+ All Categories
Home > Documents > Research Article On Extending the Quasilinearization Method ...iterations required to nd solutions...

Research Article On Extending the Quasilinearization Method ...iterations required to nd solutions...

Date post: 21-Jan-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
10
Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 879195, 9 pages http://dx.doi.org/10.1155/2013/879195 Research Article On Extending the Quasilinearization Method to Higher Order Convergent Hybrid Schemes Using the Spectral Homotopy Analysis Method Sandile S. Motsa and Precious Sibanda School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa Correspondence should be addressed to Precious Sibanda; [email protected] Received 22 January 2013; Revised 22 March 2013; Accepted 5 April 2013 Academic Editor: Saeid Abbasbandy Copyright © 2013 S. S. Motsa and P. Sibanda. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We propose a sequence of highly accurate higher order convergent iterative schemes by embedding the quasilinearization algorithm within a spectral collocation method. e iterative schemes are simple to use and significantly reduce the time and number of iterations required to find solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. e accuracy and convergence properties of the proposed algorithms are tested numerically by solving three Falkner-Skan type boundary layer flow problems and comparing the results to the most accurate results currently available in the literature. We show, for instance, that precision of up to 29 significant figures can be attained with no more than 5 iterations of each algorithm. 1. Introduction e quasilinearization method (QLM) was originally devel- oped by Bellman and Kalaba [1] as a generalization of the Newton-Raphson method to provide lower and upper bound solutions of nonlinear differential equations. e attraction of quasilinearization is that the algorithm is easy to understand and the method generally converges rapidly if the initial guess is close to the true solution. Bellman and Kalaba [1] established that the method con- verges quadratically. However, the original proof of quadratic convergence was subject to restrictive conditions of small step size and convexity or concavity of nonlinear functions, Maleknejad and Najafi [2]. ese conditions were subse- quently relaxed and the method generalized to be applicable to a wider class of problems; see, for instance, papers by Mandelzweig and his coworkers [36] and Lakshmikantham [7, 8]. Parand et al. [9] used the quasilinearization method to solve Volterra’s model for population growth in a closed system. Other uses of the quasilinearization method include application to reaction diffusion equations, Jiang and Vatsala [10], and to Volterra integro-differential equations, Ahmad [11], Pandit [12], and Ramos [13]. An oſten noted disadvantage of quasilinearization is the instability of the method whenever a poor initial guess is chosen, Tuffuor and Labadie [14]. To improve the accuracy and convergence of the quasilinearization method for all initial guesses, we propose in this paper to embed the QLM algorithm within the spectral homotopy analysis method (SHAM) to obtain a sequence of integration schemes with arbitrary higher order convergence. e spectral homotopy analysis method was introduced by Motsa et al. [15, 16] to address some limitations of the standard homotopy analysis method of Liao [17, 18] by, for example, improving the rate of convergence and extending the region of validity of solutions. e SHAM has been used to solve nonlinear equations that arise in the study of fluid flow problems and other areas of science and engineering, Sibanda et al. [19] and Motsa and Sibanda [20]. Abbasbandy [21] and Chun [22] proposed and studied several methods for nonlinear equations with higher order convergence by using the Adomian decomposition technique
Transcript
Page 1: Research Article On Extending the Quasilinearization Method ...iterations required to nd solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. e

Hindawi Publishing CorporationJournal of Applied MathematicsVolume 2013 Article ID 879195 9 pageshttpdxdoiorg1011552013879195

Research ArticleOn Extending the Quasilinearization Method toHigher Order Convergent Hybrid Schemes Using the SpectralHomotopy Analysis Method

Sandile S Motsa and Precious Sibanda

School of Mathematics Statistics amp Computer Science University of KwaZulu-Natal Private Bag X01 ScottsvillePietermaritzburg 3209 South Africa

Correspondence should be addressed to Precious Sibanda sibandapukznacza

Received 22 January 2013 Revised 22 March 2013 Accepted 5 April 2013

Academic Editor Saeid Abbasbandy

Copyright copy 2013 S S Motsa and P Sibanda This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

We propose a sequence of highly accurate higher order convergent iterative schemes by embedding the quasilinearization algorithmwithin a spectral collocation method The iterative schemes are simple to use and significantly reduce the time and number ofiterations required to find solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy The accuracyand convergence properties of the proposed algorithms are tested numerically by solving three Falkner-Skan type boundary layerflow problems and comparing the results to the most accurate results currently available in the literature We show for instancethat precision of up to 29 significant figures can be attained with no more than 5 iterations of each algorithm

1 Introduction

The quasilinearization method (QLM) was originally devel-oped by Bellman and Kalaba [1] as a generalization of theNewton-Raphsonmethod to provide lower and upper boundsolutions of nonlinear differential equationsThe attraction ofquasilinearization is that the algorithm is easy to understandand themethod generally converges rapidly if the initial guessis close to the true solution

Bellman and Kalaba [1] established that the method con-verges quadratically However the original proof of quadraticconvergence was subject to restrictive conditions of smallstep size and convexity or concavity of nonlinear functionsMaleknejad and Najafi [2] These conditions were subse-quently relaxed and the method generalized to be applicableto a wider class of problems see for instance papers byMandelzweig and his coworkers [3ndash6] and Lakshmikantham[7 8] Parand et al [9] used the quasilinearization methodto solve Volterrarsquos model for population growth in a closedsystem Other uses of the quasilinearization method includeapplication to reaction diffusion equations Jiang and Vatsala

[10] and to Volterra integro-differential equations Ahmad[11] Pandit [12] and Ramos [13]

An often noted disadvantage of quasilinearization is theinstability of the method whenever a poor initial guess ischosen Tuffuor and Labadie [14] To improve the accuracyand convergence of the quasilinearization method for allinitial guesses we propose in this paper to embed the QLMalgorithm within the spectral homotopy analysis method(SHAM) to obtain a sequence of integration schemes witharbitrary higher order convergence

The spectral homotopy analysis method was introducedby Motsa et al [15 16] to address some limitations of thestandard homotopy analysis method of Liao [17 18] by forexample improving the rate of convergence and extendingthe region of validity of solutions The SHAM has been usedto solve nonlinear equations that arise in the study of fluidflow problems and other areas of science and engineeringSibanda et al [19] and Motsa and Sibanda [20]

Abbasbandy [21] and Chun [22] proposed and studiedseveral methods for nonlinear equations with higher orderconvergence by using the Adomian decomposition technique

2 Journal of Applied Mathematics

[23ndash25] Higher order Newton-like iteration formulae for thecomputation of the solutions of nonlinear equationswere alsoderived in Chun [26] using the homotopy analysis methodand by [27] using the homotopy perturbationmethod In thispaper we extend the ideas used for the solution of nonlinearequations to obtain higher order iteration schemes for solvingnonlinear boundary value problems We propose an exten-sion of the quasilinearization method by using the spectralhomotopy analysis method within the QLM algorithm toobtain a sequence of highly accurate and convergent higherorder iterative schemes for solving boundary value problemsFor illustration purposes we have presented three QLM-SHAMhybrid iteration schemes that are used to solve the Bla-sius and Falkner-Skan equationsThe results are compared tothemost accurate skin friction coefficients currently availablein the literature by Boyd [28] and Ganapol [29] Ganapol [29]used an algorithm based on a Maclaurin series with Wynn-epsilon convergence acceleration and analytical continuationto obtain highly accurate skin friction coefficients for theBlasius and Falkner-Skan boundary layer flows The schemesderived in this paper however require neither convergenceacceleration nor analytical continuation to remain steady andaccurate for up to 29 digits of precision In addition thepresent schemes are highly efficient with 29-digit precisionachieved with five or fewer iterations as compared with atleast 104 iterations of Ganapolrsquos algorithm

The structure of this paper is as follows Section 2gives a general framework for the derivation of the hybridquasilinearization-SHAMschemes for the solution of nonlin-ear differential equations Section 3 illustrates the applicationof the three schemes derived in this paper to the solution ofBlasius and Falkner-Skan equations In Section 4 the resultsare presented and comparison made with the most accurateskin friction results for Blasius and Falkner-Skan equationscurrently available in the literature

2 Derivation of the Iterative Schemes

In this section we present a framework for the derivationof general QLM-SHAM iterative schemes for solving one-dimensional nonlinear differential equations We consider ageneral 119899-order nonlinear ordinary differential equation ofthe form

119871 [119910 (119909) 119910(1)(119909) 119910

(2)(119909) 119910

(119899)]

+ 119865 [119910 (119909) 119910(1)(119909) 119910

(2)(119909) 119910

(119899)] = 120595 (119909)

(1)

where 120595(119909) is a known function of the independent variable119909 and 119910(119909) is an unknown function The functions 119871 and119865 represent the linear and nonlinear components of thegoverning equation respectively We assume that (1) is to besolved for 119909 isin [119886 119887] subject to the boundary conditions

119861119886 (119910 (119886) 119910(1)(119886) 119910

(119899minus1)(119886)) = 0

119861119887 (119910 (119887) 119910(1)(119887) 119910

(119899minus1)(119887)) = 0

(2)

where 119861119886 and 119861119887 are linear operators

Following [22 27] we assume that the true solution of(1) is 119910120572(119909) and that 119910120574(119909) is an initial approximation thatis sufficiently close to 119910120572(119909) After expanding 119865 using Taylorseries up to first order about 119910120574 119910

1015840120574 119910

(119899)120574 we obtain the

following coupled system

119871 [119910 119910(1) 119910

(119899)] + 119865 [119910120574 119910

(1)

120574 119910(119899)

120574 ]

+

119899

sum

119904=0

(119910(119904)minus 119910(119904)

120574 )120597119865

120597119910(119904)(sdot sdot sdot )

+ 119866 (119910 119910(119899)) = 120595 (119909)

(3)

119866(119910 119910(1) 119910

(119899))

= 119865 (119910 119910(1) 119910

(119899)) minus 119865 [119910120574 119910

(1)

120574 119910(119899)

120574 ]

minus

119899

sum

119904=0

(119910(119904)minus 119910(119904)

120574 )120597119865

120597119910(119904)(sdot sdot sdot )

(4)

where for compactness (sdot sdot sdot ) denotes (119910120574 119910(1)120574 119910

(119899)120574 )

Note that adding (3) and (4) gives (1) Equation (3) can berewritten in the form

L1 [119910 119910(1) 119910

(119899)] +G1 [119910 119910

(1) 119910

(119899)]

= Φ (119910120574 119910(1)

120574 119910(119899)

120574 )

(5)

where

L1 [119910 119910(1) 119910

(119899)]

= 119871 [119910 119910(1) 119910

(119899)] +

119899

sum

119904=0

119910(119904) 120597119865

120597119910(119904)(119910120574 119910

(1)

120574 119910(119899)

120574 )

(6)

Φ(119910120574 119910(1)

120574 119910(119899)

120574 ) =

119899

sum

119904=0

119910(119904)

120574

120597119865

120597119910(119904)(119910120574 119910

(1)

120574 119910(119899)

120574 )

minus 119865 [119910120574 119910(1)

120574 119910(119899)

120574 ] + 120595 (119909)

(7)

G1 [119910 119910(1) 119910

(119899)] = 119866 [119910 119910

(1) 119910

(119899)] (8)

HereG1 is a nonlinear function that is decomposed using thespectral homotopy analysis method [15 16] We define thefollowing zeroth-order deformation equations

(1 minus 119902)L1 [119884 (119909 119902) minus 1199100 (119909)]= 119902ℎ N1 [119884 (119909 119902)]minus Φ (119910120574)

(9)

where 119902 isin [0 1] is an embedding parameter 119884(119909 119902) areunknown functions ℎ is the convergence controlling param-eter and the ldquobarrdquo has been introduced for convenienceto denote the associated function and its 119899 derivatives Forexample

119910 equiv (119910 119910(1) 119910(2) 119910

(119899)) (10)

Journal of Applied Mathematics 3

The nonlinear operatorN1 is defined by

N1 [119884 (119909 119902)] = L1 [119884119903 (119905 119902)] +G1 [119884 (119909 119902)] (11)

By differentiating the zeroth-order equations (11) 119898 timeswith respect to 119902 setting 119902 = 0 and finally dividing theresulting equations by 119898 (see eg [17 30ndash32]) we obtainthe following119898th order deformation equations

L1 [119910119898 (119909) minus (120594119898 + ℎ) 119910119898minus1 (119909)]

= ℎ119877119898minus1 [1199100 1199101 119910119898minus1]

(12)

where119877119898minus1 [1199100 1199101 119910119898minus1]

=

1

(119898 minus 1)

120597119898minus1

G1 [119884 (119909 119902)] minus Φ (119910120574)

120597119902119898minus1

10038161003816100381610038161003816100381610038161003816100381610038161003816119902=0

120594119898 = 0 119898 ⩽ 1

1 119898 gt 1

(13)

After obtaining solutions for (12) the approximate solutionfor 119910(119909) is determined as the series solution

119910 (119909) =

infin

sum

119898=0

119910119898 (119909) (14)

The SHAM solution is said to be of order 119872 if the previousseries is truncated at119898 = 119872 that is if

119910 (119909) =

119872

sum

119898=0

119910119898 (119909) (15)

The initial approximation 1199100 required for solving thesequence of linear higher order deformation equations (12)is chosen as the solution that results from solving the linearpart of (5) subject to the given boundary conditions (2)Thatis we solve

L1 [1199100 119910(1)

0 119910(119899)

0 ] = Φ (119910120574 119910(1)

120574 119910(119899)

120574 ) (16)

We note that with L1 as defined in (6) (16) cannot besolved exactly by means of analytical techniques Numericalmethods such as finite differences finite element methodand spectral method can be used to solve equations of theform (16) Thus if only the initial approximation is used toapproximate the solution 119910(119909) of the governing nonlineardifferential equation (1) that is if 119910(119909) asymp 1199100(119909) the (119903 + 1)thapproximation of (1) is a solution of

L1 [119910119903+1 119910(1)

119903+1 119910(119899)

119903+1] = Φ (119910120574 119910(1)

120574 119910(119899)

120574 ) (17)

which on using the definitions (6) and (7) can be written as

119871 [119910119903+1 119910(1)

119903+1 119910(119899)

119903+1]

+

119899

sum

119904=0

(119910(119904)

119903+1 minus 119910(119904)

119903 )120597119865

120597119910(119904)(119910119903 119910

(1)

119903 119910(119899)

119903 )

+ 119865 [119910119903 119910(1)

119903 119910(119899)

119903 ] = 0

(18)

We note that the iterative scheme (18) is in fact the quasilin-earization method of Bellman and Kalaba [1] For119872 = 1 wehave

119910 (119909) asymp 1199100 (119909) + 1199101 (119909) (19)

where 1199101 is obtained as a solution of

L1 [1199101 119910(1)

1 119910(119899)

1 ]

= ℎL1 [1199100 119910(1)

0 119910(119899)

0 ] + ℎ1198770 [1199100 119910(1)

0 119910(119899)

0 ]

(20)

This produces the iteration scheme

L1 [119910119903+1 119910(119899)

119903+1]

= Φ [119910119903 119910(1)

119903 119910(119899)

119903 ] + ℎL1 [1199100119903+1 119910(119899)

0119903+1]

+ ℎ1198770 [1199100119903+1 119910(119899)

0119903+1]

(21)

where

L1 [119910119903+1 119910(1)

119903+1 119910(119899)

119903+1] = 119871 [119910119903+1 119910(1)

119903+1 119910(119899)

119903+1]

+

119899

sum

119904=0

119910(119904)

119903+1

120597119865

120597119910(119904)(119910119903 119910

(1)

119903 119910(119899)

119903 )

(22)

and 1199100119903+1 is the solution of

119871 [1199100119903+1 119910(1)

0119903+1 119910(119899)

0119903+1] +

119899

sum

119904=0

119910(119904)

0119903+1

120597119865

120597119910(119904)(119910119903 119910

(1)

119903 119910(119899)

119903 )

= Φ (119910119903 119910(1)

119903 119910(119899)

119903 ]

(23)

For119872 = 2 we have

119910 (119909) asymp 1199100 (119909) + 1199101 (119909) + 1199102 (119909) (24)

where 1199102 is obtained as a solution of

L1 [1199102 119910(1)

2 119910(119899)

2 ]

= (1 + ℎ)L1 [1199101 119910(1)

1 119910(119899)

1 ]

+ ℎ1198771 [1199100 119910(1)

0 119910(119899)

0 1199101 119910(1)

1 119910(119899)

1 ]

(25)

This produces the iteration scheme

L [119910119903+1] = Φ [119910119903] + ℎL1 [1199100119903+1] + (1 + ℎ)L1 [1199101119903+1]

+ ℎ 1198770 [1199100119903+1] + 1198771 [1199100119903+1 1199101119903+1]

(26)

where 1199101119903+1 is obtained as the solution of

L1 [1199101119903+1] = ℎL1 [1199100119903+1] + ℎ1198770 [1199100119903+1] (27)

4 Journal of Applied Mathematics

In general for any119872 gt 1 we have119910 (119909) = 1199100 (119909) + 1199101 (119909) + sdot sdot sdot + 119910119872 (119909) (28)

where 119910119872(119909) is obtained as a solution ofL1 [119910119872] = (1 + ℎ)L1 [119910119872minus1] + ℎ119877119872minus1 [1199100 1199101 119910119872minus1]

(29)Thus a general scheme when the SHAM is truncated at order119872 (where119872 ge 1) hereinafter referred to as scheme-119872 canbe obtained asL1 [119910119903+1 119910

(1)

119903+1 119910(119899)

119903+1]

= Φ [119910119903 119910(1)

119903 119910(119899)

119903 ]

+

119872minus1

sum

119901=0

(120594119901+1 + ℎ)L1 [119910119901119903+1 119910(1)

119901119903+1 119910(119899)

119901119903+1]

+ ℎ

119872minus1

sum

119901=0

119877119901 [1199100119903+1 1199101119903+1 119910119901119903+1]

(30)

where each 119910119901119903+1 is obtained as the solution of

L1 [119910119901119903+1]

=

(120594119901 + ℎ)L1 [119910119901minus1119903+1]

+ℎ119877119901minus1 [1199100119903+1 1199101119903+1 119910119901minus1119903+1] when 119901 ge 1

Φ [119910119903 119910(1)119903 119910

(119899)119903 ] when 119901 = 0

(31)

3 Solution of the Falkner-Skan Equation

In this section we demonstrate how the numerical schemesderived in the previous section may be used to solve theFalkner-Skan equation

119891101584010158401015840(120578) + 120573119891 (120578) 119891

10158401015840(120578) + 1205731 (1 minus 119891

1015840(120578)2)

= 0 120578 isin [0infin)

(32)

subject to the boundary conditions

119891 (0) = 1198911015840(0) = 0 lim

120578rarrinfin119891 (120578) = 1 (33)

It is convenient to first define

119865 (119910 1199101015840 11991010158401015840) = 120573119910119910

10158401015840minus 1205731(119910

1015840)

2 Ψ = minus1205731

(34)

so that

Φ(119910 1199101015840 11991010158401015840) = 120573119910119910

10158401015840minus 1205731(119910

1015840)

2minus 1205731

(35)

L1 (119910 1199101015840 11991010158401015840 119910101584010158401015840) = 119910101584010158401015840+ 1198860120574119910

10158401015840+ 1198861120574119910

1015840+ 1198862120574119910 (36)

119877119898minus1 [1199100 1199101 119910119898minus1] = 120573

119898minus1

sum

119895=0

11991011989511991010158401015840

119898minus1minus119895 minus 1205731

119898minus1

sum

119895=0

1199101015840

1198951199101015840

119898minus1minus119895

+ 1205731 (1 minus 120594119898) + 212057311199101015840

1205741199101015840

119898minus1

minus 120573 (11991012057411991010158401015840

119898minus1 + 11991010158401015840

120574 119910119898minus1)

(37)

where

1198860120574 = 120573119910120574 1198861120574 = minus212057311199101015840

120574 1198862120574 = 12057311991010158401015840

120574 (38)

Using (35)ndash(37) the first three iterative schemes correspond-ing to119872 = 0 1 2may now be defined as follows

31 Scheme-0 In this scheme we set

L1 (119910119903+1 1199101015840

119903+1 11991010158401015840

119903+1 119910101584010158401015840

119903+1) = Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) (39)

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (40)

It is worth noting that Scheme-0 is in fact equivalent to theoriginal QLM algorithm see Mandelzweig and Tabakin [5]and Mandelzweig [6]

32 Scheme-1 For this scheme we set

L1 (119910119903+1 1199101015840

119903+1 11991010158401015840

119903+1 119910101584010158401015840

119903+1)

= Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) + ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

(41)

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (42)

where

1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

= 1205731199100119903+111991010158401015840

0119903+1 minus 120573111991010158402

0119903+1 + 1205731 + 212057311199101015840

1199031199101015840

0119903+1

minus 120573 (11991011990311991010158401015840

0119903+1 + 11991010158401015840

119903 1199100119903+1)

(43)

and 1199100119903+1 is the solution of

L1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1) = Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) (44)

subject to

1199100 119903+1 (0) = 1199101015840

0119903+1 (0) = 0 1199101015840

0119903+1 (infin) = 1 (45)

33 Scheme-2 The complexity of the defining equationsincreases with the order of the scheme For Scheme-2 we have

L1 (119910119903+1 1199101015840

119903+1 11991010158401015840

119903+1 119910101584010158401015840

119903+1)

= Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) + ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ (1 + ℎ)L1 (1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1 119910101584010158401015840

1119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

+ ℎ1198771 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1)

(46)

Journal of Applied Mathematics 5

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (47)

where

1198771 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1)

= 120573 (1199100119903+111991010158401015840

1119903+1 + 1199101119903+111991010158401015840

0119903+1) minus 212057311199101015840

0119903+11199101119903+1

+ 212057311199101015840

1199031199101015840

1119903+1 minus 120573 (11991011990311991010158401015840

1119903+1 + 11991010158401015840

119903 1199101119903+1)

(48)

and 1199101119903+1 is the solution of

L1 (1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1 119910101584010158401015840

1119903+1)

= ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

(49)

with

1199101119903+1 (0) = 1199101015840

1119903+1 (0) = 0 1199101015840

1119903+1 (infin) = 0 (50)

Equations (39) (41) and (46) describing the three solutionschemes can be solved numerically using standard meth-ods such as finite difference finite elements and splinecollocation methods In this study we use the Chebyshevspectral collocation method to solve the iteration schemes(see [33ndash36]) To allow for numerical implementation ofthe pseudospectral method the physical region [0infin) istruncated to [0 119871] where 119871 is chosen to be sufficiently largeThe truncated region is further transformed to the space[minus1 1] using the transformation

120585 =

2

119871infin

120578 minus 1 (51)

As with any other numerical approximation method somesort of discretization is introduced in the interval [minus1 1] Wechoose the Gauss-Lobatto collocation points to define thenodes in [minus1 1] as

120585119895 = cos(120587119895

119873

) 119895 = 0 1 119873 (52)

where (119873 + 1) is the number of collocation points Theessence of the Chebyshev spectral collocation method isthe idea of introducing a differentiation matrix 119863 Thedifferentiation matrix maps a vector of the function valuesY = [119910(1205850) 119910(120585119873)]

119879 at the collocation points to a vectorY1015840 defined as

Y1015840 =119873

sum

119896=0

119863119895119896119891 (120585119896) = 119863Y (53)

In general a derivative of order 119901 for the function 119910(120578) canbe expressed as

119910(119901)(120578) = D119901Y (54)

whereD = 2119863119871infin The matrix119863 is of size (119873 + 1) times (119873 + 1)

and its entries are defined as

119863119895119896 =

119888119895

119888119896

(minus1)119895+119896

120591119895 minus 120591119896

119895 = 119896 119895 119896 = 0 1 119873

119863119896119896 = minus

120591119896

2 (1 minus 1205912119896)

119896 = 1 2 119873 minus 1

11986300 =21198732+ 1

6

= minus119863119873119873

(55)

with

119888119896 = 2 119896 = 0119873

1 minus1 le 119896 le 119873 minus 1

(56)

Thus applying the spectral method to the iteration Scheme-0 (39) and the corresponding boundary conditions gives thefollowing matrix system

A119903Y119903+1 = Φ119903 (57)

with boundary conditions

119910119903+1 (120585119873) = 0

119873

sum

119896=0

D119873119896119910119903+1 (120585119896) = 0

119873

sum

119896=0

D0119896119910119903+1 (120585119896) = 1

(58)

where

A119903 = D3 + a0119903D2+ a1119903D + a2119903 (59)

where Φ119903 corresponds to the function Φ(119910 119910 11991010158401015840) when

evaluated at the collocation points and a119894119903 (119894 = 0 1 2) is adiagonal matrix corresponding to the vector of 119886119894119903

The boundary conditions (58) are imposed on the first119873th and (119873 + 1)th rows of 119860119903 and Φ119903 to obtain a system ofthe form

(

(

D00 D01 sdot sdot sdot D0119873minus1 D0119873

Ar

D1198730 D1198731 sdot sdot sdot D119873119873minus1 D1198731198730 0 sdot sdot sdot 0 1

)

)

(

(

(

(

(

(

(

(

(

(

(

119910119903+1 (1205850)

119910119903+1 (1205851)

119910119903+1 (120585119873minus2)

119910119903+1 (120585119873minus1)

119910119903+1 (120585119873)

)

)

)

)

)

)

)

)

)

)

)

=(

(

(

1

Φ119903 (1205851)

Φ119903 (120585119873minus2)

0

0

)

)

)

(60)

6 Journal of Applied Mathematics

Table 1 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Blasius flow (120573 = 12 1205731 = 0)

iter 11989110158401015840(0) Error

SHAM1 0361245275076317576714175486031 00291879388611212777769954240210 0332060294018222201221920675183 00000029578030259022847406131720 0332057337274670714006530763206 00000000010594744150693507012030 0332057336215760109582560249181 00000000000005638106453801871740 0332057336215196653344046405966 00000000000000003544068663439660 0332057336215196298937262729762 000000000000000000000008266775

Scheme-01 036124527510805664031836423508 0029187938892860341381184173072 033293906079206190667160822082 0000881724576865607734428158813 033205878995514977263006366166 0000001453739953473692883599654 033205733621994973222724960736 0000000000004753433290069545355 033205733621519629893723540415 0000000000000000000000055342146 033205733621519629893718006201 000000000000000000000000000000

Scheme-11 033849743020925601396026175681 0006440093994059715023081694802 033205889444389263880627992358 0000001558228696339869099861573 033205733621519633877777093517 0000000000000000039840590873164 033205733621519629893718006201 000000000000000000000000000000

Scheme-21 033398877527020321822942828158 0001931439055006919292248219572 033205733679309573625968418056 0000000000577899437322504118553 033205733621519629893718006201 000000000000000000000000000000

[29] 033205733621519629893718006201 (104 iterations)

Table 2 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Pohlhausen flow (120573 = 0 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 115819390472196206795661617787 0003493366342710538938318616875 115470068226816961126259064868 00000001438889180822442930876810 115470053837716000145607336675 00000000000020915275622241942520 115470053837925152901716901667 00000000000000000000011285443425 115470053837925152901829759222 00000000000000000000000000312130 115470053837925152901829756100 000000000000000000000000000000

Scheme-01 11581939047219620679566161779 000349336634271053893831861692 11547034510528929300844093465 000000291267364140106611178553 11547005383817023293095010719 000000000000245080029120351094 11547005383792515290182994735 000000000000000000000000191255 11547005383792515290182975610 00000000000000000000000000000

Scheme-11 11544901934962778016810840055 000021034488297372733721355552 11547005383778620432865956388 000000000000138948573170192223 11547005383792515290182975610 00000000000000000000000000000

EXACT 11547005383792515290182975610[29] 11547005383792515290182975610 (104 iterations)

Journal of Applied Mathematics 7

Table 3 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Homann flow (120573 = 2 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 1335633919867798255673072885920 002369622598799312019142671522010 1311933330446726656235176983180 000000436343307847924646918751920 1311937690198936556741381203220 000000000368086857874026496748130 1311937693875056506843830283790 000000000000474862863781588691040 1311937693879797836016540925840 000000000000000729946510524486050 1311937693879805123127203300860 000000000000000001235444286984260 1311937693879805135459418974120 000000000000000000002222719658370 1311937693879805135481601938190 0000000000000000000000044232511

Scheme-01 13356339198662404626942038769 002369622598643532721255770622 13121878643609977795027970207 000025017048119264402115085003 13119377351892323008775816635 000000004130942716539593549284 13119376938798066169255039256 000000000000000148144385775495 13119376938798051354816461707 00000000000000000000000000000

Scheme-11 13064680181439000004910779728 000546967573590513499056819792 13119375731135522096139489286 000000012076625292586769724213 13119376938798051354785690801 000000000000000000000307709064 13119376938798051354816461707 00000000000000000000000000000

Scheme-21 13136564701352183697646278650 000171877625541323428298169432 13119376938938730064725895040 000000000001406787099094333333 13119376938798051354816461707 00000000000000000000000000000

[29] 13119376938798051354816461707 (104 iterations)

Starting from a suitable initial guess 1199100(120578) the iterationscheme (60) can be used to iteratively give approximatesolutions of the governing equation (32) for Scheme-0 Theapplication of the pseudospectral method for Scheme-1 andScheme-2 can be done in a similar manner The initialapproximation used in all the algorithms is

1199100 (120578) = 120578 + 119890minus120578+ 1 (61)

The number of collocation points used in all the resultspresented here is119873 = 200 with 119871infin = 20

4 Results and Discussion

In this section we present solutions of the Falkner-Skan equa-tion (32) using the QLM-SHAM hybrid iteration schemesNumerical simulations were conducted for the followingspecial classes of the F-S equations

(i) Blasius flow 120573 = 12 1205731 = 0(ii) Pohlhausen flow 120573 = 0 1205731 = 1(iii) Homann flow 120573 = 2 1205731 = 1

To assess the accuracy and performance of our schemesthe numerical results were compared to the recently reportedresults of Ganapol [29] To date these results are the most

accurate results for the Blasius and Falkner-Skan class ofequations Ganapol [29] reported highly accurate resultsbetween 10 and 30 decimal places using a robust algorithmbased onMaclaurin series with convergence acceleration andanalytical continuation techniques

The comparison between the present findings and theresults in the literature is made for the skin friction which isproportional to 11989110158401015840(0) Table 1 shows a comparison betweenthe computed skin friction values of the Blasius equationusing the three QLM-SHAM iteration schemes The resultsare comparedwith the results reported inGanapol [29] whichare accurate to 29 decimal places We observe that all theiteration schemes rapidly converge to the results of [29] toall 29 decimal places Full convergence is achieved after 6iterations when using Scheme-0 4 iterations when usingScheme-1 and after 3 iterations when using Scheme-2 Itis worth noting that the results of [29] were achieved after104 decimal places Prior to Ganapol [29] the most accurateBlasius skin friction results had been published to 17 decimalplaces by Boyd [28] as 11989110158401015840(0) = 033205733621519630 Thisresult was obtained after 5 iterations using Scheme-0 and3 iterations for both Schemes-1 and -2 The value reportedafter 52 iterations in [29] is 11989110158401015840(0) = 03320573362151965It is clear that the proposed iteration schemes convergesignificantly faster than the method of [29] That the results

8 Journal of Applied Mathematics

of Boyd [28] and Ganapol [29] were obtained only after a fewiterations validates both the higher order convergence and theaccuracy of the present solution methods

Table 2 shows the computed values of 11989110158401015840(0) using

Schemes-0 and -1 for the Pohlhausen flow (120573 = 0 1205731 = 1)For this particular flow the exact value of 11989110158401015840(0) is knownto be 2radic3 The iteration Scheme-0 matches the exact resultafter only 5 iterations and Scheme-1 converges after only 3iterationsThemethod used in Ganapol [29] converged to theexact result after 104 iterations This again demonstrates thesuperior convergence of the present method

Table 3 gives the numerical simulations of the skin fric-tion results for theHomann flowWe observe that the 29-digitresults reported in [29] are achieved in 5 iterations 4 itera-tions and 3 iterations for Scheme-0 -1 and -2 respectivelyThis result indicates that adding an additional level in theQLM-SHAM schemewould further significantly increase theconvergence of the iteration scheme We further note fromTables 1ndash3 that all three schemes converge significantly muchfaster than the spectral homotopy analysismethod on its own

5 Conclusion

In this study we presented three hybrid QLM-SHAM itera-tion schemes for the solution of Falkner-Skan type boundarylayer equations We have shown through numerical exper-imentation that the proposed numerical schemes signifi-cantly enhance the convergence rate of the quasilinearizationmethod By comparison with the most accurate solutionsof the Falkner-Skan equations currently available in theliterature we have shown that the schemes are highly accurateand efficient in terms of the number of iterations requiredto determine the solution to the required level of accuracyThe schemes presented provide robust tools for the efficientsolution of nonlinear equations by offering superior accuracyto many existing methods In addition the approach usedin deriving these schemes provides a suitable framework forextension to higher level schemes by adding more terms ofthe SHAM component of the method

References

[1] R E Bellman and R E Kalaba Quasilinearization and Non-linear Boundary-Value Problems Elsevier New York NY USA1965

[2] K Maleknejad and E Najafi ldquoNumerical solution of nonlinearVolterra integral equations using the idea of quasilinearizationrdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 16 no 1 pp 93ndash100 2011

[3] R Krivec and V B Mandelzweig ldquoNumerical investigation ofquasilinearization method in quantum mechanicsrdquo ComputerPhysics Communications vol 138 pp 69ndash79 2001

[4] V BMandelzweig ldquoQuasilinearizationmethod and its verifica-tion on exactly solvablemodels in quantummechanicsrdquo Journalof Mathematical Physics vol 40 no 12 pp 6266ndash6291 1999

[5] V B Mandelzweig and F Tabakin ldquoQuasilinearizationapproach to nonlinear problems in physics with application tononlinear ODEsrdquo Computer Physics Communications vol 141no 2 pp 268ndash281 2001

[6] V B Mandelzweig ldquoQuasilinearization method nonperturba-tive approach to physical problemsrdquo Physics of Atomic Nucleivol 68 no 7 pp 1227ndash1258 2005

[7] V Lakshmikantham S Leela and S Sivasundaram ldquoExtensionsof the method of quasilinearizationrdquo Journal of OptimizationTheory and Applications vol 87 no 2 pp 379ndash401 1995

[8] V Lakshmikantham ldquoFurther improvement of generalizedquasilinearization methodrdquo Nonlinear Analysis Theory Meth-ods amp Applications vol 27 no 2 pp 223ndash227 1996

[9] K Parand M Ghasemi S Rezazadeh A Peiravi A Ghor-banpour and A Tavakoli Golpaygani ldquoQuasilinearizationapproach for solving Volterrarsquos population modelrdquo Applied andComputational Mathematics vol 9 no 1 pp 95ndash103 2010

[10] J Jiang and A S Vatsala ldquoThe quasilinearization method in thesystem of reaction diffusion equationsrdquo Applied Mathematicsand Computation vol 97 no 2-3 pp 223ndash235 1998

[11] B Ahmad ldquoA quasilinearization method for a class of integro-differential equations with mixed nonlinearitiesrdquo NonlinearAnalysis Real World Applications vol 7 no 5 pp 997ndash10042006

[12] S G Pandit ldquoQuadratically converging iterative schemes fornonlinear Volterra integral equations and an applicationrdquo Jour-nal of Applied Mathematics and Stochastic Analysis vol 10 no2 pp 169ndash178 1997

[13] J I Ramos ldquoPiecewise-quasilinearization techniques for singu-larly perturbed Volterra integro-differential equationsrdquo AppliedMathematics and Computation vol 188 no 2 pp 1221ndash12332007

[14] S Tuffuor and J W Labadie ldquoA nonlinear time variant rainfall-runoff model for augmenting monthly datardquo Water ResourcesResearch vol 10 pp 1161ndash1166 1974

[15] S S Motsa P Sibanda and S Shateyi ldquoA new spectral-homotopy analysismethod for solving a nonlinear second orderBVPrdquo Communications in Nonlinear Science and NumericalSimulation vol 15 no 9 pp 2293ndash2302 2010

[16] S S Motsa P Sibanda F G Awad and S Shateyi ldquoA newspectral-homotopy analysis method for the MHD Jeffery-Hamel problemrdquo Computers amp Fluids vol 39 no 7 pp 1219ndash1225 2010

[17] S J Liao Beyond Perturbation Introduction to HomotopyAnalysis Method Chapman amp HallCRC Press 2003

[18] S Li and S-J Liao ldquoAn analytic approach to solve multiplesolutions of a strongly nonlinear problemrdquoAppliedMathematicsand Computation vol 169 no 2 pp 854ndash865 2005

[19] P Sibanda S Motsa and Z Makukula ldquoA spectral-homotopyanalysis method for heat transfer flow of a third grade fluidbetween parallel platesrdquo International Journal of NumericalMethods for Heat amp Fluid Flow vol 22 no 1 pp 4ndash23 2012

[20] S S Motsa and P Sibanda ldquoOn the solution of MHD flowover a nonlinear stretching sheet by an efficient semi-analyticaltechniquerdquo International Journal for Numerical Methods inFluids vol 68 no 12 pp 1524ndash1537 2012

[21] S Abbasbandy ldquoImproving Newton-Raphson method for non-linear equations bymodifiedAdomiandecompositionmethodrdquoApplied Mathematics and Computation vol 145 no 2-3 pp887ndash893 2003

[22] C Chun ldquoIterative methods improving Newtonrsquos method bythe decomposition methodrdquo Computers amp Mathematics withApplications vol 50 no 10ndash12 pp 1559ndash1568 2005

[23] G Adomian ldquoA review of the decomposition method andsome recent results for nonlinear equationsrdquoMathematical andComputer Modelling vol 13 no 7 pp 17ndash43 1990

Journal of Applied Mathematics 9

[24] G Adomian and R Rach ldquoNoise terms in decompositionsolution seriesrdquo Computers amp Mathematics with Applicationsvol 24 no 11 pp 61ndash64 1992

[25] G Adomian Solving Frontier Problems of Physics The Decom-position Method Kluwer Academic Publishers Group BostonMass USA 1994

[26] C Chun ldquoConstruction of Newton-like iteration methods forsolving nonlinear equationsrdquoNumerische Mathematik vol 104no 3 pp 297ndash315 2006

[27] M A Noor ldquoIterative methods for nonlinear equations usinghomotopy perturbation techniquerdquo Applied Mathematics ampInformation Sciences vol 4 no 2 pp 227ndash235 2010

[28] J P Boyd ldquoThe Blasius function computations before com-puters the value of tricks undergraduate projects and openresearch problemsrdquo SIAM Review vol 50 no 4 pp 791ndash8042008

[29] B D Ganapol ldquoHighly accurate solutions of the BlasiusandFalkner-Skan boundary layer equations via convergence accel-erationrdquo httparxivorgabs10063888

[30] A S Bataineh M S M Noorani and I Hashim ldquoSeriessolution of the multispecies Lotka-Volterra equations by meansof the homotopy analysis methodrdquo Differential Equations andNonlinear Mechanics vol 2008 Article ID 816787 14 pages2008

[31] A S Bataineh M S M Noorani and I Hashim ldquoHomotopyanalysis method for singular IVPs of Emden-Fowler typerdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 14 no 4 pp 1121ndash1131 2009

[32] Y Tan and S Abbasbandy ldquoHomotopy analysis method forquadratic Riccati differential equationrdquo Communications inNonlinear Science and Numerical Simulation vol 13 no 3 pp539ndash546 2008

[33] C Canuto M Y Hussaini A Quarteroni and T A ZangSpectral Methods in Fluid Dynamics Springer Berlin Germany1988

[34] W S Don and A Solomonoff ldquoAccuracy and speed in com-puting the Chebyshev collocation derivativerdquo SIAM Journal onScientific Computing vol 16 no 6 pp 1253ndash1268 1995

[35] L N Trefethen Spectral Methods in MATLAB SIAM 2000[36] J A CWeideman and S C Reddy ldquoAMATLAB differentiation

matrix suiterdquoACMTransactions onMathematical Software vol26 no 4 pp 465ndash519 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article On Extending the Quasilinearization Method ...iterations required to nd solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. e

2 Journal of Applied Mathematics

[23ndash25] Higher order Newton-like iteration formulae for thecomputation of the solutions of nonlinear equationswere alsoderived in Chun [26] using the homotopy analysis methodand by [27] using the homotopy perturbationmethod In thispaper we extend the ideas used for the solution of nonlinearequations to obtain higher order iteration schemes for solvingnonlinear boundary value problems We propose an exten-sion of the quasilinearization method by using the spectralhomotopy analysis method within the QLM algorithm toobtain a sequence of highly accurate and convergent higherorder iterative schemes for solving boundary value problemsFor illustration purposes we have presented three QLM-SHAMhybrid iteration schemes that are used to solve the Bla-sius and Falkner-Skan equationsThe results are compared tothemost accurate skin friction coefficients currently availablein the literature by Boyd [28] and Ganapol [29] Ganapol [29]used an algorithm based on a Maclaurin series with Wynn-epsilon convergence acceleration and analytical continuationto obtain highly accurate skin friction coefficients for theBlasius and Falkner-Skan boundary layer flows The schemesderived in this paper however require neither convergenceacceleration nor analytical continuation to remain steady andaccurate for up to 29 digits of precision In addition thepresent schemes are highly efficient with 29-digit precisionachieved with five or fewer iterations as compared with atleast 104 iterations of Ganapolrsquos algorithm

The structure of this paper is as follows Section 2gives a general framework for the derivation of the hybridquasilinearization-SHAMschemes for the solution of nonlin-ear differential equations Section 3 illustrates the applicationof the three schemes derived in this paper to the solution ofBlasius and Falkner-Skan equations In Section 4 the resultsare presented and comparison made with the most accurateskin friction results for Blasius and Falkner-Skan equationscurrently available in the literature

2 Derivation of the Iterative Schemes

In this section we present a framework for the derivationof general QLM-SHAM iterative schemes for solving one-dimensional nonlinear differential equations We consider ageneral 119899-order nonlinear ordinary differential equation ofthe form

119871 [119910 (119909) 119910(1)(119909) 119910

(2)(119909) 119910

(119899)]

+ 119865 [119910 (119909) 119910(1)(119909) 119910

(2)(119909) 119910

(119899)] = 120595 (119909)

(1)

where 120595(119909) is a known function of the independent variable119909 and 119910(119909) is an unknown function The functions 119871 and119865 represent the linear and nonlinear components of thegoverning equation respectively We assume that (1) is to besolved for 119909 isin [119886 119887] subject to the boundary conditions

119861119886 (119910 (119886) 119910(1)(119886) 119910

(119899minus1)(119886)) = 0

119861119887 (119910 (119887) 119910(1)(119887) 119910

(119899minus1)(119887)) = 0

(2)

where 119861119886 and 119861119887 are linear operators

Following [22 27] we assume that the true solution of(1) is 119910120572(119909) and that 119910120574(119909) is an initial approximation thatis sufficiently close to 119910120572(119909) After expanding 119865 using Taylorseries up to first order about 119910120574 119910

1015840120574 119910

(119899)120574 we obtain the

following coupled system

119871 [119910 119910(1) 119910

(119899)] + 119865 [119910120574 119910

(1)

120574 119910(119899)

120574 ]

+

119899

sum

119904=0

(119910(119904)minus 119910(119904)

120574 )120597119865

120597119910(119904)(sdot sdot sdot )

+ 119866 (119910 119910(119899)) = 120595 (119909)

(3)

119866(119910 119910(1) 119910

(119899))

= 119865 (119910 119910(1) 119910

(119899)) minus 119865 [119910120574 119910

(1)

120574 119910(119899)

120574 ]

minus

119899

sum

119904=0

(119910(119904)minus 119910(119904)

120574 )120597119865

120597119910(119904)(sdot sdot sdot )

(4)

where for compactness (sdot sdot sdot ) denotes (119910120574 119910(1)120574 119910

(119899)120574 )

Note that adding (3) and (4) gives (1) Equation (3) can berewritten in the form

L1 [119910 119910(1) 119910

(119899)] +G1 [119910 119910

(1) 119910

(119899)]

= Φ (119910120574 119910(1)

120574 119910(119899)

120574 )

(5)

where

L1 [119910 119910(1) 119910

(119899)]

= 119871 [119910 119910(1) 119910

(119899)] +

119899

sum

119904=0

119910(119904) 120597119865

120597119910(119904)(119910120574 119910

(1)

120574 119910(119899)

120574 )

(6)

Φ(119910120574 119910(1)

120574 119910(119899)

120574 ) =

119899

sum

119904=0

119910(119904)

120574

120597119865

120597119910(119904)(119910120574 119910

(1)

120574 119910(119899)

120574 )

minus 119865 [119910120574 119910(1)

120574 119910(119899)

120574 ] + 120595 (119909)

(7)

G1 [119910 119910(1) 119910

(119899)] = 119866 [119910 119910

(1) 119910

(119899)] (8)

HereG1 is a nonlinear function that is decomposed using thespectral homotopy analysis method [15 16] We define thefollowing zeroth-order deformation equations

(1 minus 119902)L1 [119884 (119909 119902) minus 1199100 (119909)]= 119902ℎ N1 [119884 (119909 119902)]minus Φ (119910120574)

(9)

where 119902 isin [0 1] is an embedding parameter 119884(119909 119902) areunknown functions ℎ is the convergence controlling param-eter and the ldquobarrdquo has been introduced for convenienceto denote the associated function and its 119899 derivatives Forexample

119910 equiv (119910 119910(1) 119910(2) 119910

(119899)) (10)

Journal of Applied Mathematics 3

The nonlinear operatorN1 is defined by

N1 [119884 (119909 119902)] = L1 [119884119903 (119905 119902)] +G1 [119884 (119909 119902)] (11)

By differentiating the zeroth-order equations (11) 119898 timeswith respect to 119902 setting 119902 = 0 and finally dividing theresulting equations by 119898 (see eg [17 30ndash32]) we obtainthe following119898th order deformation equations

L1 [119910119898 (119909) minus (120594119898 + ℎ) 119910119898minus1 (119909)]

= ℎ119877119898minus1 [1199100 1199101 119910119898minus1]

(12)

where119877119898minus1 [1199100 1199101 119910119898minus1]

=

1

(119898 minus 1)

120597119898minus1

G1 [119884 (119909 119902)] minus Φ (119910120574)

120597119902119898minus1

10038161003816100381610038161003816100381610038161003816100381610038161003816119902=0

120594119898 = 0 119898 ⩽ 1

1 119898 gt 1

(13)

After obtaining solutions for (12) the approximate solutionfor 119910(119909) is determined as the series solution

119910 (119909) =

infin

sum

119898=0

119910119898 (119909) (14)

The SHAM solution is said to be of order 119872 if the previousseries is truncated at119898 = 119872 that is if

119910 (119909) =

119872

sum

119898=0

119910119898 (119909) (15)

The initial approximation 1199100 required for solving thesequence of linear higher order deformation equations (12)is chosen as the solution that results from solving the linearpart of (5) subject to the given boundary conditions (2)Thatis we solve

L1 [1199100 119910(1)

0 119910(119899)

0 ] = Φ (119910120574 119910(1)

120574 119910(119899)

120574 ) (16)

We note that with L1 as defined in (6) (16) cannot besolved exactly by means of analytical techniques Numericalmethods such as finite differences finite element methodand spectral method can be used to solve equations of theform (16) Thus if only the initial approximation is used toapproximate the solution 119910(119909) of the governing nonlineardifferential equation (1) that is if 119910(119909) asymp 1199100(119909) the (119903 + 1)thapproximation of (1) is a solution of

L1 [119910119903+1 119910(1)

119903+1 119910(119899)

119903+1] = Φ (119910120574 119910(1)

120574 119910(119899)

120574 ) (17)

which on using the definitions (6) and (7) can be written as

119871 [119910119903+1 119910(1)

119903+1 119910(119899)

119903+1]

+

119899

sum

119904=0

(119910(119904)

119903+1 minus 119910(119904)

119903 )120597119865

120597119910(119904)(119910119903 119910

(1)

119903 119910(119899)

119903 )

+ 119865 [119910119903 119910(1)

119903 119910(119899)

119903 ] = 0

(18)

We note that the iterative scheme (18) is in fact the quasilin-earization method of Bellman and Kalaba [1] For119872 = 1 wehave

119910 (119909) asymp 1199100 (119909) + 1199101 (119909) (19)

where 1199101 is obtained as a solution of

L1 [1199101 119910(1)

1 119910(119899)

1 ]

= ℎL1 [1199100 119910(1)

0 119910(119899)

0 ] + ℎ1198770 [1199100 119910(1)

0 119910(119899)

0 ]

(20)

This produces the iteration scheme

L1 [119910119903+1 119910(119899)

119903+1]

= Φ [119910119903 119910(1)

119903 119910(119899)

119903 ] + ℎL1 [1199100119903+1 119910(119899)

0119903+1]

+ ℎ1198770 [1199100119903+1 119910(119899)

0119903+1]

(21)

where

L1 [119910119903+1 119910(1)

119903+1 119910(119899)

119903+1] = 119871 [119910119903+1 119910(1)

119903+1 119910(119899)

119903+1]

+

119899

sum

119904=0

119910(119904)

119903+1

120597119865

120597119910(119904)(119910119903 119910

(1)

119903 119910(119899)

119903 )

(22)

and 1199100119903+1 is the solution of

119871 [1199100119903+1 119910(1)

0119903+1 119910(119899)

0119903+1] +

119899

sum

119904=0

119910(119904)

0119903+1

120597119865

120597119910(119904)(119910119903 119910

(1)

119903 119910(119899)

119903 )

= Φ (119910119903 119910(1)

119903 119910(119899)

119903 ]

(23)

For119872 = 2 we have

119910 (119909) asymp 1199100 (119909) + 1199101 (119909) + 1199102 (119909) (24)

where 1199102 is obtained as a solution of

L1 [1199102 119910(1)

2 119910(119899)

2 ]

= (1 + ℎ)L1 [1199101 119910(1)

1 119910(119899)

1 ]

+ ℎ1198771 [1199100 119910(1)

0 119910(119899)

0 1199101 119910(1)

1 119910(119899)

1 ]

(25)

This produces the iteration scheme

L [119910119903+1] = Φ [119910119903] + ℎL1 [1199100119903+1] + (1 + ℎ)L1 [1199101119903+1]

+ ℎ 1198770 [1199100119903+1] + 1198771 [1199100119903+1 1199101119903+1]

(26)

where 1199101119903+1 is obtained as the solution of

L1 [1199101119903+1] = ℎL1 [1199100119903+1] + ℎ1198770 [1199100119903+1] (27)

4 Journal of Applied Mathematics

In general for any119872 gt 1 we have119910 (119909) = 1199100 (119909) + 1199101 (119909) + sdot sdot sdot + 119910119872 (119909) (28)

where 119910119872(119909) is obtained as a solution ofL1 [119910119872] = (1 + ℎ)L1 [119910119872minus1] + ℎ119877119872minus1 [1199100 1199101 119910119872minus1]

(29)Thus a general scheme when the SHAM is truncated at order119872 (where119872 ge 1) hereinafter referred to as scheme-119872 canbe obtained asL1 [119910119903+1 119910

(1)

119903+1 119910(119899)

119903+1]

= Φ [119910119903 119910(1)

119903 119910(119899)

119903 ]

+

119872minus1

sum

119901=0

(120594119901+1 + ℎ)L1 [119910119901119903+1 119910(1)

119901119903+1 119910(119899)

119901119903+1]

+ ℎ

119872minus1

sum

119901=0

119877119901 [1199100119903+1 1199101119903+1 119910119901119903+1]

(30)

where each 119910119901119903+1 is obtained as the solution of

L1 [119910119901119903+1]

=

(120594119901 + ℎ)L1 [119910119901minus1119903+1]

+ℎ119877119901minus1 [1199100119903+1 1199101119903+1 119910119901minus1119903+1] when 119901 ge 1

Φ [119910119903 119910(1)119903 119910

(119899)119903 ] when 119901 = 0

(31)

3 Solution of the Falkner-Skan Equation

In this section we demonstrate how the numerical schemesderived in the previous section may be used to solve theFalkner-Skan equation

119891101584010158401015840(120578) + 120573119891 (120578) 119891

10158401015840(120578) + 1205731 (1 minus 119891

1015840(120578)2)

= 0 120578 isin [0infin)

(32)

subject to the boundary conditions

119891 (0) = 1198911015840(0) = 0 lim

120578rarrinfin119891 (120578) = 1 (33)

It is convenient to first define

119865 (119910 1199101015840 11991010158401015840) = 120573119910119910

10158401015840minus 1205731(119910

1015840)

2 Ψ = minus1205731

(34)

so that

Φ(119910 1199101015840 11991010158401015840) = 120573119910119910

10158401015840minus 1205731(119910

1015840)

2minus 1205731

(35)

L1 (119910 1199101015840 11991010158401015840 119910101584010158401015840) = 119910101584010158401015840+ 1198860120574119910

10158401015840+ 1198861120574119910

1015840+ 1198862120574119910 (36)

119877119898minus1 [1199100 1199101 119910119898minus1] = 120573

119898minus1

sum

119895=0

11991011989511991010158401015840

119898minus1minus119895 minus 1205731

119898minus1

sum

119895=0

1199101015840

1198951199101015840

119898minus1minus119895

+ 1205731 (1 minus 120594119898) + 212057311199101015840

1205741199101015840

119898minus1

minus 120573 (11991012057411991010158401015840

119898minus1 + 11991010158401015840

120574 119910119898minus1)

(37)

where

1198860120574 = 120573119910120574 1198861120574 = minus212057311199101015840

120574 1198862120574 = 12057311991010158401015840

120574 (38)

Using (35)ndash(37) the first three iterative schemes correspond-ing to119872 = 0 1 2may now be defined as follows

31 Scheme-0 In this scheme we set

L1 (119910119903+1 1199101015840

119903+1 11991010158401015840

119903+1 119910101584010158401015840

119903+1) = Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) (39)

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (40)

It is worth noting that Scheme-0 is in fact equivalent to theoriginal QLM algorithm see Mandelzweig and Tabakin [5]and Mandelzweig [6]

32 Scheme-1 For this scheme we set

L1 (119910119903+1 1199101015840

119903+1 11991010158401015840

119903+1 119910101584010158401015840

119903+1)

= Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) + ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

(41)

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (42)

where

1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

= 1205731199100119903+111991010158401015840

0119903+1 minus 120573111991010158402

0119903+1 + 1205731 + 212057311199101015840

1199031199101015840

0119903+1

minus 120573 (11991011990311991010158401015840

0119903+1 + 11991010158401015840

119903 1199100119903+1)

(43)

and 1199100119903+1 is the solution of

L1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1) = Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) (44)

subject to

1199100 119903+1 (0) = 1199101015840

0119903+1 (0) = 0 1199101015840

0119903+1 (infin) = 1 (45)

33 Scheme-2 The complexity of the defining equationsincreases with the order of the scheme For Scheme-2 we have

L1 (119910119903+1 1199101015840

119903+1 11991010158401015840

119903+1 119910101584010158401015840

119903+1)

= Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) + ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ (1 + ℎ)L1 (1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1 119910101584010158401015840

1119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

+ ℎ1198771 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1)

(46)

Journal of Applied Mathematics 5

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (47)

where

1198771 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1)

= 120573 (1199100119903+111991010158401015840

1119903+1 + 1199101119903+111991010158401015840

0119903+1) minus 212057311199101015840

0119903+11199101119903+1

+ 212057311199101015840

1199031199101015840

1119903+1 minus 120573 (11991011990311991010158401015840

1119903+1 + 11991010158401015840

119903 1199101119903+1)

(48)

and 1199101119903+1 is the solution of

L1 (1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1 119910101584010158401015840

1119903+1)

= ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

(49)

with

1199101119903+1 (0) = 1199101015840

1119903+1 (0) = 0 1199101015840

1119903+1 (infin) = 0 (50)

Equations (39) (41) and (46) describing the three solutionschemes can be solved numerically using standard meth-ods such as finite difference finite elements and splinecollocation methods In this study we use the Chebyshevspectral collocation method to solve the iteration schemes(see [33ndash36]) To allow for numerical implementation ofthe pseudospectral method the physical region [0infin) istruncated to [0 119871] where 119871 is chosen to be sufficiently largeThe truncated region is further transformed to the space[minus1 1] using the transformation

120585 =

2

119871infin

120578 minus 1 (51)

As with any other numerical approximation method somesort of discretization is introduced in the interval [minus1 1] Wechoose the Gauss-Lobatto collocation points to define thenodes in [minus1 1] as

120585119895 = cos(120587119895

119873

) 119895 = 0 1 119873 (52)

where (119873 + 1) is the number of collocation points Theessence of the Chebyshev spectral collocation method isthe idea of introducing a differentiation matrix 119863 Thedifferentiation matrix maps a vector of the function valuesY = [119910(1205850) 119910(120585119873)]

119879 at the collocation points to a vectorY1015840 defined as

Y1015840 =119873

sum

119896=0

119863119895119896119891 (120585119896) = 119863Y (53)

In general a derivative of order 119901 for the function 119910(120578) canbe expressed as

119910(119901)(120578) = D119901Y (54)

whereD = 2119863119871infin The matrix119863 is of size (119873 + 1) times (119873 + 1)

and its entries are defined as

119863119895119896 =

119888119895

119888119896

(minus1)119895+119896

120591119895 minus 120591119896

119895 = 119896 119895 119896 = 0 1 119873

119863119896119896 = minus

120591119896

2 (1 minus 1205912119896)

119896 = 1 2 119873 minus 1

11986300 =21198732+ 1

6

= minus119863119873119873

(55)

with

119888119896 = 2 119896 = 0119873

1 minus1 le 119896 le 119873 minus 1

(56)

Thus applying the spectral method to the iteration Scheme-0 (39) and the corresponding boundary conditions gives thefollowing matrix system

A119903Y119903+1 = Φ119903 (57)

with boundary conditions

119910119903+1 (120585119873) = 0

119873

sum

119896=0

D119873119896119910119903+1 (120585119896) = 0

119873

sum

119896=0

D0119896119910119903+1 (120585119896) = 1

(58)

where

A119903 = D3 + a0119903D2+ a1119903D + a2119903 (59)

where Φ119903 corresponds to the function Φ(119910 119910 11991010158401015840) when

evaluated at the collocation points and a119894119903 (119894 = 0 1 2) is adiagonal matrix corresponding to the vector of 119886119894119903

The boundary conditions (58) are imposed on the first119873th and (119873 + 1)th rows of 119860119903 and Φ119903 to obtain a system ofthe form

(

(

D00 D01 sdot sdot sdot D0119873minus1 D0119873

Ar

D1198730 D1198731 sdot sdot sdot D119873119873minus1 D1198731198730 0 sdot sdot sdot 0 1

)

)

(

(

(

(

(

(

(

(

(

(

(

119910119903+1 (1205850)

119910119903+1 (1205851)

119910119903+1 (120585119873minus2)

119910119903+1 (120585119873minus1)

119910119903+1 (120585119873)

)

)

)

)

)

)

)

)

)

)

)

=(

(

(

1

Φ119903 (1205851)

Φ119903 (120585119873minus2)

0

0

)

)

)

(60)

6 Journal of Applied Mathematics

Table 1 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Blasius flow (120573 = 12 1205731 = 0)

iter 11989110158401015840(0) Error

SHAM1 0361245275076317576714175486031 00291879388611212777769954240210 0332060294018222201221920675183 00000029578030259022847406131720 0332057337274670714006530763206 00000000010594744150693507012030 0332057336215760109582560249181 00000000000005638106453801871740 0332057336215196653344046405966 00000000000000003544068663439660 0332057336215196298937262729762 000000000000000000000008266775

Scheme-01 036124527510805664031836423508 0029187938892860341381184173072 033293906079206190667160822082 0000881724576865607734428158813 033205878995514977263006366166 0000001453739953473692883599654 033205733621994973222724960736 0000000000004753433290069545355 033205733621519629893723540415 0000000000000000000000055342146 033205733621519629893718006201 000000000000000000000000000000

Scheme-11 033849743020925601396026175681 0006440093994059715023081694802 033205889444389263880627992358 0000001558228696339869099861573 033205733621519633877777093517 0000000000000000039840590873164 033205733621519629893718006201 000000000000000000000000000000

Scheme-21 033398877527020321822942828158 0001931439055006919292248219572 033205733679309573625968418056 0000000000577899437322504118553 033205733621519629893718006201 000000000000000000000000000000

[29] 033205733621519629893718006201 (104 iterations)

Table 2 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Pohlhausen flow (120573 = 0 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 115819390472196206795661617787 0003493366342710538938318616875 115470068226816961126259064868 00000001438889180822442930876810 115470053837716000145607336675 00000000000020915275622241942520 115470053837925152901716901667 00000000000000000000011285443425 115470053837925152901829759222 00000000000000000000000000312130 115470053837925152901829756100 000000000000000000000000000000

Scheme-01 11581939047219620679566161779 000349336634271053893831861692 11547034510528929300844093465 000000291267364140106611178553 11547005383817023293095010719 000000000000245080029120351094 11547005383792515290182994735 000000000000000000000000191255 11547005383792515290182975610 00000000000000000000000000000

Scheme-11 11544901934962778016810840055 000021034488297372733721355552 11547005383778620432865956388 000000000000138948573170192223 11547005383792515290182975610 00000000000000000000000000000

EXACT 11547005383792515290182975610[29] 11547005383792515290182975610 (104 iterations)

Journal of Applied Mathematics 7

Table 3 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Homann flow (120573 = 2 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 1335633919867798255673072885920 002369622598799312019142671522010 1311933330446726656235176983180 000000436343307847924646918751920 1311937690198936556741381203220 000000000368086857874026496748130 1311937693875056506843830283790 000000000000474862863781588691040 1311937693879797836016540925840 000000000000000729946510524486050 1311937693879805123127203300860 000000000000000001235444286984260 1311937693879805135459418974120 000000000000000000002222719658370 1311937693879805135481601938190 0000000000000000000000044232511

Scheme-01 13356339198662404626942038769 002369622598643532721255770622 13121878643609977795027970207 000025017048119264402115085003 13119377351892323008775816635 000000004130942716539593549284 13119376938798066169255039256 000000000000000148144385775495 13119376938798051354816461707 00000000000000000000000000000

Scheme-11 13064680181439000004910779728 000546967573590513499056819792 13119375731135522096139489286 000000012076625292586769724213 13119376938798051354785690801 000000000000000000000307709064 13119376938798051354816461707 00000000000000000000000000000

Scheme-21 13136564701352183697646278650 000171877625541323428298169432 13119376938938730064725895040 000000000001406787099094333333 13119376938798051354816461707 00000000000000000000000000000

[29] 13119376938798051354816461707 (104 iterations)

Starting from a suitable initial guess 1199100(120578) the iterationscheme (60) can be used to iteratively give approximatesolutions of the governing equation (32) for Scheme-0 Theapplication of the pseudospectral method for Scheme-1 andScheme-2 can be done in a similar manner The initialapproximation used in all the algorithms is

1199100 (120578) = 120578 + 119890minus120578+ 1 (61)

The number of collocation points used in all the resultspresented here is119873 = 200 with 119871infin = 20

4 Results and Discussion

In this section we present solutions of the Falkner-Skan equa-tion (32) using the QLM-SHAM hybrid iteration schemesNumerical simulations were conducted for the followingspecial classes of the F-S equations

(i) Blasius flow 120573 = 12 1205731 = 0(ii) Pohlhausen flow 120573 = 0 1205731 = 1(iii) Homann flow 120573 = 2 1205731 = 1

To assess the accuracy and performance of our schemesthe numerical results were compared to the recently reportedresults of Ganapol [29] To date these results are the most

accurate results for the Blasius and Falkner-Skan class ofequations Ganapol [29] reported highly accurate resultsbetween 10 and 30 decimal places using a robust algorithmbased onMaclaurin series with convergence acceleration andanalytical continuation techniques

The comparison between the present findings and theresults in the literature is made for the skin friction which isproportional to 11989110158401015840(0) Table 1 shows a comparison betweenthe computed skin friction values of the Blasius equationusing the three QLM-SHAM iteration schemes The resultsare comparedwith the results reported inGanapol [29] whichare accurate to 29 decimal places We observe that all theiteration schemes rapidly converge to the results of [29] toall 29 decimal places Full convergence is achieved after 6iterations when using Scheme-0 4 iterations when usingScheme-1 and after 3 iterations when using Scheme-2 Itis worth noting that the results of [29] were achieved after104 decimal places Prior to Ganapol [29] the most accurateBlasius skin friction results had been published to 17 decimalplaces by Boyd [28] as 11989110158401015840(0) = 033205733621519630 Thisresult was obtained after 5 iterations using Scheme-0 and3 iterations for both Schemes-1 and -2 The value reportedafter 52 iterations in [29] is 11989110158401015840(0) = 03320573362151965It is clear that the proposed iteration schemes convergesignificantly faster than the method of [29] That the results

8 Journal of Applied Mathematics

of Boyd [28] and Ganapol [29] were obtained only after a fewiterations validates both the higher order convergence and theaccuracy of the present solution methods

Table 2 shows the computed values of 11989110158401015840(0) using

Schemes-0 and -1 for the Pohlhausen flow (120573 = 0 1205731 = 1)For this particular flow the exact value of 11989110158401015840(0) is knownto be 2radic3 The iteration Scheme-0 matches the exact resultafter only 5 iterations and Scheme-1 converges after only 3iterationsThemethod used in Ganapol [29] converged to theexact result after 104 iterations This again demonstrates thesuperior convergence of the present method

Table 3 gives the numerical simulations of the skin fric-tion results for theHomann flowWe observe that the 29-digitresults reported in [29] are achieved in 5 iterations 4 itera-tions and 3 iterations for Scheme-0 -1 and -2 respectivelyThis result indicates that adding an additional level in theQLM-SHAM schemewould further significantly increase theconvergence of the iteration scheme We further note fromTables 1ndash3 that all three schemes converge significantly muchfaster than the spectral homotopy analysismethod on its own

5 Conclusion

In this study we presented three hybrid QLM-SHAM itera-tion schemes for the solution of Falkner-Skan type boundarylayer equations We have shown through numerical exper-imentation that the proposed numerical schemes signifi-cantly enhance the convergence rate of the quasilinearizationmethod By comparison with the most accurate solutionsof the Falkner-Skan equations currently available in theliterature we have shown that the schemes are highly accurateand efficient in terms of the number of iterations requiredto determine the solution to the required level of accuracyThe schemes presented provide robust tools for the efficientsolution of nonlinear equations by offering superior accuracyto many existing methods In addition the approach usedin deriving these schemes provides a suitable framework forextension to higher level schemes by adding more terms ofthe SHAM component of the method

References

[1] R E Bellman and R E Kalaba Quasilinearization and Non-linear Boundary-Value Problems Elsevier New York NY USA1965

[2] K Maleknejad and E Najafi ldquoNumerical solution of nonlinearVolterra integral equations using the idea of quasilinearizationrdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 16 no 1 pp 93ndash100 2011

[3] R Krivec and V B Mandelzweig ldquoNumerical investigation ofquasilinearization method in quantum mechanicsrdquo ComputerPhysics Communications vol 138 pp 69ndash79 2001

[4] V BMandelzweig ldquoQuasilinearizationmethod and its verifica-tion on exactly solvablemodels in quantummechanicsrdquo Journalof Mathematical Physics vol 40 no 12 pp 6266ndash6291 1999

[5] V B Mandelzweig and F Tabakin ldquoQuasilinearizationapproach to nonlinear problems in physics with application tononlinear ODEsrdquo Computer Physics Communications vol 141no 2 pp 268ndash281 2001

[6] V B Mandelzweig ldquoQuasilinearization method nonperturba-tive approach to physical problemsrdquo Physics of Atomic Nucleivol 68 no 7 pp 1227ndash1258 2005

[7] V Lakshmikantham S Leela and S Sivasundaram ldquoExtensionsof the method of quasilinearizationrdquo Journal of OptimizationTheory and Applications vol 87 no 2 pp 379ndash401 1995

[8] V Lakshmikantham ldquoFurther improvement of generalizedquasilinearization methodrdquo Nonlinear Analysis Theory Meth-ods amp Applications vol 27 no 2 pp 223ndash227 1996

[9] K Parand M Ghasemi S Rezazadeh A Peiravi A Ghor-banpour and A Tavakoli Golpaygani ldquoQuasilinearizationapproach for solving Volterrarsquos population modelrdquo Applied andComputational Mathematics vol 9 no 1 pp 95ndash103 2010

[10] J Jiang and A S Vatsala ldquoThe quasilinearization method in thesystem of reaction diffusion equationsrdquo Applied Mathematicsand Computation vol 97 no 2-3 pp 223ndash235 1998

[11] B Ahmad ldquoA quasilinearization method for a class of integro-differential equations with mixed nonlinearitiesrdquo NonlinearAnalysis Real World Applications vol 7 no 5 pp 997ndash10042006

[12] S G Pandit ldquoQuadratically converging iterative schemes fornonlinear Volterra integral equations and an applicationrdquo Jour-nal of Applied Mathematics and Stochastic Analysis vol 10 no2 pp 169ndash178 1997

[13] J I Ramos ldquoPiecewise-quasilinearization techniques for singu-larly perturbed Volterra integro-differential equationsrdquo AppliedMathematics and Computation vol 188 no 2 pp 1221ndash12332007

[14] S Tuffuor and J W Labadie ldquoA nonlinear time variant rainfall-runoff model for augmenting monthly datardquo Water ResourcesResearch vol 10 pp 1161ndash1166 1974

[15] S S Motsa P Sibanda and S Shateyi ldquoA new spectral-homotopy analysismethod for solving a nonlinear second orderBVPrdquo Communications in Nonlinear Science and NumericalSimulation vol 15 no 9 pp 2293ndash2302 2010

[16] S S Motsa P Sibanda F G Awad and S Shateyi ldquoA newspectral-homotopy analysis method for the MHD Jeffery-Hamel problemrdquo Computers amp Fluids vol 39 no 7 pp 1219ndash1225 2010

[17] S J Liao Beyond Perturbation Introduction to HomotopyAnalysis Method Chapman amp HallCRC Press 2003

[18] S Li and S-J Liao ldquoAn analytic approach to solve multiplesolutions of a strongly nonlinear problemrdquoAppliedMathematicsand Computation vol 169 no 2 pp 854ndash865 2005

[19] P Sibanda S Motsa and Z Makukula ldquoA spectral-homotopyanalysis method for heat transfer flow of a third grade fluidbetween parallel platesrdquo International Journal of NumericalMethods for Heat amp Fluid Flow vol 22 no 1 pp 4ndash23 2012

[20] S S Motsa and P Sibanda ldquoOn the solution of MHD flowover a nonlinear stretching sheet by an efficient semi-analyticaltechniquerdquo International Journal for Numerical Methods inFluids vol 68 no 12 pp 1524ndash1537 2012

[21] S Abbasbandy ldquoImproving Newton-Raphson method for non-linear equations bymodifiedAdomiandecompositionmethodrdquoApplied Mathematics and Computation vol 145 no 2-3 pp887ndash893 2003

[22] C Chun ldquoIterative methods improving Newtonrsquos method bythe decomposition methodrdquo Computers amp Mathematics withApplications vol 50 no 10ndash12 pp 1559ndash1568 2005

[23] G Adomian ldquoA review of the decomposition method andsome recent results for nonlinear equationsrdquoMathematical andComputer Modelling vol 13 no 7 pp 17ndash43 1990

Journal of Applied Mathematics 9

[24] G Adomian and R Rach ldquoNoise terms in decompositionsolution seriesrdquo Computers amp Mathematics with Applicationsvol 24 no 11 pp 61ndash64 1992

[25] G Adomian Solving Frontier Problems of Physics The Decom-position Method Kluwer Academic Publishers Group BostonMass USA 1994

[26] C Chun ldquoConstruction of Newton-like iteration methods forsolving nonlinear equationsrdquoNumerische Mathematik vol 104no 3 pp 297ndash315 2006

[27] M A Noor ldquoIterative methods for nonlinear equations usinghomotopy perturbation techniquerdquo Applied Mathematics ampInformation Sciences vol 4 no 2 pp 227ndash235 2010

[28] J P Boyd ldquoThe Blasius function computations before com-puters the value of tricks undergraduate projects and openresearch problemsrdquo SIAM Review vol 50 no 4 pp 791ndash8042008

[29] B D Ganapol ldquoHighly accurate solutions of the BlasiusandFalkner-Skan boundary layer equations via convergence accel-erationrdquo httparxivorgabs10063888

[30] A S Bataineh M S M Noorani and I Hashim ldquoSeriessolution of the multispecies Lotka-Volterra equations by meansof the homotopy analysis methodrdquo Differential Equations andNonlinear Mechanics vol 2008 Article ID 816787 14 pages2008

[31] A S Bataineh M S M Noorani and I Hashim ldquoHomotopyanalysis method for singular IVPs of Emden-Fowler typerdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 14 no 4 pp 1121ndash1131 2009

[32] Y Tan and S Abbasbandy ldquoHomotopy analysis method forquadratic Riccati differential equationrdquo Communications inNonlinear Science and Numerical Simulation vol 13 no 3 pp539ndash546 2008

[33] C Canuto M Y Hussaini A Quarteroni and T A ZangSpectral Methods in Fluid Dynamics Springer Berlin Germany1988

[34] W S Don and A Solomonoff ldquoAccuracy and speed in com-puting the Chebyshev collocation derivativerdquo SIAM Journal onScientific Computing vol 16 no 6 pp 1253ndash1268 1995

[35] L N Trefethen Spectral Methods in MATLAB SIAM 2000[36] J A CWeideman and S C Reddy ldquoAMATLAB differentiation

matrix suiterdquoACMTransactions onMathematical Software vol26 no 4 pp 465ndash519 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article On Extending the Quasilinearization Method ...iterations required to nd solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. e

Journal of Applied Mathematics 3

The nonlinear operatorN1 is defined by

N1 [119884 (119909 119902)] = L1 [119884119903 (119905 119902)] +G1 [119884 (119909 119902)] (11)

By differentiating the zeroth-order equations (11) 119898 timeswith respect to 119902 setting 119902 = 0 and finally dividing theresulting equations by 119898 (see eg [17 30ndash32]) we obtainthe following119898th order deformation equations

L1 [119910119898 (119909) minus (120594119898 + ℎ) 119910119898minus1 (119909)]

= ℎ119877119898minus1 [1199100 1199101 119910119898minus1]

(12)

where119877119898minus1 [1199100 1199101 119910119898minus1]

=

1

(119898 minus 1)

120597119898minus1

G1 [119884 (119909 119902)] minus Φ (119910120574)

120597119902119898minus1

10038161003816100381610038161003816100381610038161003816100381610038161003816119902=0

120594119898 = 0 119898 ⩽ 1

1 119898 gt 1

(13)

After obtaining solutions for (12) the approximate solutionfor 119910(119909) is determined as the series solution

119910 (119909) =

infin

sum

119898=0

119910119898 (119909) (14)

The SHAM solution is said to be of order 119872 if the previousseries is truncated at119898 = 119872 that is if

119910 (119909) =

119872

sum

119898=0

119910119898 (119909) (15)

The initial approximation 1199100 required for solving thesequence of linear higher order deformation equations (12)is chosen as the solution that results from solving the linearpart of (5) subject to the given boundary conditions (2)Thatis we solve

L1 [1199100 119910(1)

0 119910(119899)

0 ] = Φ (119910120574 119910(1)

120574 119910(119899)

120574 ) (16)

We note that with L1 as defined in (6) (16) cannot besolved exactly by means of analytical techniques Numericalmethods such as finite differences finite element methodand spectral method can be used to solve equations of theform (16) Thus if only the initial approximation is used toapproximate the solution 119910(119909) of the governing nonlineardifferential equation (1) that is if 119910(119909) asymp 1199100(119909) the (119903 + 1)thapproximation of (1) is a solution of

L1 [119910119903+1 119910(1)

119903+1 119910(119899)

119903+1] = Φ (119910120574 119910(1)

120574 119910(119899)

120574 ) (17)

which on using the definitions (6) and (7) can be written as

119871 [119910119903+1 119910(1)

119903+1 119910(119899)

119903+1]

+

119899

sum

119904=0

(119910(119904)

119903+1 minus 119910(119904)

119903 )120597119865

120597119910(119904)(119910119903 119910

(1)

119903 119910(119899)

119903 )

+ 119865 [119910119903 119910(1)

119903 119910(119899)

119903 ] = 0

(18)

We note that the iterative scheme (18) is in fact the quasilin-earization method of Bellman and Kalaba [1] For119872 = 1 wehave

119910 (119909) asymp 1199100 (119909) + 1199101 (119909) (19)

where 1199101 is obtained as a solution of

L1 [1199101 119910(1)

1 119910(119899)

1 ]

= ℎL1 [1199100 119910(1)

0 119910(119899)

0 ] + ℎ1198770 [1199100 119910(1)

0 119910(119899)

0 ]

(20)

This produces the iteration scheme

L1 [119910119903+1 119910(119899)

119903+1]

= Φ [119910119903 119910(1)

119903 119910(119899)

119903 ] + ℎL1 [1199100119903+1 119910(119899)

0119903+1]

+ ℎ1198770 [1199100119903+1 119910(119899)

0119903+1]

(21)

where

L1 [119910119903+1 119910(1)

119903+1 119910(119899)

119903+1] = 119871 [119910119903+1 119910(1)

119903+1 119910(119899)

119903+1]

+

119899

sum

119904=0

119910(119904)

119903+1

120597119865

120597119910(119904)(119910119903 119910

(1)

119903 119910(119899)

119903 )

(22)

and 1199100119903+1 is the solution of

119871 [1199100119903+1 119910(1)

0119903+1 119910(119899)

0119903+1] +

119899

sum

119904=0

119910(119904)

0119903+1

120597119865

120597119910(119904)(119910119903 119910

(1)

119903 119910(119899)

119903 )

= Φ (119910119903 119910(1)

119903 119910(119899)

119903 ]

(23)

For119872 = 2 we have

119910 (119909) asymp 1199100 (119909) + 1199101 (119909) + 1199102 (119909) (24)

where 1199102 is obtained as a solution of

L1 [1199102 119910(1)

2 119910(119899)

2 ]

= (1 + ℎ)L1 [1199101 119910(1)

1 119910(119899)

1 ]

+ ℎ1198771 [1199100 119910(1)

0 119910(119899)

0 1199101 119910(1)

1 119910(119899)

1 ]

(25)

This produces the iteration scheme

L [119910119903+1] = Φ [119910119903] + ℎL1 [1199100119903+1] + (1 + ℎ)L1 [1199101119903+1]

+ ℎ 1198770 [1199100119903+1] + 1198771 [1199100119903+1 1199101119903+1]

(26)

where 1199101119903+1 is obtained as the solution of

L1 [1199101119903+1] = ℎL1 [1199100119903+1] + ℎ1198770 [1199100119903+1] (27)

4 Journal of Applied Mathematics

In general for any119872 gt 1 we have119910 (119909) = 1199100 (119909) + 1199101 (119909) + sdot sdot sdot + 119910119872 (119909) (28)

where 119910119872(119909) is obtained as a solution ofL1 [119910119872] = (1 + ℎ)L1 [119910119872minus1] + ℎ119877119872minus1 [1199100 1199101 119910119872minus1]

(29)Thus a general scheme when the SHAM is truncated at order119872 (where119872 ge 1) hereinafter referred to as scheme-119872 canbe obtained asL1 [119910119903+1 119910

(1)

119903+1 119910(119899)

119903+1]

= Φ [119910119903 119910(1)

119903 119910(119899)

119903 ]

+

119872minus1

sum

119901=0

(120594119901+1 + ℎ)L1 [119910119901119903+1 119910(1)

119901119903+1 119910(119899)

119901119903+1]

+ ℎ

119872minus1

sum

119901=0

119877119901 [1199100119903+1 1199101119903+1 119910119901119903+1]

(30)

where each 119910119901119903+1 is obtained as the solution of

L1 [119910119901119903+1]

=

(120594119901 + ℎ)L1 [119910119901minus1119903+1]

+ℎ119877119901minus1 [1199100119903+1 1199101119903+1 119910119901minus1119903+1] when 119901 ge 1

Φ [119910119903 119910(1)119903 119910

(119899)119903 ] when 119901 = 0

(31)

3 Solution of the Falkner-Skan Equation

In this section we demonstrate how the numerical schemesderived in the previous section may be used to solve theFalkner-Skan equation

119891101584010158401015840(120578) + 120573119891 (120578) 119891

10158401015840(120578) + 1205731 (1 minus 119891

1015840(120578)2)

= 0 120578 isin [0infin)

(32)

subject to the boundary conditions

119891 (0) = 1198911015840(0) = 0 lim

120578rarrinfin119891 (120578) = 1 (33)

It is convenient to first define

119865 (119910 1199101015840 11991010158401015840) = 120573119910119910

10158401015840minus 1205731(119910

1015840)

2 Ψ = minus1205731

(34)

so that

Φ(119910 1199101015840 11991010158401015840) = 120573119910119910

10158401015840minus 1205731(119910

1015840)

2minus 1205731

(35)

L1 (119910 1199101015840 11991010158401015840 119910101584010158401015840) = 119910101584010158401015840+ 1198860120574119910

10158401015840+ 1198861120574119910

1015840+ 1198862120574119910 (36)

119877119898minus1 [1199100 1199101 119910119898minus1] = 120573

119898minus1

sum

119895=0

11991011989511991010158401015840

119898minus1minus119895 minus 1205731

119898minus1

sum

119895=0

1199101015840

1198951199101015840

119898minus1minus119895

+ 1205731 (1 minus 120594119898) + 212057311199101015840

1205741199101015840

119898minus1

minus 120573 (11991012057411991010158401015840

119898minus1 + 11991010158401015840

120574 119910119898minus1)

(37)

where

1198860120574 = 120573119910120574 1198861120574 = minus212057311199101015840

120574 1198862120574 = 12057311991010158401015840

120574 (38)

Using (35)ndash(37) the first three iterative schemes correspond-ing to119872 = 0 1 2may now be defined as follows

31 Scheme-0 In this scheme we set

L1 (119910119903+1 1199101015840

119903+1 11991010158401015840

119903+1 119910101584010158401015840

119903+1) = Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) (39)

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (40)

It is worth noting that Scheme-0 is in fact equivalent to theoriginal QLM algorithm see Mandelzweig and Tabakin [5]and Mandelzweig [6]

32 Scheme-1 For this scheme we set

L1 (119910119903+1 1199101015840

119903+1 11991010158401015840

119903+1 119910101584010158401015840

119903+1)

= Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) + ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

(41)

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (42)

where

1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

= 1205731199100119903+111991010158401015840

0119903+1 minus 120573111991010158402

0119903+1 + 1205731 + 212057311199101015840

1199031199101015840

0119903+1

minus 120573 (11991011990311991010158401015840

0119903+1 + 11991010158401015840

119903 1199100119903+1)

(43)

and 1199100119903+1 is the solution of

L1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1) = Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) (44)

subject to

1199100 119903+1 (0) = 1199101015840

0119903+1 (0) = 0 1199101015840

0119903+1 (infin) = 1 (45)

33 Scheme-2 The complexity of the defining equationsincreases with the order of the scheme For Scheme-2 we have

L1 (119910119903+1 1199101015840

119903+1 11991010158401015840

119903+1 119910101584010158401015840

119903+1)

= Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) + ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ (1 + ℎ)L1 (1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1 119910101584010158401015840

1119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

+ ℎ1198771 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1)

(46)

Journal of Applied Mathematics 5

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (47)

where

1198771 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1)

= 120573 (1199100119903+111991010158401015840

1119903+1 + 1199101119903+111991010158401015840

0119903+1) minus 212057311199101015840

0119903+11199101119903+1

+ 212057311199101015840

1199031199101015840

1119903+1 minus 120573 (11991011990311991010158401015840

1119903+1 + 11991010158401015840

119903 1199101119903+1)

(48)

and 1199101119903+1 is the solution of

L1 (1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1 119910101584010158401015840

1119903+1)

= ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

(49)

with

1199101119903+1 (0) = 1199101015840

1119903+1 (0) = 0 1199101015840

1119903+1 (infin) = 0 (50)

Equations (39) (41) and (46) describing the three solutionschemes can be solved numerically using standard meth-ods such as finite difference finite elements and splinecollocation methods In this study we use the Chebyshevspectral collocation method to solve the iteration schemes(see [33ndash36]) To allow for numerical implementation ofthe pseudospectral method the physical region [0infin) istruncated to [0 119871] where 119871 is chosen to be sufficiently largeThe truncated region is further transformed to the space[minus1 1] using the transformation

120585 =

2

119871infin

120578 minus 1 (51)

As with any other numerical approximation method somesort of discretization is introduced in the interval [minus1 1] Wechoose the Gauss-Lobatto collocation points to define thenodes in [minus1 1] as

120585119895 = cos(120587119895

119873

) 119895 = 0 1 119873 (52)

where (119873 + 1) is the number of collocation points Theessence of the Chebyshev spectral collocation method isthe idea of introducing a differentiation matrix 119863 Thedifferentiation matrix maps a vector of the function valuesY = [119910(1205850) 119910(120585119873)]

119879 at the collocation points to a vectorY1015840 defined as

Y1015840 =119873

sum

119896=0

119863119895119896119891 (120585119896) = 119863Y (53)

In general a derivative of order 119901 for the function 119910(120578) canbe expressed as

119910(119901)(120578) = D119901Y (54)

whereD = 2119863119871infin The matrix119863 is of size (119873 + 1) times (119873 + 1)

and its entries are defined as

119863119895119896 =

119888119895

119888119896

(minus1)119895+119896

120591119895 minus 120591119896

119895 = 119896 119895 119896 = 0 1 119873

119863119896119896 = minus

120591119896

2 (1 minus 1205912119896)

119896 = 1 2 119873 minus 1

11986300 =21198732+ 1

6

= minus119863119873119873

(55)

with

119888119896 = 2 119896 = 0119873

1 minus1 le 119896 le 119873 minus 1

(56)

Thus applying the spectral method to the iteration Scheme-0 (39) and the corresponding boundary conditions gives thefollowing matrix system

A119903Y119903+1 = Φ119903 (57)

with boundary conditions

119910119903+1 (120585119873) = 0

119873

sum

119896=0

D119873119896119910119903+1 (120585119896) = 0

119873

sum

119896=0

D0119896119910119903+1 (120585119896) = 1

(58)

where

A119903 = D3 + a0119903D2+ a1119903D + a2119903 (59)

where Φ119903 corresponds to the function Φ(119910 119910 11991010158401015840) when

evaluated at the collocation points and a119894119903 (119894 = 0 1 2) is adiagonal matrix corresponding to the vector of 119886119894119903

The boundary conditions (58) are imposed on the first119873th and (119873 + 1)th rows of 119860119903 and Φ119903 to obtain a system ofthe form

(

(

D00 D01 sdot sdot sdot D0119873minus1 D0119873

Ar

D1198730 D1198731 sdot sdot sdot D119873119873minus1 D1198731198730 0 sdot sdot sdot 0 1

)

)

(

(

(

(

(

(

(

(

(

(

(

119910119903+1 (1205850)

119910119903+1 (1205851)

119910119903+1 (120585119873minus2)

119910119903+1 (120585119873minus1)

119910119903+1 (120585119873)

)

)

)

)

)

)

)

)

)

)

)

=(

(

(

1

Φ119903 (1205851)

Φ119903 (120585119873minus2)

0

0

)

)

)

(60)

6 Journal of Applied Mathematics

Table 1 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Blasius flow (120573 = 12 1205731 = 0)

iter 11989110158401015840(0) Error

SHAM1 0361245275076317576714175486031 00291879388611212777769954240210 0332060294018222201221920675183 00000029578030259022847406131720 0332057337274670714006530763206 00000000010594744150693507012030 0332057336215760109582560249181 00000000000005638106453801871740 0332057336215196653344046405966 00000000000000003544068663439660 0332057336215196298937262729762 000000000000000000000008266775

Scheme-01 036124527510805664031836423508 0029187938892860341381184173072 033293906079206190667160822082 0000881724576865607734428158813 033205878995514977263006366166 0000001453739953473692883599654 033205733621994973222724960736 0000000000004753433290069545355 033205733621519629893723540415 0000000000000000000000055342146 033205733621519629893718006201 000000000000000000000000000000

Scheme-11 033849743020925601396026175681 0006440093994059715023081694802 033205889444389263880627992358 0000001558228696339869099861573 033205733621519633877777093517 0000000000000000039840590873164 033205733621519629893718006201 000000000000000000000000000000

Scheme-21 033398877527020321822942828158 0001931439055006919292248219572 033205733679309573625968418056 0000000000577899437322504118553 033205733621519629893718006201 000000000000000000000000000000

[29] 033205733621519629893718006201 (104 iterations)

Table 2 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Pohlhausen flow (120573 = 0 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 115819390472196206795661617787 0003493366342710538938318616875 115470068226816961126259064868 00000001438889180822442930876810 115470053837716000145607336675 00000000000020915275622241942520 115470053837925152901716901667 00000000000000000000011285443425 115470053837925152901829759222 00000000000000000000000000312130 115470053837925152901829756100 000000000000000000000000000000

Scheme-01 11581939047219620679566161779 000349336634271053893831861692 11547034510528929300844093465 000000291267364140106611178553 11547005383817023293095010719 000000000000245080029120351094 11547005383792515290182994735 000000000000000000000000191255 11547005383792515290182975610 00000000000000000000000000000

Scheme-11 11544901934962778016810840055 000021034488297372733721355552 11547005383778620432865956388 000000000000138948573170192223 11547005383792515290182975610 00000000000000000000000000000

EXACT 11547005383792515290182975610[29] 11547005383792515290182975610 (104 iterations)

Journal of Applied Mathematics 7

Table 3 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Homann flow (120573 = 2 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 1335633919867798255673072885920 002369622598799312019142671522010 1311933330446726656235176983180 000000436343307847924646918751920 1311937690198936556741381203220 000000000368086857874026496748130 1311937693875056506843830283790 000000000000474862863781588691040 1311937693879797836016540925840 000000000000000729946510524486050 1311937693879805123127203300860 000000000000000001235444286984260 1311937693879805135459418974120 000000000000000000002222719658370 1311937693879805135481601938190 0000000000000000000000044232511

Scheme-01 13356339198662404626942038769 002369622598643532721255770622 13121878643609977795027970207 000025017048119264402115085003 13119377351892323008775816635 000000004130942716539593549284 13119376938798066169255039256 000000000000000148144385775495 13119376938798051354816461707 00000000000000000000000000000

Scheme-11 13064680181439000004910779728 000546967573590513499056819792 13119375731135522096139489286 000000012076625292586769724213 13119376938798051354785690801 000000000000000000000307709064 13119376938798051354816461707 00000000000000000000000000000

Scheme-21 13136564701352183697646278650 000171877625541323428298169432 13119376938938730064725895040 000000000001406787099094333333 13119376938798051354816461707 00000000000000000000000000000

[29] 13119376938798051354816461707 (104 iterations)

Starting from a suitable initial guess 1199100(120578) the iterationscheme (60) can be used to iteratively give approximatesolutions of the governing equation (32) for Scheme-0 Theapplication of the pseudospectral method for Scheme-1 andScheme-2 can be done in a similar manner The initialapproximation used in all the algorithms is

1199100 (120578) = 120578 + 119890minus120578+ 1 (61)

The number of collocation points used in all the resultspresented here is119873 = 200 with 119871infin = 20

4 Results and Discussion

In this section we present solutions of the Falkner-Skan equa-tion (32) using the QLM-SHAM hybrid iteration schemesNumerical simulations were conducted for the followingspecial classes of the F-S equations

(i) Blasius flow 120573 = 12 1205731 = 0(ii) Pohlhausen flow 120573 = 0 1205731 = 1(iii) Homann flow 120573 = 2 1205731 = 1

To assess the accuracy and performance of our schemesthe numerical results were compared to the recently reportedresults of Ganapol [29] To date these results are the most

accurate results for the Blasius and Falkner-Skan class ofequations Ganapol [29] reported highly accurate resultsbetween 10 and 30 decimal places using a robust algorithmbased onMaclaurin series with convergence acceleration andanalytical continuation techniques

The comparison between the present findings and theresults in the literature is made for the skin friction which isproportional to 11989110158401015840(0) Table 1 shows a comparison betweenthe computed skin friction values of the Blasius equationusing the three QLM-SHAM iteration schemes The resultsare comparedwith the results reported inGanapol [29] whichare accurate to 29 decimal places We observe that all theiteration schemes rapidly converge to the results of [29] toall 29 decimal places Full convergence is achieved after 6iterations when using Scheme-0 4 iterations when usingScheme-1 and after 3 iterations when using Scheme-2 Itis worth noting that the results of [29] were achieved after104 decimal places Prior to Ganapol [29] the most accurateBlasius skin friction results had been published to 17 decimalplaces by Boyd [28] as 11989110158401015840(0) = 033205733621519630 Thisresult was obtained after 5 iterations using Scheme-0 and3 iterations for both Schemes-1 and -2 The value reportedafter 52 iterations in [29] is 11989110158401015840(0) = 03320573362151965It is clear that the proposed iteration schemes convergesignificantly faster than the method of [29] That the results

8 Journal of Applied Mathematics

of Boyd [28] and Ganapol [29] were obtained only after a fewiterations validates both the higher order convergence and theaccuracy of the present solution methods

Table 2 shows the computed values of 11989110158401015840(0) using

Schemes-0 and -1 for the Pohlhausen flow (120573 = 0 1205731 = 1)For this particular flow the exact value of 11989110158401015840(0) is knownto be 2radic3 The iteration Scheme-0 matches the exact resultafter only 5 iterations and Scheme-1 converges after only 3iterationsThemethod used in Ganapol [29] converged to theexact result after 104 iterations This again demonstrates thesuperior convergence of the present method

Table 3 gives the numerical simulations of the skin fric-tion results for theHomann flowWe observe that the 29-digitresults reported in [29] are achieved in 5 iterations 4 itera-tions and 3 iterations for Scheme-0 -1 and -2 respectivelyThis result indicates that adding an additional level in theQLM-SHAM schemewould further significantly increase theconvergence of the iteration scheme We further note fromTables 1ndash3 that all three schemes converge significantly muchfaster than the spectral homotopy analysismethod on its own

5 Conclusion

In this study we presented three hybrid QLM-SHAM itera-tion schemes for the solution of Falkner-Skan type boundarylayer equations We have shown through numerical exper-imentation that the proposed numerical schemes signifi-cantly enhance the convergence rate of the quasilinearizationmethod By comparison with the most accurate solutionsof the Falkner-Skan equations currently available in theliterature we have shown that the schemes are highly accurateand efficient in terms of the number of iterations requiredto determine the solution to the required level of accuracyThe schemes presented provide robust tools for the efficientsolution of nonlinear equations by offering superior accuracyto many existing methods In addition the approach usedin deriving these schemes provides a suitable framework forextension to higher level schemes by adding more terms ofthe SHAM component of the method

References

[1] R E Bellman and R E Kalaba Quasilinearization and Non-linear Boundary-Value Problems Elsevier New York NY USA1965

[2] K Maleknejad and E Najafi ldquoNumerical solution of nonlinearVolterra integral equations using the idea of quasilinearizationrdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 16 no 1 pp 93ndash100 2011

[3] R Krivec and V B Mandelzweig ldquoNumerical investigation ofquasilinearization method in quantum mechanicsrdquo ComputerPhysics Communications vol 138 pp 69ndash79 2001

[4] V BMandelzweig ldquoQuasilinearizationmethod and its verifica-tion on exactly solvablemodels in quantummechanicsrdquo Journalof Mathematical Physics vol 40 no 12 pp 6266ndash6291 1999

[5] V B Mandelzweig and F Tabakin ldquoQuasilinearizationapproach to nonlinear problems in physics with application tononlinear ODEsrdquo Computer Physics Communications vol 141no 2 pp 268ndash281 2001

[6] V B Mandelzweig ldquoQuasilinearization method nonperturba-tive approach to physical problemsrdquo Physics of Atomic Nucleivol 68 no 7 pp 1227ndash1258 2005

[7] V Lakshmikantham S Leela and S Sivasundaram ldquoExtensionsof the method of quasilinearizationrdquo Journal of OptimizationTheory and Applications vol 87 no 2 pp 379ndash401 1995

[8] V Lakshmikantham ldquoFurther improvement of generalizedquasilinearization methodrdquo Nonlinear Analysis Theory Meth-ods amp Applications vol 27 no 2 pp 223ndash227 1996

[9] K Parand M Ghasemi S Rezazadeh A Peiravi A Ghor-banpour and A Tavakoli Golpaygani ldquoQuasilinearizationapproach for solving Volterrarsquos population modelrdquo Applied andComputational Mathematics vol 9 no 1 pp 95ndash103 2010

[10] J Jiang and A S Vatsala ldquoThe quasilinearization method in thesystem of reaction diffusion equationsrdquo Applied Mathematicsand Computation vol 97 no 2-3 pp 223ndash235 1998

[11] B Ahmad ldquoA quasilinearization method for a class of integro-differential equations with mixed nonlinearitiesrdquo NonlinearAnalysis Real World Applications vol 7 no 5 pp 997ndash10042006

[12] S G Pandit ldquoQuadratically converging iterative schemes fornonlinear Volterra integral equations and an applicationrdquo Jour-nal of Applied Mathematics and Stochastic Analysis vol 10 no2 pp 169ndash178 1997

[13] J I Ramos ldquoPiecewise-quasilinearization techniques for singu-larly perturbed Volterra integro-differential equationsrdquo AppliedMathematics and Computation vol 188 no 2 pp 1221ndash12332007

[14] S Tuffuor and J W Labadie ldquoA nonlinear time variant rainfall-runoff model for augmenting monthly datardquo Water ResourcesResearch vol 10 pp 1161ndash1166 1974

[15] S S Motsa P Sibanda and S Shateyi ldquoA new spectral-homotopy analysismethod for solving a nonlinear second orderBVPrdquo Communications in Nonlinear Science and NumericalSimulation vol 15 no 9 pp 2293ndash2302 2010

[16] S S Motsa P Sibanda F G Awad and S Shateyi ldquoA newspectral-homotopy analysis method for the MHD Jeffery-Hamel problemrdquo Computers amp Fluids vol 39 no 7 pp 1219ndash1225 2010

[17] S J Liao Beyond Perturbation Introduction to HomotopyAnalysis Method Chapman amp HallCRC Press 2003

[18] S Li and S-J Liao ldquoAn analytic approach to solve multiplesolutions of a strongly nonlinear problemrdquoAppliedMathematicsand Computation vol 169 no 2 pp 854ndash865 2005

[19] P Sibanda S Motsa and Z Makukula ldquoA spectral-homotopyanalysis method for heat transfer flow of a third grade fluidbetween parallel platesrdquo International Journal of NumericalMethods for Heat amp Fluid Flow vol 22 no 1 pp 4ndash23 2012

[20] S S Motsa and P Sibanda ldquoOn the solution of MHD flowover a nonlinear stretching sheet by an efficient semi-analyticaltechniquerdquo International Journal for Numerical Methods inFluids vol 68 no 12 pp 1524ndash1537 2012

[21] S Abbasbandy ldquoImproving Newton-Raphson method for non-linear equations bymodifiedAdomiandecompositionmethodrdquoApplied Mathematics and Computation vol 145 no 2-3 pp887ndash893 2003

[22] C Chun ldquoIterative methods improving Newtonrsquos method bythe decomposition methodrdquo Computers amp Mathematics withApplications vol 50 no 10ndash12 pp 1559ndash1568 2005

[23] G Adomian ldquoA review of the decomposition method andsome recent results for nonlinear equationsrdquoMathematical andComputer Modelling vol 13 no 7 pp 17ndash43 1990

Journal of Applied Mathematics 9

[24] G Adomian and R Rach ldquoNoise terms in decompositionsolution seriesrdquo Computers amp Mathematics with Applicationsvol 24 no 11 pp 61ndash64 1992

[25] G Adomian Solving Frontier Problems of Physics The Decom-position Method Kluwer Academic Publishers Group BostonMass USA 1994

[26] C Chun ldquoConstruction of Newton-like iteration methods forsolving nonlinear equationsrdquoNumerische Mathematik vol 104no 3 pp 297ndash315 2006

[27] M A Noor ldquoIterative methods for nonlinear equations usinghomotopy perturbation techniquerdquo Applied Mathematics ampInformation Sciences vol 4 no 2 pp 227ndash235 2010

[28] J P Boyd ldquoThe Blasius function computations before com-puters the value of tricks undergraduate projects and openresearch problemsrdquo SIAM Review vol 50 no 4 pp 791ndash8042008

[29] B D Ganapol ldquoHighly accurate solutions of the BlasiusandFalkner-Skan boundary layer equations via convergence accel-erationrdquo httparxivorgabs10063888

[30] A S Bataineh M S M Noorani and I Hashim ldquoSeriessolution of the multispecies Lotka-Volterra equations by meansof the homotopy analysis methodrdquo Differential Equations andNonlinear Mechanics vol 2008 Article ID 816787 14 pages2008

[31] A S Bataineh M S M Noorani and I Hashim ldquoHomotopyanalysis method for singular IVPs of Emden-Fowler typerdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 14 no 4 pp 1121ndash1131 2009

[32] Y Tan and S Abbasbandy ldquoHomotopy analysis method forquadratic Riccati differential equationrdquo Communications inNonlinear Science and Numerical Simulation vol 13 no 3 pp539ndash546 2008

[33] C Canuto M Y Hussaini A Quarteroni and T A ZangSpectral Methods in Fluid Dynamics Springer Berlin Germany1988

[34] W S Don and A Solomonoff ldquoAccuracy and speed in com-puting the Chebyshev collocation derivativerdquo SIAM Journal onScientific Computing vol 16 no 6 pp 1253ndash1268 1995

[35] L N Trefethen Spectral Methods in MATLAB SIAM 2000[36] J A CWeideman and S C Reddy ldquoAMATLAB differentiation

matrix suiterdquoACMTransactions onMathematical Software vol26 no 4 pp 465ndash519 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article On Extending the Quasilinearization Method ...iterations required to nd solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. e

4 Journal of Applied Mathematics

In general for any119872 gt 1 we have119910 (119909) = 1199100 (119909) + 1199101 (119909) + sdot sdot sdot + 119910119872 (119909) (28)

where 119910119872(119909) is obtained as a solution ofL1 [119910119872] = (1 + ℎ)L1 [119910119872minus1] + ℎ119877119872minus1 [1199100 1199101 119910119872minus1]

(29)Thus a general scheme when the SHAM is truncated at order119872 (where119872 ge 1) hereinafter referred to as scheme-119872 canbe obtained asL1 [119910119903+1 119910

(1)

119903+1 119910(119899)

119903+1]

= Φ [119910119903 119910(1)

119903 119910(119899)

119903 ]

+

119872minus1

sum

119901=0

(120594119901+1 + ℎ)L1 [119910119901119903+1 119910(1)

119901119903+1 119910(119899)

119901119903+1]

+ ℎ

119872minus1

sum

119901=0

119877119901 [1199100119903+1 1199101119903+1 119910119901119903+1]

(30)

where each 119910119901119903+1 is obtained as the solution of

L1 [119910119901119903+1]

=

(120594119901 + ℎ)L1 [119910119901minus1119903+1]

+ℎ119877119901minus1 [1199100119903+1 1199101119903+1 119910119901minus1119903+1] when 119901 ge 1

Φ [119910119903 119910(1)119903 119910

(119899)119903 ] when 119901 = 0

(31)

3 Solution of the Falkner-Skan Equation

In this section we demonstrate how the numerical schemesderived in the previous section may be used to solve theFalkner-Skan equation

119891101584010158401015840(120578) + 120573119891 (120578) 119891

10158401015840(120578) + 1205731 (1 minus 119891

1015840(120578)2)

= 0 120578 isin [0infin)

(32)

subject to the boundary conditions

119891 (0) = 1198911015840(0) = 0 lim

120578rarrinfin119891 (120578) = 1 (33)

It is convenient to first define

119865 (119910 1199101015840 11991010158401015840) = 120573119910119910

10158401015840minus 1205731(119910

1015840)

2 Ψ = minus1205731

(34)

so that

Φ(119910 1199101015840 11991010158401015840) = 120573119910119910

10158401015840minus 1205731(119910

1015840)

2minus 1205731

(35)

L1 (119910 1199101015840 11991010158401015840 119910101584010158401015840) = 119910101584010158401015840+ 1198860120574119910

10158401015840+ 1198861120574119910

1015840+ 1198862120574119910 (36)

119877119898minus1 [1199100 1199101 119910119898minus1] = 120573

119898minus1

sum

119895=0

11991011989511991010158401015840

119898minus1minus119895 minus 1205731

119898minus1

sum

119895=0

1199101015840

1198951199101015840

119898minus1minus119895

+ 1205731 (1 minus 120594119898) + 212057311199101015840

1205741199101015840

119898minus1

minus 120573 (11991012057411991010158401015840

119898minus1 + 11991010158401015840

120574 119910119898minus1)

(37)

where

1198860120574 = 120573119910120574 1198861120574 = minus212057311199101015840

120574 1198862120574 = 12057311991010158401015840

120574 (38)

Using (35)ndash(37) the first three iterative schemes correspond-ing to119872 = 0 1 2may now be defined as follows

31 Scheme-0 In this scheme we set

L1 (119910119903+1 1199101015840

119903+1 11991010158401015840

119903+1 119910101584010158401015840

119903+1) = Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) (39)

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (40)

It is worth noting that Scheme-0 is in fact equivalent to theoriginal QLM algorithm see Mandelzweig and Tabakin [5]and Mandelzweig [6]

32 Scheme-1 For this scheme we set

L1 (119910119903+1 1199101015840

119903+1 11991010158401015840

119903+1 119910101584010158401015840

119903+1)

= Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) + ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

(41)

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (42)

where

1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

= 1205731199100119903+111991010158401015840

0119903+1 minus 120573111991010158402

0119903+1 + 1205731 + 212057311199101015840

1199031199101015840

0119903+1

minus 120573 (11991011990311991010158401015840

0119903+1 + 11991010158401015840

119903 1199100119903+1)

(43)

and 1199100119903+1 is the solution of

L1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1) = Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) (44)

subject to

1199100 119903+1 (0) = 1199101015840

0119903+1 (0) = 0 1199101015840

0119903+1 (infin) = 1 (45)

33 Scheme-2 The complexity of the defining equationsincreases with the order of the scheme For Scheme-2 we have

L1 (119910119903+1 1199101015840

119903+1 11991010158401015840

119903+1 119910101584010158401015840

119903+1)

= Φ (119910119903 1199101015840

119903 11991010158401015840

119903 ) + ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ (1 + ℎ)L1 (1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1 119910101584010158401015840

1119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

+ ℎ1198771 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1)

(46)

Journal of Applied Mathematics 5

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (47)

where

1198771 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1)

= 120573 (1199100119903+111991010158401015840

1119903+1 + 1199101119903+111991010158401015840

0119903+1) minus 212057311199101015840

0119903+11199101119903+1

+ 212057311199101015840

1199031199101015840

1119903+1 minus 120573 (11991011990311991010158401015840

1119903+1 + 11991010158401015840

119903 1199101119903+1)

(48)

and 1199101119903+1 is the solution of

L1 (1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1 119910101584010158401015840

1119903+1)

= ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

(49)

with

1199101119903+1 (0) = 1199101015840

1119903+1 (0) = 0 1199101015840

1119903+1 (infin) = 0 (50)

Equations (39) (41) and (46) describing the three solutionschemes can be solved numerically using standard meth-ods such as finite difference finite elements and splinecollocation methods In this study we use the Chebyshevspectral collocation method to solve the iteration schemes(see [33ndash36]) To allow for numerical implementation ofthe pseudospectral method the physical region [0infin) istruncated to [0 119871] where 119871 is chosen to be sufficiently largeThe truncated region is further transformed to the space[minus1 1] using the transformation

120585 =

2

119871infin

120578 minus 1 (51)

As with any other numerical approximation method somesort of discretization is introduced in the interval [minus1 1] Wechoose the Gauss-Lobatto collocation points to define thenodes in [minus1 1] as

120585119895 = cos(120587119895

119873

) 119895 = 0 1 119873 (52)

where (119873 + 1) is the number of collocation points Theessence of the Chebyshev spectral collocation method isthe idea of introducing a differentiation matrix 119863 Thedifferentiation matrix maps a vector of the function valuesY = [119910(1205850) 119910(120585119873)]

119879 at the collocation points to a vectorY1015840 defined as

Y1015840 =119873

sum

119896=0

119863119895119896119891 (120585119896) = 119863Y (53)

In general a derivative of order 119901 for the function 119910(120578) canbe expressed as

119910(119901)(120578) = D119901Y (54)

whereD = 2119863119871infin The matrix119863 is of size (119873 + 1) times (119873 + 1)

and its entries are defined as

119863119895119896 =

119888119895

119888119896

(minus1)119895+119896

120591119895 minus 120591119896

119895 = 119896 119895 119896 = 0 1 119873

119863119896119896 = minus

120591119896

2 (1 minus 1205912119896)

119896 = 1 2 119873 minus 1

11986300 =21198732+ 1

6

= minus119863119873119873

(55)

with

119888119896 = 2 119896 = 0119873

1 minus1 le 119896 le 119873 minus 1

(56)

Thus applying the spectral method to the iteration Scheme-0 (39) and the corresponding boundary conditions gives thefollowing matrix system

A119903Y119903+1 = Φ119903 (57)

with boundary conditions

119910119903+1 (120585119873) = 0

119873

sum

119896=0

D119873119896119910119903+1 (120585119896) = 0

119873

sum

119896=0

D0119896119910119903+1 (120585119896) = 1

(58)

where

A119903 = D3 + a0119903D2+ a1119903D + a2119903 (59)

where Φ119903 corresponds to the function Φ(119910 119910 11991010158401015840) when

evaluated at the collocation points and a119894119903 (119894 = 0 1 2) is adiagonal matrix corresponding to the vector of 119886119894119903

The boundary conditions (58) are imposed on the first119873th and (119873 + 1)th rows of 119860119903 and Φ119903 to obtain a system ofthe form

(

(

D00 D01 sdot sdot sdot D0119873minus1 D0119873

Ar

D1198730 D1198731 sdot sdot sdot D119873119873minus1 D1198731198730 0 sdot sdot sdot 0 1

)

)

(

(

(

(

(

(

(

(

(

(

(

119910119903+1 (1205850)

119910119903+1 (1205851)

119910119903+1 (120585119873minus2)

119910119903+1 (120585119873minus1)

119910119903+1 (120585119873)

)

)

)

)

)

)

)

)

)

)

)

=(

(

(

1

Φ119903 (1205851)

Φ119903 (120585119873minus2)

0

0

)

)

)

(60)

6 Journal of Applied Mathematics

Table 1 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Blasius flow (120573 = 12 1205731 = 0)

iter 11989110158401015840(0) Error

SHAM1 0361245275076317576714175486031 00291879388611212777769954240210 0332060294018222201221920675183 00000029578030259022847406131720 0332057337274670714006530763206 00000000010594744150693507012030 0332057336215760109582560249181 00000000000005638106453801871740 0332057336215196653344046405966 00000000000000003544068663439660 0332057336215196298937262729762 000000000000000000000008266775

Scheme-01 036124527510805664031836423508 0029187938892860341381184173072 033293906079206190667160822082 0000881724576865607734428158813 033205878995514977263006366166 0000001453739953473692883599654 033205733621994973222724960736 0000000000004753433290069545355 033205733621519629893723540415 0000000000000000000000055342146 033205733621519629893718006201 000000000000000000000000000000

Scheme-11 033849743020925601396026175681 0006440093994059715023081694802 033205889444389263880627992358 0000001558228696339869099861573 033205733621519633877777093517 0000000000000000039840590873164 033205733621519629893718006201 000000000000000000000000000000

Scheme-21 033398877527020321822942828158 0001931439055006919292248219572 033205733679309573625968418056 0000000000577899437322504118553 033205733621519629893718006201 000000000000000000000000000000

[29] 033205733621519629893718006201 (104 iterations)

Table 2 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Pohlhausen flow (120573 = 0 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 115819390472196206795661617787 0003493366342710538938318616875 115470068226816961126259064868 00000001438889180822442930876810 115470053837716000145607336675 00000000000020915275622241942520 115470053837925152901716901667 00000000000000000000011285443425 115470053837925152901829759222 00000000000000000000000000312130 115470053837925152901829756100 000000000000000000000000000000

Scheme-01 11581939047219620679566161779 000349336634271053893831861692 11547034510528929300844093465 000000291267364140106611178553 11547005383817023293095010719 000000000000245080029120351094 11547005383792515290182994735 000000000000000000000000191255 11547005383792515290182975610 00000000000000000000000000000

Scheme-11 11544901934962778016810840055 000021034488297372733721355552 11547005383778620432865956388 000000000000138948573170192223 11547005383792515290182975610 00000000000000000000000000000

EXACT 11547005383792515290182975610[29] 11547005383792515290182975610 (104 iterations)

Journal of Applied Mathematics 7

Table 3 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Homann flow (120573 = 2 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 1335633919867798255673072885920 002369622598799312019142671522010 1311933330446726656235176983180 000000436343307847924646918751920 1311937690198936556741381203220 000000000368086857874026496748130 1311937693875056506843830283790 000000000000474862863781588691040 1311937693879797836016540925840 000000000000000729946510524486050 1311937693879805123127203300860 000000000000000001235444286984260 1311937693879805135459418974120 000000000000000000002222719658370 1311937693879805135481601938190 0000000000000000000000044232511

Scheme-01 13356339198662404626942038769 002369622598643532721255770622 13121878643609977795027970207 000025017048119264402115085003 13119377351892323008775816635 000000004130942716539593549284 13119376938798066169255039256 000000000000000148144385775495 13119376938798051354816461707 00000000000000000000000000000

Scheme-11 13064680181439000004910779728 000546967573590513499056819792 13119375731135522096139489286 000000012076625292586769724213 13119376938798051354785690801 000000000000000000000307709064 13119376938798051354816461707 00000000000000000000000000000

Scheme-21 13136564701352183697646278650 000171877625541323428298169432 13119376938938730064725895040 000000000001406787099094333333 13119376938798051354816461707 00000000000000000000000000000

[29] 13119376938798051354816461707 (104 iterations)

Starting from a suitable initial guess 1199100(120578) the iterationscheme (60) can be used to iteratively give approximatesolutions of the governing equation (32) for Scheme-0 Theapplication of the pseudospectral method for Scheme-1 andScheme-2 can be done in a similar manner The initialapproximation used in all the algorithms is

1199100 (120578) = 120578 + 119890minus120578+ 1 (61)

The number of collocation points used in all the resultspresented here is119873 = 200 with 119871infin = 20

4 Results and Discussion

In this section we present solutions of the Falkner-Skan equa-tion (32) using the QLM-SHAM hybrid iteration schemesNumerical simulations were conducted for the followingspecial classes of the F-S equations

(i) Blasius flow 120573 = 12 1205731 = 0(ii) Pohlhausen flow 120573 = 0 1205731 = 1(iii) Homann flow 120573 = 2 1205731 = 1

To assess the accuracy and performance of our schemesthe numerical results were compared to the recently reportedresults of Ganapol [29] To date these results are the most

accurate results for the Blasius and Falkner-Skan class ofequations Ganapol [29] reported highly accurate resultsbetween 10 and 30 decimal places using a robust algorithmbased onMaclaurin series with convergence acceleration andanalytical continuation techniques

The comparison between the present findings and theresults in the literature is made for the skin friction which isproportional to 11989110158401015840(0) Table 1 shows a comparison betweenthe computed skin friction values of the Blasius equationusing the three QLM-SHAM iteration schemes The resultsare comparedwith the results reported inGanapol [29] whichare accurate to 29 decimal places We observe that all theiteration schemes rapidly converge to the results of [29] toall 29 decimal places Full convergence is achieved after 6iterations when using Scheme-0 4 iterations when usingScheme-1 and after 3 iterations when using Scheme-2 Itis worth noting that the results of [29] were achieved after104 decimal places Prior to Ganapol [29] the most accurateBlasius skin friction results had been published to 17 decimalplaces by Boyd [28] as 11989110158401015840(0) = 033205733621519630 Thisresult was obtained after 5 iterations using Scheme-0 and3 iterations for both Schemes-1 and -2 The value reportedafter 52 iterations in [29] is 11989110158401015840(0) = 03320573362151965It is clear that the proposed iteration schemes convergesignificantly faster than the method of [29] That the results

8 Journal of Applied Mathematics

of Boyd [28] and Ganapol [29] were obtained only after a fewiterations validates both the higher order convergence and theaccuracy of the present solution methods

Table 2 shows the computed values of 11989110158401015840(0) using

Schemes-0 and -1 for the Pohlhausen flow (120573 = 0 1205731 = 1)For this particular flow the exact value of 11989110158401015840(0) is knownto be 2radic3 The iteration Scheme-0 matches the exact resultafter only 5 iterations and Scheme-1 converges after only 3iterationsThemethod used in Ganapol [29] converged to theexact result after 104 iterations This again demonstrates thesuperior convergence of the present method

Table 3 gives the numerical simulations of the skin fric-tion results for theHomann flowWe observe that the 29-digitresults reported in [29] are achieved in 5 iterations 4 itera-tions and 3 iterations for Scheme-0 -1 and -2 respectivelyThis result indicates that adding an additional level in theQLM-SHAM schemewould further significantly increase theconvergence of the iteration scheme We further note fromTables 1ndash3 that all three schemes converge significantly muchfaster than the spectral homotopy analysismethod on its own

5 Conclusion

In this study we presented three hybrid QLM-SHAM itera-tion schemes for the solution of Falkner-Skan type boundarylayer equations We have shown through numerical exper-imentation that the proposed numerical schemes signifi-cantly enhance the convergence rate of the quasilinearizationmethod By comparison with the most accurate solutionsof the Falkner-Skan equations currently available in theliterature we have shown that the schemes are highly accurateand efficient in terms of the number of iterations requiredto determine the solution to the required level of accuracyThe schemes presented provide robust tools for the efficientsolution of nonlinear equations by offering superior accuracyto many existing methods In addition the approach usedin deriving these schemes provides a suitable framework forextension to higher level schemes by adding more terms ofthe SHAM component of the method

References

[1] R E Bellman and R E Kalaba Quasilinearization and Non-linear Boundary-Value Problems Elsevier New York NY USA1965

[2] K Maleknejad and E Najafi ldquoNumerical solution of nonlinearVolterra integral equations using the idea of quasilinearizationrdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 16 no 1 pp 93ndash100 2011

[3] R Krivec and V B Mandelzweig ldquoNumerical investigation ofquasilinearization method in quantum mechanicsrdquo ComputerPhysics Communications vol 138 pp 69ndash79 2001

[4] V BMandelzweig ldquoQuasilinearizationmethod and its verifica-tion on exactly solvablemodels in quantummechanicsrdquo Journalof Mathematical Physics vol 40 no 12 pp 6266ndash6291 1999

[5] V B Mandelzweig and F Tabakin ldquoQuasilinearizationapproach to nonlinear problems in physics with application tononlinear ODEsrdquo Computer Physics Communications vol 141no 2 pp 268ndash281 2001

[6] V B Mandelzweig ldquoQuasilinearization method nonperturba-tive approach to physical problemsrdquo Physics of Atomic Nucleivol 68 no 7 pp 1227ndash1258 2005

[7] V Lakshmikantham S Leela and S Sivasundaram ldquoExtensionsof the method of quasilinearizationrdquo Journal of OptimizationTheory and Applications vol 87 no 2 pp 379ndash401 1995

[8] V Lakshmikantham ldquoFurther improvement of generalizedquasilinearization methodrdquo Nonlinear Analysis Theory Meth-ods amp Applications vol 27 no 2 pp 223ndash227 1996

[9] K Parand M Ghasemi S Rezazadeh A Peiravi A Ghor-banpour and A Tavakoli Golpaygani ldquoQuasilinearizationapproach for solving Volterrarsquos population modelrdquo Applied andComputational Mathematics vol 9 no 1 pp 95ndash103 2010

[10] J Jiang and A S Vatsala ldquoThe quasilinearization method in thesystem of reaction diffusion equationsrdquo Applied Mathematicsand Computation vol 97 no 2-3 pp 223ndash235 1998

[11] B Ahmad ldquoA quasilinearization method for a class of integro-differential equations with mixed nonlinearitiesrdquo NonlinearAnalysis Real World Applications vol 7 no 5 pp 997ndash10042006

[12] S G Pandit ldquoQuadratically converging iterative schemes fornonlinear Volterra integral equations and an applicationrdquo Jour-nal of Applied Mathematics and Stochastic Analysis vol 10 no2 pp 169ndash178 1997

[13] J I Ramos ldquoPiecewise-quasilinearization techniques for singu-larly perturbed Volterra integro-differential equationsrdquo AppliedMathematics and Computation vol 188 no 2 pp 1221ndash12332007

[14] S Tuffuor and J W Labadie ldquoA nonlinear time variant rainfall-runoff model for augmenting monthly datardquo Water ResourcesResearch vol 10 pp 1161ndash1166 1974

[15] S S Motsa P Sibanda and S Shateyi ldquoA new spectral-homotopy analysismethod for solving a nonlinear second orderBVPrdquo Communications in Nonlinear Science and NumericalSimulation vol 15 no 9 pp 2293ndash2302 2010

[16] S S Motsa P Sibanda F G Awad and S Shateyi ldquoA newspectral-homotopy analysis method for the MHD Jeffery-Hamel problemrdquo Computers amp Fluids vol 39 no 7 pp 1219ndash1225 2010

[17] S J Liao Beyond Perturbation Introduction to HomotopyAnalysis Method Chapman amp HallCRC Press 2003

[18] S Li and S-J Liao ldquoAn analytic approach to solve multiplesolutions of a strongly nonlinear problemrdquoAppliedMathematicsand Computation vol 169 no 2 pp 854ndash865 2005

[19] P Sibanda S Motsa and Z Makukula ldquoA spectral-homotopyanalysis method for heat transfer flow of a third grade fluidbetween parallel platesrdquo International Journal of NumericalMethods for Heat amp Fluid Flow vol 22 no 1 pp 4ndash23 2012

[20] S S Motsa and P Sibanda ldquoOn the solution of MHD flowover a nonlinear stretching sheet by an efficient semi-analyticaltechniquerdquo International Journal for Numerical Methods inFluids vol 68 no 12 pp 1524ndash1537 2012

[21] S Abbasbandy ldquoImproving Newton-Raphson method for non-linear equations bymodifiedAdomiandecompositionmethodrdquoApplied Mathematics and Computation vol 145 no 2-3 pp887ndash893 2003

[22] C Chun ldquoIterative methods improving Newtonrsquos method bythe decomposition methodrdquo Computers amp Mathematics withApplications vol 50 no 10ndash12 pp 1559ndash1568 2005

[23] G Adomian ldquoA review of the decomposition method andsome recent results for nonlinear equationsrdquoMathematical andComputer Modelling vol 13 no 7 pp 17ndash43 1990

Journal of Applied Mathematics 9

[24] G Adomian and R Rach ldquoNoise terms in decompositionsolution seriesrdquo Computers amp Mathematics with Applicationsvol 24 no 11 pp 61ndash64 1992

[25] G Adomian Solving Frontier Problems of Physics The Decom-position Method Kluwer Academic Publishers Group BostonMass USA 1994

[26] C Chun ldquoConstruction of Newton-like iteration methods forsolving nonlinear equationsrdquoNumerische Mathematik vol 104no 3 pp 297ndash315 2006

[27] M A Noor ldquoIterative methods for nonlinear equations usinghomotopy perturbation techniquerdquo Applied Mathematics ampInformation Sciences vol 4 no 2 pp 227ndash235 2010

[28] J P Boyd ldquoThe Blasius function computations before com-puters the value of tricks undergraduate projects and openresearch problemsrdquo SIAM Review vol 50 no 4 pp 791ndash8042008

[29] B D Ganapol ldquoHighly accurate solutions of the BlasiusandFalkner-Skan boundary layer equations via convergence accel-erationrdquo httparxivorgabs10063888

[30] A S Bataineh M S M Noorani and I Hashim ldquoSeriessolution of the multispecies Lotka-Volterra equations by meansof the homotopy analysis methodrdquo Differential Equations andNonlinear Mechanics vol 2008 Article ID 816787 14 pages2008

[31] A S Bataineh M S M Noorani and I Hashim ldquoHomotopyanalysis method for singular IVPs of Emden-Fowler typerdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 14 no 4 pp 1121ndash1131 2009

[32] Y Tan and S Abbasbandy ldquoHomotopy analysis method forquadratic Riccati differential equationrdquo Communications inNonlinear Science and Numerical Simulation vol 13 no 3 pp539ndash546 2008

[33] C Canuto M Y Hussaini A Quarteroni and T A ZangSpectral Methods in Fluid Dynamics Springer Berlin Germany1988

[34] W S Don and A Solomonoff ldquoAccuracy and speed in com-puting the Chebyshev collocation derivativerdquo SIAM Journal onScientific Computing vol 16 no 6 pp 1253ndash1268 1995

[35] L N Trefethen Spectral Methods in MATLAB SIAM 2000[36] J A CWeideman and S C Reddy ldquoAMATLAB differentiation

matrix suiterdquoACMTransactions onMathematical Software vol26 no 4 pp 465ndash519 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article On Extending the Quasilinearization Method ...iterations required to nd solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. e

Journal of Applied Mathematics 5

subject to

119910119903+1 (0) = 1199101015840

119903+1 (0) = 0 1199101015840

119903+1 (infin) = 1 (47)

where

1198771 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1)

= 120573 (1199100119903+111991010158401015840

1119903+1 + 1199101119903+111991010158401015840

0119903+1) minus 212057311199101015840

0119903+11199101119903+1

+ 212057311199101015840

1199031199101015840

1119903+1 minus 120573 (11991011990311991010158401015840

1119903+1 + 11991010158401015840

119903 1199101119903+1)

(48)

and 1199101119903+1 is the solution of

L1 (1199101119903+1 1199101015840

1119903+1 11991010158401015840

1119903+1 119910101584010158401015840

1119903+1)

= ℎL1 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1 119910101584010158401015840

0119903+1)

+ ℎ1198770 (1199100119903+1 1199101015840

0119903+1 11991010158401015840

0119903+1)

(49)

with

1199101119903+1 (0) = 1199101015840

1119903+1 (0) = 0 1199101015840

1119903+1 (infin) = 0 (50)

Equations (39) (41) and (46) describing the three solutionschemes can be solved numerically using standard meth-ods such as finite difference finite elements and splinecollocation methods In this study we use the Chebyshevspectral collocation method to solve the iteration schemes(see [33ndash36]) To allow for numerical implementation ofthe pseudospectral method the physical region [0infin) istruncated to [0 119871] where 119871 is chosen to be sufficiently largeThe truncated region is further transformed to the space[minus1 1] using the transformation

120585 =

2

119871infin

120578 minus 1 (51)

As with any other numerical approximation method somesort of discretization is introduced in the interval [minus1 1] Wechoose the Gauss-Lobatto collocation points to define thenodes in [minus1 1] as

120585119895 = cos(120587119895

119873

) 119895 = 0 1 119873 (52)

where (119873 + 1) is the number of collocation points Theessence of the Chebyshev spectral collocation method isthe idea of introducing a differentiation matrix 119863 Thedifferentiation matrix maps a vector of the function valuesY = [119910(1205850) 119910(120585119873)]

119879 at the collocation points to a vectorY1015840 defined as

Y1015840 =119873

sum

119896=0

119863119895119896119891 (120585119896) = 119863Y (53)

In general a derivative of order 119901 for the function 119910(120578) canbe expressed as

119910(119901)(120578) = D119901Y (54)

whereD = 2119863119871infin The matrix119863 is of size (119873 + 1) times (119873 + 1)

and its entries are defined as

119863119895119896 =

119888119895

119888119896

(minus1)119895+119896

120591119895 minus 120591119896

119895 = 119896 119895 119896 = 0 1 119873

119863119896119896 = minus

120591119896

2 (1 minus 1205912119896)

119896 = 1 2 119873 minus 1

11986300 =21198732+ 1

6

= minus119863119873119873

(55)

with

119888119896 = 2 119896 = 0119873

1 minus1 le 119896 le 119873 minus 1

(56)

Thus applying the spectral method to the iteration Scheme-0 (39) and the corresponding boundary conditions gives thefollowing matrix system

A119903Y119903+1 = Φ119903 (57)

with boundary conditions

119910119903+1 (120585119873) = 0

119873

sum

119896=0

D119873119896119910119903+1 (120585119896) = 0

119873

sum

119896=0

D0119896119910119903+1 (120585119896) = 1

(58)

where

A119903 = D3 + a0119903D2+ a1119903D + a2119903 (59)

where Φ119903 corresponds to the function Φ(119910 119910 11991010158401015840) when

evaluated at the collocation points and a119894119903 (119894 = 0 1 2) is adiagonal matrix corresponding to the vector of 119886119894119903

The boundary conditions (58) are imposed on the first119873th and (119873 + 1)th rows of 119860119903 and Φ119903 to obtain a system ofthe form

(

(

D00 D01 sdot sdot sdot D0119873minus1 D0119873

Ar

D1198730 D1198731 sdot sdot sdot D119873119873minus1 D1198731198730 0 sdot sdot sdot 0 1

)

)

(

(

(

(

(

(

(

(

(

(

(

119910119903+1 (1205850)

119910119903+1 (1205851)

119910119903+1 (120585119873minus2)

119910119903+1 (120585119873minus1)

119910119903+1 (120585119873)

)

)

)

)

)

)

)

)

)

)

)

=(

(

(

1

Φ119903 (1205851)

Φ119903 (120585119873minus2)

0

0

)

)

)

(60)

6 Journal of Applied Mathematics

Table 1 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Blasius flow (120573 = 12 1205731 = 0)

iter 11989110158401015840(0) Error

SHAM1 0361245275076317576714175486031 00291879388611212777769954240210 0332060294018222201221920675183 00000029578030259022847406131720 0332057337274670714006530763206 00000000010594744150693507012030 0332057336215760109582560249181 00000000000005638106453801871740 0332057336215196653344046405966 00000000000000003544068663439660 0332057336215196298937262729762 000000000000000000000008266775

Scheme-01 036124527510805664031836423508 0029187938892860341381184173072 033293906079206190667160822082 0000881724576865607734428158813 033205878995514977263006366166 0000001453739953473692883599654 033205733621994973222724960736 0000000000004753433290069545355 033205733621519629893723540415 0000000000000000000000055342146 033205733621519629893718006201 000000000000000000000000000000

Scheme-11 033849743020925601396026175681 0006440093994059715023081694802 033205889444389263880627992358 0000001558228696339869099861573 033205733621519633877777093517 0000000000000000039840590873164 033205733621519629893718006201 000000000000000000000000000000

Scheme-21 033398877527020321822942828158 0001931439055006919292248219572 033205733679309573625968418056 0000000000577899437322504118553 033205733621519629893718006201 000000000000000000000000000000

[29] 033205733621519629893718006201 (104 iterations)

Table 2 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Pohlhausen flow (120573 = 0 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 115819390472196206795661617787 0003493366342710538938318616875 115470068226816961126259064868 00000001438889180822442930876810 115470053837716000145607336675 00000000000020915275622241942520 115470053837925152901716901667 00000000000000000000011285443425 115470053837925152901829759222 00000000000000000000000000312130 115470053837925152901829756100 000000000000000000000000000000

Scheme-01 11581939047219620679566161779 000349336634271053893831861692 11547034510528929300844093465 000000291267364140106611178553 11547005383817023293095010719 000000000000245080029120351094 11547005383792515290182994735 000000000000000000000000191255 11547005383792515290182975610 00000000000000000000000000000

Scheme-11 11544901934962778016810840055 000021034488297372733721355552 11547005383778620432865956388 000000000000138948573170192223 11547005383792515290182975610 00000000000000000000000000000

EXACT 11547005383792515290182975610[29] 11547005383792515290182975610 (104 iterations)

Journal of Applied Mathematics 7

Table 3 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Homann flow (120573 = 2 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 1335633919867798255673072885920 002369622598799312019142671522010 1311933330446726656235176983180 000000436343307847924646918751920 1311937690198936556741381203220 000000000368086857874026496748130 1311937693875056506843830283790 000000000000474862863781588691040 1311937693879797836016540925840 000000000000000729946510524486050 1311937693879805123127203300860 000000000000000001235444286984260 1311937693879805135459418974120 000000000000000000002222719658370 1311937693879805135481601938190 0000000000000000000000044232511

Scheme-01 13356339198662404626942038769 002369622598643532721255770622 13121878643609977795027970207 000025017048119264402115085003 13119377351892323008775816635 000000004130942716539593549284 13119376938798066169255039256 000000000000000148144385775495 13119376938798051354816461707 00000000000000000000000000000

Scheme-11 13064680181439000004910779728 000546967573590513499056819792 13119375731135522096139489286 000000012076625292586769724213 13119376938798051354785690801 000000000000000000000307709064 13119376938798051354816461707 00000000000000000000000000000

Scheme-21 13136564701352183697646278650 000171877625541323428298169432 13119376938938730064725895040 000000000001406787099094333333 13119376938798051354816461707 00000000000000000000000000000

[29] 13119376938798051354816461707 (104 iterations)

Starting from a suitable initial guess 1199100(120578) the iterationscheme (60) can be used to iteratively give approximatesolutions of the governing equation (32) for Scheme-0 Theapplication of the pseudospectral method for Scheme-1 andScheme-2 can be done in a similar manner The initialapproximation used in all the algorithms is

1199100 (120578) = 120578 + 119890minus120578+ 1 (61)

The number of collocation points used in all the resultspresented here is119873 = 200 with 119871infin = 20

4 Results and Discussion

In this section we present solutions of the Falkner-Skan equa-tion (32) using the QLM-SHAM hybrid iteration schemesNumerical simulations were conducted for the followingspecial classes of the F-S equations

(i) Blasius flow 120573 = 12 1205731 = 0(ii) Pohlhausen flow 120573 = 0 1205731 = 1(iii) Homann flow 120573 = 2 1205731 = 1

To assess the accuracy and performance of our schemesthe numerical results were compared to the recently reportedresults of Ganapol [29] To date these results are the most

accurate results for the Blasius and Falkner-Skan class ofequations Ganapol [29] reported highly accurate resultsbetween 10 and 30 decimal places using a robust algorithmbased onMaclaurin series with convergence acceleration andanalytical continuation techniques

The comparison between the present findings and theresults in the literature is made for the skin friction which isproportional to 11989110158401015840(0) Table 1 shows a comparison betweenthe computed skin friction values of the Blasius equationusing the three QLM-SHAM iteration schemes The resultsare comparedwith the results reported inGanapol [29] whichare accurate to 29 decimal places We observe that all theiteration schemes rapidly converge to the results of [29] toall 29 decimal places Full convergence is achieved after 6iterations when using Scheme-0 4 iterations when usingScheme-1 and after 3 iterations when using Scheme-2 Itis worth noting that the results of [29] were achieved after104 decimal places Prior to Ganapol [29] the most accurateBlasius skin friction results had been published to 17 decimalplaces by Boyd [28] as 11989110158401015840(0) = 033205733621519630 Thisresult was obtained after 5 iterations using Scheme-0 and3 iterations for both Schemes-1 and -2 The value reportedafter 52 iterations in [29] is 11989110158401015840(0) = 03320573362151965It is clear that the proposed iteration schemes convergesignificantly faster than the method of [29] That the results

8 Journal of Applied Mathematics

of Boyd [28] and Ganapol [29] were obtained only after a fewiterations validates both the higher order convergence and theaccuracy of the present solution methods

Table 2 shows the computed values of 11989110158401015840(0) using

Schemes-0 and -1 for the Pohlhausen flow (120573 = 0 1205731 = 1)For this particular flow the exact value of 11989110158401015840(0) is knownto be 2radic3 The iteration Scheme-0 matches the exact resultafter only 5 iterations and Scheme-1 converges after only 3iterationsThemethod used in Ganapol [29] converged to theexact result after 104 iterations This again demonstrates thesuperior convergence of the present method

Table 3 gives the numerical simulations of the skin fric-tion results for theHomann flowWe observe that the 29-digitresults reported in [29] are achieved in 5 iterations 4 itera-tions and 3 iterations for Scheme-0 -1 and -2 respectivelyThis result indicates that adding an additional level in theQLM-SHAM schemewould further significantly increase theconvergence of the iteration scheme We further note fromTables 1ndash3 that all three schemes converge significantly muchfaster than the spectral homotopy analysismethod on its own

5 Conclusion

In this study we presented three hybrid QLM-SHAM itera-tion schemes for the solution of Falkner-Skan type boundarylayer equations We have shown through numerical exper-imentation that the proposed numerical schemes signifi-cantly enhance the convergence rate of the quasilinearizationmethod By comparison with the most accurate solutionsof the Falkner-Skan equations currently available in theliterature we have shown that the schemes are highly accurateand efficient in terms of the number of iterations requiredto determine the solution to the required level of accuracyThe schemes presented provide robust tools for the efficientsolution of nonlinear equations by offering superior accuracyto many existing methods In addition the approach usedin deriving these schemes provides a suitable framework forextension to higher level schemes by adding more terms ofthe SHAM component of the method

References

[1] R E Bellman and R E Kalaba Quasilinearization and Non-linear Boundary-Value Problems Elsevier New York NY USA1965

[2] K Maleknejad and E Najafi ldquoNumerical solution of nonlinearVolterra integral equations using the idea of quasilinearizationrdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 16 no 1 pp 93ndash100 2011

[3] R Krivec and V B Mandelzweig ldquoNumerical investigation ofquasilinearization method in quantum mechanicsrdquo ComputerPhysics Communications vol 138 pp 69ndash79 2001

[4] V BMandelzweig ldquoQuasilinearizationmethod and its verifica-tion on exactly solvablemodels in quantummechanicsrdquo Journalof Mathematical Physics vol 40 no 12 pp 6266ndash6291 1999

[5] V B Mandelzweig and F Tabakin ldquoQuasilinearizationapproach to nonlinear problems in physics with application tononlinear ODEsrdquo Computer Physics Communications vol 141no 2 pp 268ndash281 2001

[6] V B Mandelzweig ldquoQuasilinearization method nonperturba-tive approach to physical problemsrdquo Physics of Atomic Nucleivol 68 no 7 pp 1227ndash1258 2005

[7] V Lakshmikantham S Leela and S Sivasundaram ldquoExtensionsof the method of quasilinearizationrdquo Journal of OptimizationTheory and Applications vol 87 no 2 pp 379ndash401 1995

[8] V Lakshmikantham ldquoFurther improvement of generalizedquasilinearization methodrdquo Nonlinear Analysis Theory Meth-ods amp Applications vol 27 no 2 pp 223ndash227 1996

[9] K Parand M Ghasemi S Rezazadeh A Peiravi A Ghor-banpour and A Tavakoli Golpaygani ldquoQuasilinearizationapproach for solving Volterrarsquos population modelrdquo Applied andComputational Mathematics vol 9 no 1 pp 95ndash103 2010

[10] J Jiang and A S Vatsala ldquoThe quasilinearization method in thesystem of reaction diffusion equationsrdquo Applied Mathematicsand Computation vol 97 no 2-3 pp 223ndash235 1998

[11] B Ahmad ldquoA quasilinearization method for a class of integro-differential equations with mixed nonlinearitiesrdquo NonlinearAnalysis Real World Applications vol 7 no 5 pp 997ndash10042006

[12] S G Pandit ldquoQuadratically converging iterative schemes fornonlinear Volterra integral equations and an applicationrdquo Jour-nal of Applied Mathematics and Stochastic Analysis vol 10 no2 pp 169ndash178 1997

[13] J I Ramos ldquoPiecewise-quasilinearization techniques for singu-larly perturbed Volterra integro-differential equationsrdquo AppliedMathematics and Computation vol 188 no 2 pp 1221ndash12332007

[14] S Tuffuor and J W Labadie ldquoA nonlinear time variant rainfall-runoff model for augmenting monthly datardquo Water ResourcesResearch vol 10 pp 1161ndash1166 1974

[15] S S Motsa P Sibanda and S Shateyi ldquoA new spectral-homotopy analysismethod for solving a nonlinear second orderBVPrdquo Communications in Nonlinear Science and NumericalSimulation vol 15 no 9 pp 2293ndash2302 2010

[16] S S Motsa P Sibanda F G Awad and S Shateyi ldquoA newspectral-homotopy analysis method for the MHD Jeffery-Hamel problemrdquo Computers amp Fluids vol 39 no 7 pp 1219ndash1225 2010

[17] S J Liao Beyond Perturbation Introduction to HomotopyAnalysis Method Chapman amp HallCRC Press 2003

[18] S Li and S-J Liao ldquoAn analytic approach to solve multiplesolutions of a strongly nonlinear problemrdquoAppliedMathematicsand Computation vol 169 no 2 pp 854ndash865 2005

[19] P Sibanda S Motsa and Z Makukula ldquoA spectral-homotopyanalysis method for heat transfer flow of a third grade fluidbetween parallel platesrdquo International Journal of NumericalMethods for Heat amp Fluid Flow vol 22 no 1 pp 4ndash23 2012

[20] S S Motsa and P Sibanda ldquoOn the solution of MHD flowover a nonlinear stretching sheet by an efficient semi-analyticaltechniquerdquo International Journal for Numerical Methods inFluids vol 68 no 12 pp 1524ndash1537 2012

[21] S Abbasbandy ldquoImproving Newton-Raphson method for non-linear equations bymodifiedAdomiandecompositionmethodrdquoApplied Mathematics and Computation vol 145 no 2-3 pp887ndash893 2003

[22] C Chun ldquoIterative methods improving Newtonrsquos method bythe decomposition methodrdquo Computers amp Mathematics withApplications vol 50 no 10ndash12 pp 1559ndash1568 2005

[23] G Adomian ldquoA review of the decomposition method andsome recent results for nonlinear equationsrdquoMathematical andComputer Modelling vol 13 no 7 pp 17ndash43 1990

Journal of Applied Mathematics 9

[24] G Adomian and R Rach ldquoNoise terms in decompositionsolution seriesrdquo Computers amp Mathematics with Applicationsvol 24 no 11 pp 61ndash64 1992

[25] G Adomian Solving Frontier Problems of Physics The Decom-position Method Kluwer Academic Publishers Group BostonMass USA 1994

[26] C Chun ldquoConstruction of Newton-like iteration methods forsolving nonlinear equationsrdquoNumerische Mathematik vol 104no 3 pp 297ndash315 2006

[27] M A Noor ldquoIterative methods for nonlinear equations usinghomotopy perturbation techniquerdquo Applied Mathematics ampInformation Sciences vol 4 no 2 pp 227ndash235 2010

[28] J P Boyd ldquoThe Blasius function computations before com-puters the value of tricks undergraduate projects and openresearch problemsrdquo SIAM Review vol 50 no 4 pp 791ndash8042008

[29] B D Ganapol ldquoHighly accurate solutions of the BlasiusandFalkner-Skan boundary layer equations via convergence accel-erationrdquo httparxivorgabs10063888

[30] A S Bataineh M S M Noorani and I Hashim ldquoSeriessolution of the multispecies Lotka-Volterra equations by meansof the homotopy analysis methodrdquo Differential Equations andNonlinear Mechanics vol 2008 Article ID 816787 14 pages2008

[31] A S Bataineh M S M Noorani and I Hashim ldquoHomotopyanalysis method for singular IVPs of Emden-Fowler typerdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 14 no 4 pp 1121ndash1131 2009

[32] Y Tan and S Abbasbandy ldquoHomotopy analysis method forquadratic Riccati differential equationrdquo Communications inNonlinear Science and Numerical Simulation vol 13 no 3 pp539ndash546 2008

[33] C Canuto M Y Hussaini A Quarteroni and T A ZangSpectral Methods in Fluid Dynamics Springer Berlin Germany1988

[34] W S Don and A Solomonoff ldquoAccuracy and speed in com-puting the Chebyshev collocation derivativerdquo SIAM Journal onScientific Computing vol 16 no 6 pp 1253ndash1268 1995

[35] L N Trefethen Spectral Methods in MATLAB SIAM 2000[36] J A CWeideman and S C Reddy ldquoAMATLAB differentiation

matrix suiterdquoACMTransactions onMathematical Software vol26 no 4 pp 465ndash519 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article On Extending the Quasilinearization Method ...iterations required to nd solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. e

6 Journal of Applied Mathematics

Table 1 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Blasius flow (120573 = 12 1205731 = 0)

iter 11989110158401015840(0) Error

SHAM1 0361245275076317576714175486031 00291879388611212777769954240210 0332060294018222201221920675183 00000029578030259022847406131720 0332057337274670714006530763206 00000000010594744150693507012030 0332057336215760109582560249181 00000000000005638106453801871740 0332057336215196653344046405966 00000000000000003544068663439660 0332057336215196298937262729762 000000000000000000000008266775

Scheme-01 036124527510805664031836423508 0029187938892860341381184173072 033293906079206190667160822082 0000881724576865607734428158813 033205878995514977263006366166 0000001453739953473692883599654 033205733621994973222724960736 0000000000004753433290069545355 033205733621519629893723540415 0000000000000000000000055342146 033205733621519629893718006201 000000000000000000000000000000

Scheme-11 033849743020925601396026175681 0006440093994059715023081694802 033205889444389263880627992358 0000001558228696339869099861573 033205733621519633877777093517 0000000000000000039840590873164 033205733621519629893718006201 000000000000000000000000000000

Scheme-21 033398877527020321822942828158 0001931439055006919292248219572 033205733679309573625968418056 0000000000577899437322504118553 033205733621519629893718006201 000000000000000000000000000000

[29] 033205733621519629893718006201 (104 iterations)

Table 2 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Pohlhausen flow (120573 = 0 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 115819390472196206795661617787 0003493366342710538938318616875 115470068226816961126259064868 00000001438889180822442930876810 115470053837716000145607336675 00000000000020915275622241942520 115470053837925152901716901667 00000000000000000000011285443425 115470053837925152901829759222 00000000000000000000000000312130 115470053837925152901829756100 000000000000000000000000000000

Scheme-01 11581939047219620679566161779 000349336634271053893831861692 11547034510528929300844093465 000000291267364140106611178553 11547005383817023293095010719 000000000000245080029120351094 11547005383792515290182994735 000000000000000000000000191255 11547005383792515290182975610 00000000000000000000000000000

Scheme-11 11544901934962778016810840055 000021034488297372733721355552 11547005383778620432865956388 000000000000138948573170192223 11547005383792515290182975610 00000000000000000000000000000

EXACT 11547005383792515290182975610[29] 11547005383792515290182975610 (104 iterations)

Journal of Applied Mathematics 7

Table 3 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Homann flow (120573 = 2 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 1335633919867798255673072885920 002369622598799312019142671522010 1311933330446726656235176983180 000000436343307847924646918751920 1311937690198936556741381203220 000000000368086857874026496748130 1311937693875056506843830283790 000000000000474862863781588691040 1311937693879797836016540925840 000000000000000729946510524486050 1311937693879805123127203300860 000000000000000001235444286984260 1311937693879805135459418974120 000000000000000000002222719658370 1311937693879805135481601938190 0000000000000000000000044232511

Scheme-01 13356339198662404626942038769 002369622598643532721255770622 13121878643609977795027970207 000025017048119264402115085003 13119377351892323008775816635 000000004130942716539593549284 13119376938798066169255039256 000000000000000148144385775495 13119376938798051354816461707 00000000000000000000000000000

Scheme-11 13064680181439000004910779728 000546967573590513499056819792 13119375731135522096139489286 000000012076625292586769724213 13119376938798051354785690801 000000000000000000000307709064 13119376938798051354816461707 00000000000000000000000000000

Scheme-21 13136564701352183697646278650 000171877625541323428298169432 13119376938938730064725895040 000000000001406787099094333333 13119376938798051354816461707 00000000000000000000000000000

[29] 13119376938798051354816461707 (104 iterations)

Starting from a suitable initial guess 1199100(120578) the iterationscheme (60) can be used to iteratively give approximatesolutions of the governing equation (32) for Scheme-0 Theapplication of the pseudospectral method for Scheme-1 andScheme-2 can be done in a similar manner The initialapproximation used in all the algorithms is

1199100 (120578) = 120578 + 119890minus120578+ 1 (61)

The number of collocation points used in all the resultspresented here is119873 = 200 with 119871infin = 20

4 Results and Discussion

In this section we present solutions of the Falkner-Skan equa-tion (32) using the QLM-SHAM hybrid iteration schemesNumerical simulations were conducted for the followingspecial classes of the F-S equations

(i) Blasius flow 120573 = 12 1205731 = 0(ii) Pohlhausen flow 120573 = 0 1205731 = 1(iii) Homann flow 120573 = 2 1205731 = 1

To assess the accuracy and performance of our schemesthe numerical results were compared to the recently reportedresults of Ganapol [29] To date these results are the most

accurate results for the Blasius and Falkner-Skan class ofequations Ganapol [29] reported highly accurate resultsbetween 10 and 30 decimal places using a robust algorithmbased onMaclaurin series with convergence acceleration andanalytical continuation techniques

The comparison between the present findings and theresults in the literature is made for the skin friction which isproportional to 11989110158401015840(0) Table 1 shows a comparison betweenthe computed skin friction values of the Blasius equationusing the three QLM-SHAM iteration schemes The resultsare comparedwith the results reported inGanapol [29] whichare accurate to 29 decimal places We observe that all theiteration schemes rapidly converge to the results of [29] toall 29 decimal places Full convergence is achieved after 6iterations when using Scheme-0 4 iterations when usingScheme-1 and after 3 iterations when using Scheme-2 Itis worth noting that the results of [29] were achieved after104 decimal places Prior to Ganapol [29] the most accurateBlasius skin friction results had been published to 17 decimalplaces by Boyd [28] as 11989110158401015840(0) = 033205733621519630 Thisresult was obtained after 5 iterations using Scheme-0 and3 iterations for both Schemes-1 and -2 The value reportedafter 52 iterations in [29] is 11989110158401015840(0) = 03320573362151965It is clear that the proposed iteration schemes convergesignificantly faster than the method of [29] That the results

8 Journal of Applied Mathematics

of Boyd [28] and Ganapol [29] were obtained only after a fewiterations validates both the higher order convergence and theaccuracy of the present solution methods

Table 2 shows the computed values of 11989110158401015840(0) using

Schemes-0 and -1 for the Pohlhausen flow (120573 = 0 1205731 = 1)For this particular flow the exact value of 11989110158401015840(0) is knownto be 2radic3 The iteration Scheme-0 matches the exact resultafter only 5 iterations and Scheme-1 converges after only 3iterationsThemethod used in Ganapol [29] converged to theexact result after 104 iterations This again demonstrates thesuperior convergence of the present method

Table 3 gives the numerical simulations of the skin fric-tion results for theHomann flowWe observe that the 29-digitresults reported in [29] are achieved in 5 iterations 4 itera-tions and 3 iterations for Scheme-0 -1 and -2 respectivelyThis result indicates that adding an additional level in theQLM-SHAM schemewould further significantly increase theconvergence of the iteration scheme We further note fromTables 1ndash3 that all three schemes converge significantly muchfaster than the spectral homotopy analysismethod on its own

5 Conclusion

In this study we presented three hybrid QLM-SHAM itera-tion schemes for the solution of Falkner-Skan type boundarylayer equations We have shown through numerical exper-imentation that the proposed numerical schemes signifi-cantly enhance the convergence rate of the quasilinearizationmethod By comparison with the most accurate solutionsof the Falkner-Skan equations currently available in theliterature we have shown that the schemes are highly accurateand efficient in terms of the number of iterations requiredto determine the solution to the required level of accuracyThe schemes presented provide robust tools for the efficientsolution of nonlinear equations by offering superior accuracyto many existing methods In addition the approach usedin deriving these schemes provides a suitable framework forextension to higher level schemes by adding more terms ofthe SHAM component of the method

References

[1] R E Bellman and R E Kalaba Quasilinearization and Non-linear Boundary-Value Problems Elsevier New York NY USA1965

[2] K Maleknejad and E Najafi ldquoNumerical solution of nonlinearVolterra integral equations using the idea of quasilinearizationrdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 16 no 1 pp 93ndash100 2011

[3] R Krivec and V B Mandelzweig ldquoNumerical investigation ofquasilinearization method in quantum mechanicsrdquo ComputerPhysics Communications vol 138 pp 69ndash79 2001

[4] V BMandelzweig ldquoQuasilinearizationmethod and its verifica-tion on exactly solvablemodels in quantummechanicsrdquo Journalof Mathematical Physics vol 40 no 12 pp 6266ndash6291 1999

[5] V B Mandelzweig and F Tabakin ldquoQuasilinearizationapproach to nonlinear problems in physics with application tononlinear ODEsrdquo Computer Physics Communications vol 141no 2 pp 268ndash281 2001

[6] V B Mandelzweig ldquoQuasilinearization method nonperturba-tive approach to physical problemsrdquo Physics of Atomic Nucleivol 68 no 7 pp 1227ndash1258 2005

[7] V Lakshmikantham S Leela and S Sivasundaram ldquoExtensionsof the method of quasilinearizationrdquo Journal of OptimizationTheory and Applications vol 87 no 2 pp 379ndash401 1995

[8] V Lakshmikantham ldquoFurther improvement of generalizedquasilinearization methodrdquo Nonlinear Analysis Theory Meth-ods amp Applications vol 27 no 2 pp 223ndash227 1996

[9] K Parand M Ghasemi S Rezazadeh A Peiravi A Ghor-banpour and A Tavakoli Golpaygani ldquoQuasilinearizationapproach for solving Volterrarsquos population modelrdquo Applied andComputational Mathematics vol 9 no 1 pp 95ndash103 2010

[10] J Jiang and A S Vatsala ldquoThe quasilinearization method in thesystem of reaction diffusion equationsrdquo Applied Mathematicsand Computation vol 97 no 2-3 pp 223ndash235 1998

[11] B Ahmad ldquoA quasilinearization method for a class of integro-differential equations with mixed nonlinearitiesrdquo NonlinearAnalysis Real World Applications vol 7 no 5 pp 997ndash10042006

[12] S G Pandit ldquoQuadratically converging iterative schemes fornonlinear Volterra integral equations and an applicationrdquo Jour-nal of Applied Mathematics and Stochastic Analysis vol 10 no2 pp 169ndash178 1997

[13] J I Ramos ldquoPiecewise-quasilinearization techniques for singu-larly perturbed Volterra integro-differential equationsrdquo AppliedMathematics and Computation vol 188 no 2 pp 1221ndash12332007

[14] S Tuffuor and J W Labadie ldquoA nonlinear time variant rainfall-runoff model for augmenting monthly datardquo Water ResourcesResearch vol 10 pp 1161ndash1166 1974

[15] S S Motsa P Sibanda and S Shateyi ldquoA new spectral-homotopy analysismethod for solving a nonlinear second orderBVPrdquo Communications in Nonlinear Science and NumericalSimulation vol 15 no 9 pp 2293ndash2302 2010

[16] S S Motsa P Sibanda F G Awad and S Shateyi ldquoA newspectral-homotopy analysis method for the MHD Jeffery-Hamel problemrdquo Computers amp Fluids vol 39 no 7 pp 1219ndash1225 2010

[17] S J Liao Beyond Perturbation Introduction to HomotopyAnalysis Method Chapman amp HallCRC Press 2003

[18] S Li and S-J Liao ldquoAn analytic approach to solve multiplesolutions of a strongly nonlinear problemrdquoAppliedMathematicsand Computation vol 169 no 2 pp 854ndash865 2005

[19] P Sibanda S Motsa and Z Makukula ldquoA spectral-homotopyanalysis method for heat transfer flow of a third grade fluidbetween parallel platesrdquo International Journal of NumericalMethods for Heat amp Fluid Flow vol 22 no 1 pp 4ndash23 2012

[20] S S Motsa and P Sibanda ldquoOn the solution of MHD flowover a nonlinear stretching sheet by an efficient semi-analyticaltechniquerdquo International Journal for Numerical Methods inFluids vol 68 no 12 pp 1524ndash1537 2012

[21] S Abbasbandy ldquoImproving Newton-Raphson method for non-linear equations bymodifiedAdomiandecompositionmethodrdquoApplied Mathematics and Computation vol 145 no 2-3 pp887ndash893 2003

[22] C Chun ldquoIterative methods improving Newtonrsquos method bythe decomposition methodrdquo Computers amp Mathematics withApplications vol 50 no 10ndash12 pp 1559ndash1568 2005

[23] G Adomian ldquoA review of the decomposition method andsome recent results for nonlinear equationsrdquoMathematical andComputer Modelling vol 13 no 7 pp 17ndash43 1990

Journal of Applied Mathematics 9

[24] G Adomian and R Rach ldquoNoise terms in decompositionsolution seriesrdquo Computers amp Mathematics with Applicationsvol 24 no 11 pp 61ndash64 1992

[25] G Adomian Solving Frontier Problems of Physics The Decom-position Method Kluwer Academic Publishers Group BostonMass USA 1994

[26] C Chun ldquoConstruction of Newton-like iteration methods forsolving nonlinear equationsrdquoNumerische Mathematik vol 104no 3 pp 297ndash315 2006

[27] M A Noor ldquoIterative methods for nonlinear equations usinghomotopy perturbation techniquerdquo Applied Mathematics ampInformation Sciences vol 4 no 2 pp 227ndash235 2010

[28] J P Boyd ldquoThe Blasius function computations before com-puters the value of tricks undergraduate projects and openresearch problemsrdquo SIAM Review vol 50 no 4 pp 791ndash8042008

[29] B D Ganapol ldquoHighly accurate solutions of the BlasiusandFalkner-Skan boundary layer equations via convergence accel-erationrdquo httparxivorgabs10063888

[30] A S Bataineh M S M Noorani and I Hashim ldquoSeriessolution of the multispecies Lotka-Volterra equations by meansof the homotopy analysis methodrdquo Differential Equations andNonlinear Mechanics vol 2008 Article ID 816787 14 pages2008

[31] A S Bataineh M S M Noorani and I Hashim ldquoHomotopyanalysis method for singular IVPs of Emden-Fowler typerdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 14 no 4 pp 1121ndash1131 2009

[32] Y Tan and S Abbasbandy ldquoHomotopy analysis method forquadratic Riccati differential equationrdquo Communications inNonlinear Science and Numerical Simulation vol 13 no 3 pp539ndash546 2008

[33] C Canuto M Y Hussaini A Quarteroni and T A ZangSpectral Methods in Fluid Dynamics Springer Berlin Germany1988

[34] W S Don and A Solomonoff ldquoAccuracy and speed in com-puting the Chebyshev collocation derivativerdquo SIAM Journal onScientific Computing vol 16 no 6 pp 1253ndash1268 1995

[35] L N Trefethen Spectral Methods in MATLAB SIAM 2000[36] J A CWeideman and S C Reddy ldquoAMATLAB differentiation

matrix suiterdquoACMTransactions onMathematical Software vol26 no 4 pp 465ndash519 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article On Extending the Quasilinearization Method ...iterations required to nd solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. e

Journal of Applied Mathematics 7

Table 3 Comparison between the computed values of the skin friction 11989110158401015840(0) for the Homann flow (120573 = 2 1205731 = 1)

iter 11989110158401015840(0) Error

SHAM1 1335633919867798255673072885920 002369622598799312019142671522010 1311933330446726656235176983180 000000436343307847924646918751920 1311937690198936556741381203220 000000000368086857874026496748130 1311937693875056506843830283790 000000000000474862863781588691040 1311937693879797836016540925840 000000000000000729946510524486050 1311937693879805123127203300860 000000000000000001235444286984260 1311937693879805135459418974120 000000000000000000002222719658370 1311937693879805135481601938190 0000000000000000000000044232511

Scheme-01 13356339198662404626942038769 002369622598643532721255770622 13121878643609977795027970207 000025017048119264402115085003 13119377351892323008775816635 000000004130942716539593549284 13119376938798066169255039256 000000000000000148144385775495 13119376938798051354816461707 00000000000000000000000000000

Scheme-11 13064680181439000004910779728 000546967573590513499056819792 13119375731135522096139489286 000000012076625292586769724213 13119376938798051354785690801 000000000000000000000307709064 13119376938798051354816461707 00000000000000000000000000000

Scheme-21 13136564701352183697646278650 000171877625541323428298169432 13119376938938730064725895040 000000000001406787099094333333 13119376938798051354816461707 00000000000000000000000000000

[29] 13119376938798051354816461707 (104 iterations)

Starting from a suitable initial guess 1199100(120578) the iterationscheme (60) can be used to iteratively give approximatesolutions of the governing equation (32) for Scheme-0 Theapplication of the pseudospectral method for Scheme-1 andScheme-2 can be done in a similar manner The initialapproximation used in all the algorithms is

1199100 (120578) = 120578 + 119890minus120578+ 1 (61)

The number of collocation points used in all the resultspresented here is119873 = 200 with 119871infin = 20

4 Results and Discussion

In this section we present solutions of the Falkner-Skan equa-tion (32) using the QLM-SHAM hybrid iteration schemesNumerical simulations were conducted for the followingspecial classes of the F-S equations

(i) Blasius flow 120573 = 12 1205731 = 0(ii) Pohlhausen flow 120573 = 0 1205731 = 1(iii) Homann flow 120573 = 2 1205731 = 1

To assess the accuracy and performance of our schemesthe numerical results were compared to the recently reportedresults of Ganapol [29] To date these results are the most

accurate results for the Blasius and Falkner-Skan class ofequations Ganapol [29] reported highly accurate resultsbetween 10 and 30 decimal places using a robust algorithmbased onMaclaurin series with convergence acceleration andanalytical continuation techniques

The comparison between the present findings and theresults in the literature is made for the skin friction which isproportional to 11989110158401015840(0) Table 1 shows a comparison betweenthe computed skin friction values of the Blasius equationusing the three QLM-SHAM iteration schemes The resultsare comparedwith the results reported inGanapol [29] whichare accurate to 29 decimal places We observe that all theiteration schemes rapidly converge to the results of [29] toall 29 decimal places Full convergence is achieved after 6iterations when using Scheme-0 4 iterations when usingScheme-1 and after 3 iterations when using Scheme-2 Itis worth noting that the results of [29] were achieved after104 decimal places Prior to Ganapol [29] the most accurateBlasius skin friction results had been published to 17 decimalplaces by Boyd [28] as 11989110158401015840(0) = 033205733621519630 Thisresult was obtained after 5 iterations using Scheme-0 and3 iterations for both Schemes-1 and -2 The value reportedafter 52 iterations in [29] is 11989110158401015840(0) = 03320573362151965It is clear that the proposed iteration schemes convergesignificantly faster than the method of [29] That the results

8 Journal of Applied Mathematics

of Boyd [28] and Ganapol [29] were obtained only after a fewiterations validates both the higher order convergence and theaccuracy of the present solution methods

Table 2 shows the computed values of 11989110158401015840(0) using

Schemes-0 and -1 for the Pohlhausen flow (120573 = 0 1205731 = 1)For this particular flow the exact value of 11989110158401015840(0) is knownto be 2radic3 The iteration Scheme-0 matches the exact resultafter only 5 iterations and Scheme-1 converges after only 3iterationsThemethod used in Ganapol [29] converged to theexact result after 104 iterations This again demonstrates thesuperior convergence of the present method

Table 3 gives the numerical simulations of the skin fric-tion results for theHomann flowWe observe that the 29-digitresults reported in [29] are achieved in 5 iterations 4 itera-tions and 3 iterations for Scheme-0 -1 and -2 respectivelyThis result indicates that adding an additional level in theQLM-SHAM schemewould further significantly increase theconvergence of the iteration scheme We further note fromTables 1ndash3 that all three schemes converge significantly muchfaster than the spectral homotopy analysismethod on its own

5 Conclusion

In this study we presented three hybrid QLM-SHAM itera-tion schemes for the solution of Falkner-Skan type boundarylayer equations We have shown through numerical exper-imentation that the proposed numerical schemes signifi-cantly enhance the convergence rate of the quasilinearizationmethod By comparison with the most accurate solutionsof the Falkner-Skan equations currently available in theliterature we have shown that the schemes are highly accurateand efficient in terms of the number of iterations requiredto determine the solution to the required level of accuracyThe schemes presented provide robust tools for the efficientsolution of nonlinear equations by offering superior accuracyto many existing methods In addition the approach usedin deriving these schemes provides a suitable framework forextension to higher level schemes by adding more terms ofthe SHAM component of the method

References

[1] R E Bellman and R E Kalaba Quasilinearization and Non-linear Boundary-Value Problems Elsevier New York NY USA1965

[2] K Maleknejad and E Najafi ldquoNumerical solution of nonlinearVolterra integral equations using the idea of quasilinearizationrdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 16 no 1 pp 93ndash100 2011

[3] R Krivec and V B Mandelzweig ldquoNumerical investigation ofquasilinearization method in quantum mechanicsrdquo ComputerPhysics Communications vol 138 pp 69ndash79 2001

[4] V BMandelzweig ldquoQuasilinearizationmethod and its verifica-tion on exactly solvablemodels in quantummechanicsrdquo Journalof Mathematical Physics vol 40 no 12 pp 6266ndash6291 1999

[5] V B Mandelzweig and F Tabakin ldquoQuasilinearizationapproach to nonlinear problems in physics with application tononlinear ODEsrdquo Computer Physics Communications vol 141no 2 pp 268ndash281 2001

[6] V B Mandelzweig ldquoQuasilinearization method nonperturba-tive approach to physical problemsrdquo Physics of Atomic Nucleivol 68 no 7 pp 1227ndash1258 2005

[7] V Lakshmikantham S Leela and S Sivasundaram ldquoExtensionsof the method of quasilinearizationrdquo Journal of OptimizationTheory and Applications vol 87 no 2 pp 379ndash401 1995

[8] V Lakshmikantham ldquoFurther improvement of generalizedquasilinearization methodrdquo Nonlinear Analysis Theory Meth-ods amp Applications vol 27 no 2 pp 223ndash227 1996

[9] K Parand M Ghasemi S Rezazadeh A Peiravi A Ghor-banpour and A Tavakoli Golpaygani ldquoQuasilinearizationapproach for solving Volterrarsquos population modelrdquo Applied andComputational Mathematics vol 9 no 1 pp 95ndash103 2010

[10] J Jiang and A S Vatsala ldquoThe quasilinearization method in thesystem of reaction diffusion equationsrdquo Applied Mathematicsand Computation vol 97 no 2-3 pp 223ndash235 1998

[11] B Ahmad ldquoA quasilinearization method for a class of integro-differential equations with mixed nonlinearitiesrdquo NonlinearAnalysis Real World Applications vol 7 no 5 pp 997ndash10042006

[12] S G Pandit ldquoQuadratically converging iterative schemes fornonlinear Volterra integral equations and an applicationrdquo Jour-nal of Applied Mathematics and Stochastic Analysis vol 10 no2 pp 169ndash178 1997

[13] J I Ramos ldquoPiecewise-quasilinearization techniques for singu-larly perturbed Volterra integro-differential equationsrdquo AppliedMathematics and Computation vol 188 no 2 pp 1221ndash12332007

[14] S Tuffuor and J W Labadie ldquoA nonlinear time variant rainfall-runoff model for augmenting monthly datardquo Water ResourcesResearch vol 10 pp 1161ndash1166 1974

[15] S S Motsa P Sibanda and S Shateyi ldquoA new spectral-homotopy analysismethod for solving a nonlinear second orderBVPrdquo Communications in Nonlinear Science and NumericalSimulation vol 15 no 9 pp 2293ndash2302 2010

[16] S S Motsa P Sibanda F G Awad and S Shateyi ldquoA newspectral-homotopy analysis method for the MHD Jeffery-Hamel problemrdquo Computers amp Fluids vol 39 no 7 pp 1219ndash1225 2010

[17] S J Liao Beyond Perturbation Introduction to HomotopyAnalysis Method Chapman amp HallCRC Press 2003

[18] S Li and S-J Liao ldquoAn analytic approach to solve multiplesolutions of a strongly nonlinear problemrdquoAppliedMathematicsand Computation vol 169 no 2 pp 854ndash865 2005

[19] P Sibanda S Motsa and Z Makukula ldquoA spectral-homotopyanalysis method for heat transfer flow of a third grade fluidbetween parallel platesrdquo International Journal of NumericalMethods for Heat amp Fluid Flow vol 22 no 1 pp 4ndash23 2012

[20] S S Motsa and P Sibanda ldquoOn the solution of MHD flowover a nonlinear stretching sheet by an efficient semi-analyticaltechniquerdquo International Journal for Numerical Methods inFluids vol 68 no 12 pp 1524ndash1537 2012

[21] S Abbasbandy ldquoImproving Newton-Raphson method for non-linear equations bymodifiedAdomiandecompositionmethodrdquoApplied Mathematics and Computation vol 145 no 2-3 pp887ndash893 2003

[22] C Chun ldquoIterative methods improving Newtonrsquos method bythe decomposition methodrdquo Computers amp Mathematics withApplications vol 50 no 10ndash12 pp 1559ndash1568 2005

[23] G Adomian ldquoA review of the decomposition method andsome recent results for nonlinear equationsrdquoMathematical andComputer Modelling vol 13 no 7 pp 17ndash43 1990

Journal of Applied Mathematics 9

[24] G Adomian and R Rach ldquoNoise terms in decompositionsolution seriesrdquo Computers amp Mathematics with Applicationsvol 24 no 11 pp 61ndash64 1992

[25] G Adomian Solving Frontier Problems of Physics The Decom-position Method Kluwer Academic Publishers Group BostonMass USA 1994

[26] C Chun ldquoConstruction of Newton-like iteration methods forsolving nonlinear equationsrdquoNumerische Mathematik vol 104no 3 pp 297ndash315 2006

[27] M A Noor ldquoIterative methods for nonlinear equations usinghomotopy perturbation techniquerdquo Applied Mathematics ampInformation Sciences vol 4 no 2 pp 227ndash235 2010

[28] J P Boyd ldquoThe Blasius function computations before com-puters the value of tricks undergraduate projects and openresearch problemsrdquo SIAM Review vol 50 no 4 pp 791ndash8042008

[29] B D Ganapol ldquoHighly accurate solutions of the BlasiusandFalkner-Skan boundary layer equations via convergence accel-erationrdquo httparxivorgabs10063888

[30] A S Bataineh M S M Noorani and I Hashim ldquoSeriessolution of the multispecies Lotka-Volterra equations by meansof the homotopy analysis methodrdquo Differential Equations andNonlinear Mechanics vol 2008 Article ID 816787 14 pages2008

[31] A S Bataineh M S M Noorani and I Hashim ldquoHomotopyanalysis method for singular IVPs of Emden-Fowler typerdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 14 no 4 pp 1121ndash1131 2009

[32] Y Tan and S Abbasbandy ldquoHomotopy analysis method forquadratic Riccati differential equationrdquo Communications inNonlinear Science and Numerical Simulation vol 13 no 3 pp539ndash546 2008

[33] C Canuto M Y Hussaini A Quarteroni and T A ZangSpectral Methods in Fluid Dynamics Springer Berlin Germany1988

[34] W S Don and A Solomonoff ldquoAccuracy and speed in com-puting the Chebyshev collocation derivativerdquo SIAM Journal onScientific Computing vol 16 no 6 pp 1253ndash1268 1995

[35] L N Trefethen Spectral Methods in MATLAB SIAM 2000[36] J A CWeideman and S C Reddy ldquoAMATLAB differentiation

matrix suiterdquoACMTransactions onMathematical Software vol26 no 4 pp 465ndash519 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article On Extending the Quasilinearization Method ...iterations required to nd solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. e

8 Journal of Applied Mathematics

of Boyd [28] and Ganapol [29] were obtained only after a fewiterations validates both the higher order convergence and theaccuracy of the present solution methods

Table 2 shows the computed values of 11989110158401015840(0) using

Schemes-0 and -1 for the Pohlhausen flow (120573 = 0 1205731 = 1)For this particular flow the exact value of 11989110158401015840(0) is knownto be 2radic3 The iteration Scheme-0 matches the exact resultafter only 5 iterations and Scheme-1 converges after only 3iterationsThemethod used in Ganapol [29] converged to theexact result after 104 iterations This again demonstrates thesuperior convergence of the present method

Table 3 gives the numerical simulations of the skin fric-tion results for theHomann flowWe observe that the 29-digitresults reported in [29] are achieved in 5 iterations 4 itera-tions and 3 iterations for Scheme-0 -1 and -2 respectivelyThis result indicates that adding an additional level in theQLM-SHAM schemewould further significantly increase theconvergence of the iteration scheme We further note fromTables 1ndash3 that all three schemes converge significantly muchfaster than the spectral homotopy analysismethod on its own

5 Conclusion

In this study we presented three hybrid QLM-SHAM itera-tion schemes for the solution of Falkner-Skan type boundarylayer equations We have shown through numerical exper-imentation that the proposed numerical schemes signifi-cantly enhance the convergence rate of the quasilinearizationmethod By comparison with the most accurate solutionsof the Falkner-Skan equations currently available in theliterature we have shown that the schemes are highly accurateand efficient in terms of the number of iterations requiredto determine the solution to the required level of accuracyThe schemes presented provide robust tools for the efficientsolution of nonlinear equations by offering superior accuracyto many existing methods In addition the approach usedin deriving these schemes provides a suitable framework forextension to higher level schemes by adding more terms ofthe SHAM component of the method

References

[1] R E Bellman and R E Kalaba Quasilinearization and Non-linear Boundary-Value Problems Elsevier New York NY USA1965

[2] K Maleknejad and E Najafi ldquoNumerical solution of nonlinearVolterra integral equations using the idea of quasilinearizationrdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 16 no 1 pp 93ndash100 2011

[3] R Krivec and V B Mandelzweig ldquoNumerical investigation ofquasilinearization method in quantum mechanicsrdquo ComputerPhysics Communications vol 138 pp 69ndash79 2001

[4] V BMandelzweig ldquoQuasilinearizationmethod and its verifica-tion on exactly solvablemodels in quantummechanicsrdquo Journalof Mathematical Physics vol 40 no 12 pp 6266ndash6291 1999

[5] V B Mandelzweig and F Tabakin ldquoQuasilinearizationapproach to nonlinear problems in physics with application tononlinear ODEsrdquo Computer Physics Communications vol 141no 2 pp 268ndash281 2001

[6] V B Mandelzweig ldquoQuasilinearization method nonperturba-tive approach to physical problemsrdquo Physics of Atomic Nucleivol 68 no 7 pp 1227ndash1258 2005

[7] V Lakshmikantham S Leela and S Sivasundaram ldquoExtensionsof the method of quasilinearizationrdquo Journal of OptimizationTheory and Applications vol 87 no 2 pp 379ndash401 1995

[8] V Lakshmikantham ldquoFurther improvement of generalizedquasilinearization methodrdquo Nonlinear Analysis Theory Meth-ods amp Applications vol 27 no 2 pp 223ndash227 1996

[9] K Parand M Ghasemi S Rezazadeh A Peiravi A Ghor-banpour and A Tavakoli Golpaygani ldquoQuasilinearizationapproach for solving Volterrarsquos population modelrdquo Applied andComputational Mathematics vol 9 no 1 pp 95ndash103 2010

[10] J Jiang and A S Vatsala ldquoThe quasilinearization method in thesystem of reaction diffusion equationsrdquo Applied Mathematicsand Computation vol 97 no 2-3 pp 223ndash235 1998

[11] B Ahmad ldquoA quasilinearization method for a class of integro-differential equations with mixed nonlinearitiesrdquo NonlinearAnalysis Real World Applications vol 7 no 5 pp 997ndash10042006

[12] S G Pandit ldquoQuadratically converging iterative schemes fornonlinear Volterra integral equations and an applicationrdquo Jour-nal of Applied Mathematics and Stochastic Analysis vol 10 no2 pp 169ndash178 1997

[13] J I Ramos ldquoPiecewise-quasilinearization techniques for singu-larly perturbed Volterra integro-differential equationsrdquo AppliedMathematics and Computation vol 188 no 2 pp 1221ndash12332007

[14] S Tuffuor and J W Labadie ldquoA nonlinear time variant rainfall-runoff model for augmenting monthly datardquo Water ResourcesResearch vol 10 pp 1161ndash1166 1974

[15] S S Motsa P Sibanda and S Shateyi ldquoA new spectral-homotopy analysismethod for solving a nonlinear second orderBVPrdquo Communications in Nonlinear Science and NumericalSimulation vol 15 no 9 pp 2293ndash2302 2010

[16] S S Motsa P Sibanda F G Awad and S Shateyi ldquoA newspectral-homotopy analysis method for the MHD Jeffery-Hamel problemrdquo Computers amp Fluids vol 39 no 7 pp 1219ndash1225 2010

[17] S J Liao Beyond Perturbation Introduction to HomotopyAnalysis Method Chapman amp HallCRC Press 2003

[18] S Li and S-J Liao ldquoAn analytic approach to solve multiplesolutions of a strongly nonlinear problemrdquoAppliedMathematicsand Computation vol 169 no 2 pp 854ndash865 2005

[19] P Sibanda S Motsa and Z Makukula ldquoA spectral-homotopyanalysis method for heat transfer flow of a third grade fluidbetween parallel platesrdquo International Journal of NumericalMethods for Heat amp Fluid Flow vol 22 no 1 pp 4ndash23 2012

[20] S S Motsa and P Sibanda ldquoOn the solution of MHD flowover a nonlinear stretching sheet by an efficient semi-analyticaltechniquerdquo International Journal for Numerical Methods inFluids vol 68 no 12 pp 1524ndash1537 2012

[21] S Abbasbandy ldquoImproving Newton-Raphson method for non-linear equations bymodifiedAdomiandecompositionmethodrdquoApplied Mathematics and Computation vol 145 no 2-3 pp887ndash893 2003

[22] C Chun ldquoIterative methods improving Newtonrsquos method bythe decomposition methodrdquo Computers amp Mathematics withApplications vol 50 no 10ndash12 pp 1559ndash1568 2005

[23] G Adomian ldquoA review of the decomposition method andsome recent results for nonlinear equationsrdquoMathematical andComputer Modelling vol 13 no 7 pp 17ndash43 1990

Journal of Applied Mathematics 9

[24] G Adomian and R Rach ldquoNoise terms in decompositionsolution seriesrdquo Computers amp Mathematics with Applicationsvol 24 no 11 pp 61ndash64 1992

[25] G Adomian Solving Frontier Problems of Physics The Decom-position Method Kluwer Academic Publishers Group BostonMass USA 1994

[26] C Chun ldquoConstruction of Newton-like iteration methods forsolving nonlinear equationsrdquoNumerische Mathematik vol 104no 3 pp 297ndash315 2006

[27] M A Noor ldquoIterative methods for nonlinear equations usinghomotopy perturbation techniquerdquo Applied Mathematics ampInformation Sciences vol 4 no 2 pp 227ndash235 2010

[28] J P Boyd ldquoThe Blasius function computations before com-puters the value of tricks undergraduate projects and openresearch problemsrdquo SIAM Review vol 50 no 4 pp 791ndash8042008

[29] B D Ganapol ldquoHighly accurate solutions of the BlasiusandFalkner-Skan boundary layer equations via convergence accel-erationrdquo httparxivorgabs10063888

[30] A S Bataineh M S M Noorani and I Hashim ldquoSeriessolution of the multispecies Lotka-Volterra equations by meansof the homotopy analysis methodrdquo Differential Equations andNonlinear Mechanics vol 2008 Article ID 816787 14 pages2008

[31] A S Bataineh M S M Noorani and I Hashim ldquoHomotopyanalysis method for singular IVPs of Emden-Fowler typerdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 14 no 4 pp 1121ndash1131 2009

[32] Y Tan and S Abbasbandy ldquoHomotopy analysis method forquadratic Riccati differential equationrdquo Communications inNonlinear Science and Numerical Simulation vol 13 no 3 pp539ndash546 2008

[33] C Canuto M Y Hussaini A Quarteroni and T A ZangSpectral Methods in Fluid Dynamics Springer Berlin Germany1988

[34] W S Don and A Solomonoff ldquoAccuracy and speed in com-puting the Chebyshev collocation derivativerdquo SIAM Journal onScientific Computing vol 16 no 6 pp 1253ndash1268 1995

[35] L N Trefethen Spectral Methods in MATLAB SIAM 2000[36] J A CWeideman and S C Reddy ldquoAMATLAB differentiation

matrix suiterdquoACMTransactions onMathematical Software vol26 no 4 pp 465ndash519 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article On Extending the Quasilinearization Method ...iterations required to nd solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. e

Journal of Applied Mathematics 9

[24] G Adomian and R Rach ldquoNoise terms in decompositionsolution seriesrdquo Computers amp Mathematics with Applicationsvol 24 no 11 pp 61ndash64 1992

[25] G Adomian Solving Frontier Problems of Physics The Decom-position Method Kluwer Academic Publishers Group BostonMass USA 1994

[26] C Chun ldquoConstruction of Newton-like iteration methods forsolving nonlinear equationsrdquoNumerische Mathematik vol 104no 3 pp 297ndash315 2006

[27] M A Noor ldquoIterative methods for nonlinear equations usinghomotopy perturbation techniquerdquo Applied Mathematics ampInformation Sciences vol 4 no 2 pp 227ndash235 2010

[28] J P Boyd ldquoThe Blasius function computations before com-puters the value of tricks undergraduate projects and openresearch problemsrdquo SIAM Review vol 50 no 4 pp 791ndash8042008

[29] B D Ganapol ldquoHighly accurate solutions of the BlasiusandFalkner-Skan boundary layer equations via convergence accel-erationrdquo httparxivorgabs10063888

[30] A S Bataineh M S M Noorani and I Hashim ldquoSeriessolution of the multispecies Lotka-Volterra equations by meansof the homotopy analysis methodrdquo Differential Equations andNonlinear Mechanics vol 2008 Article ID 816787 14 pages2008

[31] A S Bataineh M S M Noorani and I Hashim ldquoHomotopyanalysis method for singular IVPs of Emden-Fowler typerdquoCommunications in Nonlinear Science and Numerical Simula-tion vol 14 no 4 pp 1121ndash1131 2009

[32] Y Tan and S Abbasbandy ldquoHomotopy analysis method forquadratic Riccati differential equationrdquo Communications inNonlinear Science and Numerical Simulation vol 13 no 3 pp539ndash546 2008

[33] C Canuto M Y Hussaini A Quarteroni and T A ZangSpectral Methods in Fluid Dynamics Springer Berlin Germany1988

[34] W S Don and A Solomonoff ldquoAccuracy and speed in com-puting the Chebyshev collocation derivativerdquo SIAM Journal onScientific Computing vol 16 no 6 pp 1253ndash1268 1995

[35] L N Trefethen Spectral Methods in MATLAB SIAM 2000[36] J A CWeideman and S C Reddy ldquoAMATLAB differentiation

matrix suiterdquoACMTransactions onMathematical Software vol26 no 4 pp 465ndash519 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article On Extending the Quasilinearization Method ...iterations required to nd solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. e

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended