+ All Categories
Home > Documents > Research Article Multivariate Analysis, Mass Balance...

Research Article Multivariate Analysis, Mass Balance...

Date post: 19-Jun-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
33
Research Article Multivariate Analysis, Mass Balance Techniques, and Statistical Tests as Tools in Igneous Petrology: Application to the Sierra de las Cruces Volcanic Range (Mexican Volcanic Belt) Fernando Velasco-Tapia Universidad Aut´ onoma de Nuevo Le´ on, Facultad de Ciencias de la Tierra, Ex-Hacienda de Guadalupe, Carretera Linares-Cerro Prieto km 8, 67700 Linares, NL, Mexico Correspondence should be addressed to Fernando Velasco-Tapia; [email protected] Received 26 August 2013; Accepted 25 November 2013; Published 5 March 2014 Academic Editors: J. Glodny, N. Hirao, and G.-L. Yuan Copyright © 2014 Fernando Velasco-Tapia. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward’s linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end- member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures). 1. Introduction Several conventional mineralogical, geochemical, and iso- topic tools, using a limited number of variables (e.g., bivariate, trilinear, multielement, and semilogarithmic diagrams), have usually been applied to establish a qualitative or semi- quantitative view of igneous petrological mechanisms [1, 2]. Particularly, the interaction between, at least, two magmas is one of the most important mechanisms of compositional diversification of igneous rocks [3]. According to genetic relations between the original or resident magma and the later invasive magma, two scenarios could be expected [4, 5]: (a) successive pulses of magma derived from a common source intersect in time and space or (b) unrelated chemical distinct magmas, derived from different sources are involved in the interaction episode. Additionally, different styles of the interaction phenomena are related to the variation of physicochemical parameters (e.g., [3, 6, 7]): (a) the initial contrast in chemical composition, temperature, and viscosity, (b) the relative mass fractions and the physical state of interacting magmas, and (c) the static versus dynamic envi- ronment of interaction. ese processes have been broadly divided into (a) magma mingling, a route characterized by a physical juxtaposition and intermingling of contrasting compositions, with little or no chemical homogenization, and (b) magma mixing, where the physical and chemical conditions promote the homogenization of contrasting geo- chemical and isotopic features, resulting in a single magma of intermediate composition. If a magma mixing/mingling model is proposed, it must include statements specifying (a) the initial compositions of the resident and invasive magmas, Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 793236, 32 pages http://dx.doi.org/10.1155/2014/793236
Transcript
Page 1: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

Research ArticleMultivariate Analysis Mass Balance Techniquesand Statistical Tests as Tools in Igneous PetrologyApplication to the Sierra de las Cruces VolcanicRange (Mexican Volcanic Belt)

Fernando Velasco-Tapia

Universidad Autonoma de Nuevo Leon Facultad de Ciencias de la Tierra Ex-Hacienda de GuadalupeCarretera Linares-Cerro Prieto km 8 67700 Linares NL Mexico

Correspondence should be addressed to Fernando Velasco-Tapia velascofctuanlmx

Received 26 August 2013 Accepted 25 November 2013 Published 5 March 2014

Academic Editors J Glodny N Hirao and G-L Yuan

Copyright copy 2014 Fernando Velasco-Tapia This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic toolsbased on a restricted number of variables However a more complete and quantitative view could be reached applying multivariateanalysis mass balance techniques and statistical tests As an example in this work a statistical and quantitative scheme is appliedto analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt) In this localitythe volcanic activity (37 to 05Ma) was dominantly dacitic but the presence of spheroidal andesitic enclaves andor diversedisequilibrium features in majority of lavas confirms the operation of magma mixingmingling New discriminant-function-basedmultidimensional diagrams were used to discriminate tectonic setting Statistical tests of discordancy and significance were appliedto evaluate the influence of the subducting Cocos plate which seems to be rather negligible for the SC magmas in relation toseveral major and trace elements A cluster analysis following Wardrsquos linkage rule was carried out to classify the SC volcanic rocksgeochemical groups Finally two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures)

1 Introduction

Several conventional mineralogical geochemical and iso-topic tools using a limited number of variables (eg bivariatetrilinear multielement and semilogarithmic diagrams) haveusually been applied to establish a qualitative or semi-quantitative view of igneous petrological mechanisms [1 2]Particularly the interaction between at least two magmasis one of the most important mechanisms of compositionaldiversification of igneous rocks [3] According to geneticrelations between the original or resident magma and thelater invasivemagma two scenarios could be expected [4 5](a) successive pulses of magma derived from a commonsource intersect in time and space or (b) unrelated chemicaldistinct magmas derived from different sources are involvedin the interaction episode Additionally different styles of

the interaction phenomena are related to the variation ofphysicochemical parameters (eg [3 6 7]) (a) the initialcontrast in chemical composition temperature and viscosity(b) the relative mass fractions and the physical state ofinteracting magmas and (c) the static versus dynamic envi-ronment of interaction These processes have been broadlydivided into (a) magma mingling a route characterized bya physical juxtaposition and intermingling of contrastingcompositions with little or no chemical homogenizationand (b) magma mixing where the physical and chemicalconditions promote the homogenization of contrasting geo-chemical and isotopic features resulting in a single magmaof intermediate composition If a magma mixingminglingmodel is proposed it must include statements specifying (a)the initial compositions of the resident and invasive magmas

Hindawi Publishing Corporatione Scientific World JournalVolume 2014 Article ID 793236 32 pageshttpdxdoiorg1011552014793236

2 The Scientific World Journal

(b) themodalmineralogy of themagmas prior tomixing and(c) the proportions of resident and invasive magmas [4] Aquantitative assessment could be obtained from multivariatestatistical techniques [8] Although these methods have beenused with classification purposes in igneous rocks [9] theiruse to understand magma mixingmingling processes is stilllimited [7 10ndash13]

On the other hand magma mixingmingling processeshave been observed in diverse tectonic settings Conse-quently a complete vision of these magmatic localitiescommonly dominated by rocks with [SiO

2]adj gt 52 (the

subscript adj refers to the adjusted silica from the SINCLAScomputer program [14 15]) would be facilitated from the tec-tonic regime However a restricted number of conventionaldiagrams are available for tectonic discrimination of inter-mediate ([SiO

2]adj = 52ndash63 [16 17]) and acid ([SiO

2]adj gt

63 [1 18]) magmas Additionally these schemes have beencritiqued as a result of a statistically wrong treatment ofcompositional data eye-drawn subjective boundaries fordifferent tectonic fields and lack of representation of theentire statistical population [19 20] S P Verma and S KVerma [21] and Verma et al [22] to solve the limitationsof the tectonic discrimination conventional schemes haveproposed a set of new discriminant-function-based multidi-mensional diagrams for intermediate and acid magmas fromfour tectonic settings (island arc continental arc continentalrift + ocean island and collision)

In this context Velasco-Tapia et al [23] recently reportedbased on mineralogical geochemical and Sr-Nd isotopicconventional tools that the formation of the Sierra de lasCruces (SC) volcanic range (37 to 05Ma central part ofthe Mexican Volcanic Belt (MVB) Figure 1) was mainly con-trolled by a magma mixingmingling process In this workas an example multivariate techniques (linear discriminantcluster and principal component analysis) discordancy andsignificance statistical tests and mass-balance approacheswere applied to establish the tectonic setting and to obtaina quantitative picture of the magmatic evolution of thisvolcanic range

2 Geological Synthesis

The SC volcanic range is an elongated volcanic rangeextending in a NNW-SSE direction for sim65 km with a widthvarying between 47 km to the north and 27 km to the south(Figure 2 [23ndash25]) According to K-Ar geochronological data[26] the main mass of SC volcanic range was eruptedbetween 37 and 18Ma After that in the middle Pleistocene(sim05Ma) another volcanic event produced andesitic domesbeing labeled as Ajusco period It has been considered asthe transition to the Sierra de Chichinautzin monogeneticeruptive period (lt40 ka [27ndash29])

On the basis of morphostructural and radiometric agecriteria the SC volcanic range has been divided into foursectors bounded by E-W faults [23 24] (a) northern sector(SCN 29ndash37Ma) (b) central sector (SCC 19ndash29Ma)

(c) southern sector (SCS 07ndash19Ma) and (d) las Cruces-Chichinautzin transition sector (SCT sim05Ma) The north-ern and central sectors are characterized by morphostruc-tures controlled byN-S andNE-SW fault systems In contrastE-W faults have ruled the morpholineaments and drainagepatterns observed in the southern sector and the transitionregion

The SC stratovolcanoes underwent alternated episodesassociated with faulting of effusive and explosive activityPorphyritic andesite to dacite lava flows (Lava DacıticaApilulco thickness lt 4m) with planar fracturing subparallelto the surface constitute the main effusive products Theygenerally show a mineralogical assemblage of plagioclase+ amphibole + orthopyroxene plusmn clinopyroxene plusmn quartz+ Fe-Ti oxides Spherical to ellipsoidal magmatic enclavesoccasionally occur in these lava flows They are randomlydistributed along the volcanic range although the numberand size apparently increase towards the north Majorityof the magmatic enclaves display a few millimeters to 4centimeters in diameter although in some northern outcropsthey reach sim20 cm in diameter The explosive products con-sist in pyroclastic deposits (Brecha Piroclastica Cantimplorathickness = 1ndash4m) conformed by dacitic blocks (20ndash30 cm)pumice clasts (lt15 cm) and ash that occurred intercalatedwith the lava flows

Velasco-Tapia et al [23] developed an extensive studyin the SC volcanic range that includes detailed petrog-raphy mineral chemistry whole-rock geochemistry andSr-Nd isotopic data These authors reported that severaldisequilibrium features confirm the significant role of themagma minglingmixing processes between andesitic anddacitic magmas with concomitant fractional crystallizationThe SC magmas were probably generated at different levelsof the continental crust by partial melting The magmamixingmingling evidence includes (a) normal and sievedplagioclases in the same sample rounded and embayedcrystals and armored rims over the dissolved crystal surfaces(b) subrounded vesicular magmatic enclaves ranging froma few millimeters to sim20 centimeters in size (mineralogicalassemblage plagioclase + orthopyroxene + amphibole +quartz plusmn olivine plusmn Fe-Ti-oxides) (c) crystals with reactionrims or heterogeneous plagioclase compositions (inverse andoscillatory zoning or normally and inversely zoned crystals)in the same sample and (d) elemental geochemical variationsand trace element ratio more akin to magma mixing and tosome extent diffusion process Andesitic enclaves have beeninterpreted as portions of the intermediate magma that didnot mix completely (mingling) with the felsic host lavas

3 Methods

In the present work ten samples collected along the SCvolcanic range (Figure 2 SCN SC46 SC52 and SC52a SCSSC51 SC53 and SC58 SCT SC03 SC16 SC22 and SC60)were studied to obtain new petrographic and geochemicaldata Modal compositions were determined by point count-ing on thin sections using a Prior Scientific petrographic

The Scientific World Journal 3

PV MVBSC

NT PoMC

20∘

15∘

10∘

102∘

98∘

94∘

90∘

W

N

5 1015

EPR

EAP

VLTVF

Gulf of Mexico

Cocosplate

plate

plate

North AmericanCh

Tac

20

MAT

200 km

Caribbean

CAVA

Iz

Mexico

Figure 1 Location of the Sierra de las Cruces (SC) volcanic range (blue shaded box) at the central part of the Mexican Volcanic Belt (MVB)(modified from [30]) For guidance the black box at the upper right side shows the location of this zone in North America The figure alsoincludes the approximate location of the Eastern Alkaline Province (EAP) Los Tuxtlas Volcanic Field (LTVF) Central American VolcanicArc (CAVA) and the Chichon (Ch) and Tacana (T) volcanoes Other tectonic features are the Middle America Trench (MAT shown by athick black curve) and the East Pacific Rise (EPR shown by a pair of dashed-dotted black lines) The traces marked by numbers 5 to 20 onthe oceanic Cocos plate give the approximate age of the oceanic plate in Ma Locations of Iztaccıhuatl (Iz) Popocatepetl (Po) and Nevado deToluca (NT) are also shown Cities are PV Puerto Vallarta MC Mexico City and V Veracruz

microscope Approximately 500 points per sample werecounted in order to obtain a representative mode (Table 1)

Major and trace element composition of these SC volcanicrocks (Tables 2 and 3) were determined in ActLabs laborato-ries (Ancaster Canada) using the ldquo4LithoResrdquo methodology(for details consult webpage httpwwwactlabsintcom)Major elements were analyzed by inductively coupledplasma-optical emission spectrometry (ICP-OES) with ananalytical precision lt2 and accuracy typically better than5 at 95 confidence level based on analysis of diversegeochemical reference materials (GRM) Trace element con-centrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS) with an analytical precision 3ndash6 (occasionally reaching 9-10) and an accuracy typicallybetter than 7ndash12 for most elements at the 95 confidencelevel based on analysis of diverse GRM

4 Sierra de las Cruces Database andEvaluation Scheme

41 Mineralogical and Geochemical Database A more com-plete SC database of the mineralogical modes and the whole-rock geochemical composition was established from the newas well as the published information reported by Velasco-Tapia et al [23] CIPW norms for samples were calculatedon a 100 anhydrous adjusted basis of major element com-position with [Fe

2O3]adj[FeO]adj ratios adjusted depending

on the rock type [34] Rock classification was based on thetotal alkali-silica (TAS) scheme [35 36] All computations

(anhydrous and iron-oxidation ratio adjustments normcom-positions and rock classifications) were automatically doneusing the SINCLAS software [14 15]

42 Linear Discrimination Analysis The tectonic affinity ofthe SC volcanic rocks was established applying newdiscriminant-function-based multidimensional diagramsfor intermediate ([SiO

2]adj = 52ndash63) and acid ([SiO

2]adj gt

63) rocks using the linear discriminant analysis (LDA) ofnatural logarithm ratios of major elements immobile majorand trace elements and immobile trace elements Thesediagrams [21 22] were proposed to discriminate island arc(IA) continental arc (CA) within-plate (continental riftCR and ocean island OI together) and collisional (Col)settings Based on the earlier work of Verma and Agrawal[39] and the modifications outlined by Verma [40] thesediagrams also provide probability estimates for individualsamples which were used in the present work

Firstly the nature of intermediate or acid magma for eachsample was confirmed from the SINCLAS software [14 15]under the Middlemost [34] option for Fe-oxidation adjust-ment After that a series of natural logarithms of elementratios were estimated for all samples This transformationprovided a Gaussian character to the distribution data abasic condition of the LDA After that the ln-ratio datawere used to estimate two discriminant functions (DF1 andDF2) obtained from the LDA (canonical analysis) and theindividual probability for each sample to a tectonic regimeThis statistical exercise was first performed to discriminatebetween IA+CACR+ IO andCol settings and four times for

4 The Scientific World Journal

19∘45

998400N

19∘35

998400N

19∘25

998400N

19∘15

998400N

19∘05

998400N

19∘45

998400N

19∘35

998400N

19∘25

998400N

19∘15

998400N

19∘05

998400N99

∘40

998400W 99∘30

998400W 99∘20

998400W 99∘10

998400W

99∘40

998400W 99∘30

998400W 99∘20

998400W 99∘10

998400W

LocalitySector limitRoadFaultSampleLacustrine sedimentsAlluviumConglomeratesVolcaniclast sediments

Sedimentary brecciaBasic volcanic brecciaIntermediate volcanic breccia

BasaltBasalt-basic volcanic brecciaBasic tuff

AndesiteAndesite-daciteDacite

SC46

SC51

SC52

SC58SC53

SC60

SC03SC16SC22

Toluca

Cd deMexico

5 10 15 20 25(km)

N

EW

S

Figure 2 Geologic sketch of the Sierra de las Cruces volcanic range showing lithology faults roads and distribution of the samples (greenstars) collected along the volcanic range in this work (modified from [23]) Study area division in four sectors from N to S based on K-Arradiometric data [26] (a) SCN-northern sector (29ndash37Ma) (b) SCC-central sector (19ndash29Ma) (c) SCS-southern sector (07ndash19Ma) and(d) SCT-transition sector that include the Ajusco volcano (lt07Ma)

all possible combinations of three groups at a time out of fourgroups (IA CA CR + OI and Col) Details of the statisticalmethodology and LDA equations have been reported in[21 22] It is important to note that the discriminationanalysis was carried out considering the four SC sectorsAll LDA equations were incorporated in a STATISTICA forWindows (Statsoft Inc Tulsa OK USA) spreadsheet anddiscrimination diagramswere constructed from these results

43 Discordancy and Significance Tests In order to betterunderstand the contribution of the subducted Cocos plate

to the SC magmas the methodology put forth and practicedby Verma [38] was applied This approach basically consistsof comparing the magmas closer to the Middle AmericaTrench (MAT) to those farther from it that is the SCsectors were statistically compared as two groups The nullhypothesis (H

0 the two groups did not differ significantly

at strict 99 confidence level) and the alternate hypothesis(HA the two groups differ significantly at 99 confidencelevel) were tested by Fisher 119865 and Studentrsquos 119905-tests (UDASYSsoftware [37]) Because the significance tests require that thedata be normally distributed single-outlier type discordancy

The Scientific World Journal 5

Table1Petro

graphicinformationof

theS

ierrad

elas

Cruces

volcanicrocksa

Sample

Locality

Lat(N

)∘Lo

ng(W)∘

Texture

Phenocrysts

Groun

dmasstexture

Rock

Dise

quilibrium

evidence

Ol

Opx

Cpx

Plg

Qtz

Amp

Type

Ol+

Qtz

Qtz-R

Plg-N+S

ESC

03Ca

ntim

plora

99∘1410158403410158401015840

19∘1110158403510158401015840

VP

946

MI

SC16

Rancho

Agustın

99∘1910158404010158401015840

19∘1110158403010158401015840

P70

22

620

MID

E⨀

⨀⨀

SC22

Volcan

Negro

99∘2310158400610158401015840

19∘1010158400010158401015840

VT

8515

TI

SC46

LosP

uercos

99∘2810158400410158401015840

19∘3110158403610158401015840

P4

5820

18M

FDE

SC51

Cerro

Prieto

99∘1610158405510158401015840

19∘1810158404210158401015840

P3

359

1025

VFD

E⨀

SC52

SMiguelTecpan

99∘2410158403310158401015840

19∘3110158401210158401015840

VP

2741

428

MFD

E⨀

⨀⨀

SC52a

SMiguelTecpan

99∘2410158403310158401015840

19∘3110158401210158401015840

VP

2377

MME

SC53

Santiago

99∘1610158405310158401015840

19∘1510158404810158401015840

VP

697

24V

FDE

⨀⨀

SC58

Garam

bullo

s99∘1510158405610158401015840

19∘1510158400310158401015840

P3

258

631

VFD

E⨀

SC60

Quellamecal

99∘1410158402510158401015840

19∘1010158403310158401015840

P5

362

30V

Fa M

odaldata

arepercentageso

fpheno

crysts+microph

enocrysts

calculated

onavesic

leandgrou

ndmassfreebasisT

extureP

porph

yriticVP

vesic

ular-porph

yriticandVT

vesic

ular

trachyticG

roun

dmass

represents

60ndash9

0of

therocksGroun

dmasstextureMm

icrolithicT

trachyticand

Vvitre

ousPh

enocrysts

OlolivineOpxo

rtho

pyroxeneC

pxclin

opyroxenePlg

plagiocla

seQ

tzq

uartzandAmp

amph

iboleRo

cktypesIinterm

ediatemagmaswith

outd

isequ

ilibriumevidenceFfels

icmagmaswith

outd

isequ

ilibriumevidenceIDEinterm

ediatecomingled

lavaFD

Efelsicc

omingled

lavaandMEmagmatic

enclaveDise

quilibrium

evidencesOl+

Qtzolivine+

quartzQ

tz-Rquartzw

ithar

eactionrim

Plg-N

+Splagiocla

sesw

ithno

rmalandsie

vedtextureandE

ellip

soidalchilled

andesiticencla

ve

6 The Scientific World Journal

tests were applied at strict 99 confidence level for whichDODESSYS software of Verma and Dıaz-Gonzalez [41] wasused

44 Cluster Analysis The principal aim of this statistical toolis to partition observations into a number of groups It isexpected that the observations within a cluster are as similaras possible whereas the differences between the clusters are aslarge as possible Inmagmamingling scenario this techniquewould be helpful for the SC sample distribution in residentinvasive and comingled magmas

In this work cluster analysis was performed using thenatural logarithm of major elements ([SiO

2]adjndash[P2O5]adj)

and representative trace (transition Co V rare earth LaEu Yb lithophile Ba Sr U high-field strength Hf Y Zr)elements to [Al

2O3]adj ratios by using a hierarchical cluster

method (HCM [42]) Geochemical ratios were previouslystandardized (z-scores) by means of

119870119894119895=119883119894119895minus 119883

119878119894119888

(1)

where119870119894119895is the standardized value of119883

119894119895 the 119894th variable for

the 119895th sample119883 is the mean value of the 119894th variable and 119878119894119888

is its standard deviation Additionally the normality of eachstandardized variable was confirmed by the Shapiro-Wilkstest Cluster analysis applied a Wardrsquos linkage rule whichlinked iteratively nearby points through a similarity matrixand performed an ANOVA test to evaluate the distancebetween clusters [43] The adopted procedure gives equalweight to each geochemical ratio The measure of similaritywas simply the distance as defined in Euclidean space Thedistance between two samples (119895 119896) is given by

119889119895119896= [

119873

sum119894=1

(119870119894119895minus 119870119894119896)2

]

12

(2)

where 119870119894119895denotes the 119870th variable measured on object 119894 in

sample 119895 and 119870119895119896is the 119870th variable measured on object 119894 in

sample 119896 The results of the cluster analysis were graphicallydisplayed in three dendrograms with units in Euclideanvalues corresponding to northern central and southern-transition SC sectors

The weight of geochemical log-ratios in the clusterapproach was determined from the results obtained in aprincipal component analysis (PCA) It has been definedas an orthogonal linear transformation for reducing thedimensionality of a dataset by expressing it as the combi-nation of a small number of linearly independent factors orldquoprincipal componentsrdquo Each factor will be a function ofthe individual contributions of the original variables [44]The greatest variance for the transformed data was linked tothe first principal component whereas the second variancemagnitude was related to the second principal componentand so on The PCA considers a data matrix X (119899 rowstimes119901 columns rows represent different samples and columnsgive a particular chemical component each componentwhich has been standardized yielded a zero empirical mean)

The transformation is stated by a set of119901-dimensional vectorsw(119896)= (1199081 119908

119901)(119896)

that map each row vector x(119894)ofX to a

new vector of principal component factors t(119894)= (1199051 119905

119901)(119894)

given by

t119896(119894)

= x(119894)sdot w(119896) (3)

Individual variables of t considered over the data setsuccessively inherit the maximum possible variance from xwith each loading w constrained to be a unit vector The firstprincipal component w

(1)satisfied

w(1)= argmaxsum

119894

(1199051)2

(119894) = argmaxsum

119894

(x(119894)sdot w)2

(4)

where the quantity to be maximized is known as Rayleighquotient The 119896th component was determined by subtractingthe 119896 ndash 1 principal components fromX

X119896minus1

= X minus

119896minus1

sum119904=1

Xw(119904)wT(119904) (5)

The vector associated with this component and showingthe maximum variance from this new matrix would bedefined as

w(119896)= argmax

10038171003817100381710038171003817X119896minus1

w10038171003817100381710038171003817

2

(6)

All calculations related to cluster analysis were carried outusing the STATISTICA for Windows software

45 Mass-Balance Evaluations Nixon [31] applied a simplemass-balance scheme for the quantitative characterizationof binary mixtures and end-member compositions in theIztaccıhuatl volcano (central MVB) The author suggestedthat despite the compositional heterogeneity if a chemicalcomponent can be found whose concentration is invariantin time and known in the mix and in each of the end-members it is possible to treat quantitatively the magmamixing process

Mixing proportions may be calculated considering thelever principle and the composition of the comingledmagmasubsequently described for all chemical components Theamount of a component in the mixed lava could be repre-sented by

119876119894

119860=

10038161003816100381610038161003816119862119894

119872minus 119862119894

119861

100381610038161003816100381610038161003816100381610038161003816119862119894

119860minus 119862119894119861

1003816100381610038161003816 (7)

where 119876119894119860+ 119876119894

119861= 1 and 119876119894 and 119862119894 represent the weight

fraction and concentration respectively of element 119894 insubscripted end-members 119860 and 119861 and mixture 119872 Thecomposition of an end-member could be estimated by

119862119895

119860=

10038161003816100381610038161003816119862119895

119872minus 119876119894

119861119862119895

119861

10038161003816100381610038161003816

119876119894119860

(8)

where constituent 119894 = 119895 In this work this mass-balanceapproach (model A) was applied to SC lavas being restricted

The Scientific World Journal 7

to those sectors where the end-member compositions wereavailable and to those components that exhibit a statisticallysignificant linear coherence in [SiO

2]adj-Harker diagrams

This test involved the evaluation at 99 confidence level ofPearson product-moment correlation coefficient (119903) and thesample size (119899) Details and required caution in the use of 119903have been reported in Bevington and Robinson [45]

On the other hand Zou [33] reported a mass-balanceapproach to explain the 119910

119898= (119906119886)

119898and 119909

119898= (V119887)

119898

geochemical ratios (where 119886 119887 119906 and V represent majoror trace elements) in SC comingled lavas as a product of amixture of two components 1 and 2 The variation in the119910119898

and 119909119898

geochemical ratios could be modeled by thehyperbolic equation (condition 119886

11198862= 11988711198872)

119860119909119898+ 119861119909119898119910119898+ 119862119910119898+ 119863 = 0 (9)

In this model the 119860 to 119863 coefficients have been definedas

119860 = 119886211988711199102minus 119886111988721199101 (10a)

119861 = 11988611198872minus 11988621198871 (10b)

119862 = 119886211988711199091minus 119886111988721199092 (10c)

119863 = 1198861119887211990921199101minus 1198862119887111990911199102 (10d)

where the geochemical ratios in the components 1 and 2 are

1199091=V1

1198871

(11a)

1199092=V2

1198872

(11b)

1199101=1199061

1198861

(11c)

1199102=1199062

1198862

(11d)

The proportion of the first component could be estimatedby

1198911=

minus1198862119910119898+ 11988621199102

(1198861minus 1198862) 119910119898minus 11988611199101+ 11988621199102

(12)

In this work the scheme described by Zou ([33]model B)was applied to evaluate the mixingmingling process in theSC northern sector All calculations of mixing models werecarried out using the STATISTICA for Windows software

5 Results

Ten samples of SC database proved to be intermediatemagmas The set of major element based diagrams (119899 =

10 Table 4 and Figure 3) showed a collisional setting withtotal percent probability value ( prob) of about 458However immobile major and trace element based diagrams

(119899 = 9 Table 4 and Figure 4) indicated a within-plate regimealthough with a relatively low prob of only about 381Unlike other sets of diagrams a continental arc setting can beinferred from those based on immobile trace elements (119899 =10 prob = 397 Table 4 and Figure 5) It is important tonote that intermediate samples from southern and transitionsectors (19 to 05 Ma) represent the main contribution to thecollisional and within-plate settings

A relatively large number of samples (119899 = 46) fromSC database proved to be of acid magma In contrast tointermediate magmas all diagrams indicated a subduction-related setting for the SC acid magmas with total percentprobability values for this tectonic regime of about 741630 and 687 respectively for themajormajor and traceand trace element based diagrams (Table 5 and Figures 6 7and 8)The results of the tectonic setting are further evaluatedfrom discordancy and significance tests in the Discussionsection below

On the other hand the hierarchical agglomeration pro-cess was carried out for each SC sector (SCN 22 samplesSCC 12 samples and SCS and SCT 22 samples) and theirresults were summarized in three dendrograms with units inEuclidean values (Figures 9(a)ndash9(c)) The statistical param-eters (mean minimum maximum and standard deviation)associated with the centroid of each cluster are reported inTable 6

The studied rocks from northern SC sector (Table 6Figure 9(a)) were distributed in three general clusters (N1[136] N2 [545] and N3 [319]) The PCA calculationindicated that the sim942 of geochemical variability ofsamples from northern SC sector could be explained by threefactorsThe factor F1 contributedwith 574 being associatedwith major (excepting Na and P) and transition elementsrare earth elements and yttrium ruled a contribution of186 by means of the factor F2 (Figure 10(a)) The principalcomponent F3 (a function ofNa P and Sr) explained the 82of the chemical variability

The samples from central SC conformed four groups (C1[83] C2 [250] C3 [83] and C4 [583] Table 6 andFigure 9(b)) A sim941 of the chemical variability can beexplained by means of five factors The factor F1 (450)is controlled by Si and alkali composition A 320 of thecompositional heterogeneity has been associated with theincompatible elements using the principal component F2(Figure 10(b)) The factor F3 (ruled by Mg Ca and HFSE)contributed with a 106

The samples of SCS and SCT were agglomerated in threegeochemical groups (ST1 [364] ST2 [409] and ST3[227] Table 6 and Figure 9(c)) PCA calculations haverevealed that a sim90 of the geochemical composition couldbe explained as a function of five principal componentsThe factor F1 associated with major elements (exceptingNa and K) Co and Eu contributed with 428 F2 factorwhich represents a 247 is controlled by Ba K and U(Figure 10(c)) An 119 of the chemical heterogeneity isexplained by the factor F3 a variable ruled by Na K and Vcomposition

8 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

int

DF1(IA+CAminusCR+OIminusCol)mint

Col (868)

IA (900)+ CA (793)

CR (716)+ OI (964)

(a)

DF2

(IAminus

CAminus

CR+

OI)

min

t

DF1(IAminusCAminusCR+OI)mint

CA (725)

IA (713)

+ OI (939)CR (766)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

int

DF1(IAminusCAminusCol)mint

CA (691)

IA (691)

Col (855)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

int

DF1(IAminusCR+OIminusCol)mint

CR (750)+ OI (949)

Col (867)

IA (890)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (716)+ OI (960)

Col (855)

CA (800)

Field boundaryGroup centroidNorthern sector

Central sectorSouthern sectorTransition sector

DF1(CAminusCR+OIminusCol)mint

DF2

(CAminus

CR+

OIminus

Col)m

int

(e)

Figure 3 Discriminant-function multidimensional diagrams [21] based on ln-transformed ratios of major elements for the tectonicdiscrimination of intermediate Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OIocean island and Col collisionThe symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IAand CA as IA + CA and CR and OI as CR + OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript mint refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for intermediate (int) magmas Filled circles displaythe compositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [21]

The Scientific World Journal 9

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

tint

DF1(IA+CAminusCR+OIminusCol)mtint

CR (729)+ OI (100)

Col (902)

IA (863)+ CA (885)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

CR+

OI)

mtin

t

DF1(IAminusCAminusCR+OI)mtint

CR (792)+ OI (100)

IA (704)

CA (818)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

tint

DF1(IAminusCAminusCol)mtint

Col (927)IA (628)

CA (762)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

tint

DF1(IAminusCR+OIminusCol)mtint

CR (742)+ OI (987)

Col (902)

IA (855)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (729)+ OI (987)

Col (908)

CA (947)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

Transition sector

DF1(CAminusCR+OIminusCol)mtint

DF2

(CAminus

CR+

OIminus

Col)m

tint

(e)

Figure 4 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3The subscript ldquomtintrdquo in axis names refers to major (m) and trace (t) element ratios for intermediate (int) magmas

10 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)ti

nt

DF1(IA+CAminusCR+OIminusCol)tint

CR (743)+ OI (100)

Col (810)

IA (914)+ CA (904)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OI)

tint

DF1(IA+CAminusCR+OI)tint

CR (805)+ OI (100)

IA (757)

CA (658)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)ti

nt

DF1(IAminusCAminusCol)tint

Col (840)

IA (727)

CA (645)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)ti

nt

DF1(IAminusCR+OIminusCol)tint

CR (747)+ OI (100)

Col (847)

IA (903)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (743)+ OI (941)

Col (810)

CA (957)

Field boundaryGroup centroidNorthern region

Central regionSouthern regionTransition region

DF1(CAminusCR+OIminusCol)tint

DF2

(CAminus

CR+

OIminus

Col)ti

nt

(e)

Figure 5 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3 Thesubscript ldquotintrdquo in axis names refers to trace (t) element ratios for intermediate (int) magmas

The Scientific World Journal 11

8

4

0

minus4

minus8840minus4minus8

CR (738)

Col (753)

+ OI (954) IA (940)+ CA (867)

DF2

(IA+C

Aminus

CR+

OIminus

Col)m

acid

DF1(IA+CA minusCR+OIminusCol)macid

(a)

8

4

0

minus4

minus8840minus4minus8

CR (832)+ OI (969)IA (712)

CA (795)

DF2

(IAminus

CAminus

CR+

OI)

mac

id

DF1(IAminusCAminusCR+OI)macid

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

acid

DF1(IAminusCAminusCol)macid

Col (774)IA (691)

CA (823)

(c)

8

4

0

minus4

minus8840minus4minus8

CR (789)+ OI (969)

Col (831)

IA (855)

DF1(IAminusCR+OIminusCol)macid

DF2

(IAminus

CR+

OIminus

Col)m

acid

(d)

8

4

0

minus4

minus8840minus4minus8

Field boundaryGroup centroidSC northern sector

SC central sectorSC southern sector

CR (732)+ OI (954)

Col (741)

CA (886)

DF1(CAminusCR+OIminusCol)macid

DF2

(CAminus

CR+

OIminus

Col)m

acid

(e)

Figure 6 Discriminant-function multidimensional diagrams [22] based on ln-transformed ratios of major elements for the tectonicdiscrimination of acid Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OI ocean islandand Col collision The symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IA and CAas IA + CA and CR and OI as CR+OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript ldquomacidrdquo refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for acid (acid) magmas Filled circles display thecompositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [22]

12 The Scientific World Journal

IA (943)+ CA (846) CR (697)

+ OI (975)

Col (764)

8

4

0

minus4

minus8840minus4minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

taci

d

DF1(IA+CAminusCR+OIminusCol)mtacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+

OI)

mta

cid

DF1(IAminusCAminusCR+OI)mtacid

IA (767)

CA (846)

CR (752)+ OI (988)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

taci

d

DF1(IAminusCAminusCol)mtacid

Col (754)

CA (822)

IA (774)

(c)

8

4

0

minus4

minus8840minus4minus8

DF1(IAminusCR+OIminusCol)mtacid

DF2

(IAminus

CR+

OIminus

Col)m

taci

d

Col (867)

IA (850)

CR (720)+ OI (975)

(d)

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)m

taci

d

DF1(CAminusCR+OIminusCol)mtacid

CA (930)

Col (697)

CR (693)+ OI (975)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

(e)

Figure 7 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 Thesubscript ldquomtacidrdquo in axis names refers to major (m) and trace (t) element ratios for acid (acid) magmas

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 2: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

2 The Scientific World Journal

(b) themodalmineralogy of themagmas prior tomixing and(c) the proportions of resident and invasive magmas [4] Aquantitative assessment could be obtained from multivariatestatistical techniques [8] Although these methods have beenused with classification purposes in igneous rocks [9] theiruse to understand magma mixingmingling processes is stilllimited [7 10ndash13]

On the other hand magma mixingmingling processeshave been observed in diverse tectonic settings Conse-quently a complete vision of these magmatic localitiescommonly dominated by rocks with [SiO

2]adj gt 52 (the

subscript adj refers to the adjusted silica from the SINCLAScomputer program [14 15]) would be facilitated from the tec-tonic regime However a restricted number of conventionaldiagrams are available for tectonic discrimination of inter-mediate ([SiO

2]adj = 52ndash63 [16 17]) and acid ([SiO

2]adj gt

63 [1 18]) magmas Additionally these schemes have beencritiqued as a result of a statistically wrong treatment ofcompositional data eye-drawn subjective boundaries fordifferent tectonic fields and lack of representation of theentire statistical population [19 20] S P Verma and S KVerma [21] and Verma et al [22] to solve the limitationsof the tectonic discrimination conventional schemes haveproposed a set of new discriminant-function-based multidi-mensional diagrams for intermediate and acid magmas fromfour tectonic settings (island arc continental arc continentalrift + ocean island and collision)

In this context Velasco-Tapia et al [23] recently reportedbased on mineralogical geochemical and Sr-Nd isotopicconventional tools that the formation of the Sierra de lasCruces (SC) volcanic range (37 to 05Ma central part ofthe Mexican Volcanic Belt (MVB) Figure 1) was mainly con-trolled by a magma mixingmingling process In this workas an example multivariate techniques (linear discriminantcluster and principal component analysis) discordancy andsignificance statistical tests and mass-balance approacheswere applied to establish the tectonic setting and to obtaina quantitative picture of the magmatic evolution of thisvolcanic range

2 Geological Synthesis

The SC volcanic range is an elongated volcanic rangeextending in a NNW-SSE direction for sim65 km with a widthvarying between 47 km to the north and 27 km to the south(Figure 2 [23ndash25]) According to K-Ar geochronological data[26] the main mass of SC volcanic range was eruptedbetween 37 and 18Ma After that in the middle Pleistocene(sim05Ma) another volcanic event produced andesitic domesbeing labeled as Ajusco period It has been considered asthe transition to the Sierra de Chichinautzin monogeneticeruptive period (lt40 ka [27ndash29])

On the basis of morphostructural and radiometric agecriteria the SC volcanic range has been divided into foursectors bounded by E-W faults [23 24] (a) northern sector(SCN 29ndash37Ma) (b) central sector (SCC 19ndash29Ma)

(c) southern sector (SCS 07ndash19Ma) and (d) las Cruces-Chichinautzin transition sector (SCT sim05Ma) The north-ern and central sectors are characterized by morphostruc-tures controlled byN-S andNE-SW fault systems In contrastE-W faults have ruled the morpholineaments and drainagepatterns observed in the southern sector and the transitionregion

The SC stratovolcanoes underwent alternated episodesassociated with faulting of effusive and explosive activityPorphyritic andesite to dacite lava flows (Lava DacıticaApilulco thickness lt 4m) with planar fracturing subparallelto the surface constitute the main effusive products Theygenerally show a mineralogical assemblage of plagioclase+ amphibole + orthopyroxene plusmn clinopyroxene plusmn quartz+ Fe-Ti oxides Spherical to ellipsoidal magmatic enclavesoccasionally occur in these lava flows They are randomlydistributed along the volcanic range although the numberand size apparently increase towards the north Majorityof the magmatic enclaves display a few millimeters to 4centimeters in diameter although in some northern outcropsthey reach sim20 cm in diameter The explosive products con-sist in pyroclastic deposits (Brecha Piroclastica Cantimplorathickness = 1ndash4m) conformed by dacitic blocks (20ndash30 cm)pumice clasts (lt15 cm) and ash that occurred intercalatedwith the lava flows

Velasco-Tapia et al [23] developed an extensive studyin the SC volcanic range that includes detailed petrog-raphy mineral chemistry whole-rock geochemistry andSr-Nd isotopic data These authors reported that severaldisequilibrium features confirm the significant role of themagma minglingmixing processes between andesitic anddacitic magmas with concomitant fractional crystallizationThe SC magmas were probably generated at different levelsof the continental crust by partial melting The magmamixingmingling evidence includes (a) normal and sievedplagioclases in the same sample rounded and embayedcrystals and armored rims over the dissolved crystal surfaces(b) subrounded vesicular magmatic enclaves ranging froma few millimeters to sim20 centimeters in size (mineralogicalassemblage plagioclase + orthopyroxene + amphibole +quartz plusmn olivine plusmn Fe-Ti-oxides) (c) crystals with reactionrims or heterogeneous plagioclase compositions (inverse andoscillatory zoning or normally and inversely zoned crystals)in the same sample and (d) elemental geochemical variationsand trace element ratio more akin to magma mixing and tosome extent diffusion process Andesitic enclaves have beeninterpreted as portions of the intermediate magma that didnot mix completely (mingling) with the felsic host lavas

3 Methods

In the present work ten samples collected along the SCvolcanic range (Figure 2 SCN SC46 SC52 and SC52a SCSSC51 SC53 and SC58 SCT SC03 SC16 SC22 and SC60)were studied to obtain new petrographic and geochemicaldata Modal compositions were determined by point count-ing on thin sections using a Prior Scientific petrographic

The Scientific World Journal 3

PV MVBSC

NT PoMC

20∘

15∘

10∘

102∘

98∘

94∘

90∘

W

N

5 1015

EPR

EAP

VLTVF

Gulf of Mexico

Cocosplate

plate

plate

North AmericanCh

Tac

20

MAT

200 km

Caribbean

CAVA

Iz

Mexico

Figure 1 Location of the Sierra de las Cruces (SC) volcanic range (blue shaded box) at the central part of the Mexican Volcanic Belt (MVB)(modified from [30]) For guidance the black box at the upper right side shows the location of this zone in North America The figure alsoincludes the approximate location of the Eastern Alkaline Province (EAP) Los Tuxtlas Volcanic Field (LTVF) Central American VolcanicArc (CAVA) and the Chichon (Ch) and Tacana (T) volcanoes Other tectonic features are the Middle America Trench (MAT shown by athick black curve) and the East Pacific Rise (EPR shown by a pair of dashed-dotted black lines) The traces marked by numbers 5 to 20 onthe oceanic Cocos plate give the approximate age of the oceanic plate in Ma Locations of Iztaccıhuatl (Iz) Popocatepetl (Po) and Nevado deToluca (NT) are also shown Cities are PV Puerto Vallarta MC Mexico City and V Veracruz

microscope Approximately 500 points per sample werecounted in order to obtain a representative mode (Table 1)

Major and trace element composition of these SC volcanicrocks (Tables 2 and 3) were determined in ActLabs laborato-ries (Ancaster Canada) using the ldquo4LithoResrdquo methodology(for details consult webpage httpwwwactlabsintcom)Major elements were analyzed by inductively coupledplasma-optical emission spectrometry (ICP-OES) with ananalytical precision lt2 and accuracy typically better than5 at 95 confidence level based on analysis of diversegeochemical reference materials (GRM) Trace element con-centrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS) with an analytical precision 3ndash6 (occasionally reaching 9-10) and an accuracy typicallybetter than 7ndash12 for most elements at the 95 confidencelevel based on analysis of diverse GRM

4 Sierra de las Cruces Database andEvaluation Scheme

41 Mineralogical and Geochemical Database A more com-plete SC database of the mineralogical modes and the whole-rock geochemical composition was established from the newas well as the published information reported by Velasco-Tapia et al [23] CIPW norms for samples were calculatedon a 100 anhydrous adjusted basis of major element com-position with [Fe

2O3]adj[FeO]adj ratios adjusted depending

on the rock type [34] Rock classification was based on thetotal alkali-silica (TAS) scheme [35 36] All computations

(anhydrous and iron-oxidation ratio adjustments normcom-positions and rock classifications) were automatically doneusing the SINCLAS software [14 15]

42 Linear Discrimination Analysis The tectonic affinity ofthe SC volcanic rocks was established applying newdiscriminant-function-based multidimensional diagramsfor intermediate ([SiO

2]adj = 52ndash63) and acid ([SiO

2]adj gt

63) rocks using the linear discriminant analysis (LDA) ofnatural logarithm ratios of major elements immobile majorand trace elements and immobile trace elements Thesediagrams [21 22] were proposed to discriminate island arc(IA) continental arc (CA) within-plate (continental riftCR and ocean island OI together) and collisional (Col)settings Based on the earlier work of Verma and Agrawal[39] and the modifications outlined by Verma [40] thesediagrams also provide probability estimates for individualsamples which were used in the present work

Firstly the nature of intermediate or acid magma for eachsample was confirmed from the SINCLAS software [14 15]under the Middlemost [34] option for Fe-oxidation adjust-ment After that a series of natural logarithms of elementratios were estimated for all samples This transformationprovided a Gaussian character to the distribution data abasic condition of the LDA After that the ln-ratio datawere used to estimate two discriminant functions (DF1 andDF2) obtained from the LDA (canonical analysis) and theindividual probability for each sample to a tectonic regimeThis statistical exercise was first performed to discriminatebetween IA+CACR+ IO andCol settings and four times for

4 The Scientific World Journal

19∘45

998400N

19∘35

998400N

19∘25

998400N

19∘15

998400N

19∘05

998400N

19∘45

998400N

19∘35

998400N

19∘25

998400N

19∘15

998400N

19∘05

998400N99

∘40

998400W 99∘30

998400W 99∘20

998400W 99∘10

998400W

99∘40

998400W 99∘30

998400W 99∘20

998400W 99∘10

998400W

LocalitySector limitRoadFaultSampleLacustrine sedimentsAlluviumConglomeratesVolcaniclast sediments

Sedimentary brecciaBasic volcanic brecciaIntermediate volcanic breccia

BasaltBasalt-basic volcanic brecciaBasic tuff

AndesiteAndesite-daciteDacite

SC46

SC51

SC52

SC58SC53

SC60

SC03SC16SC22

Toluca

Cd deMexico

5 10 15 20 25(km)

N

EW

S

Figure 2 Geologic sketch of the Sierra de las Cruces volcanic range showing lithology faults roads and distribution of the samples (greenstars) collected along the volcanic range in this work (modified from [23]) Study area division in four sectors from N to S based on K-Arradiometric data [26] (a) SCN-northern sector (29ndash37Ma) (b) SCC-central sector (19ndash29Ma) (c) SCS-southern sector (07ndash19Ma) and(d) SCT-transition sector that include the Ajusco volcano (lt07Ma)

all possible combinations of three groups at a time out of fourgroups (IA CA CR + OI and Col) Details of the statisticalmethodology and LDA equations have been reported in[21 22] It is important to note that the discriminationanalysis was carried out considering the four SC sectorsAll LDA equations were incorporated in a STATISTICA forWindows (Statsoft Inc Tulsa OK USA) spreadsheet anddiscrimination diagramswere constructed from these results

43 Discordancy and Significance Tests In order to betterunderstand the contribution of the subducted Cocos plate

to the SC magmas the methodology put forth and practicedby Verma [38] was applied This approach basically consistsof comparing the magmas closer to the Middle AmericaTrench (MAT) to those farther from it that is the SCsectors were statistically compared as two groups The nullhypothesis (H

0 the two groups did not differ significantly

at strict 99 confidence level) and the alternate hypothesis(HA the two groups differ significantly at 99 confidencelevel) were tested by Fisher 119865 and Studentrsquos 119905-tests (UDASYSsoftware [37]) Because the significance tests require that thedata be normally distributed single-outlier type discordancy

The Scientific World Journal 5

Table1Petro

graphicinformationof

theS

ierrad

elas

Cruces

volcanicrocksa

Sample

Locality

Lat(N

)∘Lo

ng(W)∘

Texture

Phenocrysts

Groun

dmasstexture

Rock

Dise

quilibrium

evidence

Ol

Opx

Cpx

Plg

Qtz

Amp

Type

Ol+

Qtz

Qtz-R

Plg-N+S

ESC

03Ca

ntim

plora

99∘1410158403410158401015840

19∘1110158403510158401015840

VP

946

MI

SC16

Rancho

Agustın

99∘1910158404010158401015840

19∘1110158403010158401015840

P70

22

620

MID

E⨀

⨀⨀

SC22

Volcan

Negro

99∘2310158400610158401015840

19∘1010158400010158401015840

VT

8515

TI

SC46

LosP

uercos

99∘2810158400410158401015840

19∘3110158403610158401015840

P4

5820

18M

FDE

SC51

Cerro

Prieto

99∘1610158405510158401015840

19∘1810158404210158401015840

P3

359

1025

VFD

E⨀

SC52

SMiguelTecpan

99∘2410158403310158401015840

19∘3110158401210158401015840

VP

2741

428

MFD

E⨀

⨀⨀

SC52a

SMiguelTecpan

99∘2410158403310158401015840

19∘3110158401210158401015840

VP

2377

MME

SC53

Santiago

99∘1610158405310158401015840

19∘1510158404810158401015840

VP

697

24V

FDE

⨀⨀

SC58

Garam

bullo

s99∘1510158405610158401015840

19∘1510158400310158401015840

P3

258

631

VFD

E⨀

SC60

Quellamecal

99∘1410158402510158401015840

19∘1010158403310158401015840

P5

362

30V

Fa M

odaldata

arepercentageso

fpheno

crysts+microph

enocrysts

calculated

onavesic

leandgrou

ndmassfreebasisT

extureP

porph

yriticVP

vesic

ular-porph

yriticandVT

vesic

ular

trachyticG

roun

dmass

represents

60ndash9

0of

therocksGroun

dmasstextureMm

icrolithicT

trachyticand

Vvitre

ousPh

enocrysts

OlolivineOpxo

rtho

pyroxeneC

pxclin

opyroxenePlg

plagiocla

seQ

tzq

uartzandAmp

amph

iboleRo

cktypesIinterm

ediatemagmaswith

outd

isequ

ilibriumevidenceFfels

icmagmaswith

outd

isequ

ilibriumevidenceIDEinterm

ediatecomingled

lavaFD

Efelsicc

omingled

lavaandMEmagmatic

enclaveDise

quilibrium

evidencesOl+

Qtzolivine+

quartzQ

tz-Rquartzw

ithar

eactionrim

Plg-N

+Splagiocla

sesw

ithno

rmalandsie

vedtextureandE

ellip

soidalchilled

andesiticencla

ve

6 The Scientific World Journal

tests were applied at strict 99 confidence level for whichDODESSYS software of Verma and Dıaz-Gonzalez [41] wasused

44 Cluster Analysis The principal aim of this statistical toolis to partition observations into a number of groups It isexpected that the observations within a cluster are as similaras possible whereas the differences between the clusters are aslarge as possible Inmagmamingling scenario this techniquewould be helpful for the SC sample distribution in residentinvasive and comingled magmas

In this work cluster analysis was performed using thenatural logarithm of major elements ([SiO

2]adjndash[P2O5]adj)

and representative trace (transition Co V rare earth LaEu Yb lithophile Ba Sr U high-field strength Hf Y Zr)elements to [Al

2O3]adj ratios by using a hierarchical cluster

method (HCM [42]) Geochemical ratios were previouslystandardized (z-scores) by means of

119870119894119895=119883119894119895minus 119883

119878119894119888

(1)

where119870119894119895is the standardized value of119883

119894119895 the 119894th variable for

the 119895th sample119883 is the mean value of the 119894th variable and 119878119894119888

is its standard deviation Additionally the normality of eachstandardized variable was confirmed by the Shapiro-Wilkstest Cluster analysis applied a Wardrsquos linkage rule whichlinked iteratively nearby points through a similarity matrixand performed an ANOVA test to evaluate the distancebetween clusters [43] The adopted procedure gives equalweight to each geochemical ratio The measure of similaritywas simply the distance as defined in Euclidean space Thedistance between two samples (119895 119896) is given by

119889119895119896= [

119873

sum119894=1

(119870119894119895minus 119870119894119896)2

]

12

(2)

where 119870119894119895denotes the 119870th variable measured on object 119894 in

sample 119895 and 119870119895119896is the 119870th variable measured on object 119894 in

sample 119896 The results of the cluster analysis were graphicallydisplayed in three dendrograms with units in Euclideanvalues corresponding to northern central and southern-transition SC sectors

The weight of geochemical log-ratios in the clusterapproach was determined from the results obtained in aprincipal component analysis (PCA) It has been definedas an orthogonal linear transformation for reducing thedimensionality of a dataset by expressing it as the combi-nation of a small number of linearly independent factors orldquoprincipal componentsrdquo Each factor will be a function ofthe individual contributions of the original variables [44]The greatest variance for the transformed data was linked tothe first principal component whereas the second variancemagnitude was related to the second principal componentand so on The PCA considers a data matrix X (119899 rowstimes119901 columns rows represent different samples and columnsgive a particular chemical component each componentwhich has been standardized yielded a zero empirical mean)

The transformation is stated by a set of119901-dimensional vectorsw(119896)= (1199081 119908

119901)(119896)

that map each row vector x(119894)ofX to a

new vector of principal component factors t(119894)= (1199051 119905

119901)(119894)

given by

t119896(119894)

= x(119894)sdot w(119896) (3)

Individual variables of t considered over the data setsuccessively inherit the maximum possible variance from xwith each loading w constrained to be a unit vector The firstprincipal component w

(1)satisfied

w(1)= argmaxsum

119894

(1199051)2

(119894) = argmaxsum

119894

(x(119894)sdot w)2

(4)

where the quantity to be maximized is known as Rayleighquotient The 119896th component was determined by subtractingthe 119896 ndash 1 principal components fromX

X119896minus1

= X minus

119896minus1

sum119904=1

Xw(119904)wT(119904) (5)

The vector associated with this component and showingthe maximum variance from this new matrix would bedefined as

w(119896)= argmax

10038171003817100381710038171003817X119896minus1

w10038171003817100381710038171003817

2

(6)

All calculations related to cluster analysis were carried outusing the STATISTICA for Windows software

45 Mass-Balance Evaluations Nixon [31] applied a simplemass-balance scheme for the quantitative characterizationof binary mixtures and end-member compositions in theIztaccıhuatl volcano (central MVB) The author suggestedthat despite the compositional heterogeneity if a chemicalcomponent can be found whose concentration is invariantin time and known in the mix and in each of the end-members it is possible to treat quantitatively the magmamixing process

Mixing proportions may be calculated considering thelever principle and the composition of the comingledmagmasubsequently described for all chemical components Theamount of a component in the mixed lava could be repre-sented by

119876119894

119860=

10038161003816100381610038161003816119862119894

119872minus 119862119894

119861

100381610038161003816100381610038161003816100381610038161003816119862119894

119860minus 119862119894119861

1003816100381610038161003816 (7)

where 119876119894119860+ 119876119894

119861= 1 and 119876119894 and 119862119894 represent the weight

fraction and concentration respectively of element 119894 insubscripted end-members 119860 and 119861 and mixture 119872 Thecomposition of an end-member could be estimated by

119862119895

119860=

10038161003816100381610038161003816119862119895

119872minus 119876119894

119861119862119895

119861

10038161003816100381610038161003816

119876119894119860

(8)

where constituent 119894 = 119895 In this work this mass-balanceapproach (model A) was applied to SC lavas being restricted

The Scientific World Journal 7

to those sectors where the end-member compositions wereavailable and to those components that exhibit a statisticallysignificant linear coherence in [SiO

2]adj-Harker diagrams

This test involved the evaluation at 99 confidence level ofPearson product-moment correlation coefficient (119903) and thesample size (119899) Details and required caution in the use of 119903have been reported in Bevington and Robinson [45]

On the other hand Zou [33] reported a mass-balanceapproach to explain the 119910

119898= (119906119886)

119898and 119909

119898= (V119887)

119898

geochemical ratios (where 119886 119887 119906 and V represent majoror trace elements) in SC comingled lavas as a product of amixture of two components 1 and 2 The variation in the119910119898

and 119909119898

geochemical ratios could be modeled by thehyperbolic equation (condition 119886

11198862= 11988711198872)

119860119909119898+ 119861119909119898119910119898+ 119862119910119898+ 119863 = 0 (9)

In this model the 119860 to 119863 coefficients have been definedas

119860 = 119886211988711199102minus 119886111988721199101 (10a)

119861 = 11988611198872minus 11988621198871 (10b)

119862 = 119886211988711199091minus 119886111988721199092 (10c)

119863 = 1198861119887211990921199101minus 1198862119887111990911199102 (10d)

where the geochemical ratios in the components 1 and 2 are

1199091=V1

1198871

(11a)

1199092=V2

1198872

(11b)

1199101=1199061

1198861

(11c)

1199102=1199062

1198862

(11d)

The proportion of the first component could be estimatedby

1198911=

minus1198862119910119898+ 11988621199102

(1198861minus 1198862) 119910119898minus 11988611199101+ 11988621199102

(12)

In this work the scheme described by Zou ([33]model B)was applied to evaluate the mixingmingling process in theSC northern sector All calculations of mixing models werecarried out using the STATISTICA for Windows software

5 Results

Ten samples of SC database proved to be intermediatemagmas The set of major element based diagrams (119899 =

10 Table 4 and Figure 3) showed a collisional setting withtotal percent probability value ( prob) of about 458However immobile major and trace element based diagrams

(119899 = 9 Table 4 and Figure 4) indicated a within-plate regimealthough with a relatively low prob of only about 381Unlike other sets of diagrams a continental arc setting can beinferred from those based on immobile trace elements (119899 =10 prob = 397 Table 4 and Figure 5) It is important tonote that intermediate samples from southern and transitionsectors (19 to 05 Ma) represent the main contribution to thecollisional and within-plate settings

A relatively large number of samples (119899 = 46) fromSC database proved to be of acid magma In contrast tointermediate magmas all diagrams indicated a subduction-related setting for the SC acid magmas with total percentprobability values for this tectonic regime of about 741630 and 687 respectively for themajormajor and traceand trace element based diagrams (Table 5 and Figures 6 7and 8)The results of the tectonic setting are further evaluatedfrom discordancy and significance tests in the Discussionsection below

On the other hand the hierarchical agglomeration pro-cess was carried out for each SC sector (SCN 22 samplesSCC 12 samples and SCS and SCT 22 samples) and theirresults were summarized in three dendrograms with units inEuclidean values (Figures 9(a)ndash9(c)) The statistical param-eters (mean minimum maximum and standard deviation)associated with the centroid of each cluster are reported inTable 6

The studied rocks from northern SC sector (Table 6Figure 9(a)) were distributed in three general clusters (N1[136] N2 [545] and N3 [319]) The PCA calculationindicated that the sim942 of geochemical variability ofsamples from northern SC sector could be explained by threefactorsThe factor F1 contributedwith 574 being associatedwith major (excepting Na and P) and transition elementsrare earth elements and yttrium ruled a contribution of186 by means of the factor F2 (Figure 10(a)) The principalcomponent F3 (a function ofNa P and Sr) explained the 82of the chemical variability

The samples from central SC conformed four groups (C1[83] C2 [250] C3 [83] and C4 [583] Table 6 andFigure 9(b)) A sim941 of the chemical variability can beexplained by means of five factors The factor F1 (450)is controlled by Si and alkali composition A 320 of thecompositional heterogeneity has been associated with theincompatible elements using the principal component F2(Figure 10(b)) The factor F3 (ruled by Mg Ca and HFSE)contributed with a 106

The samples of SCS and SCT were agglomerated in threegeochemical groups (ST1 [364] ST2 [409] and ST3[227] Table 6 and Figure 9(c)) PCA calculations haverevealed that a sim90 of the geochemical composition couldbe explained as a function of five principal componentsThe factor F1 associated with major elements (exceptingNa and K) Co and Eu contributed with 428 F2 factorwhich represents a 247 is controlled by Ba K and U(Figure 10(c)) An 119 of the chemical heterogeneity isexplained by the factor F3 a variable ruled by Na K and Vcomposition

8 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

int

DF1(IA+CAminusCR+OIminusCol)mint

Col (868)

IA (900)+ CA (793)

CR (716)+ OI (964)

(a)

DF2

(IAminus

CAminus

CR+

OI)

min

t

DF1(IAminusCAminusCR+OI)mint

CA (725)

IA (713)

+ OI (939)CR (766)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

int

DF1(IAminusCAminusCol)mint

CA (691)

IA (691)

Col (855)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

int

DF1(IAminusCR+OIminusCol)mint

CR (750)+ OI (949)

Col (867)

IA (890)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (716)+ OI (960)

Col (855)

CA (800)

Field boundaryGroup centroidNorthern sector

Central sectorSouthern sectorTransition sector

DF1(CAminusCR+OIminusCol)mint

DF2

(CAminus

CR+

OIminus

Col)m

int

(e)

Figure 3 Discriminant-function multidimensional diagrams [21] based on ln-transformed ratios of major elements for the tectonicdiscrimination of intermediate Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OIocean island and Col collisionThe symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IAand CA as IA + CA and CR and OI as CR + OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript mint refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for intermediate (int) magmas Filled circles displaythe compositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [21]

The Scientific World Journal 9

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

tint

DF1(IA+CAminusCR+OIminusCol)mtint

CR (729)+ OI (100)

Col (902)

IA (863)+ CA (885)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

CR+

OI)

mtin

t

DF1(IAminusCAminusCR+OI)mtint

CR (792)+ OI (100)

IA (704)

CA (818)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

tint

DF1(IAminusCAminusCol)mtint

Col (927)IA (628)

CA (762)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

tint

DF1(IAminusCR+OIminusCol)mtint

CR (742)+ OI (987)

Col (902)

IA (855)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (729)+ OI (987)

Col (908)

CA (947)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

Transition sector

DF1(CAminusCR+OIminusCol)mtint

DF2

(CAminus

CR+

OIminus

Col)m

tint

(e)

Figure 4 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3The subscript ldquomtintrdquo in axis names refers to major (m) and trace (t) element ratios for intermediate (int) magmas

10 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)ti

nt

DF1(IA+CAminusCR+OIminusCol)tint

CR (743)+ OI (100)

Col (810)

IA (914)+ CA (904)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OI)

tint

DF1(IA+CAminusCR+OI)tint

CR (805)+ OI (100)

IA (757)

CA (658)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)ti

nt

DF1(IAminusCAminusCol)tint

Col (840)

IA (727)

CA (645)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)ti

nt

DF1(IAminusCR+OIminusCol)tint

CR (747)+ OI (100)

Col (847)

IA (903)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (743)+ OI (941)

Col (810)

CA (957)

Field boundaryGroup centroidNorthern region

Central regionSouthern regionTransition region

DF1(CAminusCR+OIminusCol)tint

DF2

(CAminus

CR+

OIminus

Col)ti

nt

(e)

Figure 5 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3 Thesubscript ldquotintrdquo in axis names refers to trace (t) element ratios for intermediate (int) magmas

The Scientific World Journal 11

8

4

0

minus4

minus8840minus4minus8

CR (738)

Col (753)

+ OI (954) IA (940)+ CA (867)

DF2

(IA+C

Aminus

CR+

OIminus

Col)m

acid

DF1(IA+CA minusCR+OIminusCol)macid

(a)

8

4

0

minus4

minus8840minus4minus8

CR (832)+ OI (969)IA (712)

CA (795)

DF2

(IAminus

CAminus

CR+

OI)

mac

id

DF1(IAminusCAminusCR+OI)macid

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

acid

DF1(IAminusCAminusCol)macid

Col (774)IA (691)

CA (823)

(c)

8

4

0

minus4

minus8840minus4minus8

CR (789)+ OI (969)

Col (831)

IA (855)

DF1(IAminusCR+OIminusCol)macid

DF2

(IAminus

CR+

OIminus

Col)m

acid

(d)

8

4

0

minus4

minus8840minus4minus8

Field boundaryGroup centroidSC northern sector

SC central sectorSC southern sector

CR (732)+ OI (954)

Col (741)

CA (886)

DF1(CAminusCR+OIminusCol)macid

DF2

(CAminus

CR+

OIminus

Col)m

acid

(e)

Figure 6 Discriminant-function multidimensional diagrams [22] based on ln-transformed ratios of major elements for the tectonicdiscrimination of acid Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OI ocean islandand Col collision The symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IA and CAas IA + CA and CR and OI as CR+OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript ldquomacidrdquo refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for acid (acid) magmas Filled circles display thecompositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [22]

12 The Scientific World Journal

IA (943)+ CA (846) CR (697)

+ OI (975)

Col (764)

8

4

0

minus4

minus8840minus4minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

taci

d

DF1(IA+CAminusCR+OIminusCol)mtacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+

OI)

mta

cid

DF1(IAminusCAminusCR+OI)mtacid

IA (767)

CA (846)

CR (752)+ OI (988)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

taci

d

DF1(IAminusCAminusCol)mtacid

Col (754)

CA (822)

IA (774)

(c)

8

4

0

minus4

minus8840minus4minus8

DF1(IAminusCR+OIminusCol)mtacid

DF2

(IAminus

CR+

OIminus

Col)m

taci

d

Col (867)

IA (850)

CR (720)+ OI (975)

(d)

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)m

taci

d

DF1(CAminusCR+OIminusCol)mtacid

CA (930)

Col (697)

CR (693)+ OI (975)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

(e)

Figure 7 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 Thesubscript ldquomtacidrdquo in axis names refers to major (m) and trace (t) element ratios for acid (acid) magmas

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 3: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 3

PV MVBSC

NT PoMC

20∘

15∘

10∘

102∘

98∘

94∘

90∘

W

N

5 1015

EPR

EAP

VLTVF

Gulf of Mexico

Cocosplate

plate

plate

North AmericanCh

Tac

20

MAT

200 km

Caribbean

CAVA

Iz

Mexico

Figure 1 Location of the Sierra de las Cruces (SC) volcanic range (blue shaded box) at the central part of the Mexican Volcanic Belt (MVB)(modified from [30]) For guidance the black box at the upper right side shows the location of this zone in North America The figure alsoincludes the approximate location of the Eastern Alkaline Province (EAP) Los Tuxtlas Volcanic Field (LTVF) Central American VolcanicArc (CAVA) and the Chichon (Ch) and Tacana (T) volcanoes Other tectonic features are the Middle America Trench (MAT shown by athick black curve) and the East Pacific Rise (EPR shown by a pair of dashed-dotted black lines) The traces marked by numbers 5 to 20 onthe oceanic Cocos plate give the approximate age of the oceanic plate in Ma Locations of Iztaccıhuatl (Iz) Popocatepetl (Po) and Nevado deToluca (NT) are also shown Cities are PV Puerto Vallarta MC Mexico City and V Veracruz

microscope Approximately 500 points per sample werecounted in order to obtain a representative mode (Table 1)

Major and trace element composition of these SC volcanicrocks (Tables 2 and 3) were determined in ActLabs laborato-ries (Ancaster Canada) using the ldquo4LithoResrdquo methodology(for details consult webpage httpwwwactlabsintcom)Major elements were analyzed by inductively coupledplasma-optical emission spectrometry (ICP-OES) with ananalytical precision lt2 and accuracy typically better than5 at 95 confidence level based on analysis of diversegeochemical reference materials (GRM) Trace element con-centrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS) with an analytical precision 3ndash6 (occasionally reaching 9-10) and an accuracy typicallybetter than 7ndash12 for most elements at the 95 confidencelevel based on analysis of diverse GRM

4 Sierra de las Cruces Database andEvaluation Scheme

41 Mineralogical and Geochemical Database A more com-plete SC database of the mineralogical modes and the whole-rock geochemical composition was established from the newas well as the published information reported by Velasco-Tapia et al [23] CIPW norms for samples were calculatedon a 100 anhydrous adjusted basis of major element com-position with [Fe

2O3]adj[FeO]adj ratios adjusted depending

on the rock type [34] Rock classification was based on thetotal alkali-silica (TAS) scheme [35 36] All computations

(anhydrous and iron-oxidation ratio adjustments normcom-positions and rock classifications) were automatically doneusing the SINCLAS software [14 15]

42 Linear Discrimination Analysis The tectonic affinity ofthe SC volcanic rocks was established applying newdiscriminant-function-based multidimensional diagramsfor intermediate ([SiO

2]adj = 52ndash63) and acid ([SiO

2]adj gt

63) rocks using the linear discriminant analysis (LDA) ofnatural logarithm ratios of major elements immobile majorand trace elements and immobile trace elements Thesediagrams [21 22] were proposed to discriminate island arc(IA) continental arc (CA) within-plate (continental riftCR and ocean island OI together) and collisional (Col)settings Based on the earlier work of Verma and Agrawal[39] and the modifications outlined by Verma [40] thesediagrams also provide probability estimates for individualsamples which were used in the present work

Firstly the nature of intermediate or acid magma for eachsample was confirmed from the SINCLAS software [14 15]under the Middlemost [34] option for Fe-oxidation adjust-ment After that a series of natural logarithms of elementratios were estimated for all samples This transformationprovided a Gaussian character to the distribution data abasic condition of the LDA After that the ln-ratio datawere used to estimate two discriminant functions (DF1 andDF2) obtained from the LDA (canonical analysis) and theindividual probability for each sample to a tectonic regimeThis statistical exercise was first performed to discriminatebetween IA+CACR+ IO andCol settings and four times for

4 The Scientific World Journal

19∘45

998400N

19∘35

998400N

19∘25

998400N

19∘15

998400N

19∘05

998400N

19∘45

998400N

19∘35

998400N

19∘25

998400N

19∘15

998400N

19∘05

998400N99

∘40

998400W 99∘30

998400W 99∘20

998400W 99∘10

998400W

99∘40

998400W 99∘30

998400W 99∘20

998400W 99∘10

998400W

LocalitySector limitRoadFaultSampleLacustrine sedimentsAlluviumConglomeratesVolcaniclast sediments

Sedimentary brecciaBasic volcanic brecciaIntermediate volcanic breccia

BasaltBasalt-basic volcanic brecciaBasic tuff

AndesiteAndesite-daciteDacite

SC46

SC51

SC52

SC58SC53

SC60

SC03SC16SC22

Toluca

Cd deMexico

5 10 15 20 25(km)

N

EW

S

Figure 2 Geologic sketch of the Sierra de las Cruces volcanic range showing lithology faults roads and distribution of the samples (greenstars) collected along the volcanic range in this work (modified from [23]) Study area division in four sectors from N to S based on K-Arradiometric data [26] (a) SCN-northern sector (29ndash37Ma) (b) SCC-central sector (19ndash29Ma) (c) SCS-southern sector (07ndash19Ma) and(d) SCT-transition sector that include the Ajusco volcano (lt07Ma)

all possible combinations of three groups at a time out of fourgroups (IA CA CR + OI and Col) Details of the statisticalmethodology and LDA equations have been reported in[21 22] It is important to note that the discriminationanalysis was carried out considering the four SC sectorsAll LDA equations were incorporated in a STATISTICA forWindows (Statsoft Inc Tulsa OK USA) spreadsheet anddiscrimination diagramswere constructed from these results

43 Discordancy and Significance Tests In order to betterunderstand the contribution of the subducted Cocos plate

to the SC magmas the methodology put forth and practicedby Verma [38] was applied This approach basically consistsof comparing the magmas closer to the Middle AmericaTrench (MAT) to those farther from it that is the SCsectors were statistically compared as two groups The nullhypothesis (H

0 the two groups did not differ significantly

at strict 99 confidence level) and the alternate hypothesis(HA the two groups differ significantly at 99 confidencelevel) were tested by Fisher 119865 and Studentrsquos 119905-tests (UDASYSsoftware [37]) Because the significance tests require that thedata be normally distributed single-outlier type discordancy

The Scientific World Journal 5

Table1Petro

graphicinformationof

theS

ierrad

elas

Cruces

volcanicrocksa

Sample

Locality

Lat(N

)∘Lo

ng(W)∘

Texture

Phenocrysts

Groun

dmasstexture

Rock

Dise

quilibrium

evidence

Ol

Opx

Cpx

Plg

Qtz

Amp

Type

Ol+

Qtz

Qtz-R

Plg-N+S

ESC

03Ca

ntim

plora

99∘1410158403410158401015840

19∘1110158403510158401015840

VP

946

MI

SC16

Rancho

Agustın

99∘1910158404010158401015840

19∘1110158403010158401015840

P70

22

620

MID

E⨀

⨀⨀

SC22

Volcan

Negro

99∘2310158400610158401015840

19∘1010158400010158401015840

VT

8515

TI

SC46

LosP

uercos

99∘2810158400410158401015840

19∘3110158403610158401015840

P4

5820

18M

FDE

SC51

Cerro

Prieto

99∘1610158405510158401015840

19∘1810158404210158401015840

P3

359

1025

VFD

E⨀

SC52

SMiguelTecpan

99∘2410158403310158401015840

19∘3110158401210158401015840

VP

2741

428

MFD

E⨀

⨀⨀

SC52a

SMiguelTecpan

99∘2410158403310158401015840

19∘3110158401210158401015840

VP

2377

MME

SC53

Santiago

99∘1610158405310158401015840

19∘1510158404810158401015840

VP

697

24V

FDE

⨀⨀

SC58

Garam

bullo

s99∘1510158405610158401015840

19∘1510158400310158401015840

P3

258

631

VFD

E⨀

SC60

Quellamecal

99∘1410158402510158401015840

19∘1010158403310158401015840

P5

362

30V

Fa M

odaldata

arepercentageso

fpheno

crysts+microph

enocrysts

calculated

onavesic

leandgrou

ndmassfreebasisT

extureP

porph

yriticVP

vesic

ular-porph

yriticandVT

vesic

ular

trachyticG

roun

dmass

represents

60ndash9

0of

therocksGroun

dmasstextureMm

icrolithicT

trachyticand

Vvitre

ousPh

enocrysts

OlolivineOpxo

rtho

pyroxeneC

pxclin

opyroxenePlg

plagiocla

seQ

tzq

uartzandAmp

amph

iboleRo

cktypesIinterm

ediatemagmaswith

outd

isequ

ilibriumevidenceFfels

icmagmaswith

outd

isequ

ilibriumevidenceIDEinterm

ediatecomingled

lavaFD

Efelsicc

omingled

lavaandMEmagmatic

enclaveDise

quilibrium

evidencesOl+

Qtzolivine+

quartzQ

tz-Rquartzw

ithar

eactionrim

Plg-N

+Splagiocla

sesw

ithno

rmalandsie

vedtextureandE

ellip

soidalchilled

andesiticencla

ve

6 The Scientific World Journal

tests were applied at strict 99 confidence level for whichDODESSYS software of Verma and Dıaz-Gonzalez [41] wasused

44 Cluster Analysis The principal aim of this statistical toolis to partition observations into a number of groups It isexpected that the observations within a cluster are as similaras possible whereas the differences between the clusters are aslarge as possible Inmagmamingling scenario this techniquewould be helpful for the SC sample distribution in residentinvasive and comingled magmas

In this work cluster analysis was performed using thenatural logarithm of major elements ([SiO

2]adjndash[P2O5]adj)

and representative trace (transition Co V rare earth LaEu Yb lithophile Ba Sr U high-field strength Hf Y Zr)elements to [Al

2O3]adj ratios by using a hierarchical cluster

method (HCM [42]) Geochemical ratios were previouslystandardized (z-scores) by means of

119870119894119895=119883119894119895minus 119883

119878119894119888

(1)

where119870119894119895is the standardized value of119883

119894119895 the 119894th variable for

the 119895th sample119883 is the mean value of the 119894th variable and 119878119894119888

is its standard deviation Additionally the normality of eachstandardized variable was confirmed by the Shapiro-Wilkstest Cluster analysis applied a Wardrsquos linkage rule whichlinked iteratively nearby points through a similarity matrixand performed an ANOVA test to evaluate the distancebetween clusters [43] The adopted procedure gives equalweight to each geochemical ratio The measure of similaritywas simply the distance as defined in Euclidean space Thedistance between two samples (119895 119896) is given by

119889119895119896= [

119873

sum119894=1

(119870119894119895minus 119870119894119896)2

]

12

(2)

where 119870119894119895denotes the 119870th variable measured on object 119894 in

sample 119895 and 119870119895119896is the 119870th variable measured on object 119894 in

sample 119896 The results of the cluster analysis were graphicallydisplayed in three dendrograms with units in Euclideanvalues corresponding to northern central and southern-transition SC sectors

The weight of geochemical log-ratios in the clusterapproach was determined from the results obtained in aprincipal component analysis (PCA) It has been definedas an orthogonal linear transformation for reducing thedimensionality of a dataset by expressing it as the combi-nation of a small number of linearly independent factors orldquoprincipal componentsrdquo Each factor will be a function ofthe individual contributions of the original variables [44]The greatest variance for the transformed data was linked tothe first principal component whereas the second variancemagnitude was related to the second principal componentand so on The PCA considers a data matrix X (119899 rowstimes119901 columns rows represent different samples and columnsgive a particular chemical component each componentwhich has been standardized yielded a zero empirical mean)

The transformation is stated by a set of119901-dimensional vectorsw(119896)= (1199081 119908

119901)(119896)

that map each row vector x(119894)ofX to a

new vector of principal component factors t(119894)= (1199051 119905

119901)(119894)

given by

t119896(119894)

= x(119894)sdot w(119896) (3)

Individual variables of t considered over the data setsuccessively inherit the maximum possible variance from xwith each loading w constrained to be a unit vector The firstprincipal component w

(1)satisfied

w(1)= argmaxsum

119894

(1199051)2

(119894) = argmaxsum

119894

(x(119894)sdot w)2

(4)

where the quantity to be maximized is known as Rayleighquotient The 119896th component was determined by subtractingthe 119896 ndash 1 principal components fromX

X119896minus1

= X minus

119896minus1

sum119904=1

Xw(119904)wT(119904) (5)

The vector associated with this component and showingthe maximum variance from this new matrix would bedefined as

w(119896)= argmax

10038171003817100381710038171003817X119896minus1

w10038171003817100381710038171003817

2

(6)

All calculations related to cluster analysis were carried outusing the STATISTICA for Windows software

45 Mass-Balance Evaluations Nixon [31] applied a simplemass-balance scheme for the quantitative characterizationof binary mixtures and end-member compositions in theIztaccıhuatl volcano (central MVB) The author suggestedthat despite the compositional heterogeneity if a chemicalcomponent can be found whose concentration is invariantin time and known in the mix and in each of the end-members it is possible to treat quantitatively the magmamixing process

Mixing proportions may be calculated considering thelever principle and the composition of the comingledmagmasubsequently described for all chemical components Theamount of a component in the mixed lava could be repre-sented by

119876119894

119860=

10038161003816100381610038161003816119862119894

119872minus 119862119894

119861

100381610038161003816100381610038161003816100381610038161003816119862119894

119860minus 119862119894119861

1003816100381610038161003816 (7)

where 119876119894119860+ 119876119894

119861= 1 and 119876119894 and 119862119894 represent the weight

fraction and concentration respectively of element 119894 insubscripted end-members 119860 and 119861 and mixture 119872 Thecomposition of an end-member could be estimated by

119862119895

119860=

10038161003816100381610038161003816119862119895

119872minus 119876119894

119861119862119895

119861

10038161003816100381610038161003816

119876119894119860

(8)

where constituent 119894 = 119895 In this work this mass-balanceapproach (model A) was applied to SC lavas being restricted

The Scientific World Journal 7

to those sectors where the end-member compositions wereavailable and to those components that exhibit a statisticallysignificant linear coherence in [SiO

2]adj-Harker diagrams

This test involved the evaluation at 99 confidence level ofPearson product-moment correlation coefficient (119903) and thesample size (119899) Details and required caution in the use of 119903have been reported in Bevington and Robinson [45]

On the other hand Zou [33] reported a mass-balanceapproach to explain the 119910

119898= (119906119886)

119898and 119909

119898= (V119887)

119898

geochemical ratios (where 119886 119887 119906 and V represent majoror trace elements) in SC comingled lavas as a product of amixture of two components 1 and 2 The variation in the119910119898

and 119909119898

geochemical ratios could be modeled by thehyperbolic equation (condition 119886

11198862= 11988711198872)

119860119909119898+ 119861119909119898119910119898+ 119862119910119898+ 119863 = 0 (9)

In this model the 119860 to 119863 coefficients have been definedas

119860 = 119886211988711199102minus 119886111988721199101 (10a)

119861 = 11988611198872minus 11988621198871 (10b)

119862 = 119886211988711199091minus 119886111988721199092 (10c)

119863 = 1198861119887211990921199101minus 1198862119887111990911199102 (10d)

where the geochemical ratios in the components 1 and 2 are

1199091=V1

1198871

(11a)

1199092=V2

1198872

(11b)

1199101=1199061

1198861

(11c)

1199102=1199062

1198862

(11d)

The proportion of the first component could be estimatedby

1198911=

minus1198862119910119898+ 11988621199102

(1198861minus 1198862) 119910119898minus 11988611199101+ 11988621199102

(12)

In this work the scheme described by Zou ([33]model B)was applied to evaluate the mixingmingling process in theSC northern sector All calculations of mixing models werecarried out using the STATISTICA for Windows software

5 Results

Ten samples of SC database proved to be intermediatemagmas The set of major element based diagrams (119899 =

10 Table 4 and Figure 3) showed a collisional setting withtotal percent probability value ( prob) of about 458However immobile major and trace element based diagrams

(119899 = 9 Table 4 and Figure 4) indicated a within-plate regimealthough with a relatively low prob of only about 381Unlike other sets of diagrams a continental arc setting can beinferred from those based on immobile trace elements (119899 =10 prob = 397 Table 4 and Figure 5) It is important tonote that intermediate samples from southern and transitionsectors (19 to 05 Ma) represent the main contribution to thecollisional and within-plate settings

A relatively large number of samples (119899 = 46) fromSC database proved to be of acid magma In contrast tointermediate magmas all diagrams indicated a subduction-related setting for the SC acid magmas with total percentprobability values for this tectonic regime of about 741630 and 687 respectively for themajormajor and traceand trace element based diagrams (Table 5 and Figures 6 7and 8)The results of the tectonic setting are further evaluatedfrom discordancy and significance tests in the Discussionsection below

On the other hand the hierarchical agglomeration pro-cess was carried out for each SC sector (SCN 22 samplesSCC 12 samples and SCS and SCT 22 samples) and theirresults were summarized in three dendrograms with units inEuclidean values (Figures 9(a)ndash9(c)) The statistical param-eters (mean minimum maximum and standard deviation)associated with the centroid of each cluster are reported inTable 6

The studied rocks from northern SC sector (Table 6Figure 9(a)) were distributed in three general clusters (N1[136] N2 [545] and N3 [319]) The PCA calculationindicated that the sim942 of geochemical variability ofsamples from northern SC sector could be explained by threefactorsThe factor F1 contributedwith 574 being associatedwith major (excepting Na and P) and transition elementsrare earth elements and yttrium ruled a contribution of186 by means of the factor F2 (Figure 10(a)) The principalcomponent F3 (a function ofNa P and Sr) explained the 82of the chemical variability

The samples from central SC conformed four groups (C1[83] C2 [250] C3 [83] and C4 [583] Table 6 andFigure 9(b)) A sim941 of the chemical variability can beexplained by means of five factors The factor F1 (450)is controlled by Si and alkali composition A 320 of thecompositional heterogeneity has been associated with theincompatible elements using the principal component F2(Figure 10(b)) The factor F3 (ruled by Mg Ca and HFSE)contributed with a 106

The samples of SCS and SCT were agglomerated in threegeochemical groups (ST1 [364] ST2 [409] and ST3[227] Table 6 and Figure 9(c)) PCA calculations haverevealed that a sim90 of the geochemical composition couldbe explained as a function of five principal componentsThe factor F1 associated with major elements (exceptingNa and K) Co and Eu contributed with 428 F2 factorwhich represents a 247 is controlled by Ba K and U(Figure 10(c)) An 119 of the chemical heterogeneity isexplained by the factor F3 a variable ruled by Na K and Vcomposition

8 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

int

DF1(IA+CAminusCR+OIminusCol)mint

Col (868)

IA (900)+ CA (793)

CR (716)+ OI (964)

(a)

DF2

(IAminus

CAminus

CR+

OI)

min

t

DF1(IAminusCAminusCR+OI)mint

CA (725)

IA (713)

+ OI (939)CR (766)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

int

DF1(IAminusCAminusCol)mint

CA (691)

IA (691)

Col (855)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

int

DF1(IAminusCR+OIminusCol)mint

CR (750)+ OI (949)

Col (867)

IA (890)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (716)+ OI (960)

Col (855)

CA (800)

Field boundaryGroup centroidNorthern sector

Central sectorSouthern sectorTransition sector

DF1(CAminusCR+OIminusCol)mint

DF2

(CAminus

CR+

OIminus

Col)m

int

(e)

Figure 3 Discriminant-function multidimensional diagrams [21] based on ln-transformed ratios of major elements for the tectonicdiscrimination of intermediate Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OIocean island and Col collisionThe symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IAand CA as IA + CA and CR and OI as CR + OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript mint refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for intermediate (int) magmas Filled circles displaythe compositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [21]

The Scientific World Journal 9

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

tint

DF1(IA+CAminusCR+OIminusCol)mtint

CR (729)+ OI (100)

Col (902)

IA (863)+ CA (885)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

CR+

OI)

mtin

t

DF1(IAminusCAminusCR+OI)mtint

CR (792)+ OI (100)

IA (704)

CA (818)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

tint

DF1(IAminusCAminusCol)mtint

Col (927)IA (628)

CA (762)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

tint

DF1(IAminusCR+OIminusCol)mtint

CR (742)+ OI (987)

Col (902)

IA (855)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (729)+ OI (987)

Col (908)

CA (947)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

Transition sector

DF1(CAminusCR+OIminusCol)mtint

DF2

(CAminus

CR+

OIminus

Col)m

tint

(e)

Figure 4 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3The subscript ldquomtintrdquo in axis names refers to major (m) and trace (t) element ratios for intermediate (int) magmas

10 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)ti

nt

DF1(IA+CAminusCR+OIminusCol)tint

CR (743)+ OI (100)

Col (810)

IA (914)+ CA (904)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OI)

tint

DF1(IA+CAminusCR+OI)tint

CR (805)+ OI (100)

IA (757)

CA (658)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)ti

nt

DF1(IAminusCAminusCol)tint

Col (840)

IA (727)

CA (645)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)ti

nt

DF1(IAminusCR+OIminusCol)tint

CR (747)+ OI (100)

Col (847)

IA (903)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (743)+ OI (941)

Col (810)

CA (957)

Field boundaryGroup centroidNorthern region

Central regionSouthern regionTransition region

DF1(CAminusCR+OIminusCol)tint

DF2

(CAminus

CR+

OIminus

Col)ti

nt

(e)

Figure 5 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3 Thesubscript ldquotintrdquo in axis names refers to trace (t) element ratios for intermediate (int) magmas

The Scientific World Journal 11

8

4

0

minus4

minus8840minus4minus8

CR (738)

Col (753)

+ OI (954) IA (940)+ CA (867)

DF2

(IA+C

Aminus

CR+

OIminus

Col)m

acid

DF1(IA+CA minusCR+OIminusCol)macid

(a)

8

4

0

minus4

minus8840minus4minus8

CR (832)+ OI (969)IA (712)

CA (795)

DF2

(IAminus

CAminus

CR+

OI)

mac

id

DF1(IAminusCAminusCR+OI)macid

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

acid

DF1(IAminusCAminusCol)macid

Col (774)IA (691)

CA (823)

(c)

8

4

0

minus4

minus8840minus4minus8

CR (789)+ OI (969)

Col (831)

IA (855)

DF1(IAminusCR+OIminusCol)macid

DF2

(IAminus

CR+

OIminus

Col)m

acid

(d)

8

4

0

minus4

minus8840minus4minus8

Field boundaryGroup centroidSC northern sector

SC central sectorSC southern sector

CR (732)+ OI (954)

Col (741)

CA (886)

DF1(CAminusCR+OIminusCol)macid

DF2

(CAminus

CR+

OIminus

Col)m

acid

(e)

Figure 6 Discriminant-function multidimensional diagrams [22] based on ln-transformed ratios of major elements for the tectonicdiscrimination of acid Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OI ocean islandand Col collision The symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IA and CAas IA + CA and CR and OI as CR+OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript ldquomacidrdquo refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for acid (acid) magmas Filled circles display thecompositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [22]

12 The Scientific World Journal

IA (943)+ CA (846) CR (697)

+ OI (975)

Col (764)

8

4

0

minus4

minus8840minus4minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

taci

d

DF1(IA+CAminusCR+OIminusCol)mtacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+

OI)

mta

cid

DF1(IAminusCAminusCR+OI)mtacid

IA (767)

CA (846)

CR (752)+ OI (988)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

taci

d

DF1(IAminusCAminusCol)mtacid

Col (754)

CA (822)

IA (774)

(c)

8

4

0

minus4

minus8840minus4minus8

DF1(IAminusCR+OIminusCol)mtacid

DF2

(IAminus

CR+

OIminus

Col)m

taci

d

Col (867)

IA (850)

CR (720)+ OI (975)

(d)

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)m

taci

d

DF1(CAminusCR+OIminusCol)mtacid

CA (930)

Col (697)

CR (693)+ OI (975)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

(e)

Figure 7 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 Thesubscript ldquomtacidrdquo in axis names refers to major (m) and trace (t) element ratios for acid (acid) magmas

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 4: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

4 The Scientific World Journal

19∘45

998400N

19∘35

998400N

19∘25

998400N

19∘15

998400N

19∘05

998400N

19∘45

998400N

19∘35

998400N

19∘25

998400N

19∘15

998400N

19∘05

998400N99

∘40

998400W 99∘30

998400W 99∘20

998400W 99∘10

998400W

99∘40

998400W 99∘30

998400W 99∘20

998400W 99∘10

998400W

LocalitySector limitRoadFaultSampleLacustrine sedimentsAlluviumConglomeratesVolcaniclast sediments

Sedimentary brecciaBasic volcanic brecciaIntermediate volcanic breccia

BasaltBasalt-basic volcanic brecciaBasic tuff

AndesiteAndesite-daciteDacite

SC46

SC51

SC52

SC58SC53

SC60

SC03SC16SC22

Toluca

Cd deMexico

5 10 15 20 25(km)

N

EW

S

Figure 2 Geologic sketch of the Sierra de las Cruces volcanic range showing lithology faults roads and distribution of the samples (greenstars) collected along the volcanic range in this work (modified from [23]) Study area division in four sectors from N to S based on K-Arradiometric data [26] (a) SCN-northern sector (29ndash37Ma) (b) SCC-central sector (19ndash29Ma) (c) SCS-southern sector (07ndash19Ma) and(d) SCT-transition sector that include the Ajusco volcano (lt07Ma)

all possible combinations of three groups at a time out of fourgroups (IA CA CR + OI and Col) Details of the statisticalmethodology and LDA equations have been reported in[21 22] It is important to note that the discriminationanalysis was carried out considering the four SC sectorsAll LDA equations were incorporated in a STATISTICA forWindows (Statsoft Inc Tulsa OK USA) spreadsheet anddiscrimination diagramswere constructed from these results

43 Discordancy and Significance Tests In order to betterunderstand the contribution of the subducted Cocos plate

to the SC magmas the methodology put forth and practicedby Verma [38] was applied This approach basically consistsof comparing the magmas closer to the Middle AmericaTrench (MAT) to those farther from it that is the SCsectors were statistically compared as two groups The nullhypothesis (H

0 the two groups did not differ significantly

at strict 99 confidence level) and the alternate hypothesis(HA the two groups differ significantly at 99 confidencelevel) were tested by Fisher 119865 and Studentrsquos 119905-tests (UDASYSsoftware [37]) Because the significance tests require that thedata be normally distributed single-outlier type discordancy

The Scientific World Journal 5

Table1Petro

graphicinformationof

theS

ierrad

elas

Cruces

volcanicrocksa

Sample

Locality

Lat(N

)∘Lo

ng(W)∘

Texture

Phenocrysts

Groun

dmasstexture

Rock

Dise

quilibrium

evidence

Ol

Opx

Cpx

Plg

Qtz

Amp

Type

Ol+

Qtz

Qtz-R

Plg-N+S

ESC

03Ca

ntim

plora

99∘1410158403410158401015840

19∘1110158403510158401015840

VP

946

MI

SC16

Rancho

Agustın

99∘1910158404010158401015840

19∘1110158403010158401015840

P70

22

620

MID

E⨀

⨀⨀

SC22

Volcan

Negro

99∘2310158400610158401015840

19∘1010158400010158401015840

VT

8515

TI

SC46

LosP

uercos

99∘2810158400410158401015840

19∘3110158403610158401015840

P4

5820

18M

FDE

SC51

Cerro

Prieto

99∘1610158405510158401015840

19∘1810158404210158401015840

P3

359

1025

VFD

E⨀

SC52

SMiguelTecpan

99∘2410158403310158401015840

19∘3110158401210158401015840

VP

2741

428

MFD

E⨀

⨀⨀

SC52a

SMiguelTecpan

99∘2410158403310158401015840

19∘3110158401210158401015840

VP

2377

MME

SC53

Santiago

99∘1610158405310158401015840

19∘1510158404810158401015840

VP

697

24V

FDE

⨀⨀

SC58

Garam

bullo

s99∘1510158405610158401015840

19∘1510158400310158401015840

P3

258

631

VFD

E⨀

SC60

Quellamecal

99∘1410158402510158401015840

19∘1010158403310158401015840

P5

362

30V

Fa M

odaldata

arepercentageso

fpheno

crysts+microph

enocrysts

calculated

onavesic

leandgrou

ndmassfreebasisT

extureP

porph

yriticVP

vesic

ular-porph

yriticandVT

vesic

ular

trachyticG

roun

dmass

represents

60ndash9

0of

therocksGroun

dmasstextureMm

icrolithicT

trachyticand

Vvitre

ousPh

enocrysts

OlolivineOpxo

rtho

pyroxeneC

pxclin

opyroxenePlg

plagiocla

seQ

tzq

uartzandAmp

amph

iboleRo

cktypesIinterm

ediatemagmaswith

outd

isequ

ilibriumevidenceFfels

icmagmaswith

outd

isequ

ilibriumevidenceIDEinterm

ediatecomingled

lavaFD

Efelsicc

omingled

lavaandMEmagmatic

enclaveDise

quilibrium

evidencesOl+

Qtzolivine+

quartzQ

tz-Rquartzw

ithar

eactionrim

Plg-N

+Splagiocla

sesw

ithno

rmalandsie

vedtextureandE

ellip

soidalchilled

andesiticencla

ve

6 The Scientific World Journal

tests were applied at strict 99 confidence level for whichDODESSYS software of Verma and Dıaz-Gonzalez [41] wasused

44 Cluster Analysis The principal aim of this statistical toolis to partition observations into a number of groups It isexpected that the observations within a cluster are as similaras possible whereas the differences between the clusters are aslarge as possible Inmagmamingling scenario this techniquewould be helpful for the SC sample distribution in residentinvasive and comingled magmas

In this work cluster analysis was performed using thenatural logarithm of major elements ([SiO

2]adjndash[P2O5]adj)

and representative trace (transition Co V rare earth LaEu Yb lithophile Ba Sr U high-field strength Hf Y Zr)elements to [Al

2O3]adj ratios by using a hierarchical cluster

method (HCM [42]) Geochemical ratios were previouslystandardized (z-scores) by means of

119870119894119895=119883119894119895minus 119883

119878119894119888

(1)

where119870119894119895is the standardized value of119883

119894119895 the 119894th variable for

the 119895th sample119883 is the mean value of the 119894th variable and 119878119894119888

is its standard deviation Additionally the normality of eachstandardized variable was confirmed by the Shapiro-Wilkstest Cluster analysis applied a Wardrsquos linkage rule whichlinked iteratively nearby points through a similarity matrixand performed an ANOVA test to evaluate the distancebetween clusters [43] The adopted procedure gives equalweight to each geochemical ratio The measure of similaritywas simply the distance as defined in Euclidean space Thedistance between two samples (119895 119896) is given by

119889119895119896= [

119873

sum119894=1

(119870119894119895minus 119870119894119896)2

]

12

(2)

where 119870119894119895denotes the 119870th variable measured on object 119894 in

sample 119895 and 119870119895119896is the 119870th variable measured on object 119894 in

sample 119896 The results of the cluster analysis were graphicallydisplayed in three dendrograms with units in Euclideanvalues corresponding to northern central and southern-transition SC sectors

The weight of geochemical log-ratios in the clusterapproach was determined from the results obtained in aprincipal component analysis (PCA) It has been definedas an orthogonal linear transformation for reducing thedimensionality of a dataset by expressing it as the combi-nation of a small number of linearly independent factors orldquoprincipal componentsrdquo Each factor will be a function ofthe individual contributions of the original variables [44]The greatest variance for the transformed data was linked tothe first principal component whereas the second variancemagnitude was related to the second principal componentand so on The PCA considers a data matrix X (119899 rowstimes119901 columns rows represent different samples and columnsgive a particular chemical component each componentwhich has been standardized yielded a zero empirical mean)

The transformation is stated by a set of119901-dimensional vectorsw(119896)= (1199081 119908

119901)(119896)

that map each row vector x(119894)ofX to a

new vector of principal component factors t(119894)= (1199051 119905

119901)(119894)

given by

t119896(119894)

= x(119894)sdot w(119896) (3)

Individual variables of t considered over the data setsuccessively inherit the maximum possible variance from xwith each loading w constrained to be a unit vector The firstprincipal component w

(1)satisfied

w(1)= argmaxsum

119894

(1199051)2

(119894) = argmaxsum

119894

(x(119894)sdot w)2

(4)

where the quantity to be maximized is known as Rayleighquotient The 119896th component was determined by subtractingthe 119896 ndash 1 principal components fromX

X119896minus1

= X minus

119896minus1

sum119904=1

Xw(119904)wT(119904) (5)

The vector associated with this component and showingthe maximum variance from this new matrix would bedefined as

w(119896)= argmax

10038171003817100381710038171003817X119896minus1

w10038171003817100381710038171003817

2

(6)

All calculations related to cluster analysis were carried outusing the STATISTICA for Windows software

45 Mass-Balance Evaluations Nixon [31] applied a simplemass-balance scheme for the quantitative characterizationof binary mixtures and end-member compositions in theIztaccıhuatl volcano (central MVB) The author suggestedthat despite the compositional heterogeneity if a chemicalcomponent can be found whose concentration is invariantin time and known in the mix and in each of the end-members it is possible to treat quantitatively the magmamixing process

Mixing proportions may be calculated considering thelever principle and the composition of the comingledmagmasubsequently described for all chemical components Theamount of a component in the mixed lava could be repre-sented by

119876119894

119860=

10038161003816100381610038161003816119862119894

119872minus 119862119894

119861

100381610038161003816100381610038161003816100381610038161003816119862119894

119860minus 119862119894119861

1003816100381610038161003816 (7)

where 119876119894119860+ 119876119894

119861= 1 and 119876119894 and 119862119894 represent the weight

fraction and concentration respectively of element 119894 insubscripted end-members 119860 and 119861 and mixture 119872 Thecomposition of an end-member could be estimated by

119862119895

119860=

10038161003816100381610038161003816119862119895

119872minus 119876119894

119861119862119895

119861

10038161003816100381610038161003816

119876119894119860

(8)

where constituent 119894 = 119895 In this work this mass-balanceapproach (model A) was applied to SC lavas being restricted

The Scientific World Journal 7

to those sectors where the end-member compositions wereavailable and to those components that exhibit a statisticallysignificant linear coherence in [SiO

2]adj-Harker diagrams

This test involved the evaluation at 99 confidence level ofPearson product-moment correlation coefficient (119903) and thesample size (119899) Details and required caution in the use of 119903have been reported in Bevington and Robinson [45]

On the other hand Zou [33] reported a mass-balanceapproach to explain the 119910

119898= (119906119886)

119898and 119909

119898= (V119887)

119898

geochemical ratios (where 119886 119887 119906 and V represent majoror trace elements) in SC comingled lavas as a product of amixture of two components 1 and 2 The variation in the119910119898

and 119909119898

geochemical ratios could be modeled by thehyperbolic equation (condition 119886

11198862= 11988711198872)

119860119909119898+ 119861119909119898119910119898+ 119862119910119898+ 119863 = 0 (9)

In this model the 119860 to 119863 coefficients have been definedas

119860 = 119886211988711199102minus 119886111988721199101 (10a)

119861 = 11988611198872minus 11988621198871 (10b)

119862 = 119886211988711199091minus 119886111988721199092 (10c)

119863 = 1198861119887211990921199101minus 1198862119887111990911199102 (10d)

where the geochemical ratios in the components 1 and 2 are

1199091=V1

1198871

(11a)

1199092=V2

1198872

(11b)

1199101=1199061

1198861

(11c)

1199102=1199062

1198862

(11d)

The proportion of the first component could be estimatedby

1198911=

minus1198862119910119898+ 11988621199102

(1198861minus 1198862) 119910119898minus 11988611199101+ 11988621199102

(12)

In this work the scheme described by Zou ([33]model B)was applied to evaluate the mixingmingling process in theSC northern sector All calculations of mixing models werecarried out using the STATISTICA for Windows software

5 Results

Ten samples of SC database proved to be intermediatemagmas The set of major element based diagrams (119899 =

10 Table 4 and Figure 3) showed a collisional setting withtotal percent probability value ( prob) of about 458However immobile major and trace element based diagrams

(119899 = 9 Table 4 and Figure 4) indicated a within-plate regimealthough with a relatively low prob of only about 381Unlike other sets of diagrams a continental arc setting can beinferred from those based on immobile trace elements (119899 =10 prob = 397 Table 4 and Figure 5) It is important tonote that intermediate samples from southern and transitionsectors (19 to 05 Ma) represent the main contribution to thecollisional and within-plate settings

A relatively large number of samples (119899 = 46) fromSC database proved to be of acid magma In contrast tointermediate magmas all diagrams indicated a subduction-related setting for the SC acid magmas with total percentprobability values for this tectonic regime of about 741630 and 687 respectively for themajormajor and traceand trace element based diagrams (Table 5 and Figures 6 7and 8)The results of the tectonic setting are further evaluatedfrom discordancy and significance tests in the Discussionsection below

On the other hand the hierarchical agglomeration pro-cess was carried out for each SC sector (SCN 22 samplesSCC 12 samples and SCS and SCT 22 samples) and theirresults were summarized in three dendrograms with units inEuclidean values (Figures 9(a)ndash9(c)) The statistical param-eters (mean minimum maximum and standard deviation)associated with the centroid of each cluster are reported inTable 6

The studied rocks from northern SC sector (Table 6Figure 9(a)) were distributed in three general clusters (N1[136] N2 [545] and N3 [319]) The PCA calculationindicated that the sim942 of geochemical variability ofsamples from northern SC sector could be explained by threefactorsThe factor F1 contributedwith 574 being associatedwith major (excepting Na and P) and transition elementsrare earth elements and yttrium ruled a contribution of186 by means of the factor F2 (Figure 10(a)) The principalcomponent F3 (a function ofNa P and Sr) explained the 82of the chemical variability

The samples from central SC conformed four groups (C1[83] C2 [250] C3 [83] and C4 [583] Table 6 andFigure 9(b)) A sim941 of the chemical variability can beexplained by means of five factors The factor F1 (450)is controlled by Si and alkali composition A 320 of thecompositional heterogeneity has been associated with theincompatible elements using the principal component F2(Figure 10(b)) The factor F3 (ruled by Mg Ca and HFSE)contributed with a 106

The samples of SCS and SCT were agglomerated in threegeochemical groups (ST1 [364] ST2 [409] and ST3[227] Table 6 and Figure 9(c)) PCA calculations haverevealed that a sim90 of the geochemical composition couldbe explained as a function of five principal componentsThe factor F1 associated with major elements (exceptingNa and K) Co and Eu contributed with 428 F2 factorwhich represents a 247 is controlled by Ba K and U(Figure 10(c)) An 119 of the chemical heterogeneity isexplained by the factor F3 a variable ruled by Na K and Vcomposition

8 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

int

DF1(IA+CAminusCR+OIminusCol)mint

Col (868)

IA (900)+ CA (793)

CR (716)+ OI (964)

(a)

DF2

(IAminus

CAminus

CR+

OI)

min

t

DF1(IAminusCAminusCR+OI)mint

CA (725)

IA (713)

+ OI (939)CR (766)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

int

DF1(IAminusCAminusCol)mint

CA (691)

IA (691)

Col (855)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

int

DF1(IAminusCR+OIminusCol)mint

CR (750)+ OI (949)

Col (867)

IA (890)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (716)+ OI (960)

Col (855)

CA (800)

Field boundaryGroup centroidNorthern sector

Central sectorSouthern sectorTransition sector

DF1(CAminusCR+OIminusCol)mint

DF2

(CAminus

CR+

OIminus

Col)m

int

(e)

Figure 3 Discriminant-function multidimensional diagrams [21] based on ln-transformed ratios of major elements for the tectonicdiscrimination of intermediate Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OIocean island and Col collisionThe symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IAand CA as IA + CA and CR and OI as CR + OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript mint refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for intermediate (int) magmas Filled circles displaythe compositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [21]

The Scientific World Journal 9

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

tint

DF1(IA+CAminusCR+OIminusCol)mtint

CR (729)+ OI (100)

Col (902)

IA (863)+ CA (885)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

CR+

OI)

mtin

t

DF1(IAminusCAminusCR+OI)mtint

CR (792)+ OI (100)

IA (704)

CA (818)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

tint

DF1(IAminusCAminusCol)mtint

Col (927)IA (628)

CA (762)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

tint

DF1(IAminusCR+OIminusCol)mtint

CR (742)+ OI (987)

Col (902)

IA (855)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (729)+ OI (987)

Col (908)

CA (947)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

Transition sector

DF1(CAminusCR+OIminusCol)mtint

DF2

(CAminus

CR+

OIminus

Col)m

tint

(e)

Figure 4 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3The subscript ldquomtintrdquo in axis names refers to major (m) and trace (t) element ratios for intermediate (int) magmas

10 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)ti

nt

DF1(IA+CAminusCR+OIminusCol)tint

CR (743)+ OI (100)

Col (810)

IA (914)+ CA (904)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OI)

tint

DF1(IA+CAminusCR+OI)tint

CR (805)+ OI (100)

IA (757)

CA (658)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)ti

nt

DF1(IAminusCAminusCol)tint

Col (840)

IA (727)

CA (645)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)ti

nt

DF1(IAminusCR+OIminusCol)tint

CR (747)+ OI (100)

Col (847)

IA (903)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (743)+ OI (941)

Col (810)

CA (957)

Field boundaryGroup centroidNorthern region

Central regionSouthern regionTransition region

DF1(CAminusCR+OIminusCol)tint

DF2

(CAminus

CR+

OIminus

Col)ti

nt

(e)

Figure 5 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3 Thesubscript ldquotintrdquo in axis names refers to trace (t) element ratios for intermediate (int) magmas

The Scientific World Journal 11

8

4

0

minus4

minus8840minus4minus8

CR (738)

Col (753)

+ OI (954) IA (940)+ CA (867)

DF2

(IA+C

Aminus

CR+

OIminus

Col)m

acid

DF1(IA+CA minusCR+OIminusCol)macid

(a)

8

4

0

minus4

minus8840minus4minus8

CR (832)+ OI (969)IA (712)

CA (795)

DF2

(IAminus

CAminus

CR+

OI)

mac

id

DF1(IAminusCAminusCR+OI)macid

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

acid

DF1(IAminusCAminusCol)macid

Col (774)IA (691)

CA (823)

(c)

8

4

0

minus4

minus8840minus4minus8

CR (789)+ OI (969)

Col (831)

IA (855)

DF1(IAminusCR+OIminusCol)macid

DF2

(IAminus

CR+

OIminus

Col)m

acid

(d)

8

4

0

minus4

minus8840minus4minus8

Field boundaryGroup centroidSC northern sector

SC central sectorSC southern sector

CR (732)+ OI (954)

Col (741)

CA (886)

DF1(CAminusCR+OIminusCol)macid

DF2

(CAminus

CR+

OIminus

Col)m

acid

(e)

Figure 6 Discriminant-function multidimensional diagrams [22] based on ln-transformed ratios of major elements for the tectonicdiscrimination of acid Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OI ocean islandand Col collision The symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IA and CAas IA + CA and CR and OI as CR+OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript ldquomacidrdquo refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for acid (acid) magmas Filled circles display thecompositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [22]

12 The Scientific World Journal

IA (943)+ CA (846) CR (697)

+ OI (975)

Col (764)

8

4

0

minus4

minus8840minus4minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

taci

d

DF1(IA+CAminusCR+OIminusCol)mtacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+

OI)

mta

cid

DF1(IAminusCAminusCR+OI)mtacid

IA (767)

CA (846)

CR (752)+ OI (988)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

taci

d

DF1(IAminusCAminusCol)mtacid

Col (754)

CA (822)

IA (774)

(c)

8

4

0

minus4

minus8840minus4minus8

DF1(IAminusCR+OIminusCol)mtacid

DF2

(IAminus

CR+

OIminus

Col)m

taci

d

Col (867)

IA (850)

CR (720)+ OI (975)

(d)

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)m

taci

d

DF1(CAminusCR+OIminusCol)mtacid

CA (930)

Col (697)

CR (693)+ OI (975)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

(e)

Figure 7 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 Thesubscript ldquomtacidrdquo in axis names refers to major (m) and trace (t) element ratios for acid (acid) magmas

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 5: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 5

Table1Petro

graphicinformationof

theS

ierrad

elas

Cruces

volcanicrocksa

Sample

Locality

Lat(N

)∘Lo

ng(W)∘

Texture

Phenocrysts

Groun

dmasstexture

Rock

Dise

quilibrium

evidence

Ol

Opx

Cpx

Plg

Qtz

Amp

Type

Ol+

Qtz

Qtz-R

Plg-N+S

ESC

03Ca

ntim

plora

99∘1410158403410158401015840

19∘1110158403510158401015840

VP

946

MI

SC16

Rancho

Agustın

99∘1910158404010158401015840

19∘1110158403010158401015840

P70

22

620

MID

E⨀

⨀⨀

SC22

Volcan

Negro

99∘2310158400610158401015840

19∘1010158400010158401015840

VT

8515

TI

SC46

LosP

uercos

99∘2810158400410158401015840

19∘3110158403610158401015840

P4

5820

18M

FDE

SC51

Cerro

Prieto

99∘1610158405510158401015840

19∘1810158404210158401015840

P3

359

1025

VFD

E⨀

SC52

SMiguelTecpan

99∘2410158403310158401015840

19∘3110158401210158401015840

VP

2741

428

MFD

E⨀

⨀⨀

SC52a

SMiguelTecpan

99∘2410158403310158401015840

19∘3110158401210158401015840

VP

2377

MME

SC53

Santiago

99∘1610158405310158401015840

19∘1510158404810158401015840

VP

697

24V

FDE

⨀⨀

SC58

Garam

bullo

s99∘1510158405610158401015840

19∘1510158400310158401015840

P3

258

631

VFD

E⨀

SC60

Quellamecal

99∘1410158402510158401015840

19∘1010158403310158401015840

P5

362

30V

Fa M

odaldata

arepercentageso

fpheno

crysts+microph

enocrysts

calculated

onavesic

leandgrou

ndmassfreebasisT

extureP

porph

yriticVP

vesic

ular-porph

yriticandVT

vesic

ular

trachyticG

roun

dmass

represents

60ndash9

0of

therocksGroun

dmasstextureMm

icrolithicT

trachyticand

Vvitre

ousPh

enocrysts

OlolivineOpxo

rtho

pyroxeneC

pxclin

opyroxenePlg

plagiocla

seQ

tzq

uartzandAmp

amph

iboleRo

cktypesIinterm

ediatemagmaswith

outd

isequ

ilibriumevidenceFfels

icmagmaswith

outd

isequ

ilibriumevidenceIDEinterm

ediatecomingled

lavaFD

Efelsicc

omingled

lavaandMEmagmatic

enclaveDise

quilibrium

evidencesOl+

Qtzolivine+

quartzQ

tz-Rquartzw

ithar

eactionrim

Plg-N

+Splagiocla

sesw

ithno

rmalandsie

vedtextureandE

ellip

soidalchilled

andesiticencla

ve

6 The Scientific World Journal

tests were applied at strict 99 confidence level for whichDODESSYS software of Verma and Dıaz-Gonzalez [41] wasused

44 Cluster Analysis The principal aim of this statistical toolis to partition observations into a number of groups It isexpected that the observations within a cluster are as similaras possible whereas the differences between the clusters are aslarge as possible Inmagmamingling scenario this techniquewould be helpful for the SC sample distribution in residentinvasive and comingled magmas

In this work cluster analysis was performed using thenatural logarithm of major elements ([SiO

2]adjndash[P2O5]adj)

and representative trace (transition Co V rare earth LaEu Yb lithophile Ba Sr U high-field strength Hf Y Zr)elements to [Al

2O3]adj ratios by using a hierarchical cluster

method (HCM [42]) Geochemical ratios were previouslystandardized (z-scores) by means of

119870119894119895=119883119894119895minus 119883

119878119894119888

(1)

where119870119894119895is the standardized value of119883

119894119895 the 119894th variable for

the 119895th sample119883 is the mean value of the 119894th variable and 119878119894119888

is its standard deviation Additionally the normality of eachstandardized variable was confirmed by the Shapiro-Wilkstest Cluster analysis applied a Wardrsquos linkage rule whichlinked iteratively nearby points through a similarity matrixand performed an ANOVA test to evaluate the distancebetween clusters [43] The adopted procedure gives equalweight to each geochemical ratio The measure of similaritywas simply the distance as defined in Euclidean space Thedistance between two samples (119895 119896) is given by

119889119895119896= [

119873

sum119894=1

(119870119894119895minus 119870119894119896)2

]

12

(2)

where 119870119894119895denotes the 119870th variable measured on object 119894 in

sample 119895 and 119870119895119896is the 119870th variable measured on object 119894 in

sample 119896 The results of the cluster analysis were graphicallydisplayed in three dendrograms with units in Euclideanvalues corresponding to northern central and southern-transition SC sectors

The weight of geochemical log-ratios in the clusterapproach was determined from the results obtained in aprincipal component analysis (PCA) It has been definedas an orthogonal linear transformation for reducing thedimensionality of a dataset by expressing it as the combi-nation of a small number of linearly independent factors orldquoprincipal componentsrdquo Each factor will be a function ofthe individual contributions of the original variables [44]The greatest variance for the transformed data was linked tothe first principal component whereas the second variancemagnitude was related to the second principal componentand so on The PCA considers a data matrix X (119899 rowstimes119901 columns rows represent different samples and columnsgive a particular chemical component each componentwhich has been standardized yielded a zero empirical mean)

The transformation is stated by a set of119901-dimensional vectorsw(119896)= (1199081 119908

119901)(119896)

that map each row vector x(119894)ofX to a

new vector of principal component factors t(119894)= (1199051 119905

119901)(119894)

given by

t119896(119894)

= x(119894)sdot w(119896) (3)

Individual variables of t considered over the data setsuccessively inherit the maximum possible variance from xwith each loading w constrained to be a unit vector The firstprincipal component w

(1)satisfied

w(1)= argmaxsum

119894

(1199051)2

(119894) = argmaxsum

119894

(x(119894)sdot w)2

(4)

where the quantity to be maximized is known as Rayleighquotient The 119896th component was determined by subtractingthe 119896 ndash 1 principal components fromX

X119896minus1

= X minus

119896minus1

sum119904=1

Xw(119904)wT(119904) (5)

The vector associated with this component and showingthe maximum variance from this new matrix would bedefined as

w(119896)= argmax

10038171003817100381710038171003817X119896minus1

w10038171003817100381710038171003817

2

(6)

All calculations related to cluster analysis were carried outusing the STATISTICA for Windows software

45 Mass-Balance Evaluations Nixon [31] applied a simplemass-balance scheme for the quantitative characterizationof binary mixtures and end-member compositions in theIztaccıhuatl volcano (central MVB) The author suggestedthat despite the compositional heterogeneity if a chemicalcomponent can be found whose concentration is invariantin time and known in the mix and in each of the end-members it is possible to treat quantitatively the magmamixing process

Mixing proportions may be calculated considering thelever principle and the composition of the comingledmagmasubsequently described for all chemical components Theamount of a component in the mixed lava could be repre-sented by

119876119894

119860=

10038161003816100381610038161003816119862119894

119872minus 119862119894

119861

100381610038161003816100381610038161003816100381610038161003816119862119894

119860minus 119862119894119861

1003816100381610038161003816 (7)

where 119876119894119860+ 119876119894

119861= 1 and 119876119894 and 119862119894 represent the weight

fraction and concentration respectively of element 119894 insubscripted end-members 119860 and 119861 and mixture 119872 Thecomposition of an end-member could be estimated by

119862119895

119860=

10038161003816100381610038161003816119862119895

119872minus 119876119894

119861119862119895

119861

10038161003816100381610038161003816

119876119894119860

(8)

where constituent 119894 = 119895 In this work this mass-balanceapproach (model A) was applied to SC lavas being restricted

The Scientific World Journal 7

to those sectors where the end-member compositions wereavailable and to those components that exhibit a statisticallysignificant linear coherence in [SiO

2]adj-Harker diagrams

This test involved the evaluation at 99 confidence level ofPearson product-moment correlation coefficient (119903) and thesample size (119899) Details and required caution in the use of 119903have been reported in Bevington and Robinson [45]

On the other hand Zou [33] reported a mass-balanceapproach to explain the 119910

119898= (119906119886)

119898and 119909

119898= (V119887)

119898

geochemical ratios (where 119886 119887 119906 and V represent majoror trace elements) in SC comingled lavas as a product of amixture of two components 1 and 2 The variation in the119910119898

and 119909119898

geochemical ratios could be modeled by thehyperbolic equation (condition 119886

11198862= 11988711198872)

119860119909119898+ 119861119909119898119910119898+ 119862119910119898+ 119863 = 0 (9)

In this model the 119860 to 119863 coefficients have been definedas

119860 = 119886211988711199102minus 119886111988721199101 (10a)

119861 = 11988611198872minus 11988621198871 (10b)

119862 = 119886211988711199091minus 119886111988721199092 (10c)

119863 = 1198861119887211990921199101minus 1198862119887111990911199102 (10d)

where the geochemical ratios in the components 1 and 2 are

1199091=V1

1198871

(11a)

1199092=V2

1198872

(11b)

1199101=1199061

1198861

(11c)

1199102=1199062

1198862

(11d)

The proportion of the first component could be estimatedby

1198911=

minus1198862119910119898+ 11988621199102

(1198861minus 1198862) 119910119898minus 11988611199101+ 11988621199102

(12)

In this work the scheme described by Zou ([33]model B)was applied to evaluate the mixingmingling process in theSC northern sector All calculations of mixing models werecarried out using the STATISTICA for Windows software

5 Results

Ten samples of SC database proved to be intermediatemagmas The set of major element based diagrams (119899 =

10 Table 4 and Figure 3) showed a collisional setting withtotal percent probability value ( prob) of about 458However immobile major and trace element based diagrams

(119899 = 9 Table 4 and Figure 4) indicated a within-plate regimealthough with a relatively low prob of only about 381Unlike other sets of diagrams a continental arc setting can beinferred from those based on immobile trace elements (119899 =10 prob = 397 Table 4 and Figure 5) It is important tonote that intermediate samples from southern and transitionsectors (19 to 05 Ma) represent the main contribution to thecollisional and within-plate settings

A relatively large number of samples (119899 = 46) fromSC database proved to be of acid magma In contrast tointermediate magmas all diagrams indicated a subduction-related setting for the SC acid magmas with total percentprobability values for this tectonic regime of about 741630 and 687 respectively for themajormajor and traceand trace element based diagrams (Table 5 and Figures 6 7and 8)The results of the tectonic setting are further evaluatedfrom discordancy and significance tests in the Discussionsection below

On the other hand the hierarchical agglomeration pro-cess was carried out for each SC sector (SCN 22 samplesSCC 12 samples and SCS and SCT 22 samples) and theirresults were summarized in three dendrograms with units inEuclidean values (Figures 9(a)ndash9(c)) The statistical param-eters (mean minimum maximum and standard deviation)associated with the centroid of each cluster are reported inTable 6

The studied rocks from northern SC sector (Table 6Figure 9(a)) were distributed in three general clusters (N1[136] N2 [545] and N3 [319]) The PCA calculationindicated that the sim942 of geochemical variability ofsamples from northern SC sector could be explained by threefactorsThe factor F1 contributedwith 574 being associatedwith major (excepting Na and P) and transition elementsrare earth elements and yttrium ruled a contribution of186 by means of the factor F2 (Figure 10(a)) The principalcomponent F3 (a function ofNa P and Sr) explained the 82of the chemical variability

The samples from central SC conformed four groups (C1[83] C2 [250] C3 [83] and C4 [583] Table 6 andFigure 9(b)) A sim941 of the chemical variability can beexplained by means of five factors The factor F1 (450)is controlled by Si and alkali composition A 320 of thecompositional heterogeneity has been associated with theincompatible elements using the principal component F2(Figure 10(b)) The factor F3 (ruled by Mg Ca and HFSE)contributed with a 106

The samples of SCS and SCT were agglomerated in threegeochemical groups (ST1 [364] ST2 [409] and ST3[227] Table 6 and Figure 9(c)) PCA calculations haverevealed that a sim90 of the geochemical composition couldbe explained as a function of five principal componentsThe factor F1 associated with major elements (exceptingNa and K) Co and Eu contributed with 428 F2 factorwhich represents a 247 is controlled by Ba K and U(Figure 10(c)) An 119 of the chemical heterogeneity isexplained by the factor F3 a variable ruled by Na K and Vcomposition

8 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

int

DF1(IA+CAminusCR+OIminusCol)mint

Col (868)

IA (900)+ CA (793)

CR (716)+ OI (964)

(a)

DF2

(IAminus

CAminus

CR+

OI)

min

t

DF1(IAminusCAminusCR+OI)mint

CA (725)

IA (713)

+ OI (939)CR (766)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

int

DF1(IAminusCAminusCol)mint

CA (691)

IA (691)

Col (855)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

int

DF1(IAminusCR+OIminusCol)mint

CR (750)+ OI (949)

Col (867)

IA (890)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (716)+ OI (960)

Col (855)

CA (800)

Field boundaryGroup centroidNorthern sector

Central sectorSouthern sectorTransition sector

DF1(CAminusCR+OIminusCol)mint

DF2

(CAminus

CR+

OIminus

Col)m

int

(e)

Figure 3 Discriminant-function multidimensional diagrams [21] based on ln-transformed ratios of major elements for the tectonicdiscrimination of intermediate Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OIocean island and Col collisionThe symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IAand CA as IA + CA and CR and OI as CR + OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript mint refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for intermediate (int) magmas Filled circles displaythe compositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [21]

The Scientific World Journal 9

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

tint

DF1(IA+CAminusCR+OIminusCol)mtint

CR (729)+ OI (100)

Col (902)

IA (863)+ CA (885)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

CR+

OI)

mtin

t

DF1(IAminusCAminusCR+OI)mtint

CR (792)+ OI (100)

IA (704)

CA (818)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

tint

DF1(IAminusCAminusCol)mtint

Col (927)IA (628)

CA (762)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

tint

DF1(IAminusCR+OIminusCol)mtint

CR (742)+ OI (987)

Col (902)

IA (855)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (729)+ OI (987)

Col (908)

CA (947)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

Transition sector

DF1(CAminusCR+OIminusCol)mtint

DF2

(CAminus

CR+

OIminus

Col)m

tint

(e)

Figure 4 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3The subscript ldquomtintrdquo in axis names refers to major (m) and trace (t) element ratios for intermediate (int) magmas

10 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)ti

nt

DF1(IA+CAminusCR+OIminusCol)tint

CR (743)+ OI (100)

Col (810)

IA (914)+ CA (904)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OI)

tint

DF1(IA+CAminusCR+OI)tint

CR (805)+ OI (100)

IA (757)

CA (658)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)ti

nt

DF1(IAminusCAminusCol)tint

Col (840)

IA (727)

CA (645)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)ti

nt

DF1(IAminusCR+OIminusCol)tint

CR (747)+ OI (100)

Col (847)

IA (903)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (743)+ OI (941)

Col (810)

CA (957)

Field boundaryGroup centroidNorthern region

Central regionSouthern regionTransition region

DF1(CAminusCR+OIminusCol)tint

DF2

(CAminus

CR+

OIminus

Col)ti

nt

(e)

Figure 5 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3 Thesubscript ldquotintrdquo in axis names refers to trace (t) element ratios for intermediate (int) magmas

The Scientific World Journal 11

8

4

0

minus4

minus8840minus4minus8

CR (738)

Col (753)

+ OI (954) IA (940)+ CA (867)

DF2

(IA+C

Aminus

CR+

OIminus

Col)m

acid

DF1(IA+CA minusCR+OIminusCol)macid

(a)

8

4

0

minus4

minus8840minus4minus8

CR (832)+ OI (969)IA (712)

CA (795)

DF2

(IAminus

CAminus

CR+

OI)

mac

id

DF1(IAminusCAminusCR+OI)macid

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

acid

DF1(IAminusCAminusCol)macid

Col (774)IA (691)

CA (823)

(c)

8

4

0

minus4

minus8840minus4minus8

CR (789)+ OI (969)

Col (831)

IA (855)

DF1(IAminusCR+OIminusCol)macid

DF2

(IAminus

CR+

OIminus

Col)m

acid

(d)

8

4

0

minus4

minus8840minus4minus8

Field boundaryGroup centroidSC northern sector

SC central sectorSC southern sector

CR (732)+ OI (954)

Col (741)

CA (886)

DF1(CAminusCR+OIminusCol)macid

DF2

(CAminus

CR+

OIminus

Col)m

acid

(e)

Figure 6 Discriminant-function multidimensional diagrams [22] based on ln-transformed ratios of major elements for the tectonicdiscrimination of acid Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OI ocean islandand Col collision The symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IA and CAas IA + CA and CR and OI as CR+OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript ldquomacidrdquo refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for acid (acid) magmas Filled circles display thecompositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [22]

12 The Scientific World Journal

IA (943)+ CA (846) CR (697)

+ OI (975)

Col (764)

8

4

0

minus4

minus8840minus4minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

taci

d

DF1(IA+CAminusCR+OIminusCol)mtacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+

OI)

mta

cid

DF1(IAminusCAminusCR+OI)mtacid

IA (767)

CA (846)

CR (752)+ OI (988)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

taci

d

DF1(IAminusCAminusCol)mtacid

Col (754)

CA (822)

IA (774)

(c)

8

4

0

minus4

minus8840minus4minus8

DF1(IAminusCR+OIminusCol)mtacid

DF2

(IAminus

CR+

OIminus

Col)m

taci

d

Col (867)

IA (850)

CR (720)+ OI (975)

(d)

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)m

taci

d

DF1(CAminusCR+OIminusCol)mtacid

CA (930)

Col (697)

CR (693)+ OI (975)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

(e)

Figure 7 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 Thesubscript ldquomtacidrdquo in axis names refers to major (m) and trace (t) element ratios for acid (acid) magmas

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 6: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

6 The Scientific World Journal

tests were applied at strict 99 confidence level for whichDODESSYS software of Verma and Dıaz-Gonzalez [41] wasused

44 Cluster Analysis The principal aim of this statistical toolis to partition observations into a number of groups It isexpected that the observations within a cluster are as similaras possible whereas the differences between the clusters are aslarge as possible Inmagmamingling scenario this techniquewould be helpful for the SC sample distribution in residentinvasive and comingled magmas

In this work cluster analysis was performed using thenatural logarithm of major elements ([SiO

2]adjndash[P2O5]adj)

and representative trace (transition Co V rare earth LaEu Yb lithophile Ba Sr U high-field strength Hf Y Zr)elements to [Al

2O3]adj ratios by using a hierarchical cluster

method (HCM [42]) Geochemical ratios were previouslystandardized (z-scores) by means of

119870119894119895=119883119894119895minus 119883

119878119894119888

(1)

where119870119894119895is the standardized value of119883

119894119895 the 119894th variable for

the 119895th sample119883 is the mean value of the 119894th variable and 119878119894119888

is its standard deviation Additionally the normality of eachstandardized variable was confirmed by the Shapiro-Wilkstest Cluster analysis applied a Wardrsquos linkage rule whichlinked iteratively nearby points through a similarity matrixand performed an ANOVA test to evaluate the distancebetween clusters [43] The adopted procedure gives equalweight to each geochemical ratio The measure of similaritywas simply the distance as defined in Euclidean space Thedistance between two samples (119895 119896) is given by

119889119895119896= [

119873

sum119894=1

(119870119894119895minus 119870119894119896)2

]

12

(2)

where 119870119894119895denotes the 119870th variable measured on object 119894 in

sample 119895 and 119870119895119896is the 119870th variable measured on object 119894 in

sample 119896 The results of the cluster analysis were graphicallydisplayed in three dendrograms with units in Euclideanvalues corresponding to northern central and southern-transition SC sectors

The weight of geochemical log-ratios in the clusterapproach was determined from the results obtained in aprincipal component analysis (PCA) It has been definedas an orthogonal linear transformation for reducing thedimensionality of a dataset by expressing it as the combi-nation of a small number of linearly independent factors orldquoprincipal componentsrdquo Each factor will be a function ofthe individual contributions of the original variables [44]The greatest variance for the transformed data was linked tothe first principal component whereas the second variancemagnitude was related to the second principal componentand so on The PCA considers a data matrix X (119899 rowstimes119901 columns rows represent different samples and columnsgive a particular chemical component each componentwhich has been standardized yielded a zero empirical mean)

The transformation is stated by a set of119901-dimensional vectorsw(119896)= (1199081 119908

119901)(119896)

that map each row vector x(119894)ofX to a

new vector of principal component factors t(119894)= (1199051 119905

119901)(119894)

given by

t119896(119894)

= x(119894)sdot w(119896) (3)

Individual variables of t considered over the data setsuccessively inherit the maximum possible variance from xwith each loading w constrained to be a unit vector The firstprincipal component w

(1)satisfied

w(1)= argmaxsum

119894

(1199051)2

(119894) = argmaxsum

119894

(x(119894)sdot w)2

(4)

where the quantity to be maximized is known as Rayleighquotient The 119896th component was determined by subtractingthe 119896 ndash 1 principal components fromX

X119896minus1

= X minus

119896minus1

sum119904=1

Xw(119904)wT(119904) (5)

The vector associated with this component and showingthe maximum variance from this new matrix would bedefined as

w(119896)= argmax

10038171003817100381710038171003817X119896minus1

w10038171003817100381710038171003817

2

(6)

All calculations related to cluster analysis were carried outusing the STATISTICA for Windows software

45 Mass-Balance Evaluations Nixon [31] applied a simplemass-balance scheme for the quantitative characterizationof binary mixtures and end-member compositions in theIztaccıhuatl volcano (central MVB) The author suggestedthat despite the compositional heterogeneity if a chemicalcomponent can be found whose concentration is invariantin time and known in the mix and in each of the end-members it is possible to treat quantitatively the magmamixing process

Mixing proportions may be calculated considering thelever principle and the composition of the comingledmagmasubsequently described for all chemical components Theamount of a component in the mixed lava could be repre-sented by

119876119894

119860=

10038161003816100381610038161003816119862119894

119872minus 119862119894

119861

100381610038161003816100381610038161003816100381610038161003816119862119894

119860minus 119862119894119861

1003816100381610038161003816 (7)

where 119876119894119860+ 119876119894

119861= 1 and 119876119894 and 119862119894 represent the weight

fraction and concentration respectively of element 119894 insubscripted end-members 119860 and 119861 and mixture 119872 Thecomposition of an end-member could be estimated by

119862119895

119860=

10038161003816100381610038161003816119862119895

119872minus 119876119894

119861119862119895

119861

10038161003816100381610038161003816

119876119894119860

(8)

where constituent 119894 = 119895 In this work this mass-balanceapproach (model A) was applied to SC lavas being restricted

The Scientific World Journal 7

to those sectors where the end-member compositions wereavailable and to those components that exhibit a statisticallysignificant linear coherence in [SiO

2]adj-Harker diagrams

This test involved the evaluation at 99 confidence level ofPearson product-moment correlation coefficient (119903) and thesample size (119899) Details and required caution in the use of 119903have been reported in Bevington and Robinson [45]

On the other hand Zou [33] reported a mass-balanceapproach to explain the 119910

119898= (119906119886)

119898and 119909

119898= (V119887)

119898

geochemical ratios (where 119886 119887 119906 and V represent majoror trace elements) in SC comingled lavas as a product of amixture of two components 1 and 2 The variation in the119910119898

and 119909119898

geochemical ratios could be modeled by thehyperbolic equation (condition 119886

11198862= 11988711198872)

119860119909119898+ 119861119909119898119910119898+ 119862119910119898+ 119863 = 0 (9)

In this model the 119860 to 119863 coefficients have been definedas

119860 = 119886211988711199102minus 119886111988721199101 (10a)

119861 = 11988611198872minus 11988621198871 (10b)

119862 = 119886211988711199091minus 119886111988721199092 (10c)

119863 = 1198861119887211990921199101minus 1198862119887111990911199102 (10d)

where the geochemical ratios in the components 1 and 2 are

1199091=V1

1198871

(11a)

1199092=V2

1198872

(11b)

1199101=1199061

1198861

(11c)

1199102=1199062

1198862

(11d)

The proportion of the first component could be estimatedby

1198911=

minus1198862119910119898+ 11988621199102

(1198861minus 1198862) 119910119898minus 11988611199101+ 11988621199102

(12)

In this work the scheme described by Zou ([33]model B)was applied to evaluate the mixingmingling process in theSC northern sector All calculations of mixing models werecarried out using the STATISTICA for Windows software

5 Results

Ten samples of SC database proved to be intermediatemagmas The set of major element based diagrams (119899 =

10 Table 4 and Figure 3) showed a collisional setting withtotal percent probability value ( prob) of about 458However immobile major and trace element based diagrams

(119899 = 9 Table 4 and Figure 4) indicated a within-plate regimealthough with a relatively low prob of only about 381Unlike other sets of diagrams a continental arc setting can beinferred from those based on immobile trace elements (119899 =10 prob = 397 Table 4 and Figure 5) It is important tonote that intermediate samples from southern and transitionsectors (19 to 05 Ma) represent the main contribution to thecollisional and within-plate settings

A relatively large number of samples (119899 = 46) fromSC database proved to be of acid magma In contrast tointermediate magmas all diagrams indicated a subduction-related setting for the SC acid magmas with total percentprobability values for this tectonic regime of about 741630 and 687 respectively for themajormajor and traceand trace element based diagrams (Table 5 and Figures 6 7and 8)The results of the tectonic setting are further evaluatedfrom discordancy and significance tests in the Discussionsection below

On the other hand the hierarchical agglomeration pro-cess was carried out for each SC sector (SCN 22 samplesSCC 12 samples and SCS and SCT 22 samples) and theirresults were summarized in three dendrograms with units inEuclidean values (Figures 9(a)ndash9(c)) The statistical param-eters (mean minimum maximum and standard deviation)associated with the centroid of each cluster are reported inTable 6

The studied rocks from northern SC sector (Table 6Figure 9(a)) were distributed in three general clusters (N1[136] N2 [545] and N3 [319]) The PCA calculationindicated that the sim942 of geochemical variability ofsamples from northern SC sector could be explained by threefactorsThe factor F1 contributedwith 574 being associatedwith major (excepting Na and P) and transition elementsrare earth elements and yttrium ruled a contribution of186 by means of the factor F2 (Figure 10(a)) The principalcomponent F3 (a function ofNa P and Sr) explained the 82of the chemical variability

The samples from central SC conformed four groups (C1[83] C2 [250] C3 [83] and C4 [583] Table 6 andFigure 9(b)) A sim941 of the chemical variability can beexplained by means of five factors The factor F1 (450)is controlled by Si and alkali composition A 320 of thecompositional heterogeneity has been associated with theincompatible elements using the principal component F2(Figure 10(b)) The factor F3 (ruled by Mg Ca and HFSE)contributed with a 106

The samples of SCS and SCT were agglomerated in threegeochemical groups (ST1 [364] ST2 [409] and ST3[227] Table 6 and Figure 9(c)) PCA calculations haverevealed that a sim90 of the geochemical composition couldbe explained as a function of five principal componentsThe factor F1 associated with major elements (exceptingNa and K) Co and Eu contributed with 428 F2 factorwhich represents a 247 is controlled by Ba K and U(Figure 10(c)) An 119 of the chemical heterogeneity isexplained by the factor F3 a variable ruled by Na K and Vcomposition

8 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

int

DF1(IA+CAminusCR+OIminusCol)mint

Col (868)

IA (900)+ CA (793)

CR (716)+ OI (964)

(a)

DF2

(IAminus

CAminus

CR+

OI)

min

t

DF1(IAminusCAminusCR+OI)mint

CA (725)

IA (713)

+ OI (939)CR (766)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

int

DF1(IAminusCAminusCol)mint

CA (691)

IA (691)

Col (855)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

int

DF1(IAminusCR+OIminusCol)mint

CR (750)+ OI (949)

Col (867)

IA (890)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (716)+ OI (960)

Col (855)

CA (800)

Field boundaryGroup centroidNorthern sector

Central sectorSouthern sectorTransition sector

DF1(CAminusCR+OIminusCol)mint

DF2

(CAminus

CR+

OIminus

Col)m

int

(e)

Figure 3 Discriminant-function multidimensional diagrams [21] based on ln-transformed ratios of major elements for the tectonicdiscrimination of intermediate Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OIocean island and Col collisionThe symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IAand CA as IA + CA and CR and OI as CR + OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript mint refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for intermediate (int) magmas Filled circles displaythe compositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [21]

The Scientific World Journal 9

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

tint

DF1(IA+CAminusCR+OIminusCol)mtint

CR (729)+ OI (100)

Col (902)

IA (863)+ CA (885)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

CR+

OI)

mtin

t

DF1(IAminusCAminusCR+OI)mtint

CR (792)+ OI (100)

IA (704)

CA (818)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

tint

DF1(IAminusCAminusCol)mtint

Col (927)IA (628)

CA (762)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

tint

DF1(IAminusCR+OIminusCol)mtint

CR (742)+ OI (987)

Col (902)

IA (855)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (729)+ OI (987)

Col (908)

CA (947)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

Transition sector

DF1(CAminusCR+OIminusCol)mtint

DF2

(CAminus

CR+

OIminus

Col)m

tint

(e)

Figure 4 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3The subscript ldquomtintrdquo in axis names refers to major (m) and trace (t) element ratios for intermediate (int) magmas

10 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)ti

nt

DF1(IA+CAminusCR+OIminusCol)tint

CR (743)+ OI (100)

Col (810)

IA (914)+ CA (904)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OI)

tint

DF1(IA+CAminusCR+OI)tint

CR (805)+ OI (100)

IA (757)

CA (658)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)ti

nt

DF1(IAminusCAminusCol)tint

Col (840)

IA (727)

CA (645)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)ti

nt

DF1(IAminusCR+OIminusCol)tint

CR (747)+ OI (100)

Col (847)

IA (903)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (743)+ OI (941)

Col (810)

CA (957)

Field boundaryGroup centroidNorthern region

Central regionSouthern regionTransition region

DF1(CAminusCR+OIminusCol)tint

DF2

(CAminus

CR+

OIminus

Col)ti

nt

(e)

Figure 5 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3 Thesubscript ldquotintrdquo in axis names refers to trace (t) element ratios for intermediate (int) magmas

The Scientific World Journal 11

8

4

0

minus4

minus8840minus4minus8

CR (738)

Col (753)

+ OI (954) IA (940)+ CA (867)

DF2

(IA+C

Aminus

CR+

OIminus

Col)m

acid

DF1(IA+CA minusCR+OIminusCol)macid

(a)

8

4

0

minus4

minus8840minus4minus8

CR (832)+ OI (969)IA (712)

CA (795)

DF2

(IAminus

CAminus

CR+

OI)

mac

id

DF1(IAminusCAminusCR+OI)macid

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

acid

DF1(IAminusCAminusCol)macid

Col (774)IA (691)

CA (823)

(c)

8

4

0

minus4

minus8840minus4minus8

CR (789)+ OI (969)

Col (831)

IA (855)

DF1(IAminusCR+OIminusCol)macid

DF2

(IAminus

CR+

OIminus

Col)m

acid

(d)

8

4

0

minus4

minus8840minus4minus8

Field boundaryGroup centroidSC northern sector

SC central sectorSC southern sector

CR (732)+ OI (954)

Col (741)

CA (886)

DF1(CAminusCR+OIminusCol)macid

DF2

(CAminus

CR+

OIminus

Col)m

acid

(e)

Figure 6 Discriminant-function multidimensional diagrams [22] based on ln-transformed ratios of major elements for the tectonicdiscrimination of acid Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OI ocean islandand Col collision The symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IA and CAas IA + CA and CR and OI as CR+OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript ldquomacidrdquo refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for acid (acid) magmas Filled circles display thecompositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [22]

12 The Scientific World Journal

IA (943)+ CA (846) CR (697)

+ OI (975)

Col (764)

8

4

0

minus4

minus8840minus4minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

taci

d

DF1(IA+CAminusCR+OIminusCol)mtacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+

OI)

mta

cid

DF1(IAminusCAminusCR+OI)mtacid

IA (767)

CA (846)

CR (752)+ OI (988)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

taci

d

DF1(IAminusCAminusCol)mtacid

Col (754)

CA (822)

IA (774)

(c)

8

4

0

minus4

minus8840minus4minus8

DF1(IAminusCR+OIminusCol)mtacid

DF2

(IAminus

CR+

OIminus

Col)m

taci

d

Col (867)

IA (850)

CR (720)+ OI (975)

(d)

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)m

taci

d

DF1(CAminusCR+OIminusCol)mtacid

CA (930)

Col (697)

CR (693)+ OI (975)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

(e)

Figure 7 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 Thesubscript ldquomtacidrdquo in axis names refers to major (m) and trace (t) element ratios for acid (acid) magmas

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 7: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 7

to those sectors where the end-member compositions wereavailable and to those components that exhibit a statisticallysignificant linear coherence in [SiO

2]adj-Harker diagrams

This test involved the evaluation at 99 confidence level ofPearson product-moment correlation coefficient (119903) and thesample size (119899) Details and required caution in the use of 119903have been reported in Bevington and Robinson [45]

On the other hand Zou [33] reported a mass-balanceapproach to explain the 119910

119898= (119906119886)

119898and 119909

119898= (V119887)

119898

geochemical ratios (where 119886 119887 119906 and V represent majoror trace elements) in SC comingled lavas as a product of amixture of two components 1 and 2 The variation in the119910119898

and 119909119898

geochemical ratios could be modeled by thehyperbolic equation (condition 119886

11198862= 11988711198872)

119860119909119898+ 119861119909119898119910119898+ 119862119910119898+ 119863 = 0 (9)

In this model the 119860 to 119863 coefficients have been definedas

119860 = 119886211988711199102minus 119886111988721199101 (10a)

119861 = 11988611198872minus 11988621198871 (10b)

119862 = 119886211988711199091minus 119886111988721199092 (10c)

119863 = 1198861119887211990921199101minus 1198862119887111990911199102 (10d)

where the geochemical ratios in the components 1 and 2 are

1199091=V1

1198871

(11a)

1199092=V2

1198872

(11b)

1199101=1199061

1198861

(11c)

1199102=1199062

1198862

(11d)

The proportion of the first component could be estimatedby

1198911=

minus1198862119910119898+ 11988621199102

(1198861minus 1198862) 119910119898minus 11988611199101+ 11988621199102

(12)

In this work the scheme described by Zou ([33]model B)was applied to evaluate the mixingmingling process in theSC northern sector All calculations of mixing models werecarried out using the STATISTICA for Windows software

5 Results

Ten samples of SC database proved to be intermediatemagmas The set of major element based diagrams (119899 =

10 Table 4 and Figure 3) showed a collisional setting withtotal percent probability value ( prob) of about 458However immobile major and trace element based diagrams

(119899 = 9 Table 4 and Figure 4) indicated a within-plate regimealthough with a relatively low prob of only about 381Unlike other sets of diagrams a continental arc setting can beinferred from those based on immobile trace elements (119899 =10 prob = 397 Table 4 and Figure 5) It is important tonote that intermediate samples from southern and transitionsectors (19 to 05 Ma) represent the main contribution to thecollisional and within-plate settings

A relatively large number of samples (119899 = 46) fromSC database proved to be of acid magma In contrast tointermediate magmas all diagrams indicated a subduction-related setting for the SC acid magmas with total percentprobability values for this tectonic regime of about 741630 and 687 respectively for themajormajor and traceand trace element based diagrams (Table 5 and Figures 6 7and 8)The results of the tectonic setting are further evaluatedfrom discordancy and significance tests in the Discussionsection below

On the other hand the hierarchical agglomeration pro-cess was carried out for each SC sector (SCN 22 samplesSCC 12 samples and SCS and SCT 22 samples) and theirresults were summarized in three dendrograms with units inEuclidean values (Figures 9(a)ndash9(c)) The statistical param-eters (mean minimum maximum and standard deviation)associated with the centroid of each cluster are reported inTable 6

The studied rocks from northern SC sector (Table 6Figure 9(a)) were distributed in three general clusters (N1[136] N2 [545] and N3 [319]) The PCA calculationindicated that the sim942 of geochemical variability ofsamples from northern SC sector could be explained by threefactorsThe factor F1 contributedwith 574 being associatedwith major (excepting Na and P) and transition elementsrare earth elements and yttrium ruled a contribution of186 by means of the factor F2 (Figure 10(a)) The principalcomponent F3 (a function ofNa P and Sr) explained the 82of the chemical variability

The samples from central SC conformed four groups (C1[83] C2 [250] C3 [83] and C4 [583] Table 6 andFigure 9(b)) A sim941 of the chemical variability can beexplained by means of five factors The factor F1 (450)is controlled by Si and alkali composition A 320 of thecompositional heterogeneity has been associated with theincompatible elements using the principal component F2(Figure 10(b)) The factor F3 (ruled by Mg Ca and HFSE)contributed with a 106

The samples of SCS and SCT were agglomerated in threegeochemical groups (ST1 [364] ST2 [409] and ST3[227] Table 6 and Figure 9(c)) PCA calculations haverevealed that a sim90 of the geochemical composition couldbe explained as a function of five principal componentsThe factor F1 associated with major elements (exceptingNa and K) Co and Eu contributed with 428 F2 factorwhich represents a 247 is controlled by Ba K and U(Figure 10(c)) An 119 of the chemical heterogeneity isexplained by the factor F3 a variable ruled by Na K and Vcomposition

8 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

int

DF1(IA+CAminusCR+OIminusCol)mint

Col (868)

IA (900)+ CA (793)

CR (716)+ OI (964)

(a)

DF2

(IAminus

CAminus

CR+

OI)

min

t

DF1(IAminusCAminusCR+OI)mint

CA (725)

IA (713)

+ OI (939)CR (766)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

int

DF1(IAminusCAminusCol)mint

CA (691)

IA (691)

Col (855)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

int

DF1(IAminusCR+OIminusCol)mint

CR (750)+ OI (949)

Col (867)

IA (890)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (716)+ OI (960)

Col (855)

CA (800)

Field boundaryGroup centroidNorthern sector

Central sectorSouthern sectorTransition sector

DF1(CAminusCR+OIminusCol)mint

DF2

(CAminus

CR+

OIminus

Col)m

int

(e)

Figure 3 Discriminant-function multidimensional diagrams [21] based on ln-transformed ratios of major elements for the tectonicdiscrimination of intermediate Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OIocean island and Col collisionThe symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IAand CA as IA + CA and CR and OI as CR + OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript mint refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for intermediate (int) magmas Filled circles displaythe compositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [21]

The Scientific World Journal 9

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

tint

DF1(IA+CAminusCR+OIminusCol)mtint

CR (729)+ OI (100)

Col (902)

IA (863)+ CA (885)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

CR+

OI)

mtin

t

DF1(IAminusCAminusCR+OI)mtint

CR (792)+ OI (100)

IA (704)

CA (818)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

tint

DF1(IAminusCAminusCol)mtint

Col (927)IA (628)

CA (762)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

tint

DF1(IAminusCR+OIminusCol)mtint

CR (742)+ OI (987)

Col (902)

IA (855)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (729)+ OI (987)

Col (908)

CA (947)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

Transition sector

DF1(CAminusCR+OIminusCol)mtint

DF2

(CAminus

CR+

OIminus

Col)m

tint

(e)

Figure 4 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3The subscript ldquomtintrdquo in axis names refers to major (m) and trace (t) element ratios for intermediate (int) magmas

10 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)ti

nt

DF1(IA+CAminusCR+OIminusCol)tint

CR (743)+ OI (100)

Col (810)

IA (914)+ CA (904)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OI)

tint

DF1(IA+CAminusCR+OI)tint

CR (805)+ OI (100)

IA (757)

CA (658)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)ti

nt

DF1(IAminusCAminusCol)tint

Col (840)

IA (727)

CA (645)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)ti

nt

DF1(IAminusCR+OIminusCol)tint

CR (747)+ OI (100)

Col (847)

IA (903)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (743)+ OI (941)

Col (810)

CA (957)

Field boundaryGroup centroidNorthern region

Central regionSouthern regionTransition region

DF1(CAminusCR+OIminusCol)tint

DF2

(CAminus

CR+

OIminus

Col)ti

nt

(e)

Figure 5 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3 Thesubscript ldquotintrdquo in axis names refers to trace (t) element ratios for intermediate (int) magmas

The Scientific World Journal 11

8

4

0

minus4

minus8840minus4minus8

CR (738)

Col (753)

+ OI (954) IA (940)+ CA (867)

DF2

(IA+C

Aminus

CR+

OIminus

Col)m

acid

DF1(IA+CA minusCR+OIminusCol)macid

(a)

8

4

0

minus4

minus8840minus4minus8

CR (832)+ OI (969)IA (712)

CA (795)

DF2

(IAminus

CAminus

CR+

OI)

mac

id

DF1(IAminusCAminusCR+OI)macid

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

acid

DF1(IAminusCAminusCol)macid

Col (774)IA (691)

CA (823)

(c)

8

4

0

minus4

minus8840minus4minus8

CR (789)+ OI (969)

Col (831)

IA (855)

DF1(IAminusCR+OIminusCol)macid

DF2

(IAminus

CR+

OIminus

Col)m

acid

(d)

8

4

0

minus4

minus8840minus4minus8

Field boundaryGroup centroidSC northern sector

SC central sectorSC southern sector

CR (732)+ OI (954)

Col (741)

CA (886)

DF1(CAminusCR+OIminusCol)macid

DF2

(CAminus

CR+

OIminus

Col)m

acid

(e)

Figure 6 Discriminant-function multidimensional diagrams [22] based on ln-transformed ratios of major elements for the tectonicdiscrimination of acid Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OI ocean islandand Col collision The symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IA and CAas IA + CA and CR and OI as CR+OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript ldquomacidrdquo refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for acid (acid) magmas Filled circles display thecompositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [22]

12 The Scientific World Journal

IA (943)+ CA (846) CR (697)

+ OI (975)

Col (764)

8

4

0

minus4

minus8840minus4minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

taci

d

DF1(IA+CAminusCR+OIminusCol)mtacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+

OI)

mta

cid

DF1(IAminusCAminusCR+OI)mtacid

IA (767)

CA (846)

CR (752)+ OI (988)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

taci

d

DF1(IAminusCAminusCol)mtacid

Col (754)

CA (822)

IA (774)

(c)

8

4

0

minus4

minus8840minus4minus8

DF1(IAminusCR+OIminusCol)mtacid

DF2

(IAminus

CR+

OIminus

Col)m

taci

d

Col (867)

IA (850)

CR (720)+ OI (975)

(d)

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)m

taci

d

DF1(CAminusCR+OIminusCol)mtacid

CA (930)

Col (697)

CR (693)+ OI (975)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

(e)

Figure 7 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 Thesubscript ldquomtacidrdquo in axis names refers to major (m) and trace (t) element ratios for acid (acid) magmas

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 8: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

8 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

int

DF1(IA+CAminusCR+OIminusCol)mint

Col (868)

IA (900)+ CA (793)

CR (716)+ OI (964)

(a)

DF2

(IAminus

CAminus

CR+

OI)

min

t

DF1(IAminusCAminusCR+OI)mint

CA (725)

IA (713)

+ OI (939)CR (766)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

int

DF1(IAminusCAminusCol)mint

CA (691)

IA (691)

Col (855)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

int

DF1(IAminusCR+OIminusCol)mint

CR (750)+ OI (949)

Col (867)

IA (890)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (716)+ OI (960)

Col (855)

CA (800)

Field boundaryGroup centroidNorthern sector

Central sectorSouthern sectorTransition sector

DF1(CAminusCR+OIminusCol)mint

DF2

(CAminus

CR+

OIminus

Col)m

int

(e)

Figure 3 Discriminant-function multidimensional diagrams [21] based on ln-transformed ratios of major elements for the tectonicdiscrimination of intermediate Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OIocean island and Col collisionThe symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IAand CA as IA + CA and CR and OI as CR + OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript mint refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for intermediate (int) magmas Filled circles displaythe compositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [21]

The Scientific World Journal 9

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

tint

DF1(IA+CAminusCR+OIminusCol)mtint

CR (729)+ OI (100)

Col (902)

IA (863)+ CA (885)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

CR+

OI)

mtin

t

DF1(IAminusCAminusCR+OI)mtint

CR (792)+ OI (100)

IA (704)

CA (818)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

tint

DF1(IAminusCAminusCol)mtint

Col (927)IA (628)

CA (762)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

tint

DF1(IAminusCR+OIminusCol)mtint

CR (742)+ OI (987)

Col (902)

IA (855)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (729)+ OI (987)

Col (908)

CA (947)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

Transition sector

DF1(CAminusCR+OIminusCol)mtint

DF2

(CAminus

CR+

OIminus

Col)m

tint

(e)

Figure 4 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3The subscript ldquomtintrdquo in axis names refers to major (m) and trace (t) element ratios for intermediate (int) magmas

10 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)ti

nt

DF1(IA+CAminusCR+OIminusCol)tint

CR (743)+ OI (100)

Col (810)

IA (914)+ CA (904)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OI)

tint

DF1(IA+CAminusCR+OI)tint

CR (805)+ OI (100)

IA (757)

CA (658)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)ti

nt

DF1(IAminusCAminusCol)tint

Col (840)

IA (727)

CA (645)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)ti

nt

DF1(IAminusCR+OIminusCol)tint

CR (747)+ OI (100)

Col (847)

IA (903)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (743)+ OI (941)

Col (810)

CA (957)

Field boundaryGroup centroidNorthern region

Central regionSouthern regionTransition region

DF1(CAminusCR+OIminusCol)tint

DF2

(CAminus

CR+

OIminus

Col)ti

nt

(e)

Figure 5 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3 Thesubscript ldquotintrdquo in axis names refers to trace (t) element ratios for intermediate (int) magmas

The Scientific World Journal 11

8

4

0

minus4

minus8840minus4minus8

CR (738)

Col (753)

+ OI (954) IA (940)+ CA (867)

DF2

(IA+C

Aminus

CR+

OIminus

Col)m

acid

DF1(IA+CA minusCR+OIminusCol)macid

(a)

8

4

0

minus4

minus8840minus4minus8

CR (832)+ OI (969)IA (712)

CA (795)

DF2

(IAminus

CAminus

CR+

OI)

mac

id

DF1(IAminusCAminusCR+OI)macid

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

acid

DF1(IAminusCAminusCol)macid

Col (774)IA (691)

CA (823)

(c)

8

4

0

minus4

minus8840minus4minus8

CR (789)+ OI (969)

Col (831)

IA (855)

DF1(IAminusCR+OIminusCol)macid

DF2

(IAminus

CR+

OIminus

Col)m

acid

(d)

8

4

0

minus4

minus8840minus4minus8

Field boundaryGroup centroidSC northern sector

SC central sectorSC southern sector

CR (732)+ OI (954)

Col (741)

CA (886)

DF1(CAminusCR+OIminusCol)macid

DF2

(CAminus

CR+

OIminus

Col)m

acid

(e)

Figure 6 Discriminant-function multidimensional diagrams [22] based on ln-transformed ratios of major elements for the tectonicdiscrimination of acid Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OI ocean islandand Col collision The symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IA and CAas IA + CA and CR and OI as CR+OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript ldquomacidrdquo refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for acid (acid) magmas Filled circles display thecompositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [22]

12 The Scientific World Journal

IA (943)+ CA (846) CR (697)

+ OI (975)

Col (764)

8

4

0

minus4

minus8840minus4minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

taci

d

DF1(IA+CAminusCR+OIminusCol)mtacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+

OI)

mta

cid

DF1(IAminusCAminusCR+OI)mtacid

IA (767)

CA (846)

CR (752)+ OI (988)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

taci

d

DF1(IAminusCAminusCol)mtacid

Col (754)

CA (822)

IA (774)

(c)

8

4

0

minus4

minus8840minus4minus8

DF1(IAminusCR+OIminusCol)mtacid

DF2

(IAminus

CR+

OIminus

Col)m

taci

d

Col (867)

IA (850)

CR (720)+ OI (975)

(d)

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)m

taci

d

DF1(CAminusCR+OIminusCol)mtacid

CA (930)

Col (697)

CR (693)+ OI (975)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

(e)

Figure 7 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 Thesubscript ldquomtacidrdquo in axis names refers to major (m) and trace (t) element ratios for acid (acid) magmas

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 9: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 9

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

tint

DF1(IA+CAminusCR+OIminusCol)mtint

CR (729)+ OI (100)

Col (902)

IA (863)+ CA (885)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

CR+

OI)

mtin

t

DF1(IAminusCAminusCR+OI)mtint

CR (792)+ OI (100)

IA (704)

CA (818)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)m

tint

DF1(IAminusCAminusCol)mtint

Col (927)IA (628)

CA (762)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)m

tint

DF1(IAminusCR+OIminusCol)mtint

CR (742)+ OI (987)

Col (902)

IA (855)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (729)+ OI (987)

Col (908)

CA (947)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

Transition sector

DF1(CAminusCR+OIminusCol)mtint

DF2

(CAminus

CR+

OIminus

Col)m

tint

(e)

Figure 4 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3The subscript ldquomtintrdquo in axis names refers to major (m) and trace (t) element ratios for intermediate (int) magmas

10 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)ti

nt

DF1(IA+CAminusCR+OIminusCol)tint

CR (743)+ OI (100)

Col (810)

IA (914)+ CA (904)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OI)

tint

DF1(IA+CAminusCR+OI)tint

CR (805)+ OI (100)

IA (757)

CA (658)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)ti

nt

DF1(IAminusCAminusCol)tint

Col (840)

IA (727)

CA (645)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)ti

nt

DF1(IAminusCR+OIminusCol)tint

CR (747)+ OI (100)

Col (847)

IA (903)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (743)+ OI (941)

Col (810)

CA (957)

Field boundaryGroup centroidNorthern region

Central regionSouthern regionTransition region

DF1(CAminusCR+OIminusCol)tint

DF2

(CAminus

CR+

OIminus

Col)ti

nt

(e)

Figure 5 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3 Thesubscript ldquotintrdquo in axis names refers to trace (t) element ratios for intermediate (int) magmas

The Scientific World Journal 11

8

4

0

minus4

minus8840minus4minus8

CR (738)

Col (753)

+ OI (954) IA (940)+ CA (867)

DF2

(IA+C

Aminus

CR+

OIminus

Col)m

acid

DF1(IA+CA minusCR+OIminusCol)macid

(a)

8

4

0

minus4

minus8840minus4minus8

CR (832)+ OI (969)IA (712)

CA (795)

DF2

(IAminus

CAminus

CR+

OI)

mac

id

DF1(IAminusCAminusCR+OI)macid

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

acid

DF1(IAminusCAminusCol)macid

Col (774)IA (691)

CA (823)

(c)

8

4

0

minus4

minus8840minus4minus8

CR (789)+ OI (969)

Col (831)

IA (855)

DF1(IAminusCR+OIminusCol)macid

DF2

(IAminus

CR+

OIminus

Col)m

acid

(d)

8

4

0

minus4

minus8840minus4minus8

Field boundaryGroup centroidSC northern sector

SC central sectorSC southern sector

CR (732)+ OI (954)

Col (741)

CA (886)

DF1(CAminusCR+OIminusCol)macid

DF2

(CAminus

CR+

OIminus

Col)m

acid

(e)

Figure 6 Discriminant-function multidimensional diagrams [22] based on ln-transformed ratios of major elements for the tectonicdiscrimination of acid Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OI ocean islandand Col collision The symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IA and CAas IA + CA and CR and OI as CR+OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript ldquomacidrdquo refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for acid (acid) magmas Filled circles display thecompositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [22]

12 The Scientific World Journal

IA (943)+ CA (846) CR (697)

+ OI (975)

Col (764)

8

4

0

minus4

minus8840minus4minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

taci

d

DF1(IA+CAminusCR+OIminusCol)mtacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+

OI)

mta

cid

DF1(IAminusCAminusCR+OI)mtacid

IA (767)

CA (846)

CR (752)+ OI (988)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

taci

d

DF1(IAminusCAminusCol)mtacid

Col (754)

CA (822)

IA (774)

(c)

8

4

0

minus4

minus8840minus4minus8

DF1(IAminusCR+OIminusCol)mtacid

DF2

(IAminus

CR+

OIminus

Col)m

taci

d

Col (867)

IA (850)

CR (720)+ OI (975)

(d)

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)m

taci

d

DF1(CAminusCR+OIminusCol)mtacid

CA (930)

Col (697)

CR (693)+ OI (975)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

(e)

Figure 7 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 Thesubscript ldquomtacidrdquo in axis names refers to major (m) and trace (t) element ratios for acid (acid) magmas

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 10: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

10 The Scientific World Journal

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)ti

nt

DF1(IA+CAminusCR+OIminusCol)tint

CR (743)+ OI (100)

Col (810)

IA (914)+ CA (904)

(a)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IA+

CAminus

CR+

OI)

tint

DF1(IA+CAminusCR+OI)tint

CR (805)+ OI (100)

IA (757)

CA (658)

(b)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CAminus

Col)ti

nt

DF1(IAminusCAminusCol)tint

Col (840)

IA (727)

CA (645)

(c)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

DF2

(IAminus

CR+O

IminusC

ol)ti

nt

DF1(IAminusCR+OIminusCol)tint

CR (747)+ OI (100)

Col (847)

IA (903)

(d)

8

6

4

2

0

minus2

minus4

minus6

minus886420minus2minus4minus6minus8

CR (743)+ OI (941)

Col (810)

CA (957)

Field boundaryGroup centroidNorthern region

Central regionSouthern regionTransition region

DF1(CAminusCR+OIminusCol)tint

DF2

(CAminus

CR+

OIminus

Col)ti

nt

(e)

Figure 5 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of intermediate Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 3 Thesubscript ldquotintrdquo in axis names refers to trace (t) element ratios for intermediate (int) magmas

The Scientific World Journal 11

8

4

0

minus4

minus8840minus4minus8

CR (738)

Col (753)

+ OI (954) IA (940)+ CA (867)

DF2

(IA+C

Aminus

CR+

OIminus

Col)m

acid

DF1(IA+CA minusCR+OIminusCol)macid

(a)

8

4

0

minus4

minus8840minus4minus8

CR (832)+ OI (969)IA (712)

CA (795)

DF2

(IAminus

CAminus

CR+

OI)

mac

id

DF1(IAminusCAminusCR+OI)macid

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

acid

DF1(IAminusCAminusCol)macid

Col (774)IA (691)

CA (823)

(c)

8

4

0

minus4

minus8840minus4minus8

CR (789)+ OI (969)

Col (831)

IA (855)

DF1(IAminusCR+OIminusCol)macid

DF2

(IAminus

CR+

OIminus

Col)m

acid

(d)

8

4

0

minus4

minus8840minus4minus8

Field boundaryGroup centroidSC northern sector

SC central sectorSC southern sector

CR (732)+ OI (954)

Col (741)

CA (886)

DF1(CAminusCR+OIminusCol)macid

DF2

(CAminus

CR+

OIminus

Col)m

acid

(e)

Figure 6 Discriminant-function multidimensional diagrams [22] based on ln-transformed ratios of major elements for the tectonicdiscrimination of acid Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OI ocean islandand Col collision The symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IA and CAas IA + CA and CR and OI as CR+OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript ldquomacidrdquo refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for acid (acid) magmas Filled circles display thecompositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [22]

12 The Scientific World Journal

IA (943)+ CA (846) CR (697)

+ OI (975)

Col (764)

8

4

0

minus4

minus8840minus4minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

taci

d

DF1(IA+CAminusCR+OIminusCol)mtacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+

OI)

mta

cid

DF1(IAminusCAminusCR+OI)mtacid

IA (767)

CA (846)

CR (752)+ OI (988)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

taci

d

DF1(IAminusCAminusCol)mtacid

Col (754)

CA (822)

IA (774)

(c)

8

4

0

minus4

minus8840minus4minus8

DF1(IAminusCR+OIminusCol)mtacid

DF2

(IAminus

CR+

OIminus

Col)m

taci

d

Col (867)

IA (850)

CR (720)+ OI (975)

(d)

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)m

taci

d

DF1(CAminusCR+OIminusCol)mtacid

CA (930)

Col (697)

CR (693)+ OI (975)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

(e)

Figure 7 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 Thesubscript ldquomtacidrdquo in axis names refers to major (m) and trace (t) element ratios for acid (acid) magmas

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 11: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 11

8

4

0

minus4

minus8840minus4minus8

CR (738)

Col (753)

+ OI (954) IA (940)+ CA (867)

DF2

(IA+C

Aminus

CR+

OIminus

Col)m

acid

DF1(IA+CA minusCR+OIminusCol)macid

(a)

8

4

0

minus4

minus8840minus4minus8

CR (832)+ OI (969)IA (712)

CA (795)

DF2

(IAminus

CAminus

CR+

OI)

mac

id

DF1(IAminusCAminusCR+OI)macid

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

acid

DF1(IAminusCAminusCol)macid

Col (774)IA (691)

CA (823)

(c)

8

4

0

minus4

minus8840minus4minus8

CR (789)+ OI (969)

Col (831)

IA (855)

DF1(IAminusCR+OIminusCol)macid

DF2

(IAminus

CR+

OIminus

Col)m

acid

(d)

8

4

0

minus4

minus8840minus4minus8

Field boundaryGroup centroidSC northern sector

SC central sectorSC southern sector

CR (732)+ OI (954)

Col (741)

CA (886)

DF1(CAminusCR+OIminusCol)macid

DF2

(CAminus

CR+

OIminus

Col)m

acid

(e)

Figure 6 Discriminant-function multidimensional diagrams [22] based on ln-transformed ratios of major elements for the tectonicdiscrimination of acid Sierra de las Cruces rocks Tectonic settings IA island arc CA continental arc CR continental rift OI ocean islandand Col collision The symbols are explained as inset in (a) In (a) five groups are represented as three groups by combining IA and CAas IA + CA and CR and OI as CR+OI The other four diagrams ((b)ndash(e)) are for three groups at a time The subscript ldquomacidrdquo refers tothe set of multidimensional diagrams based on ln-transformed major element (m) ratios for acid (acid) magmas Filled circles display thecompositional centroid for each tectonic setting The percentages in each field are the discrimination effectivity The thick lines representequal probability discrimination boundaries in all diagramsThe coordinates of the field boundaries and additional information are reportedin [22]

12 The Scientific World Journal

IA (943)+ CA (846) CR (697)

+ OI (975)

Col (764)

8

4

0

minus4

minus8840minus4minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

taci

d

DF1(IA+CAminusCR+OIminusCol)mtacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+

OI)

mta

cid

DF1(IAminusCAminusCR+OI)mtacid

IA (767)

CA (846)

CR (752)+ OI (988)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

taci

d

DF1(IAminusCAminusCol)mtacid

Col (754)

CA (822)

IA (774)

(c)

8

4

0

minus4

minus8840minus4minus8

DF1(IAminusCR+OIminusCol)mtacid

DF2

(IAminus

CR+

OIminus

Col)m

taci

d

Col (867)

IA (850)

CR (720)+ OI (975)

(d)

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)m

taci

d

DF1(CAminusCR+OIminusCol)mtacid

CA (930)

Col (697)

CR (693)+ OI (975)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

(e)

Figure 7 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 Thesubscript ldquomtacidrdquo in axis names refers to major (m) and trace (t) element ratios for acid (acid) magmas

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 12: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

12 The Scientific World Journal

IA (943)+ CA (846) CR (697)

+ OI (975)

Col (764)

8

4

0

minus4

minus8840minus4minus8

DF2

(IA+

CAminus

CR+

OIminus

Col)m

taci

d

DF1(IA+CAminusCR+OIminusCol)mtacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+

OI)

mta

cid

DF1(IAminusCAminusCR+OI)mtacid

IA (767)

CA (846)

CR (752)+ OI (988)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)m

taci

d

DF1(IAminusCAminusCol)mtacid

Col (754)

CA (822)

IA (774)

(c)

8

4

0

minus4

minus8840minus4minus8

DF1(IAminusCR+OIminusCol)mtacid

DF2

(IAminus

CR+

OIminus

Col)m

taci

d

Col (867)

IA (850)

CR (720)+ OI (975)

(d)

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)m

taci

d

DF1(CAminusCR+OIminusCol)mtacid

CA (930)

Col (697)

CR (693)+ OI (975)

Field boundaryGroup centroid

Northern sectorCentral sectorSouthern sector

(e)

Figure 7 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile major and trace elements fortectonic discrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 Thesubscript ldquomtacidrdquo in axis names refers to major (m) and trace (t) element ratios for acid (acid) magmas

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 13: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 13

8

4

0

minus4

minus8840minus4minus8

IA (926)+ CA (603)

CR (940)

Col (818)

DF2

(IA+

CAminus

CR+

OIminus

Col)ta

cid

DF1(IA+CAminusCR+OIminusCol)tacid

(a)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

CR+O

I)ta

cid

DF1(IAminusCAminusCR+OI )tacid

CA (855)

IA (862)CR + OI (957)

(b)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CAminus

Col)ta

cid

DF1(IAminusCAminusCol)tacid

CA (710)

Col (848)

IA (831)

(c)

8

4

0

minus4

minus8840minus4minus8

DF2

(IAminus

CR+O

IminusC

ol)ta

cid

DF1(IAminusCR+OIminusCol)tacid

IA (913)

CR + OI (974)

Col (882)

(d)

Field boundaryGroup centroid

Northern sector

Central sectorSouthern sector

8

4

0

minus4

minus8840minus4minus8

DF2

(CAminus

CR+O

IminusC

ol)ta

cid

DF1(CAminusCR+OIminusCol)tacid

Col (789)

CA (745)

CR + OI (931)

(e)

Figure 8 Discriminant-function multidimensional diagrams based on ln-transformed ratios of immobile trace elements for tectonicdiscrimination of acid Sierra de las Cruces magmas The symbols are explained as inset in (a) more details are in Figure 6 The subscriptldquotacidrdquo in axis names refers to trace (t) element ratios for acid (acid) magmas

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 14: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

14 The Scientific World Journal

Table 2 Major element composition ( mm) and CIPW norm for the volcanic rocks from the Sierra de las Cruces rangea

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D D

Major-element measured composition ( mm)SiO2 6088 5464 5344 6429 6591 6073 4834 5481 6321 6671TiO2 0981 0912 1542 0661 0583 0785 1636 1128 0695 0582Al2O3 1672 1980 1551 1598 1524 1610 1691 1899 1689 1585Fe2O3

t 457 543 866 428 400 543 935 667 500 390MnO 0099 0092 0136 0065 0061 0062 0105 0103 0073 0062MgO 612 223 671 152 202 243 659 234 137 168CaO 557 266 743 369 387 444 556 459 430 390Na2O 297 347 398 407 401 401 236 368 440 456K2O 080 080 153 250 252 189 130 084 168 223P2O5 014 022 063 018 018 021 019 026 013 017LOI 060 895 011 270 230 301 759 701 306 024Total 99430 99204 99678 99906 100704 99097 99931 100421 100808 99884

CIPW normQ 18730 23358 mdash 20600 21530 16476 5223 16302 18988 20458Or 4621 5260 9142 15123 15182 11672 8386 5342 10194 13261Ab 25520 32678 34050 35539 34591 35463 21797 33517 38230 38839An 27132 13089 20155 17677 16451 21265 28762 22684 21039 16298C 1230 9925 mdash 0330 mdash mdash 2145 4633 0333 mdashDi mdash mdash 10431 mdash 1568 0264 mdash mdash mdash 1685Hy 18933 11093 18543 7305 7560 10617 26668 12075 7579 6444Ol mdash mdash 0202 mdash mdash mdash mdash mdash mdash mdashMt 1612 2099 3040 1695 1564 2178 3146 2494 1970 1506Il 1892 1928 2961 1295 1128 1557 3392 2306 1356 1113Ap 0329 0568 1476 0431 0424 0507 0480 0649 0308 0396

Mg-v 77719 51684 66871 48905 57634 5466 63940 47752 42473 53718FeOtMgO 0672 2191 1161 2533 1782 201 1277 2565 3283 2089aTAS rock classification following the Le Bas et al [36] scheme A andesite BA basaltic andesite BTA basaltic trachyandesite and D daciteAdjusted composition ( mm) and CIPW norm calculated applying SINCLAS program [14 15] Mg-v = 100 lowastMg+2(Mg+2 + 09 lowast [Fe+2 + Fe+3]) atomicFe+2 and Fe+3 calculated from adjusted FeO and Fe2O3 following Middlemost [34]

Themass-balance approach formagmamixing (model A)used by Nixon [31] was applied to the geochemical data fromSC resulting in N2 comingled lavas) The mixing analysiswas essentially limited to [SiO

2]adj [Fe2O3]adj [FeO]adj

[MnO]adj [MgO]adj [CaO]adj [K2O]adj Co Cr Ni and Vsince all these constituents exhibit a statistically significantlinear coherence in Harker diagrams (119903 = 089ndash098 119899 = 22statistically significant at 99 confidence level Figures 11 and12) and have relatively small concentration ranges in felsic N3end-member (Table 6)

The proportion of the intermediate N1 end-memberin each N2 mixed lava was calculated using (7) and theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members Calculated proportions exhibit inter-nal consistency for majority of the chemical components(Figure 13) For each sample the estimated proportionsdisplay a Gaussian distribution (their normality behavior was

proved by a Schapiro-Wilks test) covering between sim15 and47 in average proportion of the andesitic N1 end-member(Figure 14)

On the other hand the mixing model B [33] wasapplied to lavas of the northern SC sector The coefficients119860 to 119863 ((10a)ndash(10d)) of the hyperbolic mixing equation(9) were established for twelve geochemical ratio-ratio119906119886 ndash V119887 systems (Table 7) (1) 119906119886 [Fe

2O3]adj[K2O]adj

[Fe2O3]adj[Al2O3]adj VBa VU CrTh and CrYb ndash V119887

[SiO2]adj[FeO]adj (2) 119906119886 [MgO]adjEu [MgO]adjHf

[CaO]adjTa [CaO]adjZr GaNi and GaRb ndash V119887[SiO2]adjV) Figures 15 and 16 show some examples of

the ratio-ratio diagrams for the SCN lavas including theaverage composition of the intermediate (119868SC) and felsic(119865SC) end-members (black filled square and circle) and theirhyperbolic mixing models (black solid line) The applicationof model B revealed that the percentages (100lowast119891

1) of the

component N1 in each of the comingled lavas N2 range

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 15: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 15

Table 3 Trace element composition (ppm) for the volcanic rocks from the Sierra de las Cruces range

Sample SC03 SC16 SC22 SC46 SC51 SC52 SC52a SC53 SC58 SC60Sector SCT SCT SCT SCN SCN SCN SCN SCS SCS SCSTAS D A BTA D D D BA A D DLa 141 200 348 234 252 241 162 188 111 171Ce 312 479 778 412 406 382 409 412 218 341Pr 403 728 1010 654 612 671 519 514 299 435Nd 171 297 429 265 247 284 243 216 126 174Sm 39 61 90 54 48 56 55 46 29 36Eu 124 177 267 152 137 166 165 157 108 110Gd 39 62 80 44 43 50 53 46 29 33Tb 06 09 11 07 07 07 08 07 05 05Dy 33 52 57 38 37 40 46 39 26 27Ho 07 10 10 07 07 08 09 08 05 05Er 19 27 29 20 21 22 25 22 15 16Tm 028 037 042 030 030 030 036 032 022 022Yb 17 18 25 20 19 19 22 19 14 14Lu 024 032 040 030 030 029 033 029 023 021

Sc 15 19 11 9 15 37 18 13 8V 102 39 150 88 75 109 216 119 59 51Cr 246 28 260 60 60 150 360 150 170 40Co 18 10 29 10 9 15 40 21 15 9Ni 88 110 30 30 50 110 80 50 20Cu 21 94 30 10 20 20 60 20 20Ga 13 22 20 18 20 21 22 24 21 21Rb 13 3 28 59 61 40 22 6 38 58Sr 380 303 763 521 502 582 445 569 454 368Y 20 32 28 20 21 19 22 21 15 18Zr 136 156 237 156 160 158 162 194 143 149Nb 60 54 170 40 40 30 30 80 130 40Cs 21 28 27 11 12 21Ba 276 412 648 542 571 481 344 660 388 481Hf 34 44 54 42 42 44 47 48 38 42Ta 040 033 110 05 05 030 020 07 03 06Pb 72 11 11 14 11 23 10 9 11Th 18 30 41 67 67 40 30 50 34 82U 06 13 12 26 25 16 11 11 14 31

from 11 to 58 (Figure 14) Each mean and its uncertaintywere estimated from a statistic sample of twelve ratio-ratiosystems displaying a Gaussian behavior (normality provedby a Schapiro-Wilks test)

6 Discussion

61 Tectonic Setting TheMVB(Figure 1) has been consideredas a very tectonically complex zone In the framework ofthe theory of plate tectonics the origin of this volcanicprovince has been explained by means of the subduction ofCocos and Rivera plates under the North American plateHowever several geological geophysical and geochemicalcharacteristics observed in central MVB and the entire

province do not support this simple model Particularly astrong controversy regarding the tectonic regime has beenwidely documented in the literature (eg [29 30 38 46ndash53])

How to interpret the seemingly contradictory resultsobtained in the tectonic discrimination analysis for theSC magmas (Tables 4 and 5) A transitional continentalarc to within-plate setting can be tentatively considered asa consistent model for the central MVB Felsic magmasdisplay geochemical features consistent with an origin fromthe upper continental crust The genesis of the majority ofthe Mexican crustal source rocks has been associated withcontinental arc regime Afterwards a change in the tectonicsetting could be related to a relatively fast variation in theCocos plate subduction angle

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 16: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

16 The Scientific World Journal

Table4Tecton

icdiscrim

inationanalysisof

interm

ediatemagmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[21]

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Major

elements

1+2-3+4-5

100

mdashmdash

3[027plusmn031]

(0009ndash0

767)

7[052plusmn030]

(015

2ndash0848)

1-2-3+4

10mdash

08[060plusmn029]

(010

8ndash0944)

2[025plusmn032]

(0015ndash0

858)

mdash

1-2-5

10mdash

05[044plusmn024]

(0068ndash0

946

)mdash

5[045plusmn023]

(0030ndash0

861)

1-3+4-5

10mdash

0mdash

3[028plusmn032]

(0011ndash

0802)

7[062plusmn032]

(014

7ndash0959)

2-3+4-5

10mdash

mdash4[039plusmn017]

(015

9ndash0778)

1[019plusmn021]

(0010ndash0

650)

5[042plusmn026]

(0032ndash0

756)

Allmajor

elem

entb

ased

diagrams

sum119899 sum

prob

[prob]

50

000

[mdash]

000

[0]

1716552

[379

]

97112

[163]

2420061

[458]

Major

andtracee

lements

1+2-3+4-5

93[034plusmn033]

(0005ndash0

846

)mdash

mdash6[049plusmn035]

(0016ndash0

886)

0

1-2-3+4

9mdash

1[019plusmn020]

(0004ndash0

584)

2[027plusmn020]

(0012ndash0

545)

6[055plusmn038]

(0012ndash0

984)

mdash

1-2-5

9mdash

1[027plusmn017]

(0016ndash0

518)

6[042plusmn016]

(0042ndash0

567)

mdash2[031plusmn030]

(0045ndash0

942)

1-3+4-5

9mdash

3[031plusmn032]

(0005ndash0

816)

mdash6[050plusmn033]

(0019ndash0

855)

0

2-3+4-5

9mdash

mdash5[051plusmn038]

(0002ndash0

921)

4[037plusmn031]

(0012ndash0

855)

0

Allmajor

andtracee

lement

baseddiagrams

sum119899 sum

prob

[prob]

45

33037

[mdash]

58023

[178

]

1312649

[281]

2217163

[381

]27193

[160]

Tracee

lements

1+2-3+4-5

106[047plusmn033]

(0019ndash0

822)

mdashmdash

2[020plusmn032]

(0001ndash0

961)

2[033plusmn027]

(0016ndash0

933)

1-2-3+4

10mdash

07[050plusmn025]

(0026ndash0

938)

3[027plusmn036]

(0001ndash0

958)

mdash

1-2-5

10mdash

1[021plusmn016]

(0009ndash0

467)

7[049plusmn018]

(0050ndash0

676)

mdash2[030plusmn026]

(0090ndash0

942)

1-3+4-5

10mdash

5[041plusmn032]

(0012ndash0

785)

mdash3[021plusmn032]

(0002ndash0

940

)2[039plusmn029]

(0026ndash0

941)

2-3+4-5

10mdash

mdash7[062plusmn035]

(0026ndash0

925)

2[017plusmn031]

(0001ndash0

958)

1[020plusmn024]

(0016ndash0

838)

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 17: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 17

Table4Con

tinued

Figure

namea

Figure

type

aTo

taln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)b

IA[119909plusmn119904]

(119901IA)b

CA[119909plusmn119904]

(119901CA)b

CR+OI[119909plusmn119904]

(119901CR

+OI)b

Col[119909plusmn119904]

(119901Col)b

Alltracee

lementb

ased

diagrams

sum119899 sum

prob

[prob]

50

64715

[mdash]

69459

[189]

21198

56

[397]

108503

[170

]

712178

[244]

a ldquoFigure

namerdquo

correspo

ndstoon

eofthe

threes

etso

fdiagram

sbased

onmajor

elem

ents

immob

ilemajor

andtracee

lements

andim

mob

iletra

ceele

mentsrespectively

whereas

ldquoFiguretyperdquo

givesthe

tecton

icfieldsb

eing

discrim

inated

where

thetecton

icgrou

pnu

mbers

areas

follo

ws1mdash

IA(island

arc)2mdashCA

(con

tinentalarc)3mdash

CR(con

tinentalrift)a

nd4mdash

OI(oceanisland)

together

aswith

in-plateand

5mdashCol

(collision)119909plusmn119904mdashmeanplusmnon

estand

arddeviationof

thep

robabilityestim

ates

fora

llsamples

discrim

inated

inag

iven

tecton

icsetting

these

arer

eportedin[]

b Probabilitye

stimates

ford

ifferenttectonicg

roup

saresummarized

after

then

umbero

fdisc

riminated

samples

asfollo

ws[119901IA+C

A]mdashrangeo

fprobabilityv

aluese

stimated

forIA+CA

combinedsetting

[119901IA]mdashfor

IA[119901CA]mdashforC

A[119901CR

+OI]mdashforC

R+OIand[119901Col]mdashforC

olB

oldfacefon

tsho

wsthe

expected

ormorep

robabletectonics

ettin

gthefi

nalrow

givesa

synthesis

ofresults

assum119899sumprob[prob]where

one

hasthe

follo

wingsum119899mdashnu

mbero

fsam

ples

plottin

gin

allfi

vediagramsw

hich

arer

eportedin

thec

olum

nof

totaln

umbero

fsam

ples

whereas

thes

umof

samples

plottin

gin

agiventecton

icfield

isrepo

rted

inther

espectivetectonicfi

eldcolumnsumprobmdashsum

ofprob

abilityvalues

fora

llsamples

plottin

gin

agiven

tecton

icfield

which

arer

eportedin

ther

espectivetectonicfi

eldcolumn

and[prob]mdashtotalprobability

ofagiventecton

icsetting

expressedin

percentafte

rassigning

theprob

ability

ofIA

+CA

toIA

andCA

usingweigh

ingfactorsFo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nal

diagramssee

[21]

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 18: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

18 The Scientific World Journal

Table5Tecton

icdiscrim

inationanalysisof

felsicm

agmas

from

theS

ierrad

elas

Cruces

usingmultid

imensio

nald

iagram

s[22]a

Figure

name

Figure

type

Totaln

umbero

fsam

ples

Num

bero

fdisc

riminated

samples

Arc

With

in-plate

Collision

IA+CA

[ 119909plusmn119904]

(119901IA+C

A)

IA[ 119909plusmn119904]

(119901IA)

CA[ 119909plusmn119904]

(119901CA)

CR+OI[119909plusmn119904]

(119901CR

+OI)

Col[ 119909plusmn119904]

(119901Col)

Major

elements

1+2-3+4-5

4646

[091plusmn008]

(0700ndash0

987)

mdashmdash

00

1-2-3+4

46mdash

046

[092plusmn003]

(0815ndash0

969)

0mdash

1-2-5

46mdash

046

[091plusmn005]

(0666ndash0

965)

mdash0

1-3+4-5

46mdash

27[050plusmn029]

(0056ndash0

933)

mdash0

19[030plusmn019]

(0031ndash0

804)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(076

7ndash0995)

00

Allmajor

elem

entb

ased

diagrams

sum119899sum

prob

[prob]

230

46392

34

[mdash]

2735511

[172

]

13815257

[741]

000

[00]

19179

38

[87]

Major

andtracee

lements

1+2-3+4-5

4646

[084plusmn033]

(0556ndash0

946

)mdash

mdash0

0

1-2-3+4

46mdash

3[022plusmn014]

(0010ndash0

651)

43[074plusmn013]

(032

4ndash0934)

0mdash

1-2-5

46mdash

3[020plusmn014]

(0007ndash0

671)

43[071plusmn012]

(0296ndash0

919)

mdash0

1-3+4-5

46mdash

33[049plusmn022]

(0025ndash0

907)

mdash0

13[035plusmn016]

(0045ndash0

699)

2-3+4-5

46mdash

mdash46

[087plusmn007]

(0660ndash0

953)

00

Allmajor

andtracee

lement

baseddiagrams

sum119899sum

prob

[prob]

230

4636007

[mdash]

39474

23

[234]

13212766

[630]

000

[00]

13276

58

[136]

Tracee

lements

1+2-3+4-5

4646

[087plusmn008]

(0656ndash0

973)

mdashmdash

00

1-2-3+4

46mdash

1[014plusmn013]

(0003ndash0

560)

45[085plusmn012]

(0440

ndash0990)

0mdash

1-2-5

46mdash

046

[082plusmn006]

(0599ndash0

913)

mdash0

1-3+4-5

46mdash

16[038plusmn030]

(0001ndash0

953)

mdash0

30[057plusmn028]

(0047ndash0

975)

2-3+4-5

46mdash

mdash46

[095plusmn005]

(074

4ndash0996)

00

Alltracee

lementb

ased

diagrams

sum119899sum

prob

[prob]

230

4637178

[mdash]

17316

27

[149]

13714

556

[687]

000

[00]

3034795

[164]

a For

explanationseethe

footno

teof

Figure

6Fo

rdetailsof

principlesequ

ationsand

applicationruleso

fthe

multid

imensio

nald

iagram

ssee

[22]

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 19: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 19

30

25

20

15

10

5

0

Link

age d

istan

ce

SC56

SC55

SC54

SC42

SC41

SC45

JQ2

SC48

SC51

SC46

SC39

SC47

SC40

AJ2

SC52

JQ4

SC43

CH1

SC49

SC52

aSC

49

aSC

49

b

N1

N2

N3

(a)

16

14

12

10

8

6

4

2

0

Link

age d

istan

ce

C2

C1C3C4

SC31

SC30

SC34

PC2

SC36

SC35

SC38

SC35

A

SC32

ST1

SC37

SC37

A

(b)

20

15

10

5

0

Link

age d

istan

ce

ST1

ST2

ST3

SC21

SC28

SC60

SC25

SC8

TO1

SC29

SC57

SC24

SC10

SC27

SC20

SC58

SC59

SC22

SC16

SC3

SC53

SC57

ASC

24

ATO

2SC

26

(c)

Figure 9 Dendrograms showing the results of the cluster analysis (considering Euclidean linkage distances) for the volcanic rocks from the(a) northern (b) central and (c) south + transition Sierra de las Cruces sectors

However the Cocos plate tectonic evolution is an issuethat has not been solved Perez-Campos et al [54] pointedout that the history of volcanism has been used to infer theevolving geometry of subduction According to this modelduring earlier Eocene the volcanic arc in central Mexico wasnearer to the coast and parallel to the trench consistent withsteep subduction In late Eocene (30Ma) there was a hiatusthought to be associated with a flattening process At 20Maafter a 10Ma lull volcanic activity resumed At sim10Ma thewestern part of theCocos plate separated to formRivera plateAt about this time the development and propagation of atear in the subduction plate have been suggested culminatingwith the lower portion of the Cocos plate breaking off Thewest-east propagating volcanism along the MVB reached thelongitude of Mexico City at about 7Ma Additionally PelaezGaviria et al [55] have reported changes during the last35Ma in the plate configuration at the north of the MiddleAmerica Trench (MAT) as a result of (a) the propagationof the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) (b) the collision of the EPR-PCS with the MAT at17Ma and (c) the formation of the Rivera Transform

Actually subhorizontal subduction of Cocos plate hasbeen inferred by Perez-Campos et al [54] Husker andDavis [56] and Pacheco and Singh [57] from seismic dataobtained from a dense network Particularly the dip angleof Cocos slab decreases gradually from sim50∘ to 0∘ along thelabeled Michoacan segment of the Mexican subduction zone[57] However this quasihorizontal subduction and a veryshallow subducted slab (at most at about 40 km in depth) arenot thermodynamically favorable conditions for arc-relatedmagma generation [58]

Thediminution or even cessation of arc-related volcanismobserved in the south-central Andes has been related tosubhorizontal subduction of the Nazca plate [59] The SCintermediate rocks could be a volcanism generated underthis complex condition of the tectonic transition to anextensional regime Additionally Velasco-Tapia and Verma[29] have inferred from inverse and direct immobile traceelement modeling combined 87Sr86Sr and 143Nd144Ndisotopic ratios and the use of multidimensional log-ratiodiscriminant-function-based diagrams that mafic magmasfrom the Sierra de Chichinautzin (the post-SC volcanic event

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 20: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

20 The Scientific World Journal

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

186

Factor 1 574

NaSi

UKBa

HfZrLa

Eu

Y

Sr

Yb

P

TiFe2 Fe3

VCo

MgMn

Ca

(a)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

320

Factor 1 450

P

Fe2

Si

Na

K

ZrUHf

BaLa

YEu

Sr

Mn

TiV Ca

Co MgFe3

(b)

10

05

00

minus05

minus10

100500minus05minus10

Fact

or2

247

Factor 1 428

Fe3

Si

UK

Na

Ba Hf LaSr Zr

Y Yb EuP

V Ca

Ti Fe2Co

MnMg

(c)

Figure 10 Projection of the variables on the factor-plane F2-F1 generated by principal component analysis (PCA) for the Sierra de las Crucessectors (a) northern (b) central and (c) southern + transition

of lt40 ka) were undoubtedly generated by partial melting ofcontinental lithospheric mantle in a within-plate setting

Although the previous studies and this work representsignificant contributions to the understanding of the originof the volcanism in the central MVB more geological-geophysical-geochemical collaborative research is needed toclearly understand the evolution of the tectonic regime in thisarea and the entire MVB

62 Application of Discordancy and Significance Tests Theacid rock data of SC were placed in two groups Gr1 close

to the MAT (consisting of the data from the southern andtransition sectors) and Gr2 farther away from the MAT(data from the northern and central sectors) A statisticalcomparison of these groups was carried out using Fis-her 119865 test and Studentrsquos 119905-test The results are summarizedin Table 8 No statistically significant difference was observedbetween the two groups for any of the elements listed inTable 8 (see true for all elements in both one-sided and two-sided columns of Table 8) The same is true for the Nb-anomaly as well as for ratios of large-ion lithophile elements

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 21: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 21

24

21

18

15

12

09

06

48 52 56 60 64 68 72

[Fe 2

O3] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 097

MIZMPO

ISC

FIZ

FPO

FSC

[Fe2O3]adj = minus0073lowast[SiO2]adj + 598

(a)

48 52 56 60 64 68 72

8

6

4

2

0

[FeO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 097

MIZ

MPO

FPO

ISC

FSC

FIZ

[FeO]adj = minus0267lowast[SiO2]adj + 2054

(b)

48 52 56 60 64 68 72

12

10

8

6

4

2

0

[MgO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 093

MIZ

MPO

ISC

FPOFSC

FIZ

[MgO]adj = minus0437lowast[SiO2]adj + 312

(c)

48 52 56 60 64 68 72

014

012

010

008

006

004

[MnO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 096

MIZ

MPOISC

FIZ

FPO

FSC

MIZ [MnO]adj = minus00038lowast[SiO2]adj + 0318

(d)

48 52 56 60 64 68 72

9

8

7

6

5

4

3

2

[CaO

] adj

(w

t)

[SiO2]adj (wt)

N = 22 R2= 090

MIZMPO

ISC

FIZ

FPO

FSC

N1N2N3

[CaO]adj = minus0238lowast[SiO2]adj + 199

(e)

48 52 56 60 64 68 72

28

24

20

16

12

08

[K2O] a

dj(

wt)

[SiO2]adj (wt)

N = 22 R2= 089

MIZ

MPO

ISC

FIZ

FPO

FSC

N1N2N3

[K2O]adj = 0093lowast[SiO2]adj minus 384

(f)

Figure 11 Major element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector An ordinary least-squares(OLS) regression model is included in each diagram (OLS equation119873 is number of samples 1198772 is Pearson regression coefficient solid lineis OLS model discontinuous lines are 95 confidence regression bands) Abbreviations for end-members in mixingmingling models (a)Sierra de las Cruces 119868SC intermediate and 119865SC felsic (b) Iztaccıhuatl volcano [31]119872IZ mafic and 119865IZ felsic (c) Popocatepetl volcano [32]119872PO mafic and 119865PO felsic

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 22: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

22 The Scientific World Journal

N = 22 R2= 087ISC

FSC

[SiO2]adj (wt)

400

300

200

100

052 56 60 64 68 72

Cr (p

pm)

Cr = minus2087lowast[SiO2]adj + 1461

N1N2N3

(a)

N = 22 R2= 097

MSC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

50

40

30

20

10

0

Co

(ppm

)

N1N2N3

Co = minus189lowast[SiO2]adj + 136

(b)

N = 22 R2= 083

ISC

FSC

[SiO2]adj (wt)52 56 60 64 68 72

120

80

40

0

Ni (

ppm

)

N1N2N3

Ni = minus582lowast[SiO2]adj + 422

(c)

N = 22 R2= 095

[SiO2]adj (wt)52 56 60 64 68 72

240

200

120

160

80

40

V (p

pm)

N1N2N3

V = minus852lowast[SiO2]adj minus 647

(d)

Figure 12 Trace element Harker-type diagrams for volcanic rocks from the Sierra de las Cruces northern sector OLS regression models asthose presented in Figure 11

(LILE) to light rare earth elements (LREE) and LILE to high-field strength elements (HFSE) (see [38] for the importanceof these ratios for subduction processes) Therefore thenegligible contribution from the subducted slab to the SCmagmas can be safely inferred The intermediate rock datawere not so numerous and therefore are not reported herealthough they confirmed the results for acid rocks

63 Magmatic Clusters The statistical analysis of samplesfrom northern SC sector (Figure 9(a) and Table 6) revealedthat group N1 corresponds to the intermediate magmaticenclaves (SC49A SC49B and SC52A) Dacitic lavas with-out disequilibrium features dominate the N3 group beingaccompanied by some mixed lavas with similar chemical

composition These groups are widely spaced as observed inthe dendrogram with a Euclidian linkage distance of 25 Incomparison with N3 felsic magmas the intermediate samplesof N1 group have higher contents of [TiO

2]adj [Fe2O3]adj

[FeO]adj [MnO]adj [MgO]adj [CaO]adj and transition ele-ments (eg Co and V) Cluster N2 seems to be representingthe group including themajority of comingled lavas observedin this sector It is important to note that the northern SCsector displays a relatively high density of magmatic enclavesincluded in felsic magmas also showing the specimens withthe higher size (reaching sim20 cm) in the entire volcanicrange This fact could be related to an increase in fault andfracture density in this direction [24] a favorable conditionfor magma minglingmixing processes

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 23: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 23

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QFe2

QSi

(a)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QMg

(b)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QCo

(c)

10

08

06

04

02

00100806040200

Intermediate end-member proportion

Inte

rmed

iate

end-

mem

ber p

ropo

rtio

n

QSi

QV

(d)

Figure 13 Mean proportions of mafic end-members in the comingled lavas from the Sierra de las Cruces calculated using the mass-balanceequation 119876119894

119860= |119862119894

119872minus 119862119894

119861||119862119894

119860minus 119862119894

119861| [31] for [SiO

2]adj [FeO]adj [MgO]adj Co and V Proportions determined using [SiO

2]adj are plotted

against those obtained using the other constituents The diagonal line indicates perfect agreement between results

The central SC sector did not include dacitic rockswithout disequilibrium features The C1 and C3 clusters(Figure 9(b) and Table 6) represent intermediate magmaticenclaves (SC35A and SC37A) The mixed lavas were moreloosely grouped in two different clusters (C2 and C4) eachof them with relatively lower levels of similarity in relationto a magmatic enclave In comparison with the northernsector the Euclidian linkage distances are relatively tiny C1+ C2 clusters show a separation of sim16 units in relationto C3 + C4 subgroups The samples from southern andtransition SC sectors separated into three sets (Figure 9(c)and Table 6) relating primarily to differences in [SiO

2]adj

[TiO2]adj [Fe2O3]adj and [FeO]adj contents The cluster ST1

includes magmatic enclaves (with a relatively small sizeof sim2ndash4 cm) and lavas with an intermediate composition([SiO2]adj = 54ndash61) This group shows a strong contrast in

relation to the other clusters as reflected by a Euclidean link-age distance of sim20 The majority of the dacitic mixed lavas

were within the cluster ST2 ([SiO2]adj = 63ndash66) whereas

dacitic lavas without disequilibrium features conformed thecluster ST3 ([SiO

2]adj = 65ndash69)

64 Magma Mixing Process Along the entire MVB magmamixingmingling has also been inferred as a significantmechanism in the petrologic evolution of stratovolcanoes(Tequila [60 61]Tancıtaro [62] Iztaccıhuatl [31]Popocatepetl[32 63 64] Telapon [65]) cinder cones and monogeneticfields (Sanganguey [66] Chichinautzin [29]) or calderas(Amealco [67] La Primavera [68])

Particularly seismic and gravity data have revealed thepresence of partial melts at the base of the crust in thecentral MVB [69 70] These magmas might be stored atthe base of the crust transferring heat to shallower crustallevels The partial melting of the upper continental crust(depth at the base sim10 km [71]) generated dacitic magma(eg N3-type cluster in the SC northern sector with an 119865SC

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 24: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

24 The Scientific World Journal

Table 6 Statistical parameters of major (wt) and trace (ppm) element composition for the Sierra de las Cruces magmatic clusters

(a)

ElementNorthern SC sector (119899 = 22)

N1 (119899 = 3) N2 (119899 = 12) N3 (119899 = 7)119909 Min Max s 119909 Min Max s 119909 Min Max s

[SiO2]adj 576 5277 6038 42 651 6325 6719 15 690 6794 6998 08

[TiO2]adj 11 071 179 06 069 059 082 007 0522 0486 0552 0031[Al2O3]adj 165 1538 1846 17 162 1554 1683 05 159 1511 1649 05

[Fe2O3]adj 168 142 217 042 123 108 150 013 089 083 096 005

[FeO]adj 51 405 723 18 308 270 376 033 222 208 239 011[MnO]adj 0103 0095 0115 0011 0070 0059 0082 0008 00574 0053 0060 00026[MgO]adj 67 623 719 05 25 115 417 08 111 0698 1577 030[CaO]adj 634 607 659 026 44 341 518 05 331 308 379 030[Na2O]adj 33 258 366 06 428 409 453 013 437 420 448 011

[K2O]adj 1442 1419 1462 0022 223 184 261 030 251 229 280 019[P2O5]adj 0164 0143 0207 0037 0193 0151 0292 0036 01344 0130 0141 00043La 140 123 162 20 20 136 348 6 198 151 236 32Eu 126 103 165 034 132 104 215 032 107 091 125 012Yb 190 160 220 030 176 126 270 040 152 116 170 022Ba 344 329 358 15 500 414 571 60 530 472 578 50Co 28 22 40 10 123 90 160 22 64 60 70 05Cr 290 230 360 70 90 60 160 34 32 20 40 7Hf 35 29 47 10 396 320 460 040 413 38 47 039Sr 459 445 474 15 520 431 601 60 410 351 566 70Th 287 280 300 012 53 36 67 12 60 34 82 14U 103 090 110 012 210 140 260 044 24 110 300 06V 160 123 216 50 92 75 109 10 60 52 73 7Y 207 18 22 23 19 12 34 6 161 120 220 32Zr 122 100 162 35 146 109 162 15 151 133 184 18

(b)

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

[SiO2]adj 58329 651 6376 6730 19 61338 642 6361 6516 05

[TiO2]adj 1109 071 063 077 008 0791 069 065 078 005[Al2O3]adj 17043 163 1589 1684 05 17400 1646 1599 1710 040

[Fe2O3]adj 1778 124 108 135 015 1424 129 116 157 013

[FeO]adj 5079 311 270 336 036 4068 323 290 391 033[MnO]adj 0118 00783 00760 00810 00025 0071 0078 0070 0088 0007[MgO]adj 3663 22 151 306 08 3918 30 231 361 05[CaO]adj 6764 45 379 523 07 4962 478 397 537 042[Na2O]adj 4290 435 427 449 012 4270 436 416 462 017

[K2O]adj 1497 2163 2136 2180 0023 1592 177 166 195 011[P2O5]adj 0329 021 016 024 005 0165 0157 0141 0165 0009La 268 260 236 277 22 111 143 121 191 23Eu 209 168 145 212 038 110 107 099 134 012Yb 230 187 160 210 025 150 148 130 170 016

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 25: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 25

(b) Continued

ElementCentral SC sector (119899 = 12)

C1 (119899 = 1) C2 (119899 = 3) C3 (119899 = 1) C4 (119899 = 7)119909 Min Max s 119909 Min Max s

Ba 507 550 485 602 60 309 400 364 447 29Co 26 130 100 150 26 17 139 120 170 20Hf 390 373 360 390 015 320 359 340 370 011Sr 813 600 434 683 140 453 469 451 507 21U 170 194 180 202 012 120 138 100 170 022V 150 89 71 103 16 100 88 81 99 7Y 240 197 170 210 23 140 156 130 200 22Zr 138 1377 137 139 12 114 131 123 138 6

(c)

ElementSouthern and transition SC sectors (119899 = 22)

ST1 (119899 = 8) ST2 (119899 = 9) ST3 (119899 = 5)119909 Min Max 119904 119909 Min Max 119904 119909 Min Max 119904

[SiO2]adj 593 5403 6183 25 646 6330 6597 09 674 6492 6941 18

[TiO2]adj 109 084 156 023 072 063 092 009 061 054 066 005[Al2O3]adj 181 1568 2204 21 167 1576 1775 06 1626 1595 1704 044

[Fe2O3]adj 159 111 210 028 128 111 144 012 103 086 117 013

[FeO]adj 45 318 599 08 321 278 361 030 258 214 292 033[MnO]adj 0105 0079 0138 0018 0071 0052 0088 0014 0054 0022 0079 0021[MgO]adj 40 248 678 17 23 141 351 07 16 049 281 10[CaO]adj 56 296 751 14 453 404 511 039 39 323 487 07[Na2O]adj 400 302 439 044 451 428 477 014 434 405 459 026

[K2O]adj 133 078 201 043 184 163 209 015 219 194 235 015[P2O5]adj 027 014 064 016 017 011 025 005 0155 0135 0177 0018La 18 115 348 7 145 111 182 22 190 169 252 35Eu 16 113 267 05 113 104 134 009 124 110 149 016Yb 20 13 27 05 152 101 230 034 174 140 210 030Ba 420 276 660 150 416 369 471 37 469 434 499 25Co 19 10 29 5 129 100 200 33 88 50 120 29Hf 42 34 54 07 368 330 410 024 390 360 420 028Sr 500 303 763 130 474 416 533 40 410 364 495 50U 104 060 132 028 150 080 200 034 20 15 31 06V 110 39 150 33 83 59 96 12 69 51 84 12Y 23 130 322 6 149 110 170 18 22 16 36 8Zr 162 129 237 38 136 125 149 8 148 126 164 14

average composition Figures 9(a) 11 and 12) This relativelylow-temperature magma was stored in the shallow crustSubsequently a small volume of andesitic magma (eg N1-type cluster with an 119868SC average composition Figures 11 and12) probably generated at lower crust (depth 25ndash45 km [71])intruded in the dacitic magma chamber losing heat to thesurroundings and starting to vesiculate prior to effusion

This interaction process between dacitic-andesitic mag-mas occurred continuously in the SC during a period ofsim3Ma Mass-balance analysis (model A) for SC northernsector has showed that from sim11 to 58 of the andesiticend-member was partially mixed with the felsic magma asobserved in Q diagrams (Figure 13) Repeated injections of

this andesiticmagma into the daciticmagma causedminglingevents in the central and the southern SC sectors

Average value and their uncertainty for northern SCcompositional poles (119868SC and 119865SC) have been included inthe major-element Harker diagrams (Figure 11) Also forcomparison the end-member components modeled for themagmamixing process in Popocatepetl (119872PO mafic and119865POfelsic [32]) and Iztaccihuatl (119872IZ mafic and 119865IZ felsic [31])two stratovolcanoes located behind the SC volcanic rangehave been incorporated in these diagrams

Magma mixing evaluation in SC northern sector usingthe alternative approach proposed by Zou [33] (model B)resulted in hyperbolic mixing models for several ratio-ratio

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 26: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

26 The Scientific World Journal

Table 7 119860ndash119863 coefficients of hyperbolic Equations (10a)ndash(10d) for magma mixing between N1 and N3 end-members (northern Sierra de lasCruces sector) generated applying the mass-balance model by Zou [33]

Ratio-ratio system 119910-axis 119909-axis Hyperbolic mixing equation coefficients119860 119861 119862 119863

1 [Fe2O3]adj[K2O]adj [SiO2]adj[FeO]adj 081 minus960 451 6472 [Fe2O3]adj[Al2O3]adj [SiO2]adj[FeO]adj 081 minus445 minus223 6473 VBa [SiO2]adj[FeO]adj minus492 minus1939 6792 75844 VU [SiO2]adj[FeO]adj minus492 minus995 672 75845 CrTh [SiO2]adj[FeO]adj minus481 minus242 148 181686 CrYb [SiO2]adj[FeO]adj minus481 minus353 minus435 181677 [MgO]adjEu [SiO2]adjV minus224 minus96 minus253 3988 [MgO]adjHf [SiO2]adjV minus225 minus451 minus361 3989 [CaO]adjTa [SiO2]adjV 149 minus66 127 24710 [CaO]adjZr [SiO2]adjV 149 minus16840 280 24711 GaNi [SiO2]adjV 2038 2600 minus5518 16712 GaRb [SiO2]adjV 2037 minus8280 1685 167

10

08

06

04

02

0063 64 65 66 67

Mafi

c end

-mem

ber p

ropo

rtio

n

SC49

SC52

SC43

JQ4

CH1

SC47

SC40

AJ2

SC39

SC46

SC48

SC51

[SiO2]adj (wt)

Model A (Nixon 1988 [31])Model B (Zou 2007 [33])

Figure 14 Mean plusmn one standard deviation of intermediate end-member proportions (N1) in the comingled lavas (N2) from theSierra de las Cruces northern sector versus [SiO

2]adj produced by

the incomplete mixing of N1 and N3 end-members (a) red filledcircle and line calculated (119899 = 11) from the mass-balance approachproposed by Nixon [31] and (b) blue filled square and line calculated(119899 = 12) from the mass-balance approach proposed by Zou [33]

systems involvingmajor and trace elements (Table 7)Mixingmodels (Figures 15-16) have yielded end-member composi-tions that are close to the samples of N1 and N3 groupsAccording to 119865 test and 119905-test no significant differences existbetween the sample compositions and the modeled end-member compositions Additionally these models suggestthat the comingled lava compositions can be explained bymixing N1 N3 end-members from 011 089 to 058 042(Figure 14) Clearly these results are comparable to thoseobtained applying the mass-balance model A (Figure 14)

7 Conclusions

(1) Statistical and mass-balance techniques have beensuccessfully used as igneous petrological tools

(2) From multidimensional discrimination diagrams atransitional continental arc to within-plate settingcan be tentatively considered as a consistent tectonicframework for the Sierra de las Cruces volcanic rangeFelsic volcanism was derived from the upper conti-nental crust with a continental arc affinity whereasthe intermediate magmas (spheroidal enclaves) weregenerated in deeper levels of the crust in an exten-sional setting

(3) Discordancy and significance tests have revealed thatevidence does not exist of a geochemical contributionof severalmajor and trace elements from the subduct-ing Cocos plate to the SC magma genesis The defini-tive validity of this hypothesis necessary requiresat least a similar behavior for volatile components(water CO

2 SO2 etc) and also fluid-linked isotopic

species (eg Li B) However this information has notbeen available in this work

(4) A cluster analysis confirms the existence of threelithological groups in the SC (a) dacitic lavas withoutdisequilibrium features (b) intermediate magmaticenclaves and (c) comingled lavas produced by theincomplete mixing between the other lithologicalclusters

(5) Mass-balance models have revealed that the chemicalcomposition of the comingled lavas from the SCnorthern sector can be reproduced with sim11 to 58of the andesitic end-member

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 27: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 27

16

12

08

04

0010 20 30

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

K 2O] a

dj

N1

N3

(a)

06

04

02

0010 20 30

[SiO2]adj [FeO]adj

VB

a

N1

N3

(b)

120

80

40

0

10 20 30

[SiO2]adj [FeO]adj

CrTh

N1

N3

(c)

2

1

000 05 10 15

[MgO

] adjH

f

[SiO2]adj V

N1

N3

(d)

008

006

004

002

00000 05 10 15

N1

N1

N2N3

N3

[CaO

] adjZ

r

[SiO2]adj V

(e)

12

09

06

03

00 05 10 15

N1

N1

N2N3

N3

Ga

Rb

[SiO2]adj V

(f)

Figure 15 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[K2O]adj minus [SiO

2]adj[FeO]adj (b) VBa minus[SiO2]adj[FeO]adj (c) CrTh minus[SiO

2]adj[FeO]adj (d) [MgO]adjHf minus[SiO2]adjV (e)

[CaO]adjZr minus[SiO2]adjV (f) GaRb minus[SiO2]adjV Hyperbolic mixing equations generated following themass-balance approach by Zou [33]are reported in Table 7

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 28: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

28 The Scientific World Journal

N1

N3

[SiO2]adj [FeO]adj

[Fe 2

O3] a

dj[

Al 2

O3] a

dj

012

010

008

006

00410 20 30

(a)

N1

N3

[SiO2]adj [FeO]adj

VU

10 20 30

200

150

100

50

0

(b)

N1

N3

[SiO2]adj [FeO]adj

CrY

b

10 20 30

200

150

100

50

0

(c)

N1

N3[MgO

] adjE

u

[SiO2]adj V00 05 10 15

8

6

4

2

0

(d)

N1

N3

[CaO

] adjT

a

[SiO2]adj V00 05 10 15

40

30

20

10

0

N1N2N3

(e)

N1

N3

Ga

Ni

[SiO2]adj V

N1N2N3

12

09

06

03

0000 05 10 15

(f)

Figure 16 Geochemical ratio-ratio diagrams of the Sierra de las Cruces northern sector that include hyperbolic mixing models (blacksolid line) between average intermediate N1 lavas (black filled circle 119868SC) and average felsic N3 lavas (black filled square 119865SC) (a)[Fe2O3]adj[Al2O3]adj minus [SiO

2]adj[FeO]adj (b) VU minus[SiO

2]adj[FeO]adj (c) CrYb minus[SiO2]adj[FeO]adj (d) [MgO]adjEu minus[SiO2]adjV (e)

[CaO]adjTa minus[SiO2]adjV (f) GaNi minus[SiO2]adjV Hyperbolic mixing equations generated following the mass-balance approach by Zou [33]are reported in Table 7

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 29: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 29

Table 8 Results of the application of significance tests of Fisher 119865 and Student 119905 to the acid rock data from the Sierra de las Cruces at thestrict 99 confidence level (CL) prepared from Excel output of UDASYS [37]

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

(a) Majorelements[SiO2]adj Gr 2 Gr 1 32 11 410 minus 0471 2421 True lt50 2701 True lt50

[TiO2]adj Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50

[Al2O3]adj Gr 2 Gr 1 32 11 410 minus 0687 2421 True 725 2701 True 449

[Fe2O3]adj Gr 2 Gr 1 32 11 410 + 0571 2421 True lt50 2701 True lt50[FeO]adj Gr 2 Gr 1 32 11 410 + 0575 2421 True lt50 2701 True lt50[MnO]adj Gr 2 Gr 1 32 11 120 + 1599 2680 True 932 3053 True 864[MgO]adj Gr 2 Gr 1 32 11 410 + 0612 2421 True lt50 2701 True lt50[CaO]adj Gr 2 Gr 1 32 11 410 + 0602 2421 True lt50 2701 True lt50[Na2O]adj Gr 2 Gr 1 32 11 410 minus 1877 2421 True 966 2701 True 932[K2O]adj Gr 2 Gr 1 32 11 410 + 0917 2421 True 817 2701 True 633[P2O5]adj Gr 2 Gr 1 31 11 400 + 0431 2423 True lt50 2705 True lt50(b) TraceelementsLa Gr 2 Gr 1 32 10 391 + 2661 2425 False 994 2707 True 989Ce Gr 2 Gr 1 32 11 410 + 1915 2421 True 969 2701 True 938Pr Gr 2 Gr 1 32 10 400 + 2507 2423 False 992 2705 True 984Nd Gr 2 Gr 1 31 10 389 + 2117 2426 True 980 2708 True 959Sm Gr 2 Gr 1 31 10 379 + 1454 2429 True 923 2713 True 846Eu Gr 2 Gr 1 30 10 376 + 0909 2430 True 814 2713 True 628Gd Gr 2 Gr 1 31 11 400 + 0096 2423 True lt50 2704 True lt50Tb Gr 2 Gr 1 31 11 400 + 0144 2423 True lt50 2704 True lt50Dy Gr 2 Gr 1 31 11 400 + 0331 2423 True lt50 2704 True lt50Ho Gr 2 Gr 1 31 11 400 + 0503 2423 True lt50 2704 True lt50Er Gr 2 Gr 1 31 11 400 + 0147 2423 True lt50 2704 True lt50Tm Gr 2 Gr 1 31 11 400 + 0243 2423 True lt50 2704 True lt50Yb Gr 2 Gr 1 31 11 400 + 0590 2423 True lt50 2704 True lt50Lu Gr 2 Gr 1 32 11 410 + 0996 2421 True 837 2701 True 675

Ba Gr 2 Gr 1 32 11 410 + 1433 2421 True 920 2701 True 840Be Gr 2 Gr 1 31 9 380 + 1070 2429 True 855 2712 True 709Co Gr 2 Gr 1 32 10 400 + 1330 2423 True 905 2705 True 809Cr Gr 2 Gr 1 30 11 390 + 0511 2423 True lt50 2708 True lt50Cs Gr 2 Gr 1 32 11 410 + 1297 2421 True 899 2701 True 798Cu Gr 2 Gr 1 27 11 360 minus 0180 2434 True lt50 2720 True lt50Ga Gr 2 Gr 1 32 11 410 + 0817 2421 True 785 2701 True 570Hf Gr 2 Gr 1 32 11 410 + 1305 2421 True 900 2701 True 801Nb Gr 2 Gr 1 30 11 390 + 1425 2426 True 919 2708 True 838Ni Gr 2 Gr 1 27 9 340 + 0583 2441 True lt50 2728 True lt50Pb Gr 2 Gr 1 31 11 400 + 1226 2423 True 886 2704 True 773Rb Gr 2 Gr 1 32 11 410 + 0735 2421 True 752 2701 True 505Sb Gr 2 Gr 1 32 11 410 + 0809 2421 True 782 2701 True 565Sc Gr 2 Gr 1 32 11 410 + 1282 2421 True 897 2701 True 793

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 30: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

30 The Scientific World Journal

Table 8 Continued

Element Group A Group B 119899A 119899B Df Sign 119905 calc119905 criteriaOne-sided

H0One-sided

CL 119905One-sided

119905 criteriaTwo-sided

H0Two-sided

CL 119905Two-sided

Sr Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Ta Gr 2 Gr 1 32 10 400 + 1528 2423 True 933 2705 True 866Th Gr 2 Gr 1 32 10 400 + 2216 2423 True 984 2705 True 968Tl Gr 2 Gr 1 32 11 410 minus 0509 2421 True lt50 2701 True lt50U Gr 2 Gr 1 32 10 400 + 1954 2423 True 971 2705 True 942V Gr 2 Gr 1 32 11 410 + 0533 2421 True lt50 2701 True lt50Y Gr 2 Gr 1 31 10 390 minus 0018 2426 True lt50 2708 True lt50Zr Gr 2 Gr 1 32 11 410 + 0478 2421 True lt50 2701 True lt50(c)Geochemicalratiosa

LILE4 LREE3 Gr 2 Gr 1 32 11 410 minus 0787 2421 True 774 2701 True 548LILE4 HFSE4 Gr 2 Gr 1 32 11 410 + 0091 2421 True lt50 2701 True lt50Nb anomaly Gr 2 Gr 1 31 11 400 + 0421 2423 True lt50 2705 True lt50aLILE4 LREE3 = [(K + Rb + Ba + Sr)4][(La + Ce + Nd)3] LILE4 HFSE4 = [(K + Rb + Ba + Sr)4][(Ti + P + Nb + Zr)4] Nb anomaly = NbNblowastpm= [2 times(NbsaNbpm)][(BasaBapm) + (LasaLapm)] the subscript sa stands for the sample and pm for the primitive mantle the superscript lowast refers to the Nbconcentration that would result from a smooth pattern for Ba to La on a primitive mantle-normalized multielement diagram [38]

Acknowledgments

This study was funded by PAICYT-UANL program (Projectno CT786-02) Thanks are due to P Rodrıguez-SaavedraR Soto-Villalobos R Sosa-Flores and I Munoz-Munozfor valuable assistance in the petrographic analysis datamanagement and the editing of some figures The authoris also grateful to S P Verma for the revision of an earlierversion of this paper Finally thanks are also due to the threeanonymous reviewers They while highly appreciating thiswork provided useful suggestions for improvement

References

[1] H R RollinsonUsing of Geochemical Data Evaluation Presen-tation Interpretation Longman Oxford UK 1993

[2] M G Best Igneous and Metamorphic Petrology Wiley-Blackwell London UK 2013

[3] D Perugini andG Poli ldquoThemixing ofmagmas in plutonic andvolcanic environments analogies and differencesrdquo Lithos vol153 pp 261ndash277 2012

[4] J K Russell ldquoMagmamixing processes insights and constraintsfrom thermodynamic calculationsrdquo in Reviews in MineralogyModernMethods of Igneous Petrology Understanding MagmaticProcesses J Nicholls and J K Russell Eds vol 24 pp 153ndash1901990

[5] J D Winter Principles of Igneous and Metamorphic PetrologyPrentice Hall Upper Saddle River NJ USA 2009

[6] G G Kuscu and P A Floyd ldquoMineral compositional and tex-tural evidence for magma mingling in the Saraykent volcanicsrdquoLithos vol 56 no 2-3 pp 207ndash230 2001

[7] J A Cortes J L Palma and M Wilson ldquoDeciphering magmamixing the application of cluster analysis to the mineralchemistry of crystal populationsrdquo Journal of Volcanology andGeothermal Research vol 165 no 3-4 pp 163ndash188 2007

[8] E Savazzi and R A Reyment Aspects of Multivariate StatisticalAnalysis in Geology Elsevier Science New York NY USA 1999

[9] R W Le Maitre ldquoA new approach to the classification ofigneous rocks using the basalt-andesite-dacite-rhyolite suite asan examplerdquo Contributions to Mineralogy and Petrology vol 56no 2 pp 191ndash203 1976

[10] P C Ragland J F Conley W C Parker and J A VanOrman ldquoUse of principal components analysis in petrologyan example from the Martinsville igneous complex VirginiaUSArdquo Mineralogy and Petrology vol 60 no 3-4 pp 165ndash1841997

[11] R De Rosa P Donato and G Ventura ldquoFractal analysis ofmingledmixed magmas an example from the Upper Pollaraeruption (Salina Island southern TyrrhenianSea Italy)rdquo Lithosvol 65 no 3-4 pp 299ndash311 2002

[12] G S Wallace and G W Bergantz ldquoConstraints on mingling ofcrystal populations from off-center zoning profiles a statisticalapproachrdquo American Mineralogist vol 89 no 1 pp 64ndash732004

[13] K S Tefend T A Vogel T P Flood andR Ehrlich ldquoIdentifyingrelationships among silicic magma batches by polytopic vectoranalysis a study of the Topopah Spring and Pah Canyon ash-flow sheets of the southwest Nevada volcanic fieldrdquo Journal ofVolcanology and Geothermal Research vol 167 no 1ndash4 pp 198ndash211 2007

[14] S P Verma I S Torres-Alvarado and Z T Sotelo-RodrıguezldquoSINCLAS standard igneous norm and volcanic rock classifi-cation systemrdquo Computers and Geosciences vol 28 no 5 pp711ndash715 2002

[15] S P Verma I S Torres-Alvarado and F Velasco-Tapia ldquoArevised CIPW normrdquo Schweizerische Mineralogische und Petro-graphische Mitteilungen vol 83 no 2 pp 197ndash216 2003

[16] J C Bailey ldquoGeochemical criteria for a refined tectonic discrim-ination of orogenic andesitesrdquo Chemical Geology vol 32 no 1ndash4 pp 139ndash154 1981

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 31: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

The Scientific World Journal 31

[17] M P Gorton and E S Shandl ldquoFrom continents to islandarcs a geochemical index of tectonic setting for arc-relatedand within-plate felsic to intermediate volcanic rocksrdquo TheCanadian Mineralogist vol 38 no 5 pp 1065ndash1073 2000

[18] J A Pearce N B W Harris and A G Tindle ldquoTrace elementdiscrimination diagrams for the tectonic interpretation ofgranitic rocksrdquo Journal of Petrology vol 25 no 4 pp 956ndash9831984

[19] J Aitchinson The Statistical Analysis of Compositional DataChapman and Hall London UK 1986

[20] S Agrawal ldquoDiscrimination between late-orogenic post-orogenic and anorogenic granites by major element composi-tionsrdquo Journal of Geology vol 103 no 5 pp 529ndash537 1995

[21] S P Verma and S K Verma ldquoFirst fifteen probability-based multi-dimensional tectonic discrimination diagramsfor intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic pro-cessesrdquo Turkish Journal of Earth Sciences 2013

[22] S P Verma K Pandarinath S K Verma and S AgrawalldquoFifteen new discriminant-function-based multi-dimensionalrobust diagrams for acid rocks and their application to Precam-brian rocksrdquo Lithos vol 168-169 pp 113ndash123 2013

[23] F Velasco-Tapia P Rodrıguez-Saavedra A Marquez et alldquoMineralogical and geochemical evidence of magma min-glingmixing in the Sierra de Las Cruces volcanic rangeMexican Volcanic Beltrdquo Journal of Iberian Geology vol 39 pp147ndash166 2013

[24] A Garcıa-Palomo J J Zamorano C Lopez-Miguel et al ldquoElarreglo morfoestructural de la Sierra de Las Cruces Mexicocentralrdquo Revista Mexicana de Ciencias Geologicas vol 25 pp158ndash178 2008

[25] P Rodrıguez-Saavedra Caracterizacion geoquımica de procesosmagmaticos en la parte central del Cinturon VolcanicoMexicanoSierra de Las Cruces [MS thesis] Universidad Autonoma deNuevo Leon Linares Nuevo Leon Mexico 2007

[26] M L Osete V-C Ruiz-Martınez C Caballero C Galindo JUrrutia-Fucugauchi and D H Tarling ldquoSouthward migrationof continental volcanic activity in the Sierra de LasCrucesMex-ico palaeomagnetic and radiometric evidencerdquo Tectonophysicsvol 318 no 1ndash4 pp 201ndash215 2000

[27] F Velasco-Tapia and S P Verma ldquoEstudios geologicos ygeoquımicos en la Sierra de Chichinautzin Cinturon VolcanicoMexicanordquo Revista Mexicana de Ciencias Geologicas vol 18 pp1ndash36 2001

[28] F Velasco-Tapia and S P Verma ldquoFirst partialmelting inversionmodel for a rift-related origin of the Sierra de Chichinautzinvolcanic field Central Mexican Volcanic Beltrdquo InternationalGeology Review vol 43 no 9 pp 788ndash817 2001

[29] F Velasco-Tapia and S P Verma ldquoMagmatic processes atthe volcanic front of Central Mexican Volcanic Belt sierrade Chichinautzin Volcanic Field (Mexico)rdquo Turkish Journal ofEarth Sciences vol 22 pp 32ndash60 2013

[30] S P Verma ldquoAbsence of Cocos plate subduction-related maficvolcanism in southern Mexico a unique case on EarthrdquoGeology vol 30 pp 1095ndash1098 2002

[31] G T Nixon ldquoPetrology of the younger andesites and dacites ofiztaccıhuatl volcano Mexico II chemical stratigraphy magmamixing and the composition of basaltic magma influxrdquo Journalof Petrology vol 29 no 2 pp 265ndash303 1988

[32] J B Witter V C Kress and C G Newhall ldquoVolcanPopocatepetl Mexico Petrology magma mixing and immedi-ate sources of volatiles for the 1994mdashpresent eruptionrdquo Journalof Petrology vol 46 no 11 pp 2337ndash2366 2005

[33] H Zou Quantitative Geochemistry Imperial College PressLondon UK 2007

[34] E A K Middlemost ldquoIron oxidation ratios norms and theclassification of volcanic rocksrdquo Chemical Geology vol 77 no1 pp 19ndash26 1989

[35] M J Le Bas ldquoNephelinitic and basanitic rocksrdquo Journal ofPetrology vol 30 no 5 pp 1299ndash1312 1989

[36] M J Le Bas R W Le Maitre A Streckeisen and B ZanettinldquoA chemical classification of volcanic rocks based on the totalalkali-silica diagramrdquo Journal of Petrology vol 27 no 3 pp 745ndash750 1986

[37] S P Verma R Cruz-Huicochea and L Dıaz-Gonzalez ldquoUni-variate data analysis system deciphering mean compositionsof island and continental arc magmas and influence of theunderlying crustrdquo International Geology Review 2013

[38] S P Verma ldquoContinental rift setting for the central part of theMexican Volcanic Belt a statistical approachrdquo Open GeologyJournal vol 3 pp 8ndash29 2009

[39] S P Verma and S Agrawal ldquoNew tectonic discriminationdiagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implica-tions for petrogenetic processesrdquo Revista Mexicana de CienciasGeologicas vol 28 no 1 pp 24ndash44 2011

[40] S P Verma ldquoApplication of multi-dimensional discriminationdiagrams and probability calculations to acid rocks from Por-tugal and Spainrdquo Comunicacoes Geologicas vol 99 pp 79ndash932012

[41] S P Verma and L Dıaz-Gonzalez ldquoApplication of the dis-cordant outlier detection and separation system in the geo-sciencesrdquo International Geology Review vol 54 pp 593ndash6142012

[42] N Bratchell ldquoCluster analysisrdquo Chemometrics and IntelligentLaboratory Systems vol 6 no 2 pp 105ndash125 1989

[43] J H Ward Jr ldquoHierarchical grouping to optimize an objectivefunctionrdquo Journal of the American Statistical Association vol 58pp 236ndash244 1963

[44] J C Davis Statistics andDataAnalysis JohnWileyamp Sons NewYork NY USA 1986

[45] P R Bevington and D K Robinson Data Reduction and ErrorAnalysis for the Physical Sciences McGrawndashHill Boston MassUSA 2003

[46] D H Shurbet and S E Cebull ldquoTectonic interpretation of theTrans-Mexicano Volcanic Beltrdquo Tectonophysics vol 101 no 1-2pp 159ndash165 1984

[47] A Marquez R Oyarzun M Doblas and S P Verma ldquoAlkalic(ocean-island basalt type) and calc-alkalic volcanism in theMexican volcanic belt a case for plume-relatedmagmatism andpropagating rifting at an active marginrdquo Geology vol 27 no 1pp 51ndash54 1999

[48] S P Verma ldquoSolely extension-related origin of the easternto west-central Mexican Volcanic Belt (Mexico) from partialmelting inversion modelrdquo Current Science vol 86 no 5 pp713ndash719 2004

[49] H C Sheth I S Torres-Alvarado and S P Verma ldquoBeyondsubduction and plumes a unified tectonic-petrogenetic modelfor the Mexican volcanic beltrdquo International Geology Reviewvol 42 no 12 pp 1116ndash1132 2000

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 32: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

32 The Scientific World Journal

[50] L Ferrari ldquoSlab detachment control onmafic volcanic pulse andmantle heterogeneity in central Mexicordquo Geology vol 32 no 1pp 77ndash80 2004

[51] L Ferrari C M Petrone and L Francalanci ldquoGenerationof oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback asthenosphere infiltra-tion and variable flux meltingrdquo Geology vol 29 no 6 pp 507ndash510 2001

[52] D L Blatter G Lang Farmer and I S E Carmichael ldquoANorth-South transect across the central mexican volcanic beltat sim100∘W spatial distribution petrological geochemical andisotopic characteristics of quaternary volcanismrdquo Journal ofPetrology vol 48 no 5 pp 901ndash950 2007

[53] L Mori A Gomez-Tuena P Schaaf S L Goldstein O Perez-Arvizu and G Solıs-Pichardo ldquoLithospheric removal as a trig-ger for flood basalt magmatism in the Trans-Mexican VolcanicBeltrdquo Journal of Petrology vol 50 no 11 pp 2157ndash2186 2009

[54] X Perez-Campos Y Kim A Husker et al ldquoHorizontal subduc-tion and truncation of the Cocos Plate beneath central MexicordquoGeophysical Research Letters vol 35 no 18 Article ID L183032008

[55] J R Pelaez Gaviria C A Mortera Gutierrez W L Bandyand F Michaud ldquoMorphology and magnetic survey of theRivera-Cocos plate boundary of Colima Mexicordquo GeofısicaInternacional vol 52 pp 73ndash85 2013

[56] A Husker and P M Davis ldquoTomography and thermal stateof the cocos plate subduction beneath mexico cityrdquo Journal ofGeophysical Research B vol 114 no 4 Article ID B04306 2009

[57] J F Pacheco and S K Singh ldquoSeismicity and state of stress inGuerrero segment of the Mexican subduction zonerdquo Journal ofGeophysical Research B vol 115 no 1 Article ID B01303 2010

[58] Y Tatsumi and S Eggins Subduction Zone Magmatism JohnWiley amp Sons Ann Arbor Mich USA 1995

[59] JMartinod LHusson P Roperch BGuillaume andN EspurtldquoHorizontal subduction zones convergence velocity and thebuilding of the Andesrdquo Earth and Planetary Science Letters vol299 no 3-4 pp 299ndash309 2010

[60] P J Wallace and I S E Carmichael ldquoPetrology of VolcanTequila Jalisco Mexico disequilibrium phenocryst assem-blages and evolution of the subvolcanicmagma systemrdquoContri-butions to Mineralogy and Petrology vol 117 no 4 pp 345ndash3611994

[61] H M Frey and R A Lange ldquoPhenocryst complexity inandesites and dacites from the Tequila volcanic field Mexicoresolving the effects of degassing vs magma mixingrdquo Contribu-tions to Mineralogy and Petrology vol 162 no 2 pp 415ndash4452011

[62] S EOwnby RA Lange CMHall andHDelgado-GranadosldquoOrigin of andesite in the deep crust and eruption rates inthe Tancıtaro-Nueva Italia region of the Central Mexican ArcrdquoBulletin of the Geological Society of America vol 123 no 1-2 pp274ndash294 2011

[63] P Schaaf J Stimac C Siebe and J L Macıas ldquoGeochemicalevidence for mantle origin and crustal processes in volcanicrocks from Popocatepetl and surrounding monogenetic volca-noes central Mexicordquo Journal of Petrology vol 46 no 6 pp1243ndash1282 2005

[64] G Sosa-Ceballos J E Gardner C Siebe and J L MacıasldquoA caldera-forming eruption sim1410014Cyr BP at Popocatepetlvolcano Mexico insights from eruption dynamics and magmamixingrdquo Journal of Volcanology and Geothermal Research vol213-214 pp 27ndash40 2012

[65] G P Garcıa-Tovar and R G Martınez-Serrano ldquoGeologıay geoquımica de las lavas pleistocenicas del estratovolcanTalepon Sierra Nevada Mexicordquo Revista Mexicana de CienciasGeologicas vol 28 pp 301ndash322 2011

[66] S A Nelson and I S E Carmichael ldquoPleistocene to recentalkalic volcanism in the region of Sanganguey volcano NayaritMexicordquo Contributions to Mineralogy and Petrology vol 85 no4 pp 321ndash335 1984

[67] G Carrasco-Nunez M McCurry M J Branney M Norry andCWilcox ldquoComplexmagmamixingmingling andwithdrawalassociated with an intra-Plinian ignimbrite eruption at a largesilicic caldera volcano Los Humeros of central Mexicordquo Geo-logical Society of America Bulletin vol 124 pp 1793ndash1809 2012

[68] S P Verma U C Arredondo-Parra J Andaverde E Gomez-Arias and F J Guerrero-Martınez ldquoThree-dimensional tem-perature field simulation of a cooling of a magma chamberLa Primavera caldera Jalisco Mexicordquo International GeologyReview vol 54 no 7 pp 833ndash843 2012

[69] J E Fix ldquoThe crust and the upper mantle of central MexicordquoGeophysical Journal of the Royal Astronomical Society vol 43pp 453ndash499 1975

[70] J O Campos-Enrıquez andO Sanchez-Zamora ldquoCrustal struc-ture across southernMexico inferred from gravity datardquo Journalof South American Earth Sciences vol 13 no 6 pp 479ndash4892000

[71] F Ortega-Gutierrez M Elıas-Herrera and M G Davalos-Elizondo ldquoOn the nature and role of the lower crust in thevolcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region southern and central Mexicordquo Revista Mexicana deCiencias Geologicas vol 25 no 2 pp 346ndash364 2008

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Page 33: Research Article Multivariate Analysis, Mass Balance ...downloads.hindawi.com/journals/tswj/2014/793236.pdfquantitative view of igneous petrological mechanisms [ , ]. Particularly,

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GeochemistryHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MeteorologyAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in


Recommended