (aver-age 45) and DyNYbN ratio is 06ndash21 (average 12) Theseratios inMn-oxide crusts are 27ndash43 and 04ndash12 respectively[4] These rations in hydrogenous deposits are 090ndash150and 03ndash191 respectively [24] The ranges of LaNNdN andDyNYbN ratios for the Buyukmahal manganese mineraliza-tion are 141ndash234 (average 182) and 090ndash144 (average 118)(Table 6) These values imply that Buyukmahal mineraliza-tion might be a hydrogenous deposit

YHo ratios in the area range from 1306 to 3154 (average2505) High YHo ratios are indicative of multienvironmentsfor the mineral deposition In this respect both deep marineenvironments and terrigenous materials may be effective forprecipitation [30]

Data computed with the formula of Ceanom = log [3 timesCeN(2 times LaN + NdN)] also yield information on the originof mineralization For example in the case of Ceanom gt minus01Ce is said to be enriched which reflects an anoxic characterfor the water body of sedimentation If Ceanom lt minus01 there is

820 760 700 640 580 520 460 400 340

Reference peak

Measured peak

Mag

Mag

Py

PyPy

20120583m

RefRefereerencence pepeakak

MeaMeasursured ed peapeakk

Raman shift (cmminus1)

Figure 4 Ore microscopy and Raman spectroscopy images ofmagnetite mag magnetite py pyrolusite

Hydrothermal

Hydrogenous

Detrial-diagenetic

50

40

30

20

10

Al ()

Si (

)

0 2 4 6 8 10

Figure 5 SiAl diagram [16]

a negative Ce anomaly which indicates an oxic nature for thewater body of sedimentation [31] Ce anomalies in all samplesat Buyukmahal are found to be Ceanom lt minus01 indicating anoxic character for the sedimentation environment

6 Discussions and Conclusions

The AOC of Upper Cretaceous age is located along thenorthwestern and eastern margins in Yozgat (Turkey) and

8 Journal of Chemistry

Table 4 Composition of pyrolusite (pr) samples of Buyukmahal ore

(a)

Si Ti Al Fe Mn Mg Ca Na K Ba Ag Znpr48 261 008 061 326 7571 009 060 000 005 025 000 000pr49 226 010 043 270 8048 004 055 006 005 095 001 006pr50 152 019 042 300 7490 008 049 003 009 020 002 006pr51 232 008 059 302 7644 006 040 005 016 032 002 000Ave 218 011 051 299 7688 007 051 003 009 043 001 003

(b)

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O BaO Ag2O ZnOpr48 558 013 115 466 9776 015 008 000 006 028 000 000pr49 483 017 081 386 10392 007 077 008 006 106 001 007pr50 325 032 079 429 9671 013 069 004 011 022 002 007pr51 496 013 111 432 9870 010 056 007 019 036 002 000

(c)

Number of ions calculated on the basis of 2 (O)Coef Si Ti Al Fe Mn Mg Ca Na K Total

pr48 120 011 000 003 008 165 000 000 000 000 187pr49 116 009 000 002 006 170 000 002 000 000 190pr50 127 007 001 002 008 173 000 002 000 000 192pr51 120 010 000 003 007 167 000 001 000 000 189Ave 121 009 000 002 007 169 000 001 000 000 190

Ni Co

Zn

50

50

50

Hydrothermal

Hydrogenous

Figure 6 Ni-Zn-Co discrimination diagram [6]

is included to the Alpine Orogenic system Mineralizationin the Buyukmahal area observed in banded and lenticularforms occurs in a close associationwith radiolarite cherts andis intensely affected by the tectonism

Based on the results of major and trace element datamineralization in the study area was probably formed fromhydrothermal solutions associated with a sea floor spreadingcenter However ore minerals at Buyukmahal were not

HydrothermalFe Mn

Diagenetic

Hydrogenous

50

5050

(Ni + Co + Cu) times 10

Figure 7 Fe-(Ni + Co + Cu) times 10-Mn discrimination diagram [910 19]

precipitated entirely from a purely hydrothermal or purelyhydrogenous fluid but certainly from a mixture of thesetwo For instance Ti is generally immobile in hydrothermalsolutions and could be a measure of clastic input [32] Thegood correlation observed between Al

2O3and TiO

2(119903 =

099) can be attributed to the mixing of detrital materialsduring precipitation [6]

Journal of Chemistry 9

Table 5 Correlation relations for major oxides

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3

SiO2 100 minus056 minus043 minus067 minus071 minus055 minus017 minus049 minus068 minus089 078Al2O3 100 095 081 064 097 084 099 093 014 minus065Fe2O3 100 066 063 092 082 094 085 000 minus050MgO 100 059 088 055 082 081 036 minus067CaO 100 059 016 058 057 045 minus063Na2O 100 082 097 093 014 minus063K2O 100 087 077 minus021 minus038TiO2 100 091 006 minus064P2O5 100 033 minus065MnO 100 minus059Cr2O3 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

Table 6 Correlation relations for trace elements

Ba Co Rb Sr U Zr Mo Cu Pb Zn Ni As Bi AgBa 100 minus019 026 098 000 016 minus021 minus008 039 037 minus017 minus034 037 minus027Co 100 minus019 minus014 045 014 037 minus010 018 059 minus012 071 016 minus012Rb 100 021 minus033 085 minus057 minus037 054 023 minus042 018 069 030Sr 100 001 016 minus017 minus006 042 044 minus016 minus030 039 minus022U 100 minus027 042 067 minus035 025 minus029 036 minus014 017Zr 100 minus041 minus040 072 054 minus028 042 090 016Mo 100 047 minus032 minus022 039 050 minus037 019Cu 100 minus061 minus013 002 012 minus032 038Pb 100 060 002 018 083 004Zn 100 minus032 031 072 minus017Ni 100 minus005 minus026 minus003As 100 027 042Bi 100 005Ag 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

1

10

100

1000

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Sam

ple

cond

rite

(a)

Hydrothermal

Hydrogenous

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

REE

cond

rite

1000

100

10

1

(b)

Figure 8 (a) Chondrite normalized REE diagram for ore samples (normalization values are from Evensen et al [28]) (b) REE diagramshowing hydrogenous [29] and hydrothermal [29] fields

10 Journal of Chemistry

Fe compounds (less stable than Mn) precipitate prox-imal parts whilst Mn compounds precipitate distal partsof hydrothermal vents along the sea floor spreading cen-ters [33 34] Eh andor pH of the hydrothermal solutionalso exert controls on the precipitation of Mn and Fe andtheir compounds [34ndash37] Mn is more mobile relative toFe during low Eh andor pH conditions The fractionationof Mn compounds from Fe compounds suggests a spatialvariation in Eh andor pH [34] Considering Fe and Mnconcentrations of the mineralization in the study area it canbe asserted that Buyukmahal deposit was formed from ahydrothermal source in addition considering the high Fecontent mineralization might be formed in a proximal siteof the hydrothermal vent

Although mineralization at Buyukmahal is of a hydro-thermal type it does not originate from a pure hydrothermalor pure hydrogenous source Geochemical data support asystem contributed from both sources The mineralizationwas developed on a sea floor spreading center within theAlpin Ophiolite system and then obducted as part of theAOC

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This study constitutes a part of MS degree thesis of NeslihanOkuyucu The Scientific and Technical Research Council ofTurkey (TUBITAK Project no 109Y167) and the Bozok Uni-versity (Grant no BFFM2009-06) are greatly acknowledgedfor financial support Dr Ibrahim Uysal is kindly appreciatedfor his help in EMP analysisThe authors also thank ProfessorYusuf K Kadıoglu and Cumhur O Kılıc for the Ramanspectroscopy analysis

References

[1] N Oksuz ldquoGeochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit Turkeyrdquo Journal of Rare Earths vol29 no 3 pp 287ndash296 2011

[2] N Oksuz ldquoGeochemistry and the origin of manganese min-eralizations in Derbent (Yozgat) Regionrdquo Bulletin of the EarthSciences Application and Research Centre of Hacettepe Universitvol 32 no 3 pp 213ndash234 2011

[3] M Tahir Shah andC JMoon ldquoManganese and ferromanganeseores from different tectonic settings in the NW HimalayasPakistanrdquo Journal of Asian Earth Sciences vol 29 no 2-3 pp455ndash465 2007

[4] C E Fitzgerald and K M Gillis ldquoHydrothermal manganeseoxide deposits from Baby Bare seamount in the NortheastPacific Oceanrdquo Marine Geology vol 225 no 1ndash4 pp 145ndash1562006

[5] K Heshmatbehzadi and J Shahabpour ldquoMetallogeny of man-ganese and ferromanganese ores in baft ophiolitic MelangeKerman Iranrdquo Australian Journal of Basic and Applied Sciencesvol 4 no 2 pp 302ndash313 2010

[6] J H Choi and Y Hariya ldquoGeochemistry and depositional envi-ronment of Mn oxide deposits in the Tokoro Belt northeasternHokkaido Japanrdquo Economic Geology vol 87 no 5 pp 1265ndash1274 1992

[7] A Karakus B Yavuz and S Koc ldquoMineralogy and major-traceelement geochemistry of the Haymana manganese mineraliza-tions Ankara Turkeyrdquo Geochemistry International vol 48 no10 pp 1014ndash1027 2010

[8] S Koc O Ozmen and N Oksuz ldquoGeochemistry characteristicof kasimaga (Keskin-Kırıkkale) manganese oxide mineraliza-tionsrdquo Mineral Research and Exploration Magazine vol 122 p107 2000

[9] E Bonatti T Kraemer and H Rydell ldquoClassification andgenesis of submarine iron-manganese depositsrdquo in Ferroman-ganese Deposits on the Ocean Flor International Decade onOcean Exploration D Horn Ed pp 149ndash166 National ScienceFoundation Washington DC USA 1972

[10] D A Crerar J Namson M S Chyi L Williams and I MFeigenson ldquoManganiferous cherts of the Fransiscan assem-blage I General geology ancient and modern analogues andimplications for hydrothermal convection at oceanic spreadingcentersrdquo Economic Geology vol 77 pp 519ndash540 1982

[11] AOkay andOTuysuz ldquoTethyan sutures of northernTurkeyrdquo inTheMediterranean Basins Tertiary ExtensionWithin the AlpineOrogen B Durand L Jolivet F Horvath and M Serrane Edsvol 156 pp 475ndash515 Geological Society London UK 1999

[12] A E AkcayMDonmezHKara A F Yergok andK Esenturkldquo1100 000 scale geologicalmaps of Turkey Yozgat-I33 threaderrdquoMTA Ankara vol 80 pp 1ndash16 2007

[13] M T Shah and A Khan ldquoGeochemistry and origin of Mn-deposits in theWaziristan ophiolite complex northWaziristanPakistanrdquoMineraliumDeposita vol 34 no 7 pp 697ndash704 1999

[14] X Jiancheng S Weidong D Jianguo et al ldquoGeochemical stud-ies on Permian manganese deposits in Guichi eastern ChinaImplications for their origin and formative environmentsrdquoJournal of Asian Earth Science vol 74 pp 155ndash166 2013

[15] A Sasmaz B Turkyilmaz N Ozturk et al ldquoGeology and geo-chemistry of middle eocene maden complex ferromanganesedeposits from Elazıg-Malatya Region Eastern Turkeyrdquo OreGeology Reviews vol 56 pp 352ndash372 2014

[16] T Peters ldquoGeochemistry of manganese-bearing cherts associ-ated with Alpine ophiolites and the Hawasina formations inOmanrdquoMarine Geology vol 84 no 3-4 pp 229ndash238 1988

[17] A H Gultekin ldquoGeochemistry and origin of the OligoceneBinkılıc manganese deposit Thrace basin Turkeyrdquo TurkishJournal of Earth Sciences vol 7 p 11 1998

[18] D S Cronan ldquoUnderwater mineralsrdquo Academic Press LondonUK 1980

[19] J R Hein S S Marjorie and L M Gein ldquoCentral Pasificcobalt rich ferromanganese crusts Historical perspective andregional variabilityrdquo in Geology and Offshore Mineral Resourcesof the Central Pasific Basin SircumPasific Council for Energy andMineral Resources B H Keating and B R Balton Eds vol 14of Earth science series Springer New York NY USA 1992

[20] J R Toth ldquoDeposition of submarine crusts rich in manganeseand ironrdquo Geological Society of America Bulletin vol 91 no 1pp 44ndash54 1980

[21] D E Ruhlin andRMOwen ldquoThe rare earth element geochem-istry of hydrothermal sediments from the East Pacific Riseexamination of a seawater scavenging mechanismrdquo Geochimicaet Cosmochimica Acta vol 50 no 3 pp 393ndash400 1986

Journal of Chemistry 11

[22] J DWonder P G Spry and K EWindom ldquoGeochemistry andorigin of manganese-rich rocks related to iron-formation andsulfide deposits western Georgiardquo Economic Geology vol 83no 5 pp 1070ndash1081 1988

[23] J R Hein A Kochinsky P Halbach et al ldquoIron andmanganeseoxide mineralization in the Pacificrdquo in Manganese Mineraliza-tion Geochemistry and Mineralogy of Terrestrial and MarineDeposits K Nicholson J R Hein B Buhn and S DasguptaEds vol 119 pp 123ndash138 Geological Society London UK 1997

[24] H Elderfield C J Hawkesworth M J Greaves and S ECalvert ldquoRare earth element geochemistry of oceanic ferro-manganese nodules and associated sedimentsrdquo Geochimica etCosmochimica Acta vol 45 no 4 pp 513ndash528 1981

[25] N Clauer P Stille C Bonnot-Courtois and W S Moore ldquoNd-Sr isotopic and REE constraints on the genesis of hydrothermalmanganese crusts in the Galapagosrdquo Nature vol 311 no 5988pp 743ndash745 1984

[26] J R Hein Y Hsueh-Wen S H Gunn A E Gibbs and WChung-ho ldquoComposition and origin of hydrothermal iron-stones from central Pacific seamountsrdquo Geochimica et Cosmo-chimica Acta vol 58 no 1 pp 179ndash189 1994

[27] S S Sun and W F McDonough ldquoChemical and isotopic sys-tematics of oceanic basalts implications formantle compositionand processesrdquo inMagmatism in Ocean Basins A D Saundersand M J Norry Eds pp 313ndash345 Geological Society LondonUK 1989

[28] N M Evensen P J Hamilton and R K OrsquoNions ldquoRare-earthabundances in chondritic meteoritesrdquoGeochimica et Cosmochi-mica Acta vol 42 no 8 pp 1199ndash1212 1978

[29] U Von Stackelberg ldquoGrowth history of manganese nodules andcrusts of the Peru BasinrdquoGeological Society vol 119 pp 153ndash1761997

[30] J Nayan J Rongfen andW ZiyuPermain Palaeogeography andGeochemical Environment in Lower Yangtze Region PetroleumIndustry Press Beijing China 1994

[31] J Wright H Schrader andW T Holser ldquoPaleoredox variationsin ancient oceans recorded by rare earth elements in fossilapatiterdquo Geochimica et Cosmochimica Acta vol 51 no 3 pp631ndash644 1987

[32] R Sugisaki ldquoRelation between chemical composition andsedimentation rate of Pacific ocean-floor sediments depositedsince the middle Cretaceous basic evidence for chemicalconstraints on depositional environments of ancient sediments(plate tectonic orogenic model)rdquo Journal of Geology vol 92 no3 pp 235ndash259 1984

[33] AG Panagos and S PVaranavas ldquoOn the genesis of someman-ganese deposits from eastern Greecerdquo Syngenesis and Epigenesisin the Formation of Mineral Deposits pp 553ndash561 1984

[34] S Roy ldquoEnvironments and processes of manganese depositionrdquoEconomic Geology vol 87 no 5 pp 1218ndash1236 1992

[35] K B Krauskopf ldquoSeparation of manganese from iron in sedi-mentary processesrdquo Geochimica et Cosmochimica Acta vol 12no 1-2 pp 61ndash84 1957

[36] J D Hem ldquoChemical factors that influence that influence theavailability of iron and manganese in aqueous systemsrdquo Geo-logical Society of America Bulletin vol 83 pp 443ndash450 1972

[37] L Frakes and B Bolton ldquoEffects of ocean chemistry sealevel and climate on the formation of primary sedimentarymanganese ore depositsrdquo Economic Geology vol 87 no 5 pp1207ndash1217 1992

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 4: Research Article Mineralogy, Geochemistry, and Origin of ...downloads.hindawi.com/journals/jchem/2014/837972.pdf · of hydrothermal exhalative manganese deposits in ophiolitic regions

4 Journal of Chemistry

Table 1 Major oxide contents of Buyukmahal ore ()

Sample SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 Mn Fe MnFe LOI TotalN1 4193 628 1221 230 241 032 142 030 017 2359 001 1827 854 214 860 9957N2 4356 791 1673 157 652 038 173 034 023 1361 001 1054 1170 090 700 9965NT1 7037 069 320 008 024 005 006 002 003 2053 010 1590 224 710 430 9971NT2 8291 172 368 030 016 007 036 007 002 765 011 592 257 230 270 9982NT3 8540 156 293 025 019 004 036 006 006 679 014 526 205 257 200 9985NT4 7296 202 343 031 021 006 065 009 004 1568 010 1214 240 506 370 9931M1 8121 210 231 032 020 007 060 011 004 950 000 736 162 454 310 9957M2 2577 438 749 201 563 025 058 021 017 4179 000 3237 524 618 1080 9913M3 3143 602 975 342 315 039 136 028 020 3052 000 2364 682 347 1120 9771M4 2083 341 689 125 885 014 002 013 007 4689 000 3632 482 754 1100 9951M5 2877 524 806 301 629 026 053 023 015 3639 000 2818 564 500 1040 9933M6 1032 259 293 087 147 009 040 008 013 6854 001 5308 205 2589 1170 9912Min 1032 069 231 008 016 004 002 002 002 679 000 526 162 090 200 9771Max 8540 791 1673 342 885 039 173 034 023 6854 014 5308 1170 2589 1170 9985Ave 4962 366 663 131 294 018 067 016 011 2679 004 2075 464 606 721 9936

Rad

Rad

Radmn

mn

(a)

Rad

Rad

mn

mn

(b)

Rad

Radmn

mn

mn

(c)

Rad Radmn

(d)

Figure 2 Laminated banded ((a) (b) (c)) and lenticular forms (d) in the ore bodies (mn manganese rad radiolarite)

Major oxide trace and REE geochemistry are very usefulfor understanding the formation conditions of ore depositsREE contents of 12 samples collected from the Buyukmahalmanganese mineralization are shown in Table 6

REE contents of the hydrothermal and hydrogenousferromanganese and manganese deposits differ considerablyand thus can provide great information on the genetic

processes involved in the formation of submarine man-ganese and ferromanganese ores [20ndash23] REE patterns ofthe studied deposit (Figure 8(a)) are compared with thoseof other hydrogenous and hydrothermal manganese deposits(Figure 8(b)) Results indicate that hydrogenous ferroman-ganese deposits are more enriched in REEs than theirhydrothermal equivalents Hydrogenous ferromanganese

Journal of Chemistry 5

Table2Tracee

lementscontentsof

Buyukm

ahalore(pp

m)

Sample

BaBe

Co

CsHf

Nb

RbSr

TaTh

UV

ZrMo

CuPb

ZnNi

As

Cd

SbBi

Ag

AuN1

10390

20

5632

28

23

74525

2962

05

7229

4980

926

59

4160

334

1160

2047

378

01

05

03

125

26

N2

8920

104349

29

32

152

606

1676

1187

21

3930

1319

124

2826

379

920

1992

435

01

02

05

56

05

NT1

9590

20

735

02

04

1221

3100

01

04

54

1260

175

258

12100

46

320

3410

295

01

22

01

104

50

NT2

9110

10802

1207

25

162

1311

01

1110

640

314

123

4898

153

210

4234

179

01

1001

01

24

NT3

10280

10359

1110

25

133

1840

01

1310

530

354

125

2436

202

130

4880

138

01

05

01

01

15NT4

50680

20

633

1207

23

171

6440

02

1924

1320

271

171

3292

361

300

3513

172

01

07

02

81

10M1

26120

20

507

22

08

26

264

3423

03

1821

860

285

59

3046

97310

259

7301

03

01

01

10M2

54080

30

1478

09

1323

183

7661

02

43

183460

651

83

4099

307

1190

2385

167

02

05

03

01

29

M3

168550

20

1346

25

20

51

466

16701

04

57

20

2600

830

101

3744

383

1280

2552

162

02

03

04

01

21

M4

7400

20

14321

01

09

1408

3212

01

26

29

9830

468

255

2331

292

1200

3427

451

03

04

02

01

79M5

33550

40

4173

1015

30

167

5120

02

47

21

3110

656

56

3728

366

1520

3200

116

02

04

04

01

29

M6

50360

50

9756

03

07

07

725528

01

1487

1830

315

159

7441

176

1280

1743

307

02

05

02

01

43

Min

7400

10359

01

04

07

08

1311

01

04

10530

175

56

2331

46

130

259

7301

02

01

01

05

Max

168550

50

14321

29

32

152

606

16701

1187

87

9830

1319

258

12100

383

1520

4880

451

03

22

05

125

79Av

e36586

23

3674

1413

39

232

4915

03

34

29

2863

547

131

4508

258

818

2804

239

02

06

02

31

28

6 Journal of Chemistry

Table3RE

Econtentsof

Buyukm

ahalore(pp

m)

Sample

LaCe

PrNd

SmEu

Gd

TbDy

Ho

ErTm

YbLu

YYHo

Ce a

nom

Dy N

Yb N

LaNN

d NN1

5090

5250

1447

6030

1114

275

1160

180

980

196

571

079

490

073

5460

2786minus034

130

164

N2

5330

7710

1739

7200

1544

376

1515

248

1359

264

740

104

648

089

6830

2587minus021

136

143

NT1

430

490

122

590

096

020

087

013

064

013

037

006

046

008

410

3154minus032

090

141

NT2

2250

1720

681

2760

427

094

339

053

260

049

129

020

117

016

640

1306minus048

144

158

NT3

1420

1770

352

1590

287

071

292

046

252

054

152

021

128

018

1270

2352minus026

128

173

NT4

1600

3030

420

1770

308

074

296

046

267

053

154

022

136

021

1330

2509minus007

128

175

M1

1310

2340

333

1350

254

061

272

043

265

053

146

021

142

021

790

1491minus009

121

188

M2

3980

3710

974

4010

781

190

792

127

734

155

445

064

406

061

4490

2897minus037

118

192

M3

4170

4270

1024

4320

835

195

874

139

786

161

487

070

438

067

4830

3000minus033

117

187

M4

2660

2360

553

2200

427

104

424

070

413

086

265

042

265

040

2320

2698minus038

101

234

M5

3780

3750

977

3990

765

183

716

116

663

131

381

055

369

054

3810

2908minus035

117

184

M6

3060

2660

650

2590

462

114

440

070

445

088

285

047

311

049

2330

2648minus039

093

229

Min

430

490

122

590

096

020

087

013

064

013

037

006

046

008

410

1306minus048

090

141

Max

5330

7710

1739

7200

1544

376

1515

248

1359

264

740

104

648

089

6830

3154minus007

144

234

Ave

2923

3255

773

3200

608

146

601

096

541

109

316

046

291

043

2876

2528minus030

119

181

Ce ano

m=log[3timesCe N

(2timesLa

N+Nd N

)]

Journal of Chemistry 7

975 905 835 765 695 625 555 485 415 345

Reference peak

Measured peak

Py

Py

Py

30120583m

Raman shift (cmminus1)

Figure 3 Ore microscopy and Raman spectroscopy images ofpyrolusite

deposits show positive Ce anomaly but hydrothermal fer-romanganese deposits are characteristic with negative Ceanomaly [22ndash24] All samples of the Buyukmahal manganesemineralization show strong negative Ce anomalies whichresemble the pattern of typical submarine hydrothermaldeposits (Figure 8(a)) However the Ce anomaly depends onthe temperature of the fluid the proximity to the hydrother-mal source and redox conditions [23 25 26] Eu also showsnegative anomaly in all samples indicating contaminationfrom the continental crust andor sediment contribution viadehydration [27]

In hydrothermal solutions LaNNdN ratio is 30ndash74 (aver-age 45) and DyNYbN ratio is 06ndash21 (average 12) Theseratios inMn-oxide crusts are 27ndash43 and 04ndash12 respectively[4] These rations in hydrogenous deposits are 090ndash150and 03ndash191 respectively [24] The ranges of LaNNdN andDyNYbN ratios for the Buyukmahal manganese mineraliza-tion are 141ndash234 (average 182) and 090ndash144 (average 118)(Table 6) These values imply that Buyukmahal mineraliza-tion might be a hydrogenous deposit

YHo ratios in the area range from 1306 to 3154 (average2505) High YHo ratios are indicative of multienvironmentsfor the mineral deposition In this respect both deep marineenvironments and terrigenous materials may be effective forprecipitation [30]

Data computed with the formula of Ceanom = log [3 timesCeN(2 times LaN + NdN)] also yield information on the originof mineralization For example in the case of Ceanom gt minus01Ce is said to be enriched which reflects an anoxic characterfor the water body of sedimentation If Ceanom lt minus01 there is

820 760 700 640 580 520 460 400 340

Reference peak

Measured peak

Mag

Mag

Py

PyPy

20120583m

RefRefereerencence pepeakak

MeaMeasursured ed peapeakk

Raman shift (cmminus1)

Figure 4 Ore microscopy and Raman spectroscopy images ofmagnetite mag magnetite py pyrolusite

Hydrothermal

Hydrogenous

Detrial-diagenetic

50

40

30

20

10

Al ()

Si (

)

0 2 4 6 8 10

Figure 5 SiAl diagram [16]

a negative Ce anomaly which indicates an oxic nature for thewater body of sedimentation [31] Ce anomalies in all samplesat Buyukmahal are found to be Ceanom lt minus01 indicating anoxic character for the sedimentation environment

6 Discussions and Conclusions

The AOC of Upper Cretaceous age is located along thenorthwestern and eastern margins in Yozgat (Turkey) and

8 Journal of Chemistry

Table 4 Composition of pyrolusite (pr) samples of Buyukmahal ore

(a)

Si Ti Al Fe Mn Mg Ca Na K Ba Ag Znpr48 261 008 061 326 7571 009 060 000 005 025 000 000pr49 226 010 043 270 8048 004 055 006 005 095 001 006pr50 152 019 042 300 7490 008 049 003 009 020 002 006pr51 232 008 059 302 7644 006 040 005 016 032 002 000Ave 218 011 051 299 7688 007 051 003 009 043 001 003

(b)

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O BaO Ag2O ZnOpr48 558 013 115 466 9776 015 008 000 006 028 000 000pr49 483 017 081 386 10392 007 077 008 006 106 001 007pr50 325 032 079 429 9671 013 069 004 011 022 002 007pr51 496 013 111 432 9870 010 056 007 019 036 002 000

(c)

Number of ions calculated on the basis of 2 (O)Coef Si Ti Al Fe Mn Mg Ca Na K Total

pr48 120 011 000 003 008 165 000 000 000 000 187pr49 116 009 000 002 006 170 000 002 000 000 190pr50 127 007 001 002 008 173 000 002 000 000 192pr51 120 010 000 003 007 167 000 001 000 000 189Ave 121 009 000 002 007 169 000 001 000 000 190

Ni Co

Zn

50

50

50

Hydrothermal

Hydrogenous

Figure 6 Ni-Zn-Co discrimination diagram [6]

is included to the Alpine Orogenic system Mineralizationin the Buyukmahal area observed in banded and lenticularforms occurs in a close associationwith radiolarite cherts andis intensely affected by the tectonism

Based on the results of major and trace element datamineralization in the study area was probably formed fromhydrothermal solutions associated with a sea floor spreadingcenter However ore minerals at Buyukmahal were not

HydrothermalFe Mn

Diagenetic

Hydrogenous

50

5050

(Ni + Co + Cu) times 10

Figure 7 Fe-(Ni + Co + Cu) times 10-Mn discrimination diagram [910 19]

precipitated entirely from a purely hydrothermal or purelyhydrogenous fluid but certainly from a mixture of thesetwo For instance Ti is generally immobile in hydrothermalsolutions and could be a measure of clastic input [32] Thegood correlation observed between Al

2O3and TiO

2(119903 =

099) can be attributed to the mixing of detrital materialsduring precipitation [6]

Journal of Chemistry 9

Table 5 Correlation relations for major oxides

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3

SiO2 100 minus056 minus043 minus067 minus071 minus055 minus017 minus049 minus068 minus089 078Al2O3 100 095 081 064 097 084 099 093 014 minus065Fe2O3 100 066 063 092 082 094 085 000 minus050MgO 100 059 088 055 082 081 036 minus067CaO 100 059 016 058 057 045 minus063Na2O 100 082 097 093 014 minus063K2O 100 087 077 minus021 minus038TiO2 100 091 006 minus064P2O5 100 033 minus065MnO 100 minus059Cr2O3 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

Table 6 Correlation relations for trace elements

Ba Co Rb Sr U Zr Mo Cu Pb Zn Ni As Bi AgBa 100 minus019 026 098 000 016 minus021 minus008 039 037 minus017 minus034 037 minus027Co 100 minus019 minus014 045 014 037 minus010 018 059 minus012 071 016 minus012Rb 100 021 minus033 085 minus057 minus037 054 023 minus042 018 069 030Sr 100 001 016 minus017 minus006 042 044 minus016 minus030 039 minus022U 100 minus027 042 067 minus035 025 minus029 036 minus014 017Zr 100 minus041 minus040 072 054 minus028 042 090 016Mo 100 047 minus032 minus022 039 050 minus037 019Cu 100 minus061 minus013 002 012 minus032 038Pb 100 060 002 018 083 004Zn 100 minus032 031 072 minus017Ni 100 minus005 minus026 minus003As 100 027 042Bi 100 005Ag 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

1

10

100

1000

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Sam

ple

cond

rite

(a)

Hydrothermal

Hydrogenous

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

REE

cond

rite

1000

100

10

1

(b)

Figure 8 (a) Chondrite normalized REE diagram for ore samples (normalization values are from Evensen et al [28]) (b) REE diagramshowing hydrogenous [29] and hydrothermal [29] fields

10 Journal of Chemistry

Fe compounds (less stable than Mn) precipitate prox-imal parts whilst Mn compounds precipitate distal partsof hydrothermal vents along the sea floor spreading cen-ters [33 34] Eh andor pH of the hydrothermal solutionalso exert controls on the precipitation of Mn and Fe andtheir compounds [34ndash37] Mn is more mobile relative toFe during low Eh andor pH conditions The fractionationof Mn compounds from Fe compounds suggests a spatialvariation in Eh andor pH [34] Considering Fe and Mnconcentrations of the mineralization in the study area it canbe asserted that Buyukmahal deposit was formed from ahydrothermal source in addition considering the high Fecontent mineralization might be formed in a proximal siteof the hydrothermal vent

Although mineralization at Buyukmahal is of a hydro-thermal type it does not originate from a pure hydrothermalor pure hydrogenous source Geochemical data support asystem contributed from both sources The mineralizationwas developed on a sea floor spreading center within theAlpin Ophiolite system and then obducted as part of theAOC

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This study constitutes a part of MS degree thesis of NeslihanOkuyucu The Scientific and Technical Research Council ofTurkey (TUBITAK Project no 109Y167) and the Bozok Uni-versity (Grant no BFFM2009-06) are greatly acknowledgedfor financial support Dr Ibrahim Uysal is kindly appreciatedfor his help in EMP analysisThe authors also thank ProfessorYusuf K Kadıoglu and Cumhur O Kılıc for the Ramanspectroscopy analysis

References

[1] N Oksuz ldquoGeochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit Turkeyrdquo Journal of Rare Earths vol29 no 3 pp 287ndash296 2011

[2] N Oksuz ldquoGeochemistry and the origin of manganese min-eralizations in Derbent (Yozgat) Regionrdquo Bulletin of the EarthSciences Application and Research Centre of Hacettepe Universitvol 32 no 3 pp 213ndash234 2011

[3] M Tahir Shah andC JMoon ldquoManganese and ferromanganeseores from different tectonic settings in the NW HimalayasPakistanrdquo Journal of Asian Earth Sciences vol 29 no 2-3 pp455ndash465 2007

[4] C E Fitzgerald and K M Gillis ldquoHydrothermal manganeseoxide deposits from Baby Bare seamount in the NortheastPacific Oceanrdquo Marine Geology vol 225 no 1ndash4 pp 145ndash1562006

[5] K Heshmatbehzadi and J Shahabpour ldquoMetallogeny of man-ganese and ferromanganese ores in baft ophiolitic MelangeKerman Iranrdquo Australian Journal of Basic and Applied Sciencesvol 4 no 2 pp 302ndash313 2010

[6] J H Choi and Y Hariya ldquoGeochemistry and depositional envi-ronment of Mn oxide deposits in the Tokoro Belt northeasternHokkaido Japanrdquo Economic Geology vol 87 no 5 pp 1265ndash1274 1992

[7] A Karakus B Yavuz and S Koc ldquoMineralogy and major-traceelement geochemistry of the Haymana manganese mineraliza-tions Ankara Turkeyrdquo Geochemistry International vol 48 no10 pp 1014ndash1027 2010

[8] S Koc O Ozmen and N Oksuz ldquoGeochemistry characteristicof kasimaga (Keskin-Kırıkkale) manganese oxide mineraliza-tionsrdquo Mineral Research and Exploration Magazine vol 122 p107 2000

[9] E Bonatti T Kraemer and H Rydell ldquoClassification andgenesis of submarine iron-manganese depositsrdquo in Ferroman-ganese Deposits on the Ocean Flor International Decade onOcean Exploration D Horn Ed pp 149ndash166 National ScienceFoundation Washington DC USA 1972

[10] D A Crerar J Namson M S Chyi L Williams and I MFeigenson ldquoManganiferous cherts of the Fransiscan assem-blage I General geology ancient and modern analogues andimplications for hydrothermal convection at oceanic spreadingcentersrdquo Economic Geology vol 77 pp 519ndash540 1982

[11] AOkay andOTuysuz ldquoTethyan sutures of northernTurkeyrdquo inTheMediterranean Basins Tertiary ExtensionWithin the AlpineOrogen B Durand L Jolivet F Horvath and M Serrane Edsvol 156 pp 475ndash515 Geological Society London UK 1999

[12] A E AkcayMDonmezHKara A F Yergok andK Esenturkldquo1100 000 scale geologicalmaps of Turkey Yozgat-I33 threaderrdquoMTA Ankara vol 80 pp 1ndash16 2007

[13] M T Shah and A Khan ldquoGeochemistry and origin of Mn-deposits in theWaziristan ophiolite complex northWaziristanPakistanrdquoMineraliumDeposita vol 34 no 7 pp 697ndash704 1999

[14] X Jiancheng S Weidong D Jianguo et al ldquoGeochemical stud-ies on Permian manganese deposits in Guichi eastern ChinaImplications for their origin and formative environmentsrdquoJournal of Asian Earth Science vol 74 pp 155ndash166 2013

[15] A Sasmaz B Turkyilmaz N Ozturk et al ldquoGeology and geo-chemistry of middle eocene maden complex ferromanganesedeposits from Elazıg-Malatya Region Eastern Turkeyrdquo OreGeology Reviews vol 56 pp 352ndash372 2014

[16] T Peters ldquoGeochemistry of manganese-bearing cherts associ-ated with Alpine ophiolites and the Hawasina formations inOmanrdquoMarine Geology vol 84 no 3-4 pp 229ndash238 1988

[17] A H Gultekin ldquoGeochemistry and origin of the OligoceneBinkılıc manganese deposit Thrace basin Turkeyrdquo TurkishJournal of Earth Sciences vol 7 p 11 1998

[18] D S Cronan ldquoUnderwater mineralsrdquo Academic Press LondonUK 1980

[19] J R Hein S S Marjorie and L M Gein ldquoCentral Pasificcobalt rich ferromanganese crusts Historical perspective andregional variabilityrdquo in Geology and Offshore Mineral Resourcesof the Central Pasific Basin SircumPasific Council for Energy andMineral Resources B H Keating and B R Balton Eds vol 14of Earth science series Springer New York NY USA 1992

[20] J R Toth ldquoDeposition of submarine crusts rich in manganeseand ironrdquo Geological Society of America Bulletin vol 91 no 1pp 44ndash54 1980

[21] D E Ruhlin andRMOwen ldquoThe rare earth element geochem-istry of hydrothermal sediments from the East Pacific Riseexamination of a seawater scavenging mechanismrdquo Geochimicaet Cosmochimica Acta vol 50 no 3 pp 393ndash400 1986

Journal of Chemistry 11

[22] J DWonder P G Spry and K EWindom ldquoGeochemistry andorigin of manganese-rich rocks related to iron-formation andsulfide deposits western Georgiardquo Economic Geology vol 83no 5 pp 1070ndash1081 1988

[23] J R Hein A Kochinsky P Halbach et al ldquoIron andmanganeseoxide mineralization in the Pacificrdquo in Manganese Mineraliza-tion Geochemistry and Mineralogy of Terrestrial and MarineDeposits K Nicholson J R Hein B Buhn and S DasguptaEds vol 119 pp 123ndash138 Geological Society London UK 1997

[24] H Elderfield C J Hawkesworth M J Greaves and S ECalvert ldquoRare earth element geochemistry of oceanic ferro-manganese nodules and associated sedimentsrdquo Geochimica etCosmochimica Acta vol 45 no 4 pp 513ndash528 1981

[25] N Clauer P Stille C Bonnot-Courtois and W S Moore ldquoNd-Sr isotopic and REE constraints on the genesis of hydrothermalmanganese crusts in the Galapagosrdquo Nature vol 311 no 5988pp 743ndash745 1984

[26] J R Hein Y Hsueh-Wen S H Gunn A E Gibbs and WChung-ho ldquoComposition and origin of hydrothermal iron-stones from central Pacific seamountsrdquo Geochimica et Cosmo-chimica Acta vol 58 no 1 pp 179ndash189 1994

[27] S S Sun and W F McDonough ldquoChemical and isotopic sys-tematics of oceanic basalts implications formantle compositionand processesrdquo inMagmatism in Ocean Basins A D Saundersand M J Norry Eds pp 313ndash345 Geological Society LondonUK 1989

[28] N M Evensen P J Hamilton and R K OrsquoNions ldquoRare-earthabundances in chondritic meteoritesrdquoGeochimica et Cosmochi-mica Acta vol 42 no 8 pp 1199ndash1212 1978

[29] U Von Stackelberg ldquoGrowth history of manganese nodules andcrusts of the Peru BasinrdquoGeological Society vol 119 pp 153ndash1761997

[30] J Nayan J Rongfen andW ZiyuPermain Palaeogeography andGeochemical Environment in Lower Yangtze Region PetroleumIndustry Press Beijing China 1994

[31] J Wright H Schrader andW T Holser ldquoPaleoredox variationsin ancient oceans recorded by rare earth elements in fossilapatiterdquo Geochimica et Cosmochimica Acta vol 51 no 3 pp631ndash644 1987

[32] R Sugisaki ldquoRelation between chemical composition andsedimentation rate of Pacific ocean-floor sediments depositedsince the middle Cretaceous basic evidence for chemicalconstraints on depositional environments of ancient sediments(plate tectonic orogenic model)rdquo Journal of Geology vol 92 no3 pp 235ndash259 1984

[33] AG Panagos and S PVaranavas ldquoOn the genesis of someman-ganese deposits from eastern Greecerdquo Syngenesis and Epigenesisin the Formation of Mineral Deposits pp 553ndash561 1984

[34] S Roy ldquoEnvironments and processes of manganese depositionrdquoEconomic Geology vol 87 no 5 pp 1218ndash1236 1992

[35] K B Krauskopf ldquoSeparation of manganese from iron in sedi-mentary processesrdquo Geochimica et Cosmochimica Acta vol 12no 1-2 pp 61ndash84 1957

[36] J D Hem ldquoChemical factors that influence that influence theavailability of iron and manganese in aqueous systemsrdquo Geo-logical Society of America Bulletin vol 83 pp 443ndash450 1972

[37] L Frakes and B Bolton ldquoEffects of ocean chemistry sealevel and climate on the formation of primary sedimentarymanganese ore depositsrdquo Economic Geology vol 87 no 5 pp1207ndash1217 1992

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 5: Research Article Mineralogy, Geochemistry, and Origin of ...downloads.hindawi.com/journals/jchem/2014/837972.pdf · of hydrothermal exhalative manganese deposits in ophiolitic regions

Journal of Chemistry 5

Table2Tracee

lementscontentsof

Buyukm

ahalore(pp

m)

Sample

BaBe

Co

CsHf

Nb

RbSr

TaTh

UV

ZrMo

CuPb

ZnNi

As

Cd

SbBi

Ag

AuN1

10390

20

5632

28

23

74525

2962

05

7229

4980

926

59

4160

334

1160

2047

378

01

05

03

125

26

N2

8920

104349

29

32

152

606

1676

1187

21

3930

1319

124

2826

379

920

1992

435

01

02

05

56

05

NT1

9590

20

735

02

04

1221

3100

01

04

54

1260

175

258

12100

46

320

3410

295

01

22

01

104

50

NT2

9110

10802

1207

25

162

1311

01

1110

640

314

123

4898

153

210

4234

179

01

1001

01

24

NT3

10280

10359

1110

25

133

1840

01

1310

530

354

125

2436

202

130

4880

138

01

05

01

01

15NT4

50680

20

633

1207

23

171

6440

02

1924

1320

271

171

3292

361

300

3513

172

01

07

02

81

10M1

26120

20

507

22

08

26

264

3423

03

1821

860

285

59

3046

97310

259

7301

03

01

01

10M2

54080

30

1478

09

1323

183

7661

02

43

183460

651

83

4099

307

1190

2385

167

02

05

03

01

29

M3

168550

20

1346

25

20

51

466

16701

04

57

20

2600

830

101

3744

383

1280

2552

162

02

03

04

01

21

M4

7400

20

14321

01

09

1408

3212

01

26

29

9830

468

255

2331

292

1200

3427

451

03

04

02

01

79M5

33550

40

4173

1015

30

167

5120

02

47

21

3110

656

56

3728

366

1520

3200

116

02

04

04

01

29

M6

50360

50

9756

03

07

07

725528

01

1487

1830

315

159

7441

176

1280

1743

307

02

05

02

01

43

Min

7400

10359

01

04

07

08

1311

01

04

10530

175

56

2331

46

130

259

7301

02

01

01

05

Max

168550

50

14321

29

32

152

606

16701

1187

87

9830

1319

258

12100

383

1520

4880

451

03

22

05

125

79Av

e36586

23

3674

1413

39

232

4915

03

34

29

2863

547

131

4508

258

818

2804

239

02

06

02

31

28

6 Journal of Chemistry

Table3RE

Econtentsof

Buyukm

ahalore(pp

m)

Sample

LaCe

PrNd

SmEu

Gd

TbDy

Ho

ErTm

YbLu

YYHo

Ce a

nom

Dy N

Yb N

LaNN

d NN1

5090

5250

1447

6030

1114

275

1160

180

980

196

571

079

490

073

5460

2786minus034

130

164

N2

5330

7710

1739

7200

1544

376

1515

248

1359

264

740

104

648

089

6830

2587minus021

136

143

NT1

430

490

122

590

096

020

087

013

064

013

037

006

046

008

410

3154minus032

090

141

NT2

2250

1720

681

2760

427

094

339

053

260

049

129

020

117

016

640

1306minus048

144

158

NT3

1420

1770

352

1590

287

071

292

046

252

054

152

021

128

018

1270

2352minus026

128

173

NT4

1600

3030

420

1770

308

074

296

046

267

053

154

022

136

021

1330

2509minus007

128

175

M1

1310

2340

333

1350

254

061

272

043

265

053

146

021

142

021

790

1491minus009

121

188

M2

3980

3710

974

4010

781

190

792

127

734

155

445

064

406

061

4490

2897minus037

118

192

M3

4170

4270

1024

4320

835

195

874

139

786

161

487

070

438

067

4830

3000minus033

117

187

M4

2660

2360

553

2200

427

104

424

070

413

086

265

042

265

040

2320

2698minus038

101

234

M5

3780

3750

977

3990

765

183

716

116

663

131

381

055

369

054

3810

2908minus035

117

184

M6

3060

2660

650

2590

462

114

440

070

445

088

285

047

311

049

2330

2648minus039

093

229

Min

430

490

122

590

096

020

087

013

064

013

037

006

046

008

410

1306minus048

090

141

Max

5330

7710

1739

7200

1544

376

1515

248

1359

264

740

104

648

089

6830

3154minus007

144

234

Ave

2923

3255

773

3200

608

146

601

096

541

109

316

046

291

043

2876

2528minus030

119

181

Ce ano

m=log[3timesCe N

(2timesLa

N+Nd N

)]

Journal of Chemistry 7

975 905 835 765 695 625 555 485 415 345

Reference peak

Measured peak

Py

Py

Py

30120583m

Raman shift (cmminus1)

Figure 3 Ore microscopy and Raman spectroscopy images ofpyrolusite

deposits show positive Ce anomaly but hydrothermal fer-romanganese deposits are characteristic with negative Ceanomaly [22ndash24] All samples of the Buyukmahal manganesemineralization show strong negative Ce anomalies whichresemble the pattern of typical submarine hydrothermaldeposits (Figure 8(a)) However the Ce anomaly depends onthe temperature of the fluid the proximity to the hydrother-mal source and redox conditions [23 25 26] Eu also showsnegative anomaly in all samples indicating contaminationfrom the continental crust andor sediment contribution viadehydration [27]

In hydrothermal solutions LaNNdN ratio is 30ndash74 (aver-age 45) and DyNYbN ratio is 06ndash21 (average 12) Theseratios inMn-oxide crusts are 27ndash43 and 04ndash12 respectively[4] These rations in hydrogenous deposits are 090ndash150and 03ndash191 respectively [24] The ranges of LaNNdN andDyNYbN ratios for the Buyukmahal manganese mineraliza-tion are 141ndash234 (average 182) and 090ndash144 (average 118)(Table 6) These values imply that Buyukmahal mineraliza-tion might be a hydrogenous deposit

YHo ratios in the area range from 1306 to 3154 (average2505) High YHo ratios are indicative of multienvironmentsfor the mineral deposition In this respect both deep marineenvironments and terrigenous materials may be effective forprecipitation [30]

Data computed with the formula of Ceanom = log [3 timesCeN(2 times LaN + NdN)] also yield information on the originof mineralization For example in the case of Ceanom gt minus01Ce is said to be enriched which reflects an anoxic characterfor the water body of sedimentation If Ceanom lt minus01 there is

820 760 700 640 580 520 460 400 340

Reference peak

Measured peak

Mag

Mag

Py

PyPy

20120583m

RefRefereerencence pepeakak

MeaMeasursured ed peapeakk

Raman shift (cmminus1)

Figure 4 Ore microscopy and Raman spectroscopy images ofmagnetite mag magnetite py pyrolusite

Hydrothermal

Hydrogenous

Detrial-diagenetic

50

40

30

20

10

Al ()

Si (

)

0 2 4 6 8 10

Figure 5 SiAl diagram [16]

a negative Ce anomaly which indicates an oxic nature for thewater body of sedimentation [31] Ce anomalies in all samplesat Buyukmahal are found to be Ceanom lt minus01 indicating anoxic character for the sedimentation environment

6 Discussions and Conclusions

The AOC of Upper Cretaceous age is located along thenorthwestern and eastern margins in Yozgat (Turkey) and

8 Journal of Chemistry

Table 4 Composition of pyrolusite (pr) samples of Buyukmahal ore

(a)

Si Ti Al Fe Mn Mg Ca Na K Ba Ag Znpr48 261 008 061 326 7571 009 060 000 005 025 000 000pr49 226 010 043 270 8048 004 055 006 005 095 001 006pr50 152 019 042 300 7490 008 049 003 009 020 002 006pr51 232 008 059 302 7644 006 040 005 016 032 002 000Ave 218 011 051 299 7688 007 051 003 009 043 001 003

(b)

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O BaO Ag2O ZnOpr48 558 013 115 466 9776 015 008 000 006 028 000 000pr49 483 017 081 386 10392 007 077 008 006 106 001 007pr50 325 032 079 429 9671 013 069 004 011 022 002 007pr51 496 013 111 432 9870 010 056 007 019 036 002 000

(c)

Number of ions calculated on the basis of 2 (O)Coef Si Ti Al Fe Mn Mg Ca Na K Total

pr48 120 011 000 003 008 165 000 000 000 000 187pr49 116 009 000 002 006 170 000 002 000 000 190pr50 127 007 001 002 008 173 000 002 000 000 192pr51 120 010 000 003 007 167 000 001 000 000 189Ave 121 009 000 002 007 169 000 001 000 000 190

Ni Co

Zn

50

50

50

Hydrothermal

Hydrogenous

Figure 6 Ni-Zn-Co discrimination diagram [6]

is included to the Alpine Orogenic system Mineralizationin the Buyukmahal area observed in banded and lenticularforms occurs in a close associationwith radiolarite cherts andis intensely affected by the tectonism

Based on the results of major and trace element datamineralization in the study area was probably formed fromhydrothermal solutions associated with a sea floor spreadingcenter However ore minerals at Buyukmahal were not

HydrothermalFe Mn

Diagenetic

Hydrogenous

50

5050

(Ni + Co + Cu) times 10

Figure 7 Fe-(Ni + Co + Cu) times 10-Mn discrimination diagram [910 19]

precipitated entirely from a purely hydrothermal or purelyhydrogenous fluid but certainly from a mixture of thesetwo For instance Ti is generally immobile in hydrothermalsolutions and could be a measure of clastic input [32] Thegood correlation observed between Al

2O3and TiO

2(119903 =

099) can be attributed to the mixing of detrital materialsduring precipitation [6]

Journal of Chemistry 9

Table 5 Correlation relations for major oxides

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3

SiO2 100 minus056 minus043 minus067 minus071 minus055 minus017 minus049 minus068 minus089 078Al2O3 100 095 081 064 097 084 099 093 014 minus065Fe2O3 100 066 063 092 082 094 085 000 minus050MgO 100 059 088 055 082 081 036 minus067CaO 100 059 016 058 057 045 minus063Na2O 100 082 097 093 014 minus063K2O 100 087 077 minus021 minus038TiO2 100 091 006 minus064P2O5 100 033 minus065MnO 100 minus059Cr2O3 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

Table 6 Correlation relations for trace elements

Ba Co Rb Sr U Zr Mo Cu Pb Zn Ni As Bi AgBa 100 minus019 026 098 000 016 minus021 minus008 039 037 minus017 minus034 037 minus027Co 100 minus019 minus014 045 014 037 minus010 018 059 minus012 071 016 minus012Rb 100 021 minus033 085 minus057 minus037 054 023 minus042 018 069 030Sr 100 001 016 minus017 minus006 042 044 minus016 minus030 039 minus022U 100 minus027 042 067 minus035 025 minus029 036 minus014 017Zr 100 minus041 minus040 072 054 minus028 042 090 016Mo 100 047 minus032 minus022 039 050 minus037 019Cu 100 minus061 minus013 002 012 minus032 038Pb 100 060 002 018 083 004Zn 100 minus032 031 072 minus017Ni 100 minus005 minus026 minus003As 100 027 042Bi 100 005Ag 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

1

10

100

1000

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Sam

ple

cond

rite

(a)

Hydrothermal

Hydrogenous

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

REE

cond

rite

1000

100

10

1

(b)

Figure 8 (a) Chondrite normalized REE diagram for ore samples (normalization values are from Evensen et al [28]) (b) REE diagramshowing hydrogenous [29] and hydrothermal [29] fields

10 Journal of Chemistry

Fe compounds (less stable than Mn) precipitate prox-imal parts whilst Mn compounds precipitate distal partsof hydrothermal vents along the sea floor spreading cen-ters [33 34] Eh andor pH of the hydrothermal solutionalso exert controls on the precipitation of Mn and Fe andtheir compounds [34ndash37] Mn is more mobile relative toFe during low Eh andor pH conditions The fractionationof Mn compounds from Fe compounds suggests a spatialvariation in Eh andor pH [34] Considering Fe and Mnconcentrations of the mineralization in the study area it canbe asserted that Buyukmahal deposit was formed from ahydrothermal source in addition considering the high Fecontent mineralization might be formed in a proximal siteof the hydrothermal vent

Although mineralization at Buyukmahal is of a hydro-thermal type it does not originate from a pure hydrothermalor pure hydrogenous source Geochemical data support asystem contributed from both sources The mineralizationwas developed on a sea floor spreading center within theAlpin Ophiolite system and then obducted as part of theAOC

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This study constitutes a part of MS degree thesis of NeslihanOkuyucu The Scientific and Technical Research Council ofTurkey (TUBITAK Project no 109Y167) and the Bozok Uni-versity (Grant no BFFM2009-06) are greatly acknowledgedfor financial support Dr Ibrahim Uysal is kindly appreciatedfor his help in EMP analysisThe authors also thank ProfessorYusuf K Kadıoglu and Cumhur O Kılıc for the Ramanspectroscopy analysis

References

[1] N Oksuz ldquoGeochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit Turkeyrdquo Journal of Rare Earths vol29 no 3 pp 287ndash296 2011

[2] N Oksuz ldquoGeochemistry and the origin of manganese min-eralizations in Derbent (Yozgat) Regionrdquo Bulletin of the EarthSciences Application and Research Centre of Hacettepe Universitvol 32 no 3 pp 213ndash234 2011

[3] M Tahir Shah andC JMoon ldquoManganese and ferromanganeseores from different tectonic settings in the NW HimalayasPakistanrdquo Journal of Asian Earth Sciences vol 29 no 2-3 pp455ndash465 2007

[4] C E Fitzgerald and K M Gillis ldquoHydrothermal manganeseoxide deposits from Baby Bare seamount in the NortheastPacific Oceanrdquo Marine Geology vol 225 no 1ndash4 pp 145ndash1562006

[5] K Heshmatbehzadi and J Shahabpour ldquoMetallogeny of man-ganese and ferromanganese ores in baft ophiolitic MelangeKerman Iranrdquo Australian Journal of Basic and Applied Sciencesvol 4 no 2 pp 302ndash313 2010

[6] J H Choi and Y Hariya ldquoGeochemistry and depositional envi-ronment of Mn oxide deposits in the Tokoro Belt northeasternHokkaido Japanrdquo Economic Geology vol 87 no 5 pp 1265ndash1274 1992

[7] A Karakus B Yavuz and S Koc ldquoMineralogy and major-traceelement geochemistry of the Haymana manganese mineraliza-tions Ankara Turkeyrdquo Geochemistry International vol 48 no10 pp 1014ndash1027 2010

[8] S Koc O Ozmen and N Oksuz ldquoGeochemistry characteristicof kasimaga (Keskin-Kırıkkale) manganese oxide mineraliza-tionsrdquo Mineral Research and Exploration Magazine vol 122 p107 2000

[9] E Bonatti T Kraemer and H Rydell ldquoClassification andgenesis of submarine iron-manganese depositsrdquo in Ferroman-ganese Deposits on the Ocean Flor International Decade onOcean Exploration D Horn Ed pp 149ndash166 National ScienceFoundation Washington DC USA 1972

[10] D A Crerar J Namson M S Chyi L Williams and I MFeigenson ldquoManganiferous cherts of the Fransiscan assem-blage I General geology ancient and modern analogues andimplications for hydrothermal convection at oceanic spreadingcentersrdquo Economic Geology vol 77 pp 519ndash540 1982

[11] AOkay andOTuysuz ldquoTethyan sutures of northernTurkeyrdquo inTheMediterranean Basins Tertiary ExtensionWithin the AlpineOrogen B Durand L Jolivet F Horvath and M Serrane Edsvol 156 pp 475ndash515 Geological Society London UK 1999

[12] A E AkcayMDonmezHKara A F Yergok andK Esenturkldquo1100 000 scale geologicalmaps of Turkey Yozgat-I33 threaderrdquoMTA Ankara vol 80 pp 1ndash16 2007

[13] M T Shah and A Khan ldquoGeochemistry and origin of Mn-deposits in theWaziristan ophiolite complex northWaziristanPakistanrdquoMineraliumDeposita vol 34 no 7 pp 697ndash704 1999

[14] X Jiancheng S Weidong D Jianguo et al ldquoGeochemical stud-ies on Permian manganese deposits in Guichi eastern ChinaImplications for their origin and formative environmentsrdquoJournal of Asian Earth Science vol 74 pp 155ndash166 2013

[15] A Sasmaz B Turkyilmaz N Ozturk et al ldquoGeology and geo-chemistry of middle eocene maden complex ferromanganesedeposits from Elazıg-Malatya Region Eastern Turkeyrdquo OreGeology Reviews vol 56 pp 352ndash372 2014

[16] T Peters ldquoGeochemistry of manganese-bearing cherts associ-ated with Alpine ophiolites and the Hawasina formations inOmanrdquoMarine Geology vol 84 no 3-4 pp 229ndash238 1988

[17] A H Gultekin ldquoGeochemistry and origin of the OligoceneBinkılıc manganese deposit Thrace basin Turkeyrdquo TurkishJournal of Earth Sciences vol 7 p 11 1998

[18] D S Cronan ldquoUnderwater mineralsrdquo Academic Press LondonUK 1980

[19] J R Hein S S Marjorie and L M Gein ldquoCentral Pasificcobalt rich ferromanganese crusts Historical perspective andregional variabilityrdquo in Geology and Offshore Mineral Resourcesof the Central Pasific Basin SircumPasific Council for Energy andMineral Resources B H Keating and B R Balton Eds vol 14of Earth science series Springer New York NY USA 1992

[20] J R Toth ldquoDeposition of submarine crusts rich in manganeseand ironrdquo Geological Society of America Bulletin vol 91 no 1pp 44ndash54 1980

[21] D E Ruhlin andRMOwen ldquoThe rare earth element geochem-istry of hydrothermal sediments from the East Pacific Riseexamination of a seawater scavenging mechanismrdquo Geochimicaet Cosmochimica Acta vol 50 no 3 pp 393ndash400 1986

Journal of Chemistry 11

[22] J DWonder P G Spry and K EWindom ldquoGeochemistry andorigin of manganese-rich rocks related to iron-formation andsulfide deposits western Georgiardquo Economic Geology vol 83no 5 pp 1070ndash1081 1988

[23] J R Hein A Kochinsky P Halbach et al ldquoIron andmanganeseoxide mineralization in the Pacificrdquo in Manganese Mineraliza-tion Geochemistry and Mineralogy of Terrestrial and MarineDeposits K Nicholson J R Hein B Buhn and S DasguptaEds vol 119 pp 123ndash138 Geological Society London UK 1997

[24] H Elderfield C J Hawkesworth M J Greaves and S ECalvert ldquoRare earth element geochemistry of oceanic ferro-manganese nodules and associated sedimentsrdquo Geochimica etCosmochimica Acta vol 45 no 4 pp 513ndash528 1981

[25] N Clauer P Stille C Bonnot-Courtois and W S Moore ldquoNd-Sr isotopic and REE constraints on the genesis of hydrothermalmanganese crusts in the Galapagosrdquo Nature vol 311 no 5988pp 743ndash745 1984

[26] J R Hein Y Hsueh-Wen S H Gunn A E Gibbs and WChung-ho ldquoComposition and origin of hydrothermal iron-stones from central Pacific seamountsrdquo Geochimica et Cosmo-chimica Acta vol 58 no 1 pp 179ndash189 1994

[27] S S Sun and W F McDonough ldquoChemical and isotopic sys-tematics of oceanic basalts implications formantle compositionand processesrdquo inMagmatism in Ocean Basins A D Saundersand M J Norry Eds pp 313ndash345 Geological Society LondonUK 1989

[28] N M Evensen P J Hamilton and R K OrsquoNions ldquoRare-earthabundances in chondritic meteoritesrdquoGeochimica et Cosmochi-mica Acta vol 42 no 8 pp 1199ndash1212 1978

[29] U Von Stackelberg ldquoGrowth history of manganese nodules andcrusts of the Peru BasinrdquoGeological Society vol 119 pp 153ndash1761997

[30] J Nayan J Rongfen andW ZiyuPermain Palaeogeography andGeochemical Environment in Lower Yangtze Region PetroleumIndustry Press Beijing China 1994

[31] J Wright H Schrader andW T Holser ldquoPaleoredox variationsin ancient oceans recorded by rare earth elements in fossilapatiterdquo Geochimica et Cosmochimica Acta vol 51 no 3 pp631ndash644 1987

[32] R Sugisaki ldquoRelation between chemical composition andsedimentation rate of Pacific ocean-floor sediments depositedsince the middle Cretaceous basic evidence for chemicalconstraints on depositional environments of ancient sediments(plate tectonic orogenic model)rdquo Journal of Geology vol 92 no3 pp 235ndash259 1984

[33] AG Panagos and S PVaranavas ldquoOn the genesis of someman-ganese deposits from eastern Greecerdquo Syngenesis and Epigenesisin the Formation of Mineral Deposits pp 553ndash561 1984

[34] S Roy ldquoEnvironments and processes of manganese depositionrdquoEconomic Geology vol 87 no 5 pp 1218ndash1236 1992

[35] K B Krauskopf ldquoSeparation of manganese from iron in sedi-mentary processesrdquo Geochimica et Cosmochimica Acta vol 12no 1-2 pp 61ndash84 1957

[36] J D Hem ldquoChemical factors that influence that influence theavailability of iron and manganese in aqueous systemsrdquo Geo-logical Society of America Bulletin vol 83 pp 443ndash450 1972

[37] L Frakes and B Bolton ldquoEffects of ocean chemistry sealevel and climate on the formation of primary sedimentarymanganese ore depositsrdquo Economic Geology vol 87 no 5 pp1207ndash1217 1992

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 6: Research Article Mineralogy, Geochemistry, and Origin of ...downloads.hindawi.com/journals/jchem/2014/837972.pdf · of hydrothermal exhalative manganese deposits in ophiolitic regions

6 Journal of Chemistry

Table3RE

Econtentsof

Buyukm

ahalore(pp

m)

Sample

LaCe

PrNd

SmEu

Gd

TbDy

Ho

ErTm

YbLu

YYHo

Ce a

nom

Dy N

Yb N

LaNN

d NN1

5090

5250

1447

6030

1114

275

1160

180

980

196

571

079

490

073

5460

2786minus034

130

164

N2

5330

7710

1739

7200

1544

376

1515

248

1359

264

740

104

648

089

6830

2587minus021

136

143

NT1

430

490

122

590

096

020

087

013

064

013

037

006

046

008

410

3154minus032

090

141

NT2

2250

1720

681

2760

427

094

339

053

260

049

129

020

117

016

640

1306minus048

144

158

NT3

1420

1770

352

1590

287

071

292

046

252

054

152

021

128

018

1270

2352minus026

128

173

NT4

1600

3030

420

1770

308

074

296

046

267

053

154

022

136

021

1330

2509minus007

128

175

M1

1310

2340

333

1350

254

061

272

043

265

053

146

021

142

021

790

1491minus009

121

188

M2

3980

3710

974

4010

781

190

792

127

734

155

445

064

406

061

4490

2897minus037

118

192

M3

4170

4270

1024

4320

835

195

874

139

786

161

487

070

438

067

4830

3000minus033

117

187

M4

2660

2360

553

2200

427

104

424

070

413

086

265

042

265

040

2320

2698minus038

101

234

M5

3780

3750

977

3990

765

183

716

116

663

131

381

055

369

054

3810

2908minus035

117

184

M6

3060

2660

650

2590

462

114

440

070

445

088

285

047

311

049

2330

2648minus039

093

229

Min

430

490

122

590

096

020

087

013

064

013

037

006

046

008

410

1306minus048

090

141

Max

5330

7710

1739

7200

1544

376

1515

248

1359

264

740

104

648

089

6830

3154minus007

144

234

Ave

2923

3255

773

3200

608

146

601

096

541

109

316

046

291

043

2876

2528minus030

119

181

Ce ano

m=log[3timesCe N

(2timesLa

N+Nd N

)]

Journal of Chemistry 7

975 905 835 765 695 625 555 485 415 345

Reference peak

Measured peak

Py

Py

Py

30120583m

Raman shift (cmminus1)

Figure 3 Ore microscopy and Raman spectroscopy images ofpyrolusite

deposits show positive Ce anomaly but hydrothermal fer-romanganese deposits are characteristic with negative Ceanomaly [22ndash24] All samples of the Buyukmahal manganesemineralization show strong negative Ce anomalies whichresemble the pattern of typical submarine hydrothermaldeposits (Figure 8(a)) However the Ce anomaly depends onthe temperature of the fluid the proximity to the hydrother-mal source and redox conditions [23 25 26] Eu also showsnegative anomaly in all samples indicating contaminationfrom the continental crust andor sediment contribution viadehydration [27]

In hydrothermal solutions LaNNdN ratio is 30ndash74 (aver-age 45) and DyNYbN ratio is 06ndash21 (average 12) Theseratios inMn-oxide crusts are 27ndash43 and 04ndash12 respectively[4] These rations in hydrogenous deposits are 090ndash150and 03ndash191 respectively [24] The ranges of LaNNdN andDyNYbN ratios for the Buyukmahal manganese mineraliza-tion are 141ndash234 (average 182) and 090ndash144 (average 118)(Table 6) These values imply that Buyukmahal mineraliza-tion might be a hydrogenous deposit

YHo ratios in the area range from 1306 to 3154 (average2505) High YHo ratios are indicative of multienvironmentsfor the mineral deposition In this respect both deep marineenvironments and terrigenous materials may be effective forprecipitation [30]

Data computed with the formula of Ceanom = log [3 timesCeN(2 times LaN + NdN)] also yield information on the originof mineralization For example in the case of Ceanom gt minus01Ce is said to be enriched which reflects an anoxic characterfor the water body of sedimentation If Ceanom lt minus01 there is

820 760 700 640 580 520 460 400 340

Reference peak

Measured peak

Mag

Mag

Py

PyPy

20120583m

RefRefereerencence pepeakak

MeaMeasursured ed peapeakk

Raman shift (cmminus1)

Figure 4 Ore microscopy and Raman spectroscopy images ofmagnetite mag magnetite py pyrolusite

Hydrothermal

Hydrogenous

Detrial-diagenetic

50

40

30

20

10

Al ()

Si (

)

0 2 4 6 8 10

Figure 5 SiAl diagram [16]

a negative Ce anomaly which indicates an oxic nature for thewater body of sedimentation [31] Ce anomalies in all samplesat Buyukmahal are found to be Ceanom lt minus01 indicating anoxic character for the sedimentation environment

6 Discussions and Conclusions

The AOC of Upper Cretaceous age is located along thenorthwestern and eastern margins in Yozgat (Turkey) and

8 Journal of Chemistry

Table 4 Composition of pyrolusite (pr) samples of Buyukmahal ore

(a)

Si Ti Al Fe Mn Mg Ca Na K Ba Ag Znpr48 261 008 061 326 7571 009 060 000 005 025 000 000pr49 226 010 043 270 8048 004 055 006 005 095 001 006pr50 152 019 042 300 7490 008 049 003 009 020 002 006pr51 232 008 059 302 7644 006 040 005 016 032 002 000Ave 218 011 051 299 7688 007 051 003 009 043 001 003

(b)

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O BaO Ag2O ZnOpr48 558 013 115 466 9776 015 008 000 006 028 000 000pr49 483 017 081 386 10392 007 077 008 006 106 001 007pr50 325 032 079 429 9671 013 069 004 011 022 002 007pr51 496 013 111 432 9870 010 056 007 019 036 002 000

(c)

Number of ions calculated on the basis of 2 (O)Coef Si Ti Al Fe Mn Mg Ca Na K Total

pr48 120 011 000 003 008 165 000 000 000 000 187pr49 116 009 000 002 006 170 000 002 000 000 190pr50 127 007 001 002 008 173 000 002 000 000 192pr51 120 010 000 003 007 167 000 001 000 000 189Ave 121 009 000 002 007 169 000 001 000 000 190

Ni Co

Zn

50

50

50

Hydrothermal

Hydrogenous

Figure 6 Ni-Zn-Co discrimination diagram [6]

is included to the Alpine Orogenic system Mineralizationin the Buyukmahal area observed in banded and lenticularforms occurs in a close associationwith radiolarite cherts andis intensely affected by the tectonism

Based on the results of major and trace element datamineralization in the study area was probably formed fromhydrothermal solutions associated with a sea floor spreadingcenter However ore minerals at Buyukmahal were not

HydrothermalFe Mn

Diagenetic

Hydrogenous

50

5050

(Ni + Co + Cu) times 10

Figure 7 Fe-(Ni + Co + Cu) times 10-Mn discrimination diagram [910 19]

precipitated entirely from a purely hydrothermal or purelyhydrogenous fluid but certainly from a mixture of thesetwo For instance Ti is generally immobile in hydrothermalsolutions and could be a measure of clastic input [32] Thegood correlation observed between Al

2O3and TiO

2(119903 =

099) can be attributed to the mixing of detrital materialsduring precipitation [6]

Journal of Chemistry 9

Table 5 Correlation relations for major oxides

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3

SiO2 100 minus056 minus043 minus067 minus071 minus055 minus017 minus049 minus068 minus089 078Al2O3 100 095 081 064 097 084 099 093 014 minus065Fe2O3 100 066 063 092 082 094 085 000 minus050MgO 100 059 088 055 082 081 036 minus067CaO 100 059 016 058 057 045 minus063Na2O 100 082 097 093 014 minus063K2O 100 087 077 minus021 minus038TiO2 100 091 006 minus064P2O5 100 033 minus065MnO 100 minus059Cr2O3 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

Table 6 Correlation relations for trace elements

Ba Co Rb Sr U Zr Mo Cu Pb Zn Ni As Bi AgBa 100 minus019 026 098 000 016 minus021 minus008 039 037 minus017 minus034 037 minus027Co 100 minus019 minus014 045 014 037 minus010 018 059 minus012 071 016 minus012Rb 100 021 minus033 085 minus057 minus037 054 023 minus042 018 069 030Sr 100 001 016 minus017 minus006 042 044 minus016 minus030 039 minus022U 100 minus027 042 067 minus035 025 minus029 036 minus014 017Zr 100 minus041 minus040 072 054 minus028 042 090 016Mo 100 047 minus032 minus022 039 050 minus037 019Cu 100 minus061 minus013 002 012 minus032 038Pb 100 060 002 018 083 004Zn 100 minus032 031 072 minus017Ni 100 minus005 minus026 minus003As 100 027 042Bi 100 005Ag 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

1

10

100

1000

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Sam

ple

cond

rite

(a)

Hydrothermal

Hydrogenous

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

REE

cond

rite

1000

100

10

1

(b)

Figure 8 (a) Chondrite normalized REE diagram for ore samples (normalization values are from Evensen et al [28]) (b) REE diagramshowing hydrogenous [29] and hydrothermal [29] fields

10 Journal of Chemistry

Fe compounds (less stable than Mn) precipitate prox-imal parts whilst Mn compounds precipitate distal partsof hydrothermal vents along the sea floor spreading cen-ters [33 34] Eh andor pH of the hydrothermal solutionalso exert controls on the precipitation of Mn and Fe andtheir compounds [34ndash37] Mn is more mobile relative toFe during low Eh andor pH conditions The fractionationof Mn compounds from Fe compounds suggests a spatialvariation in Eh andor pH [34] Considering Fe and Mnconcentrations of the mineralization in the study area it canbe asserted that Buyukmahal deposit was formed from ahydrothermal source in addition considering the high Fecontent mineralization might be formed in a proximal siteof the hydrothermal vent

Although mineralization at Buyukmahal is of a hydro-thermal type it does not originate from a pure hydrothermalor pure hydrogenous source Geochemical data support asystem contributed from both sources The mineralizationwas developed on a sea floor spreading center within theAlpin Ophiolite system and then obducted as part of theAOC

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This study constitutes a part of MS degree thesis of NeslihanOkuyucu The Scientific and Technical Research Council ofTurkey (TUBITAK Project no 109Y167) and the Bozok Uni-versity (Grant no BFFM2009-06) are greatly acknowledgedfor financial support Dr Ibrahim Uysal is kindly appreciatedfor his help in EMP analysisThe authors also thank ProfessorYusuf K Kadıoglu and Cumhur O Kılıc for the Ramanspectroscopy analysis

References

[1] N Oksuz ldquoGeochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit Turkeyrdquo Journal of Rare Earths vol29 no 3 pp 287ndash296 2011

[2] N Oksuz ldquoGeochemistry and the origin of manganese min-eralizations in Derbent (Yozgat) Regionrdquo Bulletin of the EarthSciences Application and Research Centre of Hacettepe Universitvol 32 no 3 pp 213ndash234 2011

[3] M Tahir Shah andC JMoon ldquoManganese and ferromanganeseores from different tectonic settings in the NW HimalayasPakistanrdquo Journal of Asian Earth Sciences vol 29 no 2-3 pp455ndash465 2007

[4] C E Fitzgerald and K M Gillis ldquoHydrothermal manganeseoxide deposits from Baby Bare seamount in the NortheastPacific Oceanrdquo Marine Geology vol 225 no 1ndash4 pp 145ndash1562006

[5] K Heshmatbehzadi and J Shahabpour ldquoMetallogeny of man-ganese and ferromanganese ores in baft ophiolitic MelangeKerman Iranrdquo Australian Journal of Basic and Applied Sciencesvol 4 no 2 pp 302ndash313 2010

[6] J H Choi and Y Hariya ldquoGeochemistry and depositional envi-ronment of Mn oxide deposits in the Tokoro Belt northeasternHokkaido Japanrdquo Economic Geology vol 87 no 5 pp 1265ndash1274 1992

[7] A Karakus B Yavuz and S Koc ldquoMineralogy and major-traceelement geochemistry of the Haymana manganese mineraliza-tions Ankara Turkeyrdquo Geochemistry International vol 48 no10 pp 1014ndash1027 2010

[8] S Koc O Ozmen and N Oksuz ldquoGeochemistry characteristicof kasimaga (Keskin-Kırıkkale) manganese oxide mineraliza-tionsrdquo Mineral Research and Exploration Magazine vol 122 p107 2000

[9] E Bonatti T Kraemer and H Rydell ldquoClassification andgenesis of submarine iron-manganese depositsrdquo in Ferroman-ganese Deposits on the Ocean Flor International Decade onOcean Exploration D Horn Ed pp 149ndash166 National ScienceFoundation Washington DC USA 1972

[10] D A Crerar J Namson M S Chyi L Williams and I MFeigenson ldquoManganiferous cherts of the Fransiscan assem-blage I General geology ancient and modern analogues andimplications for hydrothermal convection at oceanic spreadingcentersrdquo Economic Geology vol 77 pp 519ndash540 1982

[11] AOkay andOTuysuz ldquoTethyan sutures of northernTurkeyrdquo inTheMediterranean Basins Tertiary ExtensionWithin the AlpineOrogen B Durand L Jolivet F Horvath and M Serrane Edsvol 156 pp 475ndash515 Geological Society London UK 1999

[12] A E AkcayMDonmezHKara A F Yergok andK Esenturkldquo1100 000 scale geologicalmaps of Turkey Yozgat-I33 threaderrdquoMTA Ankara vol 80 pp 1ndash16 2007

[13] M T Shah and A Khan ldquoGeochemistry and origin of Mn-deposits in theWaziristan ophiolite complex northWaziristanPakistanrdquoMineraliumDeposita vol 34 no 7 pp 697ndash704 1999

[14] X Jiancheng S Weidong D Jianguo et al ldquoGeochemical stud-ies on Permian manganese deposits in Guichi eastern ChinaImplications for their origin and formative environmentsrdquoJournal of Asian Earth Science vol 74 pp 155ndash166 2013

[15] A Sasmaz B Turkyilmaz N Ozturk et al ldquoGeology and geo-chemistry of middle eocene maden complex ferromanganesedeposits from Elazıg-Malatya Region Eastern Turkeyrdquo OreGeology Reviews vol 56 pp 352ndash372 2014

[16] T Peters ldquoGeochemistry of manganese-bearing cherts associ-ated with Alpine ophiolites and the Hawasina formations inOmanrdquoMarine Geology vol 84 no 3-4 pp 229ndash238 1988

[17] A H Gultekin ldquoGeochemistry and origin of the OligoceneBinkılıc manganese deposit Thrace basin Turkeyrdquo TurkishJournal of Earth Sciences vol 7 p 11 1998

[18] D S Cronan ldquoUnderwater mineralsrdquo Academic Press LondonUK 1980

[19] J R Hein S S Marjorie and L M Gein ldquoCentral Pasificcobalt rich ferromanganese crusts Historical perspective andregional variabilityrdquo in Geology and Offshore Mineral Resourcesof the Central Pasific Basin SircumPasific Council for Energy andMineral Resources B H Keating and B R Balton Eds vol 14of Earth science series Springer New York NY USA 1992

[20] J R Toth ldquoDeposition of submarine crusts rich in manganeseand ironrdquo Geological Society of America Bulletin vol 91 no 1pp 44ndash54 1980

[21] D E Ruhlin andRMOwen ldquoThe rare earth element geochem-istry of hydrothermal sediments from the East Pacific Riseexamination of a seawater scavenging mechanismrdquo Geochimicaet Cosmochimica Acta vol 50 no 3 pp 393ndash400 1986

Journal of Chemistry 11

[22] J DWonder P G Spry and K EWindom ldquoGeochemistry andorigin of manganese-rich rocks related to iron-formation andsulfide deposits western Georgiardquo Economic Geology vol 83no 5 pp 1070ndash1081 1988

[23] J R Hein A Kochinsky P Halbach et al ldquoIron andmanganeseoxide mineralization in the Pacificrdquo in Manganese Mineraliza-tion Geochemistry and Mineralogy of Terrestrial and MarineDeposits K Nicholson J R Hein B Buhn and S DasguptaEds vol 119 pp 123ndash138 Geological Society London UK 1997

[24] H Elderfield C J Hawkesworth M J Greaves and S ECalvert ldquoRare earth element geochemistry of oceanic ferro-manganese nodules and associated sedimentsrdquo Geochimica etCosmochimica Acta vol 45 no 4 pp 513ndash528 1981

[25] N Clauer P Stille C Bonnot-Courtois and W S Moore ldquoNd-Sr isotopic and REE constraints on the genesis of hydrothermalmanganese crusts in the Galapagosrdquo Nature vol 311 no 5988pp 743ndash745 1984

[26] J R Hein Y Hsueh-Wen S H Gunn A E Gibbs and WChung-ho ldquoComposition and origin of hydrothermal iron-stones from central Pacific seamountsrdquo Geochimica et Cosmo-chimica Acta vol 58 no 1 pp 179ndash189 1994

[27] S S Sun and W F McDonough ldquoChemical and isotopic sys-tematics of oceanic basalts implications formantle compositionand processesrdquo inMagmatism in Ocean Basins A D Saundersand M J Norry Eds pp 313ndash345 Geological Society LondonUK 1989

[28] N M Evensen P J Hamilton and R K OrsquoNions ldquoRare-earthabundances in chondritic meteoritesrdquoGeochimica et Cosmochi-mica Acta vol 42 no 8 pp 1199ndash1212 1978

[29] U Von Stackelberg ldquoGrowth history of manganese nodules andcrusts of the Peru BasinrdquoGeological Society vol 119 pp 153ndash1761997

[30] J Nayan J Rongfen andW ZiyuPermain Palaeogeography andGeochemical Environment in Lower Yangtze Region PetroleumIndustry Press Beijing China 1994

[31] J Wright H Schrader andW T Holser ldquoPaleoredox variationsin ancient oceans recorded by rare earth elements in fossilapatiterdquo Geochimica et Cosmochimica Acta vol 51 no 3 pp631ndash644 1987

[32] R Sugisaki ldquoRelation between chemical composition andsedimentation rate of Pacific ocean-floor sediments depositedsince the middle Cretaceous basic evidence for chemicalconstraints on depositional environments of ancient sediments(plate tectonic orogenic model)rdquo Journal of Geology vol 92 no3 pp 235ndash259 1984

[33] AG Panagos and S PVaranavas ldquoOn the genesis of someman-ganese deposits from eastern Greecerdquo Syngenesis and Epigenesisin the Formation of Mineral Deposits pp 553ndash561 1984

[34] S Roy ldquoEnvironments and processes of manganese depositionrdquoEconomic Geology vol 87 no 5 pp 1218ndash1236 1992

[35] K B Krauskopf ldquoSeparation of manganese from iron in sedi-mentary processesrdquo Geochimica et Cosmochimica Acta vol 12no 1-2 pp 61ndash84 1957

[36] J D Hem ldquoChemical factors that influence that influence theavailability of iron and manganese in aqueous systemsrdquo Geo-logical Society of America Bulletin vol 83 pp 443ndash450 1972

[37] L Frakes and B Bolton ldquoEffects of ocean chemistry sealevel and climate on the formation of primary sedimentarymanganese ore depositsrdquo Economic Geology vol 87 no 5 pp1207ndash1217 1992

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 7: Research Article Mineralogy, Geochemistry, and Origin of ...downloads.hindawi.com/journals/jchem/2014/837972.pdf · of hydrothermal exhalative manganese deposits in ophiolitic regions

Journal of Chemistry 7

975 905 835 765 695 625 555 485 415 345

Reference peak

Measured peak

Py

Py

Py

30120583m

Raman shift (cmminus1)

Figure 3 Ore microscopy and Raman spectroscopy images ofpyrolusite

deposits show positive Ce anomaly but hydrothermal fer-romanganese deposits are characteristic with negative Ceanomaly [22ndash24] All samples of the Buyukmahal manganesemineralization show strong negative Ce anomalies whichresemble the pattern of typical submarine hydrothermaldeposits (Figure 8(a)) However the Ce anomaly depends onthe temperature of the fluid the proximity to the hydrother-mal source and redox conditions [23 25 26] Eu also showsnegative anomaly in all samples indicating contaminationfrom the continental crust andor sediment contribution viadehydration [27]

In hydrothermal solutions LaNNdN ratio is 30ndash74 (aver-age 45) and DyNYbN ratio is 06ndash21 (average 12) Theseratios inMn-oxide crusts are 27ndash43 and 04ndash12 respectively[4] These rations in hydrogenous deposits are 090ndash150and 03ndash191 respectively [24] The ranges of LaNNdN andDyNYbN ratios for the Buyukmahal manganese mineraliza-tion are 141ndash234 (average 182) and 090ndash144 (average 118)(Table 6) These values imply that Buyukmahal mineraliza-tion might be a hydrogenous deposit

YHo ratios in the area range from 1306 to 3154 (average2505) High YHo ratios are indicative of multienvironmentsfor the mineral deposition In this respect both deep marineenvironments and terrigenous materials may be effective forprecipitation [30]

Data computed with the formula of Ceanom = log [3 timesCeN(2 times LaN + NdN)] also yield information on the originof mineralization For example in the case of Ceanom gt minus01Ce is said to be enriched which reflects an anoxic characterfor the water body of sedimentation If Ceanom lt minus01 there is

820 760 700 640 580 520 460 400 340

Reference peak

Measured peak

Mag

Mag

Py

PyPy

20120583m

RefRefereerencence pepeakak

MeaMeasursured ed peapeakk

Raman shift (cmminus1)

Figure 4 Ore microscopy and Raman spectroscopy images ofmagnetite mag magnetite py pyrolusite

Hydrothermal

Hydrogenous

Detrial-diagenetic

50

40

30

20

10

Al ()

Si (

)

0 2 4 6 8 10

Figure 5 SiAl diagram [16]

a negative Ce anomaly which indicates an oxic nature for thewater body of sedimentation [31] Ce anomalies in all samplesat Buyukmahal are found to be Ceanom lt minus01 indicating anoxic character for the sedimentation environment

6 Discussions and Conclusions

The AOC of Upper Cretaceous age is located along thenorthwestern and eastern margins in Yozgat (Turkey) and

8 Journal of Chemistry

Table 4 Composition of pyrolusite (pr) samples of Buyukmahal ore

(a)

Si Ti Al Fe Mn Mg Ca Na K Ba Ag Znpr48 261 008 061 326 7571 009 060 000 005 025 000 000pr49 226 010 043 270 8048 004 055 006 005 095 001 006pr50 152 019 042 300 7490 008 049 003 009 020 002 006pr51 232 008 059 302 7644 006 040 005 016 032 002 000Ave 218 011 051 299 7688 007 051 003 009 043 001 003

(b)

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O BaO Ag2O ZnOpr48 558 013 115 466 9776 015 008 000 006 028 000 000pr49 483 017 081 386 10392 007 077 008 006 106 001 007pr50 325 032 079 429 9671 013 069 004 011 022 002 007pr51 496 013 111 432 9870 010 056 007 019 036 002 000

(c)

Number of ions calculated on the basis of 2 (O)Coef Si Ti Al Fe Mn Mg Ca Na K Total

pr48 120 011 000 003 008 165 000 000 000 000 187pr49 116 009 000 002 006 170 000 002 000 000 190pr50 127 007 001 002 008 173 000 002 000 000 192pr51 120 010 000 003 007 167 000 001 000 000 189Ave 121 009 000 002 007 169 000 001 000 000 190

Ni Co

Zn

50

50

50

Hydrothermal

Hydrogenous

Figure 6 Ni-Zn-Co discrimination diagram [6]

is included to the Alpine Orogenic system Mineralizationin the Buyukmahal area observed in banded and lenticularforms occurs in a close associationwith radiolarite cherts andis intensely affected by the tectonism

Based on the results of major and trace element datamineralization in the study area was probably formed fromhydrothermal solutions associated with a sea floor spreadingcenter However ore minerals at Buyukmahal were not

HydrothermalFe Mn

Diagenetic

Hydrogenous

50

5050

(Ni + Co + Cu) times 10

Figure 7 Fe-(Ni + Co + Cu) times 10-Mn discrimination diagram [910 19]

precipitated entirely from a purely hydrothermal or purelyhydrogenous fluid but certainly from a mixture of thesetwo For instance Ti is generally immobile in hydrothermalsolutions and could be a measure of clastic input [32] Thegood correlation observed between Al

2O3and TiO

2(119903 =

099) can be attributed to the mixing of detrital materialsduring precipitation [6]

Journal of Chemistry 9

Table 5 Correlation relations for major oxides

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3

SiO2 100 minus056 minus043 minus067 minus071 minus055 minus017 minus049 minus068 minus089 078Al2O3 100 095 081 064 097 084 099 093 014 minus065Fe2O3 100 066 063 092 082 094 085 000 minus050MgO 100 059 088 055 082 081 036 minus067CaO 100 059 016 058 057 045 minus063Na2O 100 082 097 093 014 minus063K2O 100 087 077 minus021 minus038TiO2 100 091 006 minus064P2O5 100 033 minus065MnO 100 minus059Cr2O3 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

Table 6 Correlation relations for trace elements

Ba Co Rb Sr U Zr Mo Cu Pb Zn Ni As Bi AgBa 100 minus019 026 098 000 016 minus021 minus008 039 037 minus017 minus034 037 minus027Co 100 minus019 minus014 045 014 037 minus010 018 059 minus012 071 016 minus012Rb 100 021 minus033 085 minus057 minus037 054 023 minus042 018 069 030Sr 100 001 016 minus017 minus006 042 044 minus016 minus030 039 minus022U 100 minus027 042 067 minus035 025 minus029 036 minus014 017Zr 100 minus041 minus040 072 054 minus028 042 090 016Mo 100 047 minus032 minus022 039 050 minus037 019Cu 100 minus061 minus013 002 012 minus032 038Pb 100 060 002 018 083 004Zn 100 minus032 031 072 minus017Ni 100 minus005 minus026 minus003As 100 027 042Bi 100 005Ag 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

1

10

100

1000

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Sam

ple

cond

rite

(a)

Hydrothermal

Hydrogenous

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

REE

cond

rite

1000

100

10

1

(b)

Figure 8 (a) Chondrite normalized REE diagram for ore samples (normalization values are from Evensen et al [28]) (b) REE diagramshowing hydrogenous [29] and hydrothermal [29] fields

10 Journal of Chemistry

Fe compounds (less stable than Mn) precipitate prox-imal parts whilst Mn compounds precipitate distal partsof hydrothermal vents along the sea floor spreading cen-ters [33 34] Eh andor pH of the hydrothermal solutionalso exert controls on the precipitation of Mn and Fe andtheir compounds [34ndash37] Mn is more mobile relative toFe during low Eh andor pH conditions The fractionationof Mn compounds from Fe compounds suggests a spatialvariation in Eh andor pH [34] Considering Fe and Mnconcentrations of the mineralization in the study area it canbe asserted that Buyukmahal deposit was formed from ahydrothermal source in addition considering the high Fecontent mineralization might be formed in a proximal siteof the hydrothermal vent

Although mineralization at Buyukmahal is of a hydro-thermal type it does not originate from a pure hydrothermalor pure hydrogenous source Geochemical data support asystem contributed from both sources The mineralizationwas developed on a sea floor spreading center within theAlpin Ophiolite system and then obducted as part of theAOC

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This study constitutes a part of MS degree thesis of NeslihanOkuyucu The Scientific and Technical Research Council ofTurkey (TUBITAK Project no 109Y167) and the Bozok Uni-versity (Grant no BFFM2009-06) are greatly acknowledgedfor financial support Dr Ibrahim Uysal is kindly appreciatedfor his help in EMP analysisThe authors also thank ProfessorYusuf K Kadıoglu and Cumhur O Kılıc for the Ramanspectroscopy analysis

References

[1] N Oksuz ldquoGeochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit Turkeyrdquo Journal of Rare Earths vol29 no 3 pp 287ndash296 2011

[2] N Oksuz ldquoGeochemistry and the origin of manganese min-eralizations in Derbent (Yozgat) Regionrdquo Bulletin of the EarthSciences Application and Research Centre of Hacettepe Universitvol 32 no 3 pp 213ndash234 2011

[3] M Tahir Shah andC JMoon ldquoManganese and ferromanganeseores from different tectonic settings in the NW HimalayasPakistanrdquo Journal of Asian Earth Sciences vol 29 no 2-3 pp455ndash465 2007

[4] C E Fitzgerald and K M Gillis ldquoHydrothermal manganeseoxide deposits from Baby Bare seamount in the NortheastPacific Oceanrdquo Marine Geology vol 225 no 1ndash4 pp 145ndash1562006

[5] K Heshmatbehzadi and J Shahabpour ldquoMetallogeny of man-ganese and ferromanganese ores in baft ophiolitic MelangeKerman Iranrdquo Australian Journal of Basic and Applied Sciencesvol 4 no 2 pp 302ndash313 2010

[6] J H Choi and Y Hariya ldquoGeochemistry and depositional envi-ronment of Mn oxide deposits in the Tokoro Belt northeasternHokkaido Japanrdquo Economic Geology vol 87 no 5 pp 1265ndash1274 1992

[7] A Karakus B Yavuz and S Koc ldquoMineralogy and major-traceelement geochemistry of the Haymana manganese mineraliza-tions Ankara Turkeyrdquo Geochemistry International vol 48 no10 pp 1014ndash1027 2010

[8] S Koc O Ozmen and N Oksuz ldquoGeochemistry characteristicof kasimaga (Keskin-Kırıkkale) manganese oxide mineraliza-tionsrdquo Mineral Research and Exploration Magazine vol 122 p107 2000

[9] E Bonatti T Kraemer and H Rydell ldquoClassification andgenesis of submarine iron-manganese depositsrdquo in Ferroman-ganese Deposits on the Ocean Flor International Decade onOcean Exploration D Horn Ed pp 149ndash166 National ScienceFoundation Washington DC USA 1972

[10] D A Crerar J Namson M S Chyi L Williams and I MFeigenson ldquoManganiferous cherts of the Fransiscan assem-blage I General geology ancient and modern analogues andimplications for hydrothermal convection at oceanic spreadingcentersrdquo Economic Geology vol 77 pp 519ndash540 1982

[11] AOkay andOTuysuz ldquoTethyan sutures of northernTurkeyrdquo inTheMediterranean Basins Tertiary ExtensionWithin the AlpineOrogen B Durand L Jolivet F Horvath and M Serrane Edsvol 156 pp 475ndash515 Geological Society London UK 1999

[12] A E AkcayMDonmezHKara A F Yergok andK Esenturkldquo1100 000 scale geologicalmaps of Turkey Yozgat-I33 threaderrdquoMTA Ankara vol 80 pp 1ndash16 2007

[13] M T Shah and A Khan ldquoGeochemistry and origin of Mn-deposits in theWaziristan ophiolite complex northWaziristanPakistanrdquoMineraliumDeposita vol 34 no 7 pp 697ndash704 1999

[14] X Jiancheng S Weidong D Jianguo et al ldquoGeochemical stud-ies on Permian manganese deposits in Guichi eastern ChinaImplications for their origin and formative environmentsrdquoJournal of Asian Earth Science vol 74 pp 155ndash166 2013

[15] A Sasmaz B Turkyilmaz N Ozturk et al ldquoGeology and geo-chemistry of middle eocene maden complex ferromanganesedeposits from Elazıg-Malatya Region Eastern Turkeyrdquo OreGeology Reviews vol 56 pp 352ndash372 2014

[16] T Peters ldquoGeochemistry of manganese-bearing cherts associ-ated with Alpine ophiolites and the Hawasina formations inOmanrdquoMarine Geology vol 84 no 3-4 pp 229ndash238 1988

[17] A H Gultekin ldquoGeochemistry and origin of the OligoceneBinkılıc manganese deposit Thrace basin Turkeyrdquo TurkishJournal of Earth Sciences vol 7 p 11 1998

[18] D S Cronan ldquoUnderwater mineralsrdquo Academic Press LondonUK 1980

[19] J R Hein S S Marjorie and L M Gein ldquoCentral Pasificcobalt rich ferromanganese crusts Historical perspective andregional variabilityrdquo in Geology and Offshore Mineral Resourcesof the Central Pasific Basin SircumPasific Council for Energy andMineral Resources B H Keating and B R Balton Eds vol 14of Earth science series Springer New York NY USA 1992

[20] J R Toth ldquoDeposition of submarine crusts rich in manganeseand ironrdquo Geological Society of America Bulletin vol 91 no 1pp 44ndash54 1980

[21] D E Ruhlin andRMOwen ldquoThe rare earth element geochem-istry of hydrothermal sediments from the East Pacific Riseexamination of a seawater scavenging mechanismrdquo Geochimicaet Cosmochimica Acta vol 50 no 3 pp 393ndash400 1986

Journal of Chemistry 11

[22] J DWonder P G Spry and K EWindom ldquoGeochemistry andorigin of manganese-rich rocks related to iron-formation andsulfide deposits western Georgiardquo Economic Geology vol 83no 5 pp 1070ndash1081 1988

[23] J R Hein A Kochinsky P Halbach et al ldquoIron andmanganeseoxide mineralization in the Pacificrdquo in Manganese Mineraliza-tion Geochemistry and Mineralogy of Terrestrial and MarineDeposits K Nicholson J R Hein B Buhn and S DasguptaEds vol 119 pp 123ndash138 Geological Society London UK 1997

[24] H Elderfield C J Hawkesworth M J Greaves and S ECalvert ldquoRare earth element geochemistry of oceanic ferro-manganese nodules and associated sedimentsrdquo Geochimica etCosmochimica Acta vol 45 no 4 pp 513ndash528 1981

[25] N Clauer P Stille C Bonnot-Courtois and W S Moore ldquoNd-Sr isotopic and REE constraints on the genesis of hydrothermalmanganese crusts in the Galapagosrdquo Nature vol 311 no 5988pp 743ndash745 1984

[26] J R Hein Y Hsueh-Wen S H Gunn A E Gibbs and WChung-ho ldquoComposition and origin of hydrothermal iron-stones from central Pacific seamountsrdquo Geochimica et Cosmo-chimica Acta vol 58 no 1 pp 179ndash189 1994

[27] S S Sun and W F McDonough ldquoChemical and isotopic sys-tematics of oceanic basalts implications formantle compositionand processesrdquo inMagmatism in Ocean Basins A D Saundersand M J Norry Eds pp 313ndash345 Geological Society LondonUK 1989

[28] N M Evensen P J Hamilton and R K OrsquoNions ldquoRare-earthabundances in chondritic meteoritesrdquoGeochimica et Cosmochi-mica Acta vol 42 no 8 pp 1199ndash1212 1978

[29] U Von Stackelberg ldquoGrowth history of manganese nodules andcrusts of the Peru BasinrdquoGeological Society vol 119 pp 153ndash1761997

[30] J Nayan J Rongfen andW ZiyuPermain Palaeogeography andGeochemical Environment in Lower Yangtze Region PetroleumIndustry Press Beijing China 1994

[31] J Wright H Schrader andW T Holser ldquoPaleoredox variationsin ancient oceans recorded by rare earth elements in fossilapatiterdquo Geochimica et Cosmochimica Acta vol 51 no 3 pp631ndash644 1987

[32] R Sugisaki ldquoRelation between chemical composition andsedimentation rate of Pacific ocean-floor sediments depositedsince the middle Cretaceous basic evidence for chemicalconstraints on depositional environments of ancient sediments(plate tectonic orogenic model)rdquo Journal of Geology vol 92 no3 pp 235ndash259 1984

[33] AG Panagos and S PVaranavas ldquoOn the genesis of someman-ganese deposits from eastern Greecerdquo Syngenesis and Epigenesisin the Formation of Mineral Deposits pp 553ndash561 1984

[34] S Roy ldquoEnvironments and processes of manganese depositionrdquoEconomic Geology vol 87 no 5 pp 1218ndash1236 1992

[35] K B Krauskopf ldquoSeparation of manganese from iron in sedi-mentary processesrdquo Geochimica et Cosmochimica Acta vol 12no 1-2 pp 61ndash84 1957

[36] J D Hem ldquoChemical factors that influence that influence theavailability of iron and manganese in aqueous systemsrdquo Geo-logical Society of America Bulletin vol 83 pp 443ndash450 1972

[37] L Frakes and B Bolton ldquoEffects of ocean chemistry sealevel and climate on the formation of primary sedimentarymanganese ore depositsrdquo Economic Geology vol 87 no 5 pp1207ndash1217 1992

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 8: Research Article Mineralogy, Geochemistry, and Origin of ...downloads.hindawi.com/journals/jchem/2014/837972.pdf · of hydrothermal exhalative manganese deposits in ophiolitic regions

8 Journal of Chemistry

Table 4 Composition of pyrolusite (pr) samples of Buyukmahal ore

(a)

Si Ti Al Fe Mn Mg Ca Na K Ba Ag Znpr48 261 008 061 326 7571 009 060 000 005 025 000 000pr49 226 010 043 270 8048 004 055 006 005 095 001 006pr50 152 019 042 300 7490 008 049 003 009 020 002 006pr51 232 008 059 302 7644 006 040 005 016 032 002 000Ave 218 011 051 299 7688 007 051 003 009 043 001 003

(b)

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O BaO Ag2O ZnOpr48 558 013 115 466 9776 015 008 000 006 028 000 000pr49 483 017 081 386 10392 007 077 008 006 106 001 007pr50 325 032 079 429 9671 013 069 004 011 022 002 007pr51 496 013 111 432 9870 010 056 007 019 036 002 000

(c)

Number of ions calculated on the basis of 2 (O)Coef Si Ti Al Fe Mn Mg Ca Na K Total

pr48 120 011 000 003 008 165 000 000 000 000 187pr49 116 009 000 002 006 170 000 002 000 000 190pr50 127 007 001 002 008 173 000 002 000 000 192pr51 120 010 000 003 007 167 000 001 000 000 189Ave 121 009 000 002 007 169 000 001 000 000 190

Ni Co

Zn

50

50

50

Hydrothermal

Hydrogenous

Figure 6 Ni-Zn-Co discrimination diagram [6]

is included to the Alpine Orogenic system Mineralizationin the Buyukmahal area observed in banded and lenticularforms occurs in a close associationwith radiolarite cherts andis intensely affected by the tectonism

Based on the results of major and trace element datamineralization in the study area was probably formed fromhydrothermal solutions associated with a sea floor spreadingcenter However ore minerals at Buyukmahal were not

HydrothermalFe Mn

Diagenetic

Hydrogenous

50

5050

(Ni + Co + Cu) times 10

Figure 7 Fe-(Ni + Co + Cu) times 10-Mn discrimination diagram [910 19]

precipitated entirely from a purely hydrothermal or purelyhydrogenous fluid but certainly from a mixture of thesetwo For instance Ti is generally immobile in hydrothermalsolutions and could be a measure of clastic input [32] Thegood correlation observed between Al

2O3and TiO

2(119903 =

099) can be attributed to the mixing of detrital materialsduring precipitation [6]

Journal of Chemistry 9

Table 5 Correlation relations for major oxides

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3

SiO2 100 minus056 minus043 minus067 minus071 minus055 minus017 minus049 minus068 minus089 078Al2O3 100 095 081 064 097 084 099 093 014 minus065Fe2O3 100 066 063 092 082 094 085 000 minus050MgO 100 059 088 055 082 081 036 minus067CaO 100 059 016 058 057 045 minus063Na2O 100 082 097 093 014 minus063K2O 100 087 077 minus021 minus038TiO2 100 091 006 minus064P2O5 100 033 minus065MnO 100 minus059Cr2O3 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

Table 6 Correlation relations for trace elements

Ba Co Rb Sr U Zr Mo Cu Pb Zn Ni As Bi AgBa 100 minus019 026 098 000 016 minus021 minus008 039 037 minus017 minus034 037 minus027Co 100 minus019 minus014 045 014 037 minus010 018 059 minus012 071 016 minus012Rb 100 021 minus033 085 minus057 minus037 054 023 minus042 018 069 030Sr 100 001 016 minus017 minus006 042 044 minus016 minus030 039 minus022U 100 minus027 042 067 minus035 025 minus029 036 minus014 017Zr 100 minus041 minus040 072 054 minus028 042 090 016Mo 100 047 minus032 minus022 039 050 minus037 019Cu 100 minus061 minus013 002 012 minus032 038Pb 100 060 002 018 083 004Zn 100 minus032 031 072 minus017Ni 100 minus005 minus026 minus003As 100 027 042Bi 100 005Ag 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

1

10

100

1000

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Sam

ple

cond

rite

(a)

Hydrothermal

Hydrogenous

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

REE

cond

rite

1000

100

10

1

(b)

Figure 8 (a) Chondrite normalized REE diagram for ore samples (normalization values are from Evensen et al [28]) (b) REE diagramshowing hydrogenous [29] and hydrothermal [29] fields

10 Journal of Chemistry

Fe compounds (less stable than Mn) precipitate prox-imal parts whilst Mn compounds precipitate distal partsof hydrothermal vents along the sea floor spreading cen-ters [33 34] Eh andor pH of the hydrothermal solutionalso exert controls on the precipitation of Mn and Fe andtheir compounds [34ndash37] Mn is more mobile relative toFe during low Eh andor pH conditions The fractionationof Mn compounds from Fe compounds suggests a spatialvariation in Eh andor pH [34] Considering Fe and Mnconcentrations of the mineralization in the study area it canbe asserted that Buyukmahal deposit was formed from ahydrothermal source in addition considering the high Fecontent mineralization might be formed in a proximal siteof the hydrothermal vent

Although mineralization at Buyukmahal is of a hydro-thermal type it does not originate from a pure hydrothermalor pure hydrogenous source Geochemical data support asystem contributed from both sources The mineralizationwas developed on a sea floor spreading center within theAlpin Ophiolite system and then obducted as part of theAOC

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This study constitutes a part of MS degree thesis of NeslihanOkuyucu The Scientific and Technical Research Council ofTurkey (TUBITAK Project no 109Y167) and the Bozok Uni-versity (Grant no BFFM2009-06) are greatly acknowledgedfor financial support Dr Ibrahim Uysal is kindly appreciatedfor his help in EMP analysisThe authors also thank ProfessorYusuf K Kadıoglu and Cumhur O Kılıc for the Ramanspectroscopy analysis

References

[1] N Oksuz ldquoGeochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit Turkeyrdquo Journal of Rare Earths vol29 no 3 pp 287ndash296 2011

[2] N Oksuz ldquoGeochemistry and the origin of manganese min-eralizations in Derbent (Yozgat) Regionrdquo Bulletin of the EarthSciences Application and Research Centre of Hacettepe Universitvol 32 no 3 pp 213ndash234 2011

[3] M Tahir Shah andC JMoon ldquoManganese and ferromanganeseores from different tectonic settings in the NW HimalayasPakistanrdquo Journal of Asian Earth Sciences vol 29 no 2-3 pp455ndash465 2007

[4] C E Fitzgerald and K M Gillis ldquoHydrothermal manganeseoxide deposits from Baby Bare seamount in the NortheastPacific Oceanrdquo Marine Geology vol 225 no 1ndash4 pp 145ndash1562006

[5] K Heshmatbehzadi and J Shahabpour ldquoMetallogeny of man-ganese and ferromanganese ores in baft ophiolitic MelangeKerman Iranrdquo Australian Journal of Basic and Applied Sciencesvol 4 no 2 pp 302ndash313 2010

[6] J H Choi and Y Hariya ldquoGeochemistry and depositional envi-ronment of Mn oxide deposits in the Tokoro Belt northeasternHokkaido Japanrdquo Economic Geology vol 87 no 5 pp 1265ndash1274 1992

[7] A Karakus B Yavuz and S Koc ldquoMineralogy and major-traceelement geochemistry of the Haymana manganese mineraliza-tions Ankara Turkeyrdquo Geochemistry International vol 48 no10 pp 1014ndash1027 2010

[8] S Koc O Ozmen and N Oksuz ldquoGeochemistry characteristicof kasimaga (Keskin-Kırıkkale) manganese oxide mineraliza-tionsrdquo Mineral Research and Exploration Magazine vol 122 p107 2000

[9] E Bonatti T Kraemer and H Rydell ldquoClassification andgenesis of submarine iron-manganese depositsrdquo in Ferroman-ganese Deposits on the Ocean Flor International Decade onOcean Exploration D Horn Ed pp 149ndash166 National ScienceFoundation Washington DC USA 1972

[10] D A Crerar J Namson M S Chyi L Williams and I MFeigenson ldquoManganiferous cherts of the Fransiscan assem-blage I General geology ancient and modern analogues andimplications for hydrothermal convection at oceanic spreadingcentersrdquo Economic Geology vol 77 pp 519ndash540 1982

[11] AOkay andOTuysuz ldquoTethyan sutures of northernTurkeyrdquo inTheMediterranean Basins Tertiary ExtensionWithin the AlpineOrogen B Durand L Jolivet F Horvath and M Serrane Edsvol 156 pp 475ndash515 Geological Society London UK 1999

[12] A E AkcayMDonmezHKara A F Yergok andK Esenturkldquo1100 000 scale geologicalmaps of Turkey Yozgat-I33 threaderrdquoMTA Ankara vol 80 pp 1ndash16 2007

[13] M T Shah and A Khan ldquoGeochemistry and origin of Mn-deposits in theWaziristan ophiolite complex northWaziristanPakistanrdquoMineraliumDeposita vol 34 no 7 pp 697ndash704 1999

[14] X Jiancheng S Weidong D Jianguo et al ldquoGeochemical stud-ies on Permian manganese deposits in Guichi eastern ChinaImplications for their origin and formative environmentsrdquoJournal of Asian Earth Science vol 74 pp 155ndash166 2013

[15] A Sasmaz B Turkyilmaz N Ozturk et al ldquoGeology and geo-chemistry of middle eocene maden complex ferromanganesedeposits from Elazıg-Malatya Region Eastern Turkeyrdquo OreGeology Reviews vol 56 pp 352ndash372 2014

[16] T Peters ldquoGeochemistry of manganese-bearing cherts associ-ated with Alpine ophiolites and the Hawasina formations inOmanrdquoMarine Geology vol 84 no 3-4 pp 229ndash238 1988

[17] A H Gultekin ldquoGeochemistry and origin of the OligoceneBinkılıc manganese deposit Thrace basin Turkeyrdquo TurkishJournal of Earth Sciences vol 7 p 11 1998

[18] D S Cronan ldquoUnderwater mineralsrdquo Academic Press LondonUK 1980

[19] J R Hein S S Marjorie and L M Gein ldquoCentral Pasificcobalt rich ferromanganese crusts Historical perspective andregional variabilityrdquo in Geology and Offshore Mineral Resourcesof the Central Pasific Basin SircumPasific Council for Energy andMineral Resources B H Keating and B R Balton Eds vol 14of Earth science series Springer New York NY USA 1992

[20] J R Toth ldquoDeposition of submarine crusts rich in manganeseand ironrdquo Geological Society of America Bulletin vol 91 no 1pp 44ndash54 1980

[21] D E Ruhlin andRMOwen ldquoThe rare earth element geochem-istry of hydrothermal sediments from the East Pacific Riseexamination of a seawater scavenging mechanismrdquo Geochimicaet Cosmochimica Acta vol 50 no 3 pp 393ndash400 1986

Journal of Chemistry 11

[22] J DWonder P G Spry and K EWindom ldquoGeochemistry andorigin of manganese-rich rocks related to iron-formation andsulfide deposits western Georgiardquo Economic Geology vol 83no 5 pp 1070ndash1081 1988

[23] J R Hein A Kochinsky P Halbach et al ldquoIron andmanganeseoxide mineralization in the Pacificrdquo in Manganese Mineraliza-tion Geochemistry and Mineralogy of Terrestrial and MarineDeposits K Nicholson J R Hein B Buhn and S DasguptaEds vol 119 pp 123ndash138 Geological Society London UK 1997

[24] H Elderfield C J Hawkesworth M J Greaves and S ECalvert ldquoRare earth element geochemistry of oceanic ferro-manganese nodules and associated sedimentsrdquo Geochimica etCosmochimica Acta vol 45 no 4 pp 513ndash528 1981

[25] N Clauer P Stille C Bonnot-Courtois and W S Moore ldquoNd-Sr isotopic and REE constraints on the genesis of hydrothermalmanganese crusts in the Galapagosrdquo Nature vol 311 no 5988pp 743ndash745 1984

[26] J R Hein Y Hsueh-Wen S H Gunn A E Gibbs and WChung-ho ldquoComposition and origin of hydrothermal iron-stones from central Pacific seamountsrdquo Geochimica et Cosmo-chimica Acta vol 58 no 1 pp 179ndash189 1994

[27] S S Sun and W F McDonough ldquoChemical and isotopic sys-tematics of oceanic basalts implications formantle compositionand processesrdquo inMagmatism in Ocean Basins A D Saundersand M J Norry Eds pp 313ndash345 Geological Society LondonUK 1989

[28] N M Evensen P J Hamilton and R K OrsquoNions ldquoRare-earthabundances in chondritic meteoritesrdquoGeochimica et Cosmochi-mica Acta vol 42 no 8 pp 1199ndash1212 1978

[29] U Von Stackelberg ldquoGrowth history of manganese nodules andcrusts of the Peru BasinrdquoGeological Society vol 119 pp 153ndash1761997

[30] J Nayan J Rongfen andW ZiyuPermain Palaeogeography andGeochemical Environment in Lower Yangtze Region PetroleumIndustry Press Beijing China 1994

[31] J Wright H Schrader andW T Holser ldquoPaleoredox variationsin ancient oceans recorded by rare earth elements in fossilapatiterdquo Geochimica et Cosmochimica Acta vol 51 no 3 pp631ndash644 1987

[32] R Sugisaki ldquoRelation between chemical composition andsedimentation rate of Pacific ocean-floor sediments depositedsince the middle Cretaceous basic evidence for chemicalconstraints on depositional environments of ancient sediments(plate tectonic orogenic model)rdquo Journal of Geology vol 92 no3 pp 235ndash259 1984

[33] AG Panagos and S PVaranavas ldquoOn the genesis of someman-ganese deposits from eastern Greecerdquo Syngenesis and Epigenesisin the Formation of Mineral Deposits pp 553ndash561 1984

[34] S Roy ldquoEnvironments and processes of manganese depositionrdquoEconomic Geology vol 87 no 5 pp 1218ndash1236 1992

[35] K B Krauskopf ldquoSeparation of manganese from iron in sedi-mentary processesrdquo Geochimica et Cosmochimica Acta vol 12no 1-2 pp 61ndash84 1957

[36] J D Hem ldquoChemical factors that influence that influence theavailability of iron and manganese in aqueous systemsrdquo Geo-logical Society of America Bulletin vol 83 pp 443ndash450 1972

[37] L Frakes and B Bolton ldquoEffects of ocean chemistry sealevel and climate on the formation of primary sedimentarymanganese ore depositsrdquo Economic Geology vol 87 no 5 pp1207ndash1217 1992

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 9: Research Article Mineralogy, Geochemistry, and Origin of ...downloads.hindawi.com/journals/jchem/2014/837972.pdf · of hydrothermal exhalative manganese deposits in ophiolitic regions

Journal of Chemistry 9

Table 5 Correlation relations for major oxides

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3

SiO2 100 minus056 minus043 minus067 minus071 minus055 minus017 minus049 minus068 minus089 078Al2O3 100 095 081 064 097 084 099 093 014 minus065Fe2O3 100 066 063 092 082 094 085 000 minus050MgO 100 059 088 055 082 081 036 minus067CaO 100 059 016 058 057 045 minus063Na2O 100 082 097 093 014 minus063K2O 100 087 077 minus021 minus038TiO2 100 091 006 minus064P2O5 100 033 minus065MnO 100 minus059Cr2O3 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

Table 6 Correlation relations for trace elements

Ba Co Rb Sr U Zr Mo Cu Pb Zn Ni As Bi AgBa 100 minus019 026 098 000 016 minus021 minus008 039 037 minus017 minus034 037 minus027Co 100 minus019 minus014 045 014 037 minus010 018 059 minus012 071 016 minus012Rb 100 021 minus033 085 minus057 minus037 054 023 minus042 018 069 030Sr 100 001 016 minus017 minus006 042 044 minus016 minus030 039 minus022U 100 minus027 042 067 minus035 025 minus029 036 minus014 017Zr 100 minus041 minus040 072 054 minus028 042 090 016Mo 100 047 minus032 minus022 039 050 minus037 019Cu 100 minus061 minus013 002 012 minus032 038Pb 100 060 002 018 083 004Zn 100 minus032 031 072 minus017Ni 100 minus005 minus026 minus003As 100 027 042Bi 100 005Ag 100070 and higher values and minus070 and lower values specify the presence of possitive or negative corelation coefficients

1

10

100

1000

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Sam

ple

cond

rite

(a)

Hydrothermal

Hydrogenous

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

REE

cond

rite

1000

100

10

1

(b)

Figure 8 (a) Chondrite normalized REE diagram for ore samples (normalization values are from Evensen et al [28]) (b) REE diagramshowing hydrogenous [29] and hydrothermal [29] fields

10 Journal of Chemistry

Fe compounds (less stable than Mn) precipitate prox-imal parts whilst Mn compounds precipitate distal partsof hydrothermal vents along the sea floor spreading cen-ters [33 34] Eh andor pH of the hydrothermal solutionalso exert controls on the precipitation of Mn and Fe andtheir compounds [34ndash37] Mn is more mobile relative toFe during low Eh andor pH conditions The fractionationof Mn compounds from Fe compounds suggests a spatialvariation in Eh andor pH [34] Considering Fe and Mnconcentrations of the mineralization in the study area it canbe asserted that Buyukmahal deposit was formed from ahydrothermal source in addition considering the high Fecontent mineralization might be formed in a proximal siteof the hydrothermal vent

Although mineralization at Buyukmahal is of a hydro-thermal type it does not originate from a pure hydrothermalor pure hydrogenous source Geochemical data support asystem contributed from both sources The mineralizationwas developed on a sea floor spreading center within theAlpin Ophiolite system and then obducted as part of theAOC

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This study constitutes a part of MS degree thesis of NeslihanOkuyucu The Scientific and Technical Research Council ofTurkey (TUBITAK Project no 109Y167) and the Bozok Uni-versity (Grant no BFFM2009-06) are greatly acknowledgedfor financial support Dr Ibrahim Uysal is kindly appreciatedfor his help in EMP analysisThe authors also thank ProfessorYusuf K Kadıoglu and Cumhur O Kılıc for the Ramanspectroscopy analysis

References

[1] N Oksuz ldquoGeochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit Turkeyrdquo Journal of Rare Earths vol29 no 3 pp 287ndash296 2011

[2] N Oksuz ldquoGeochemistry and the origin of manganese min-eralizations in Derbent (Yozgat) Regionrdquo Bulletin of the EarthSciences Application and Research Centre of Hacettepe Universitvol 32 no 3 pp 213ndash234 2011

[3] M Tahir Shah andC JMoon ldquoManganese and ferromanganeseores from different tectonic settings in the NW HimalayasPakistanrdquo Journal of Asian Earth Sciences vol 29 no 2-3 pp455ndash465 2007

[4] C E Fitzgerald and K M Gillis ldquoHydrothermal manganeseoxide deposits from Baby Bare seamount in the NortheastPacific Oceanrdquo Marine Geology vol 225 no 1ndash4 pp 145ndash1562006

[5] K Heshmatbehzadi and J Shahabpour ldquoMetallogeny of man-ganese and ferromanganese ores in baft ophiolitic MelangeKerman Iranrdquo Australian Journal of Basic and Applied Sciencesvol 4 no 2 pp 302ndash313 2010

[6] J H Choi and Y Hariya ldquoGeochemistry and depositional envi-ronment of Mn oxide deposits in the Tokoro Belt northeasternHokkaido Japanrdquo Economic Geology vol 87 no 5 pp 1265ndash1274 1992

[7] A Karakus B Yavuz and S Koc ldquoMineralogy and major-traceelement geochemistry of the Haymana manganese mineraliza-tions Ankara Turkeyrdquo Geochemistry International vol 48 no10 pp 1014ndash1027 2010

[8] S Koc O Ozmen and N Oksuz ldquoGeochemistry characteristicof kasimaga (Keskin-Kırıkkale) manganese oxide mineraliza-tionsrdquo Mineral Research and Exploration Magazine vol 122 p107 2000

[9] E Bonatti T Kraemer and H Rydell ldquoClassification andgenesis of submarine iron-manganese depositsrdquo in Ferroman-ganese Deposits on the Ocean Flor International Decade onOcean Exploration D Horn Ed pp 149ndash166 National ScienceFoundation Washington DC USA 1972

[10] D A Crerar J Namson M S Chyi L Williams and I MFeigenson ldquoManganiferous cherts of the Fransiscan assem-blage I General geology ancient and modern analogues andimplications for hydrothermal convection at oceanic spreadingcentersrdquo Economic Geology vol 77 pp 519ndash540 1982

[11] AOkay andOTuysuz ldquoTethyan sutures of northernTurkeyrdquo inTheMediterranean Basins Tertiary ExtensionWithin the AlpineOrogen B Durand L Jolivet F Horvath and M Serrane Edsvol 156 pp 475ndash515 Geological Society London UK 1999

[12] A E AkcayMDonmezHKara A F Yergok andK Esenturkldquo1100 000 scale geologicalmaps of Turkey Yozgat-I33 threaderrdquoMTA Ankara vol 80 pp 1ndash16 2007

[13] M T Shah and A Khan ldquoGeochemistry and origin of Mn-deposits in theWaziristan ophiolite complex northWaziristanPakistanrdquoMineraliumDeposita vol 34 no 7 pp 697ndash704 1999

[14] X Jiancheng S Weidong D Jianguo et al ldquoGeochemical stud-ies on Permian manganese deposits in Guichi eastern ChinaImplications for their origin and formative environmentsrdquoJournal of Asian Earth Science vol 74 pp 155ndash166 2013

[15] A Sasmaz B Turkyilmaz N Ozturk et al ldquoGeology and geo-chemistry of middle eocene maden complex ferromanganesedeposits from Elazıg-Malatya Region Eastern Turkeyrdquo OreGeology Reviews vol 56 pp 352ndash372 2014

[16] T Peters ldquoGeochemistry of manganese-bearing cherts associ-ated with Alpine ophiolites and the Hawasina formations inOmanrdquoMarine Geology vol 84 no 3-4 pp 229ndash238 1988

[17] A H Gultekin ldquoGeochemistry and origin of the OligoceneBinkılıc manganese deposit Thrace basin Turkeyrdquo TurkishJournal of Earth Sciences vol 7 p 11 1998

[18] D S Cronan ldquoUnderwater mineralsrdquo Academic Press LondonUK 1980

[19] J R Hein S S Marjorie and L M Gein ldquoCentral Pasificcobalt rich ferromanganese crusts Historical perspective andregional variabilityrdquo in Geology and Offshore Mineral Resourcesof the Central Pasific Basin SircumPasific Council for Energy andMineral Resources B H Keating and B R Balton Eds vol 14of Earth science series Springer New York NY USA 1992

[20] J R Toth ldquoDeposition of submarine crusts rich in manganeseand ironrdquo Geological Society of America Bulletin vol 91 no 1pp 44ndash54 1980

[21] D E Ruhlin andRMOwen ldquoThe rare earth element geochem-istry of hydrothermal sediments from the East Pacific Riseexamination of a seawater scavenging mechanismrdquo Geochimicaet Cosmochimica Acta vol 50 no 3 pp 393ndash400 1986

Journal of Chemistry 11

[22] J DWonder P G Spry and K EWindom ldquoGeochemistry andorigin of manganese-rich rocks related to iron-formation andsulfide deposits western Georgiardquo Economic Geology vol 83no 5 pp 1070ndash1081 1988

[23] J R Hein A Kochinsky P Halbach et al ldquoIron andmanganeseoxide mineralization in the Pacificrdquo in Manganese Mineraliza-tion Geochemistry and Mineralogy of Terrestrial and MarineDeposits K Nicholson J R Hein B Buhn and S DasguptaEds vol 119 pp 123ndash138 Geological Society London UK 1997

[24] H Elderfield C J Hawkesworth M J Greaves and S ECalvert ldquoRare earth element geochemistry of oceanic ferro-manganese nodules and associated sedimentsrdquo Geochimica etCosmochimica Acta vol 45 no 4 pp 513ndash528 1981

[25] N Clauer P Stille C Bonnot-Courtois and W S Moore ldquoNd-Sr isotopic and REE constraints on the genesis of hydrothermalmanganese crusts in the Galapagosrdquo Nature vol 311 no 5988pp 743ndash745 1984

[26] J R Hein Y Hsueh-Wen S H Gunn A E Gibbs and WChung-ho ldquoComposition and origin of hydrothermal iron-stones from central Pacific seamountsrdquo Geochimica et Cosmo-chimica Acta vol 58 no 1 pp 179ndash189 1994

[27] S S Sun and W F McDonough ldquoChemical and isotopic sys-tematics of oceanic basalts implications formantle compositionand processesrdquo inMagmatism in Ocean Basins A D Saundersand M J Norry Eds pp 313ndash345 Geological Society LondonUK 1989

[28] N M Evensen P J Hamilton and R K OrsquoNions ldquoRare-earthabundances in chondritic meteoritesrdquoGeochimica et Cosmochi-mica Acta vol 42 no 8 pp 1199ndash1212 1978

[29] U Von Stackelberg ldquoGrowth history of manganese nodules andcrusts of the Peru BasinrdquoGeological Society vol 119 pp 153ndash1761997

[30] J Nayan J Rongfen andW ZiyuPermain Palaeogeography andGeochemical Environment in Lower Yangtze Region PetroleumIndustry Press Beijing China 1994

[31] J Wright H Schrader andW T Holser ldquoPaleoredox variationsin ancient oceans recorded by rare earth elements in fossilapatiterdquo Geochimica et Cosmochimica Acta vol 51 no 3 pp631ndash644 1987

[32] R Sugisaki ldquoRelation between chemical composition andsedimentation rate of Pacific ocean-floor sediments depositedsince the middle Cretaceous basic evidence for chemicalconstraints on depositional environments of ancient sediments(plate tectonic orogenic model)rdquo Journal of Geology vol 92 no3 pp 235ndash259 1984

[33] AG Panagos and S PVaranavas ldquoOn the genesis of someman-ganese deposits from eastern Greecerdquo Syngenesis and Epigenesisin the Formation of Mineral Deposits pp 553ndash561 1984

[34] S Roy ldquoEnvironments and processes of manganese depositionrdquoEconomic Geology vol 87 no 5 pp 1218ndash1236 1992

[35] K B Krauskopf ldquoSeparation of manganese from iron in sedi-mentary processesrdquo Geochimica et Cosmochimica Acta vol 12no 1-2 pp 61ndash84 1957

[36] J D Hem ldquoChemical factors that influence that influence theavailability of iron and manganese in aqueous systemsrdquo Geo-logical Society of America Bulletin vol 83 pp 443ndash450 1972

[37] L Frakes and B Bolton ldquoEffects of ocean chemistry sealevel and climate on the formation of primary sedimentarymanganese ore depositsrdquo Economic Geology vol 87 no 5 pp1207ndash1217 1992

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 10: Research Article Mineralogy, Geochemistry, and Origin of ...downloads.hindawi.com/journals/jchem/2014/837972.pdf · of hydrothermal exhalative manganese deposits in ophiolitic regions

10 Journal of Chemistry

Fe compounds (less stable than Mn) precipitate prox-imal parts whilst Mn compounds precipitate distal partsof hydrothermal vents along the sea floor spreading cen-ters [33 34] Eh andor pH of the hydrothermal solutionalso exert controls on the precipitation of Mn and Fe andtheir compounds [34ndash37] Mn is more mobile relative toFe during low Eh andor pH conditions The fractionationof Mn compounds from Fe compounds suggests a spatialvariation in Eh andor pH [34] Considering Fe and Mnconcentrations of the mineralization in the study area it canbe asserted that Buyukmahal deposit was formed from ahydrothermal source in addition considering the high Fecontent mineralization might be formed in a proximal siteof the hydrothermal vent

Although mineralization at Buyukmahal is of a hydro-thermal type it does not originate from a pure hydrothermalor pure hydrogenous source Geochemical data support asystem contributed from both sources The mineralizationwas developed on a sea floor spreading center within theAlpin Ophiolite system and then obducted as part of theAOC

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This study constitutes a part of MS degree thesis of NeslihanOkuyucu The Scientific and Technical Research Council ofTurkey (TUBITAK Project no 109Y167) and the Bozok Uni-versity (Grant no BFFM2009-06) are greatly acknowledgedfor financial support Dr Ibrahim Uysal is kindly appreciatedfor his help in EMP analysisThe authors also thank ProfessorYusuf K Kadıoglu and Cumhur O Kılıc for the Ramanspectroscopy analysis

References

[1] N Oksuz ldquoGeochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit Turkeyrdquo Journal of Rare Earths vol29 no 3 pp 287ndash296 2011

[2] N Oksuz ldquoGeochemistry and the origin of manganese min-eralizations in Derbent (Yozgat) Regionrdquo Bulletin of the EarthSciences Application and Research Centre of Hacettepe Universitvol 32 no 3 pp 213ndash234 2011

[3] M Tahir Shah andC JMoon ldquoManganese and ferromanganeseores from different tectonic settings in the NW HimalayasPakistanrdquo Journal of Asian Earth Sciences vol 29 no 2-3 pp455ndash465 2007

[4] C E Fitzgerald and K M Gillis ldquoHydrothermal manganeseoxide deposits from Baby Bare seamount in the NortheastPacific Oceanrdquo Marine Geology vol 225 no 1ndash4 pp 145ndash1562006

[5] K Heshmatbehzadi and J Shahabpour ldquoMetallogeny of man-ganese and ferromanganese ores in baft ophiolitic MelangeKerman Iranrdquo Australian Journal of Basic and Applied Sciencesvol 4 no 2 pp 302ndash313 2010

[6] J H Choi and Y Hariya ldquoGeochemistry and depositional envi-ronment of Mn oxide deposits in the Tokoro Belt northeasternHokkaido Japanrdquo Economic Geology vol 87 no 5 pp 1265ndash1274 1992

[7] A Karakus B Yavuz and S Koc ldquoMineralogy and major-traceelement geochemistry of the Haymana manganese mineraliza-tions Ankara Turkeyrdquo Geochemistry International vol 48 no10 pp 1014ndash1027 2010

[8] S Koc O Ozmen and N Oksuz ldquoGeochemistry characteristicof kasimaga (Keskin-Kırıkkale) manganese oxide mineraliza-tionsrdquo Mineral Research and Exploration Magazine vol 122 p107 2000

[9] E Bonatti T Kraemer and H Rydell ldquoClassification andgenesis of submarine iron-manganese depositsrdquo in Ferroman-ganese Deposits on the Ocean Flor International Decade onOcean Exploration D Horn Ed pp 149ndash166 National ScienceFoundation Washington DC USA 1972

[10] D A Crerar J Namson M S Chyi L Williams and I MFeigenson ldquoManganiferous cherts of the Fransiscan assem-blage I General geology ancient and modern analogues andimplications for hydrothermal convection at oceanic spreadingcentersrdquo Economic Geology vol 77 pp 519ndash540 1982

[11] AOkay andOTuysuz ldquoTethyan sutures of northernTurkeyrdquo inTheMediterranean Basins Tertiary ExtensionWithin the AlpineOrogen B Durand L Jolivet F Horvath and M Serrane Edsvol 156 pp 475ndash515 Geological Society London UK 1999

[12] A E AkcayMDonmezHKara A F Yergok andK Esenturkldquo1100 000 scale geologicalmaps of Turkey Yozgat-I33 threaderrdquoMTA Ankara vol 80 pp 1ndash16 2007

[13] M T Shah and A Khan ldquoGeochemistry and origin of Mn-deposits in theWaziristan ophiolite complex northWaziristanPakistanrdquoMineraliumDeposita vol 34 no 7 pp 697ndash704 1999

[14] X Jiancheng S Weidong D Jianguo et al ldquoGeochemical stud-ies on Permian manganese deposits in Guichi eastern ChinaImplications for their origin and formative environmentsrdquoJournal of Asian Earth Science vol 74 pp 155ndash166 2013

[15] A Sasmaz B Turkyilmaz N Ozturk et al ldquoGeology and geo-chemistry of middle eocene maden complex ferromanganesedeposits from Elazıg-Malatya Region Eastern Turkeyrdquo OreGeology Reviews vol 56 pp 352ndash372 2014

[16] T Peters ldquoGeochemistry of manganese-bearing cherts associ-ated with Alpine ophiolites and the Hawasina formations inOmanrdquoMarine Geology vol 84 no 3-4 pp 229ndash238 1988

[17] A H Gultekin ldquoGeochemistry and origin of the OligoceneBinkılıc manganese deposit Thrace basin Turkeyrdquo TurkishJournal of Earth Sciences vol 7 p 11 1998

[18] D S Cronan ldquoUnderwater mineralsrdquo Academic Press LondonUK 1980

[19] J R Hein S S Marjorie and L M Gein ldquoCentral Pasificcobalt rich ferromanganese crusts Historical perspective andregional variabilityrdquo in Geology and Offshore Mineral Resourcesof the Central Pasific Basin SircumPasific Council for Energy andMineral Resources B H Keating and B R Balton Eds vol 14of Earth science series Springer New York NY USA 1992

[20] J R Toth ldquoDeposition of submarine crusts rich in manganeseand ironrdquo Geological Society of America Bulletin vol 91 no 1pp 44ndash54 1980

[21] D E Ruhlin andRMOwen ldquoThe rare earth element geochem-istry of hydrothermal sediments from the East Pacific Riseexamination of a seawater scavenging mechanismrdquo Geochimicaet Cosmochimica Acta vol 50 no 3 pp 393ndash400 1986

Journal of Chemistry 11

[22] J DWonder P G Spry and K EWindom ldquoGeochemistry andorigin of manganese-rich rocks related to iron-formation andsulfide deposits western Georgiardquo Economic Geology vol 83no 5 pp 1070ndash1081 1988

[23] J R Hein A Kochinsky P Halbach et al ldquoIron andmanganeseoxide mineralization in the Pacificrdquo in Manganese Mineraliza-tion Geochemistry and Mineralogy of Terrestrial and MarineDeposits K Nicholson J R Hein B Buhn and S DasguptaEds vol 119 pp 123ndash138 Geological Society London UK 1997

[24] H Elderfield C J Hawkesworth M J Greaves and S ECalvert ldquoRare earth element geochemistry of oceanic ferro-manganese nodules and associated sedimentsrdquo Geochimica etCosmochimica Acta vol 45 no 4 pp 513ndash528 1981

[25] N Clauer P Stille C Bonnot-Courtois and W S Moore ldquoNd-Sr isotopic and REE constraints on the genesis of hydrothermalmanganese crusts in the Galapagosrdquo Nature vol 311 no 5988pp 743ndash745 1984

[26] J R Hein Y Hsueh-Wen S H Gunn A E Gibbs and WChung-ho ldquoComposition and origin of hydrothermal iron-stones from central Pacific seamountsrdquo Geochimica et Cosmo-chimica Acta vol 58 no 1 pp 179ndash189 1994

[27] S S Sun and W F McDonough ldquoChemical and isotopic sys-tematics of oceanic basalts implications formantle compositionand processesrdquo inMagmatism in Ocean Basins A D Saundersand M J Norry Eds pp 313ndash345 Geological Society LondonUK 1989

[28] N M Evensen P J Hamilton and R K OrsquoNions ldquoRare-earthabundances in chondritic meteoritesrdquoGeochimica et Cosmochi-mica Acta vol 42 no 8 pp 1199ndash1212 1978

[29] U Von Stackelberg ldquoGrowth history of manganese nodules andcrusts of the Peru BasinrdquoGeological Society vol 119 pp 153ndash1761997

[30] J Nayan J Rongfen andW ZiyuPermain Palaeogeography andGeochemical Environment in Lower Yangtze Region PetroleumIndustry Press Beijing China 1994

[31] J Wright H Schrader andW T Holser ldquoPaleoredox variationsin ancient oceans recorded by rare earth elements in fossilapatiterdquo Geochimica et Cosmochimica Acta vol 51 no 3 pp631ndash644 1987

[32] R Sugisaki ldquoRelation between chemical composition andsedimentation rate of Pacific ocean-floor sediments depositedsince the middle Cretaceous basic evidence for chemicalconstraints on depositional environments of ancient sediments(plate tectonic orogenic model)rdquo Journal of Geology vol 92 no3 pp 235ndash259 1984

[33] AG Panagos and S PVaranavas ldquoOn the genesis of someman-ganese deposits from eastern Greecerdquo Syngenesis and Epigenesisin the Formation of Mineral Deposits pp 553ndash561 1984

[34] S Roy ldquoEnvironments and processes of manganese depositionrdquoEconomic Geology vol 87 no 5 pp 1218ndash1236 1992

[35] K B Krauskopf ldquoSeparation of manganese from iron in sedi-mentary processesrdquo Geochimica et Cosmochimica Acta vol 12no 1-2 pp 61ndash84 1957

[36] J D Hem ldquoChemical factors that influence that influence theavailability of iron and manganese in aqueous systemsrdquo Geo-logical Society of America Bulletin vol 83 pp 443ndash450 1972

[37] L Frakes and B Bolton ldquoEffects of ocean chemistry sealevel and climate on the formation of primary sedimentarymanganese ore depositsrdquo Economic Geology vol 87 no 5 pp1207ndash1217 1992

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 11: Research Article Mineralogy, Geochemistry, and Origin of ...downloads.hindawi.com/journals/jchem/2014/837972.pdf · of hydrothermal exhalative manganese deposits in ophiolitic regions

Journal of Chemistry 11

[22] J DWonder P G Spry and K EWindom ldquoGeochemistry andorigin of manganese-rich rocks related to iron-formation andsulfide deposits western Georgiardquo Economic Geology vol 83no 5 pp 1070ndash1081 1988

[23] J R Hein A Kochinsky P Halbach et al ldquoIron andmanganeseoxide mineralization in the Pacificrdquo in Manganese Mineraliza-tion Geochemistry and Mineralogy of Terrestrial and MarineDeposits K Nicholson J R Hein B Buhn and S DasguptaEds vol 119 pp 123ndash138 Geological Society London UK 1997

[24] H Elderfield C J Hawkesworth M J Greaves and S ECalvert ldquoRare earth element geochemistry of oceanic ferro-manganese nodules and associated sedimentsrdquo Geochimica etCosmochimica Acta vol 45 no 4 pp 513ndash528 1981

[25] N Clauer P Stille C Bonnot-Courtois and W S Moore ldquoNd-Sr isotopic and REE constraints on the genesis of hydrothermalmanganese crusts in the Galapagosrdquo Nature vol 311 no 5988pp 743ndash745 1984

[26] J R Hein Y Hsueh-Wen S H Gunn A E Gibbs and WChung-ho ldquoComposition and origin of hydrothermal iron-stones from central Pacific seamountsrdquo Geochimica et Cosmo-chimica Acta vol 58 no 1 pp 179ndash189 1994

[27] S S Sun and W F McDonough ldquoChemical and isotopic sys-tematics of oceanic basalts implications formantle compositionand processesrdquo inMagmatism in Ocean Basins A D Saundersand M J Norry Eds pp 313ndash345 Geological Society LondonUK 1989

[28] N M Evensen P J Hamilton and R K OrsquoNions ldquoRare-earthabundances in chondritic meteoritesrdquoGeochimica et Cosmochi-mica Acta vol 42 no 8 pp 1199ndash1212 1978

[29] U Von Stackelberg ldquoGrowth history of manganese nodules andcrusts of the Peru BasinrdquoGeological Society vol 119 pp 153ndash1761997

[30] J Nayan J Rongfen andW ZiyuPermain Palaeogeography andGeochemical Environment in Lower Yangtze Region PetroleumIndustry Press Beijing China 1994

[31] J Wright H Schrader andW T Holser ldquoPaleoredox variationsin ancient oceans recorded by rare earth elements in fossilapatiterdquo Geochimica et Cosmochimica Acta vol 51 no 3 pp631ndash644 1987

[32] R Sugisaki ldquoRelation between chemical composition andsedimentation rate of Pacific ocean-floor sediments depositedsince the middle Cretaceous basic evidence for chemicalconstraints on depositional environments of ancient sediments(plate tectonic orogenic model)rdquo Journal of Geology vol 92 no3 pp 235ndash259 1984

[33] AG Panagos and S PVaranavas ldquoOn the genesis of someman-ganese deposits from eastern Greecerdquo Syngenesis and Epigenesisin the Formation of Mineral Deposits pp 553ndash561 1984

[34] S Roy ldquoEnvironments and processes of manganese depositionrdquoEconomic Geology vol 87 no 5 pp 1218ndash1236 1992

[35] K B Krauskopf ldquoSeparation of manganese from iron in sedi-mentary processesrdquo Geochimica et Cosmochimica Acta vol 12no 1-2 pp 61ndash84 1957

[36] J D Hem ldquoChemical factors that influence that influence theavailability of iron and manganese in aqueous systemsrdquo Geo-logical Society of America Bulletin vol 83 pp 443ndash450 1972

[37] L Frakes and B Bolton ldquoEffects of ocean chemistry sealevel and climate on the formation of primary sedimentarymanganese ore depositsrdquo Economic Geology vol 87 no 5 pp1207ndash1217 1992

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 12: Research Article Mineralogy, Geochemistry, and Origin of ...downloads.hindawi.com/journals/jchem/2014/837972.pdf · of hydrothermal exhalative manganese deposits in ophiolitic regions

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of


Recommended