+ All Categories
Home > Documents > Research Article Positive Fixed Points for Semipositone...

Research Article Positive Fixed Points for Semipositone...

Date post: 01-Jun-2020
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
6
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 406727, 5 pages http://dx.doi.org/10.1155/2013/406727 Research Article Positive Fixed Points for Semipositone Operators in Ordered Banach Spaces and Applications Zengqin Zhao and Xinsheng Du School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China Correspondence should be addressed to Zengqin Zhao; [email protected] Received 23 January 2013; Accepted 7 April 2013 Academic Editor: Kunquan Lan Copyright © 2013 Z. Zhao and X. Du. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e theory of semipositone integral equations and semipositone ordinary differential equations has been emerging as an important area of investigation in recent years, but the research on semipositone operators in abstract spaces is yet rare. By employing a well- known fixed point index theorem and combining it with a translation substitution, we study the existence of positive fixed points for a semipositone operator in ordered Banach space. Lastly, we apply the results to Hammerstein integral equations of polynomial type. 1. Introduction Existence of fixed points for positive operators have been studied by many authors; see [19] and their references. e theory of semipositone integral equations and semipositone ordinary differential equations has been emerging as an important area of investigation in recent years (see [1017]). But the research on semipositone operators in abstract spaces are yet rare up to now. Inspired by a number of semipositone problems for integral equations and ordinary differential equations, we study the existence of positive fixed points for semipositone operators in ordered Banach spaces. en the results are applied to Hammerstein integral equations of polynomial type. Let be a real Banach space with the norm ‖⋅‖, a cone of , and “” the partial ordering defined by , denoting the zero element of , + = \ {}, [, ] = { ∈ | ≤ ≤ }. Recall that cone is said to be normal if there exists a positive constant such that ≤≤ implies ‖ ‖≤ ‖‖, the smallest is called the normal constant of . An element is called the least upper bound (i.e., supremum) of set , if it satisfies two conditions: (i) for any ; (ii) , implies . We denote the least upper bound of by sup , that is, = sup . Definition 1. Cone is said to be minihedral if sup{, } exists for each pair of elements , ∈ . For any in we define + = sup{, }. Definition 2 (see [1, 3]). Let be real Banach spaces, cones of , = 1, 2, : 1 2 , and . en we say is - convex if and only if () ≤ for all (, ) ∈ 1 × (0, 1). Definition 3. Let be real Banach spaces, cones of , and = 1,2. 1 ⊂⊂ 1 , : 2 . is said to be nondecreasing if 1 2 ( 1 , 2 ∈ ) implies 1 2 ; is said to be positive if 2 for any 1 ; is said to be semipositone if (i) there exists an element 0 1 such that ( 0 )∉ 2 and (ii) there exists an element 2 such that + ∈ 2 for any 1 . In order to prove the main results, we need the following lemma which is obtained in [18]. Lemma 4. Let be a real Banach space and Ω a bounded open subset of , with ∈Ω, and : Ω∩ → is a completely continuous operator, where is a cone in . (i) Suppose that ̸ = , for all ∈ Ω ∩ , ≥1, then the fixed point index (, Ω ∩ , ) = 1. (ii) Suppose that , for all ∈ Ω ∩ , then (, Ω ∩ , ) = 0.
Transcript
Page 1: Research Article Positive Fixed Points for Semipositone ...downloads.hindawi.com/journals/aaa/2013/406727.pdfResearch Article Positive Fixed Points for Semipositone Operators in Ordered

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2013 Article ID 406727 5 pageshttpdxdoiorg1011552013406727

Research ArticlePositive Fixed Points for Semipositone Operators inOrdered Banach Spaces and Applications

Zengqin Zhao and Xinsheng Du

School of Mathematical Sciences Qufu Normal University Qufu Shandong 273165 China

Correspondence should be addressed to Zengqin Zhao zqzhaomailqfnueducn

Received 23 January 2013 Accepted 7 April 2013

Academic Editor Kunquan Lan

Copyright copy 2013 Z Zhao and X Du This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

The theory of semipositone integral equations and semipositone ordinary differential equations has been emerging as an importantarea of investigation in recent years but the research on semipositone operators in abstract spaces is yet rare By employing a well-known fixed point index theorem and combining it with a translation substitution we study the existence of positive fixed pointsfor a semipositone operator in ordered Banach space Lastly we apply the results to Hammerstein integral equations of polynomialtype

1 Introduction

Existence of fixed points for positive operators have beenstudied by many authors see [1ndash9] and their references Thetheory of semipositone integral equations and semipositoneordinary differential equations has been emerging as animportant area of investigation in recent years (see [10ndash17])But the research on semipositone operators in abstract spacesare yet rare up to now

Inspired by a number of semipositone problems forintegral equations and ordinary differential equations westudy the existence of positive fixed points for semipositoneoperators in ordered Banach spaces Then the results areapplied to Hammerstein integral equations of polynomialtype

Let 119864 be a real Banach space with the norm sdot 119875 a coneof119864 and ldquolerdquo the partial ordering defined by119875 120579 denoting thezero element of 119864 119875+ = 119875 120579 [119886 119887] = 119909 isin 119864 | 119886 le 119909 le 119887

Recall that cone 119875 is said to be normal if there exists apositive constant 119873 such that 120579 le 119909 le 119910 implies 119909 le

119873 119910 the smallest 119873 is called the normal constant of119875 An element 119911 isin 119864 is called the least upper bound (iesupremum) of set 119863 sub 119864 if it satisfies two conditions (i)119909 le 119911 for any 119909 isin 119863 (ii) 119909 le 119910 119909 isin 119863 implies 119911 le 119910We denote the least upper bound of 119863 by sup119863 that is119911 = sup119863

Definition 1 Cone 119875 sub 119864 is said to be minihedral if sup119909 119910exists for each pair of elements 119909 119910 isin 119864 For any 119909 in 119864 wedefine 119909+ = sup119909 120579

Definition 2 (see [1 3]) Let 119864119894be real Banach spaces 119875

119894cones

of 119864119894 119894 = 1 2 119879 119875

1rarr 1198752 and 120572 isin 119877 Then we say 119879 is 120572-

convex if and only if 119879(119905119906) le 119905120572119879119906 for all (119906 119905) isin 119875

1times (0 1)

Definition 3 Let 119864119894be real Banach spaces 119875

119894cones of 119864

119894 and

119894 = 1 2 1198751sub 119863 sub 119864

1 119879 119863 rarr 119864

2 119879 is said to be

nondecreasing if 1199091le 1199092(1199091 1199092isin 119863) implies 119879119909

1le 1198791199092

119879 is said to be positive if 119879119909 isin 1198752for any 119909 isin 119875

1 119879 is said

to be semipositone if (i) there exists an element 1199090isin 1198751such

that 119865(1199090) notin 1198752and (ii) there exists an element 119902 isin 119864

2such

that 119879119909 + 119902 isin 1198752for any 119909 isin 119875

1

In order to prove the main results we need the followinglemma which is obtained in [18]

Lemma4 Let119864 be a real Banach space andΩ a bounded opensubset of 119864 with 120579 isin Ω and 119860 Ω cap 119876 rarr 119876 is a completelycontinuous operator where 119876 is a cone in 119864

(i) Suppose that 119860119906 = 120583119906 for all 119906 isin 120597Ω cap 119876 120583 ge 1 thenthe fixed point index 119894(119860Ω cap 119876119876) = 1

(ii) Suppose that119860119906 ≰ 119906 for all 119906 isin 120597Ωcap119876 then 119894(119860Ωcap

119876119876) = 0

2 Abstract and Applied Analysis

The research on ordered Banach spaces cones fixed pointindex and the above lemma can be seen in [18 19]

2 Main Results and Their Proofs

Theorem 5 Let 119864119894be Banach space 119875

119894sub 119864119894cones and 119894 =

1 2 Suppose that operator 119860 1198641rarr 1198642can be expressed as

119860 = 119861119865 where the cone 119875119894and the operator 119865 and 119861 satisfy the

following conditions

(H1) when 1198751is normal and minihedral 119875

2is normal

(H2) when 119865 1198641rarr 1198642is continuous there exist 119892 isin 119875

+

2

119902 isin 1198642 a nondecreasing 120572-convex operator 119866 119875

1rarr

1198752 (120572 gt 1) and a bounded functional 119867 119875

1rarr

[0 +infin) such that

119866119906 le 119865119906 + 119902 le 119867 (119906) 119892 forall119906 isin 1198751 (1)

(H3) when 119861 1198642rarr 1198641is linear completely continuous

there exists 119890 isin 119875+1such that

119861119909 ge 119861119909 119890 forall119909 isin 1198752 119866119890 gt 120579 (2)

(H4) when there exists a positive number 1199030such that

120579 lt 119861119902 lt 1199030119890 ℎ (119903

0119873)

10038171003817100381710038171198611198921003817100381710038171003817 lt

1199030

119873 (3)

with ℎ(119905) = max119906isin1198751119906le119905

119867(119906) 119873 is the normalconstant of 119875

1 Then 119860 has a fixed point 119908 isin 119875

+

1

Proof For 119902 in (H2) and 119890 in (H3) we define that

1199090= 119861119902 119875

119890= 119906 isin 119875

1| 119906 ge 119906 119890 (4)

119870119906 = 119861 (119865 ([119906 minus 1199090]+

) + 119902) forall119906 isin 1198751 (5)

Clearly 119875119890sub 1198751is a normal cone of 119864

1 Since the cone 119875

1is

minihedral [119906minus1199090]+ makes sense By (H4) and (4) we know

that

1199090lt 1199030119890 le

119910

10038171003817100381710038171199101003817100381710038171003817

1199030 forall119910 isin 119875

+

119890 (6)

From the condition (H3) and (4) we know that 1199090isin 119875119890sub

1198751 and hence 119906 minus 119909

0le 119906 and

120579 le [119906 minus 1199090]+

le 119906 forall119906 isin 1198751 (7)

By (7) we have [119906 minus 1199090]+

isin 1198751 using (H2) we know that

119865 ([119906 minus 1199090]+

) + 119902 ge 119866 ([119906 minus 1199090]+

) forall119906 isin 119875+

1 (8)

That is 119865([119906 minus 1199090]+

) + 119902 isin 1198752 This and (2) and (5) imply

119870119906 isin 119875119890 for all 119906 isin 119875

1 Hence

119870(119875119890) sub 119875119890 (9)

Suppose that 119863 is a bounded set of 119875119890 119871 is a positive

number satisfying 119906 le 119871 for all 119906 isin 119863 By (7) andnormality of 119875

1 we obtain that

10038171003817100381710038171003817[119906 minus 119909

0]+10038171003817100381710038171003817

le 119873 119906 le 119873119871 forall119906 isin 119863 (10)

Therefore (H2) implies that 119865([119906 minus 1199090]+

) isin [minus119902 ℎ(119873119871)119892]119906 isin 119863 Since 119875

2is normal the order interval [minus119902 ℎ(119873119871)119892]

is a bounded set of 1198642 therefore 119865([119906 minus 119909

0]+

) | 119906 isin 119863 isa bounded set of 119864

2 This together with (9) continuity of 119865

and the completely continuity of 119861 we obtain that 119870map 119875119890

into 119875119890and is completely continuous

For the 1199030in (H4) we let Ω

1199030

= 119906 isin 1198641| 119906 lt 119903

0 By

(7) we know that10038171003817100381710038171003817[119906 minus 119909

0]+10038171003817100381710038171003817

le 119873 119906 le 1199030119873 forall119906 isin Ω

1199030

cap 119875119890 (11)

Therefore from (H2) we obtain that

119865 ([119906 minus 1199090]+

) + 119902 le 119867([119906 minus 1199090]+

) 119892 le ℎ (1199030119873)119892

forall119906 isin Ω1199030

cap 119875119890

(12)

where ℎ(119905) is as in (H4)We prove that

119870119906 = 120583119906 forall119906 isin 120597Ω1199030

cap 119875119890 120583 ge 1 (13)

Assume there exist 1205830isin (0 1] and 119911

0isin 120597Ω1199030

cap 119875119890 such that

1199110= 12058301198701199110 Using (12) we have

1198701199110= 119861 (119865 ([119911

0minus 1199090]+

) + 119902) le ℎ (1199030119873) 119861119892 (14)

hence

1199030=10038171003817100381710038171199110

1003817100381710038171003817 =100381710038171003817100381712058301198701199110

1003817100381710038171003817 le10038171003817100381710038171198701199110

1003817100381710038171003817 le 119873ℎ (1199030119873)

10038171003817100381710038171198611198921003817100381710038171003817 (15)

which contradicts the condition (3) thus (13) holds ByLemma 4 we know

119894 (119870Ω1199030

cap 119875119890 119875119890) = 1 (16)

Take1198980gt 0 such that119898

0lt 11199030 and set

119877 gt max21199030 (1198980

10038171003817100381710038171198611199021003817100381710038171003817)minus1

1199030

1 minus 11989801199030

1198731(120572minus1)

((1198980

10038171003817100381710038171198611199021003817100381710038171003817)120572

119861119866119890)minus1(120572minus1)

(17)

where 1199030as in (3) 119873 is the normal constant of 119875

1 In the

following we prove

119906 ge 119870119906 forall119906 isin 120597Ω119877cap 119875119890 (18)

Assume there exists 1199101isin 120597Ω119877cap 119875119890such that 119910

1ge 1198701199101 Using

(6) we have1199090lt (1199101 1199101)1199030= (1199101119877)1199030 thus it is obtained

that

1199101gt119877

1199030

1199090 119910

1minus 1199090isin 119875+

1 (19)

Abstract and Applied Analysis 3

by (17) From (17) we know 119877 gt 1199030(1 minus 119898

01199030) thus (119877 minus

1199030)1199030ge 1198980119877 This and (H3) (4) and (19) imply

[1199101minus 1199090]+

= 1199101minus 1199090gt (

119877

1199030

minus 1)119861119902

ge 1198980119877119861119902 ge 119898

01198771003817100381710038171003817119861119902

1003817100381710038171003817 119890

(20)

By 120572-convexity of 119866 we know

119866 (119904119906) ge 119904120572

119866 (119906) forall119906 isin 1198751 119904 gt 1 (21)

By (17) we know1198980119877 119861119902 gt 1 hence (20) and (21) imply

119866([1199101minus 1199090]+

) ge 119866 (1198980119877

10038171003817100381710038171198611199021003817100381710038171003817 119890) ge (119898

01198771003817100381710038171003817119861119902

1003817100381710038171003817)120572

119866119890 (22)

This together with (5) and the condition (H2) imply

1199101ge 1198701199101= 119861 (119865 ([119910

1minus 1199090]+

) + 119902)

ge 119861 (119866 ([1199101minus 1199090]+

)) ge (11989801198771003817100381710038171003817119861119902

1003817100381710038171003817)120572

119861119866119890

(23)

This and (23) imply

119873119877 = 11987310038171003817100381710038171199101

1003817100381710038171003817 ge (11989801198771003817100381710038171003817119861119902

1003817100381710038171003817)120572

119861119866119890

= 119877120572

(1198980

10038171003817100381710038171198611199021003817100381710038171003817)120572

119861119866119890

(24)

therefore

1198731(120572minus1)

((1198980

10038171003817100381710038171198611199021003817100381710038171003817)120572

119861119866119890)minus1(120572minus1)

ge 119877 (25)

which contradicts (17) thus (18) holds Using Lemma 4 wehave

119894 (119870Ω119877cap 119875119890 119875119890) = 0 (26)

By (16) and (26) and additivity of fixed point indexes weknow that

119894 (119870 (Ω119877 Ω1199030

)⋂119875119890 119875119890) = minus1 (27)

Thus119870 has a fixed point 119911 on (Ω119877 Ω1199030

)⋂119875119890 Hence

119911 = 119861 (119865 ([119911 minus 1199090]+

) + 119902) 119911 isin 119875119890 1199030le 119911 le 119877 (28)

Let 119908 = 119911 minus 1199090 From (6) and 119911 ge 119903

0we know 119909

0lt

(119911 119911 )1199030le 119911 then [119911 minus 119909

0]+

= 119908 isin 119875+

1 This together with

(4) and (28) imply 119908 = 119911 minus 1199090= 119861119865(119908) = 119860(119908) so that 119908 is

a positive fixed point of 119860

3 Corollary and Applications

FromTheorem 5 we obtain the following corollary

Corollary 6 Suppose that conditions (H1) (H2) and (H3)hold and in addition assume the following

(H5) For any 119909 isin 119875+

2 there exists a positive number 119871

119909such

that 119861119909 le 119871119909119890

Then there exists a small enough 120582lowast gt 0 such that 119906 = 120582119860119906 hasa positive solution for any 120582 isin (0 120582lowast)

Proof For any fixed 1199030gt 0 by (H5) we can all take 120582 = 120582(119903

0)

such that

120582119861119902 lt 1199030119890 120582ℎ (119903

0119873)

10038171003817100381710038171198611198921003817100381710038171003817 lt

1199030

119873 forall120582 isin (0 120582) (29)

hence (H4) holds We take that

119865lowast

(119905 119906) = 120582119865 (119905 119906) 119866lowast

(119906) = 120582119866 (119906)

119902lowast

(119905) = 120582119902 (119905) 119892lowast

(119905) = 120582119892 (119905)

(30)

Then for 120582119860 = 119861(120582119865) the conditions in Theorem 5 aresatisfied Thus 120582119860 has a positive fixed point that is 119906 = 120582119860

has a positive solution and the proof is complete

We consider the integral equation

119906 (119909) = int119866

119896 (119909 119910)(

119898

sum

119894=1

119886119894(119910) 119906(119910)

120572119894

+ 119902 (119910)

times (119906(119910)120574

minus 119906(119910)120575

minus 1199080))119889119910

(31)

where 119866 is a bounded closed domain in 119877119899 and 120572119894ge 0 119886

119894(119909)

119902(119909) isin 119871(119866 [0infin)) 119894 = 1 2 119898 119896(119909 119910) is nonnegativecontinuous on 119866 times 119866

Theorem 7 Suppose that among 120572119894(119894 = 1 2 119898) there

exists 1205721198940

gt 1 such that inf119909isin119866

1198861198940

(119909) gt 0 and there existnontrivial nonnegative functions 119886(119909) 119887(119909) isin 119862(119866) and apositive number 119888 120574 120575 119908

0such that

119888119886 (119909) 119887 (119910) le 119896 (119909 119910) le 119886 (119909)

119896 (119909 119910) le 119887 (119910) forall119909 119910 isin 119866

(32)

120574 gt 120575 gt 0 0 lt 1199080le 1 + min

119905isin[01]

119905120574

minus 119905120575

(33)

int119866

119902 (119910) 119889119910 lt 119888

int119866

119887 (119910) sdotmax(119898

sum

119894=1

119886119894(119910) 119902 (119910))119889119910 lt

1

2 minus 1199080

(34)

Then (31) has a nontrivial nonnegative solution in 119862(119866)

Proof Let the Banach space 1198641= 119862(119866) with the sup norm

sdot

1198751= 119906 isin 119864

1| 119906 (119909) ge 0 forall119909 isin 119866 (35)

1198642= 119871 (119866) 119875

2= 119906 isin 119864

2| 119906 (119909) ge 0 forall119909 isin 119866 (36)

119890 = 119888119886 (119909) 119902 = 119902 (119909)

119892 (119909) = max119902 (119909) 119898

sum

119894=1

119886119894(119909)

(37)

4 Abstract and Applied Analysis

119866119906 = 1198861198940(119909) 119906(119909)

1205721198940 forall119906 (119909) isin 119875

1 (38)

119865119906 =

119898

sum

119894=1

119886119894(119909) 119906(119909)

120572119894 + 119902 (119909) (119906(119909)

120574

minus 119906(119909)120575

minus 1199080)

forall119906 (119909) isin 1198751

(39)

119869119906 (119909) = 119906(119909)120572

if 119906 (119909) le 1

119906(119909)120573

if 119906 (119909) gt 1 forall119906 (119909) isin 119875

1 (40)

with 120572 = min1le119894le119899

120572119894 120573 = max

1le119894le119899120572119894

119867(119906) =10038171003817100381710038171003817119869119906 (119909) + 119906(119909)

120574

minus 119906(119909)120575

minus 1199080+ 1

10038171003817100381710038171003817119862 forall119906 (119909) isin 119875

1

(41)

119861119906 = int119866

119896 (119909 119910) 119906 (119910) 119889119910 1199030= 1 (42)

Then 1198751sub 1198641is normal minihedral the normal constant

119873 = 1 119890 isin 119875+

1 1198752is a cone of 119864

2 119902 119892 isin 119875

+

2 119866 119875

1rarr 1198752is

nondecreasing 1205721198940

-convex operator and119866119890 gt 120579119865 1198751rarr 1198642

is continuous ℎ 1198751rarr [0 +infin)

It is known easily that

minus1 lt min119905isin[01]

119905120574

minus 119905120575

le 119905120574

minus 119905120575

lt 0 119905 isin (0 1) (43)

thus 1199080exits in (33) and

119905120574

minus 119905120575

minus 1199080le minus1199080 119905 isin [0 1] (44)

By (33) (43) and 120574 gt 120575 we have

119906(119909)120574

minus 119906(119909)120575

minus 1199080ge 119906(119909)

120574

minus 119906(119909)120575

minus 1 minus min119905isin[01]

119905120574

minus 119905120575

ge minus1 forall119906 (119909) isin 119875+

1

(45)

therefore

119906(119909)120574

minus 119906(119909)120575

minus 1199080+ 1 ge 0 forall119906 (119909) isin 119875

+

1 (46)

From (33) (39) and (44) we know easily that there exists 1199060isin

1198751such that 119865119906 notin 119875

2 From (37)ndash(46) we obtain that

119866119906 le 119865119906+119902 =

119898

sum

119894=1

119886119894(119909) 119906(119909)

120572119894+119902 (119909) (119906(119909)

120574

minus119906(119909)120575

minus1199080+1)

le ((119869119906) (119909) + 119906(119909)120574

minus 119906(119909)120575

minus 1199080+ 1) 119892 (119909)

le 119867 (119906) 119892 (119909) forall119909 isin 119866 119906 isin 119875+

1

(47)

Equations (32) and (42) imply that 119861119906 le int119866119887(119910)119906(119910)119889119910

and hence

119861119906 ge 119888119886 (119909) int119866

119887 (119910) 119906 (119910) 119889119910 ge 119861119906 119890 forall119906 isin 1198751 (48)

By (42) (32) (34) and (37) we obtain that

119861119902 le 119886 (119909) int119866

119902 (119910) 119889119910 lt 119888119886 (119909) = 1199030119890 (49)

By (41) we have ℎ(1199030119873) = ℎ(1) = max

119906le1119867(119906) = 2 minus 119908

0

This and (34) and (42) get that

119861119892 = int119866

119896 (119909 119910) 119892 (119910) 119889119910

le int119866

119887 (119910) 119892 (119910) 119889119910 lt1

2 minus 1199080

=1199030

ℎ (1199030119873)

(50)

From (35) and (36) we know that (H1) is satisfied By (47)and (48) we obtain that (H2) and (H3) are satisfied Equations(49) and (50) imply that (H4) is satisfied Therefore usingTheorem 5 the integral equation (31) has a positive solutionin 119862(119866)

Acknowledgments

The authors are very grateful to the referee for his or hervaluable suggestions This research was supported by theNational Natural Science Foundation of China (10871116)the Doctoral Program Foundation of Education Ministry ofChina (20103705120002) Shandong Provincial Natural Sci-ence Foundation China (ZR2012AM006) and the Programfor Scientific Research Innovation Team in Colleges andUniversities of Shandong Province

References

[1] A J B Potter ldquoApplications of Hilbertrsquos projective metric tocertain classes of non-homogeneous operatorsrdquo The QuarterlyJournal of Mathematics Oxford Second Series vol 28 no 109pp 93ndash99 1977

[2] C Zhai and C Guo ldquoOn 120572-convex operatorsrdquo Journal ofMathematical Analysis and Applications vol 316 no 2 pp 556ndash565 2006

[3] Z Zhao and X Du ldquoFixed points of generalized 119890-concave(generalized 119890-convex) operators and their applicationsrdquo Jour-nal of Mathematical Analysis and Applications vol 334 no 2pp 1426ndash1438 2007

[4] J R L Webb ldquoRemarks on 1199060-positive operatorsrdquo Journal of

Fixed Point Theory and Applications vol 5 no 1 pp 37ndash452009

[5] Z Zhao ldquoMultiple fixed points of a sum operator and applica-tionsrdquo Journal of Mathematical Analysis and Applications vol360 no 1 pp 1ndash6 2009

[6] Z Zhao and X Chen ldquoFixed points of decreasing operators inordered Banach spaces and applications to nonlinear secondorder elliptic equationsrdquo Computers ampMathematics with Appli-cations vol 58 no 6 pp 1223ndash1229 2009

[7] C-B Zhai and X-M Cao ldquoFixed point theorems for 120591 minus 120593-concave operators and applicationsrdquo Computers ampMathematicswith Applications vol 59 no 1 pp 532ndash538 2010

[8] Z Zhao ldquoExistence and uniqueness of fixed points for somemixed monotone operatorsrdquo Nonlinear Analysis Theory Meth-ods amp Applications vol 73 no 6 pp 1481ndash1490 2010

[9] Z Zhao ldquoFixed points of 120591 minus 120593-convex operators and applica-tionsrdquo Applied Mathematics Letters vol 23 no 5 pp 561ndash5662010

[10] R P Agarwal S R Grace and D OrsquoRegan ldquoExistence of pos-itive solutions to semipositone Fredholm integral equationsrdquoFunkcialaj Ekvacioj vol 45 no 2 pp 223ndash235 2002

Abstract and Applied Analysis 5

[11] K Q Lan ldquoPositive solutions of semi-positone Hammersteinintegral equations and applicationsrdquo Communications on Pureand Applied Analysis vol 6 no 2 pp 441ndash451 2007

[12] K Q Lan ldquoEigenvalues of semi-positoneHammerstein integralequations and applications to boundary value problemsrdquo Non-linear Analysis Theory Methods amp Applications vol 71 no 12pp 5979ndash5993 2009

[13] J R Graef and L Kong ldquoPositive solutions for third ordersemipositone boundary value problemsrdquo Applied MathematicsLetters vol 22 no 8 pp 1154ndash1160 2009

[14] J R LWebb andG Infante ldquoSemi-positone nonlocal boundaryvalue problems of arbitrary orderrdquoCommunications onPure andApplied Analysis vol 9 no 2 pp 563ndash581 2010

[15] A Dogan J R Graef and L Kong ldquoHigher order semipositonemulti-point boundary value problems on time scalesrdquo Comput-ers amp Mathematics with Applications vol 60 no 1 pp 23ndash352010

[16] D R Anderson and C Zhai ldquoPositive solutions to semi-positone second-order three-point problems on time scalesrdquoApplied Mathematics and Computation vol 215 no 10 pp3713ndash3720 2010

[17] X Xian D OrsquoRegan and C Yanfang ldquoStructure of positivesolution sets of semi-positone singular boundary value prob-lemsrdquo Nonlinear Analysis Theory Methods amp Applications vol72 no 7-8 pp 3535ndash3550 2010

[18] D J Guo and V Lakshmikantham Nonlinear Problems inAbstract Cones vol 5 of Notes and Reports in Mathematics inScience and Engineering Academic Press Boston Mass USA1988

[19] K Deimling Nonlinear Functional Analysis Springer BerlinGermany 1985

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Positive Fixed Points for Semipositone ...downloads.hindawi.com/journals/aaa/2013/406727.pdfResearch Article Positive Fixed Points for Semipositone Operators in Ordered

2 Abstract and Applied Analysis

The research on ordered Banach spaces cones fixed pointindex and the above lemma can be seen in [18 19]

2 Main Results and Their Proofs

Theorem 5 Let 119864119894be Banach space 119875

119894sub 119864119894cones and 119894 =

1 2 Suppose that operator 119860 1198641rarr 1198642can be expressed as

119860 = 119861119865 where the cone 119875119894and the operator 119865 and 119861 satisfy the

following conditions

(H1) when 1198751is normal and minihedral 119875

2is normal

(H2) when 119865 1198641rarr 1198642is continuous there exist 119892 isin 119875

+

2

119902 isin 1198642 a nondecreasing 120572-convex operator 119866 119875

1rarr

1198752 (120572 gt 1) and a bounded functional 119867 119875

1rarr

[0 +infin) such that

119866119906 le 119865119906 + 119902 le 119867 (119906) 119892 forall119906 isin 1198751 (1)

(H3) when 119861 1198642rarr 1198641is linear completely continuous

there exists 119890 isin 119875+1such that

119861119909 ge 119861119909 119890 forall119909 isin 1198752 119866119890 gt 120579 (2)

(H4) when there exists a positive number 1199030such that

120579 lt 119861119902 lt 1199030119890 ℎ (119903

0119873)

10038171003817100381710038171198611198921003817100381710038171003817 lt

1199030

119873 (3)

with ℎ(119905) = max119906isin1198751119906le119905

119867(119906) 119873 is the normalconstant of 119875

1 Then 119860 has a fixed point 119908 isin 119875

+

1

Proof For 119902 in (H2) and 119890 in (H3) we define that

1199090= 119861119902 119875

119890= 119906 isin 119875

1| 119906 ge 119906 119890 (4)

119870119906 = 119861 (119865 ([119906 minus 1199090]+

) + 119902) forall119906 isin 1198751 (5)

Clearly 119875119890sub 1198751is a normal cone of 119864

1 Since the cone 119875

1is

minihedral [119906minus1199090]+ makes sense By (H4) and (4) we know

that

1199090lt 1199030119890 le

119910

10038171003817100381710038171199101003817100381710038171003817

1199030 forall119910 isin 119875

+

119890 (6)

From the condition (H3) and (4) we know that 1199090isin 119875119890sub

1198751 and hence 119906 minus 119909

0le 119906 and

120579 le [119906 minus 1199090]+

le 119906 forall119906 isin 1198751 (7)

By (7) we have [119906 minus 1199090]+

isin 1198751 using (H2) we know that

119865 ([119906 minus 1199090]+

) + 119902 ge 119866 ([119906 minus 1199090]+

) forall119906 isin 119875+

1 (8)

That is 119865([119906 minus 1199090]+

) + 119902 isin 1198752 This and (2) and (5) imply

119870119906 isin 119875119890 for all 119906 isin 119875

1 Hence

119870(119875119890) sub 119875119890 (9)

Suppose that 119863 is a bounded set of 119875119890 119871 is a positive

number satisfying 119906 le 119871 for all 119906 isin 119863 By (7) andnormality of 119875

1 we obtain that

10038171003817100381710038171003817[119906 minus 119909

0]+10038171003817100381710038171003817

le 119873 119906 le 119873119871 forall119906 isin 119863 (10)

Therefore (H2) implies that 119865([119906 minus 1199090]+

) isin [minus119902 ℎ(119873119871)119892]119906 isin 119863 Since 119875

2is normal the order interval [minus119902 ℎ(119873119871)119892]

is a bounded set of 1198642 therefore 119865([119906 minus 119909

0]+

) | 119906 isin 119863 isa bounded set of 119864

2 This together with (9) continuity of 119865

and the completely continuity of 119861 we obtain that 119870map 119875119890

into 119875119890and is completely continuous

For the 1199030in (H4) we let Ω

1199030

= 119906 isin 1198641| 119906 lt 119903

0 By

(7) we know that10038171003817100381710038171003817[119906 minus 119909

0]+10038171003817100381710038171003817

le 119873 119906 le 1199030119873 forall119906 isin Ω

1199030

cap 119875119890 (11)

Therefore from (H2) we obtain that

119865 ([119906 minus 1199090]+

) + 119902 le 119867([119906 minus 1199090]+

) 119892 le ℎ (1199030119873)119892

forall119906 isin Ω1199030

cap 119875119890

(12)

where ℎ(119905) is as in (H4)We prove that

119870119906 = 120583119906 forall119906 isin 120597Ω1199030

cap 119875119890 120583 ge 1 (13)

Assume there exist 1205830isin (0 1] and 119911

0isin 120597Ω1199030

cap 119875119890 such that

1199110= 12058301198701199110 Using (12) we have

1198701199110= 119861 (119865 ([119911

0minus 1199090]+

) + 119902) le ℎ (1199030119873) 119861119892 (14)

hence

1199030=10038171003817100381710038171199110

1003817100381710038171003817 =100381710038171003817100381712058301198701199110

1003817100381710038171003817 le10038171003817100381710038171198701199110

1003817100381710038171003817 le 119873ℎ (1199030119873)

10038171003817100381710038171198611198921003817100381710038171003817 (15)

which contradicts the condition (3) thus (13) holds ByLemma 4 we know

119894 (119870Ω1199030

cap 119875119890 119875119890) = 1 (16)

Take1198980gt 0 such that119898

0lt 11199030 and set

119877 gt max21199030 (1198980

10038171003817100381710038171198611199021003817100381710038171003817)minus1

1199030

1 minus 11989801199030

1198731(120572minus1)

((1198980

10038171003817100381710038171198611199021003817100381710038171003817)120572

119861119866119890)minus1(120572minus1)

(17)

where 1199030as in (3) 119873 is the normal constant of 119875

1 In the

following we prove

119906 ge 119870119906 forall119906 isin 120597Ω119877cap 119875119890 (18)

Assume there exists 1199101isin 120597Ω119877cap 119875119890such that 119910

1ge 1198701199101 Using

(6) we have1199090lt (1199101 1199101)1199030= (1199101119877)1199030 thus it is obtained

that

1199101gt119877

1199030

1199090 119910

1minus 1199090isin 119875+

1 (19)

Abstract and Applied Analysis 3

by (17) From (17) we know 119877 gt 1199030(1 minus 119898

01199030) thus (119877 minus

1199030)1199030ge 1198980119877 This and (H3) (4) and (19) imply

[1199101minus 1199090]+

= 1199101minus 1199090gt (

119877

1199030

minus 1)119861119902

ge 1198980119877119861119902 ge 119898

01198771003817100381710038171003817119861119902

1003817100381710038171003817 119890

(20)

By 120572-convexity of 119866 we know

119866 (119904119906) ge 119904120572

119866 (119906) forall119906 isin 1198751 119904 gt 1 (21)

By (17) we know1198980119877 119861119902 gt 1 hence (20) and (21) imply

119866([1199101minus 1199090]+

) ge 119866 (1198980119877

10038171003817100381710038171198611199021003817100381710038171003817 119890) ge (119898

01198771003817100381710038171003817119861119902

1003817100381710038171003817)120572

119866119890 (22)

This together with (5) and the condition (H2) imply

1199101ge 1198701199101= 119861 (119865 ([119910

1minus 1199090]+

) + 119902)

ge 119861 (119866 ([1199101minus 1199090]+

)) ge (11989801198771003817100381710038171003817119861119902

1003817100381710038171003817)120572

119861119866119890

(23)

This and (23) imply

119873119877 = 11987310038171003817100381710038171199101

1003817100381710038171003817 ge (11989801198771003817100381710038171003817119861119902

1003817100381710038171003817)120572

119861119866119890

= 119877120572

(1198980

10038171003817100381710038171198611199021003817100381710038171003817)120572

119861119866119890

(24)

therefore

1198731(120572minus1)

((1198980

10038171003817100381710038171198611199021003817100381710038171003817)120572

119861119866119890)minus1(120572minus1)

ge 119877 (25)

which contradicts (17) thus (18) holds Using Lemma 4 wehave

119894 (119870Ω119877cap 119875119890 119875119890) = 0 (26)

By (16) and (26) and additivity of fixed point indexes weknow that

119894 (119870 (Ω119877 Ω1199030

)⋂119875119890 119875119890) = minus1 (27)

Thus119870 has a fixed point 119911 on (Ω119877 Ω1199030

)⋂119875119890 Hence

119911 = 119861 (119865 ([119911 minus 1199090]+

) + 119902) 119911 isin 119875119890 1199030le 119911 le 119877 (28)

Let 119908 = 119911 minus 1199090 From (6) and 119911 ge 119903

0we know 119909

0lt

(119911 119911 )1199030le 119911 then [119911 minus 119909

0]+

= 119908 isin 119875+

1 This together with

(4) and (28) imply 119908 = 119911 minus 1199090= 119861119865(119908) = 119860(119908) so that 119908 is

a positive fixed point of 119860

3 Corollary and Applications

FromTheorem 5 we obtain the following corollary

Corollary 6 Suppose that conditions (H1) (H2) and (H3)hold and in addition assume the following

(H5) For any 119909 isin 119875+

2 there exists a positive number 119871

119909such

that 119861119909 le 119871119909119890

Then there exists a small enough 120582lowast gt 0 such that 119906 = 120582119860119906 hasa positive solution for any 120582 isin (0 120582lowast)

Proof For any fixed 1199030gt 0 by (H5) we can all take 120582 = 120582(119903

0)

such that

120582119861119902 lt 1199030119890 120582ℎ (119903

0119873)

10038171003817100381710038171198611198921003817100381710038171003817 lt

1199030

119873 forall120582 isin (0 120582) (29)

hence (H4) holds We take that

119865lowast

(119905 119906) = 120582119865 (119905 119906) 119866lowast

(119906) = 120582119866 (119906)

119902lowast

(119905) = 120582119902 (119905) 119892lowast

(119905) = 120582119892 (119905)

(30)

Then for 120582119860 = 119861(120582119865) the conditions in Theorem 5 aresatisfied Thus 120582119860 has a positive fixed point that is 119906 = 120582119860

has a positive solution and the proof is complete

We consider the integral equation

119906 (119909) = int119866

119896 (119909 119910)(

119898

sum

119894=1

119886119894(119910) 119906(119910)

120572119894

+ 119902 (119910)

times (119906(119910)120574

minus 119906(119910)120575

minus 1199080))119889119910

(31)

where 119866 is a bounded closed domain in 119877119899 and 120572119894ge 0 119886

119894(119909)

119902(119909) isin 119871(119866 [0infin)) 119894 = 1 2 119898 119896(119909 119910) is nonnegativecontinuous on 119866 times 119866

Theorem 7 Suppose that among 120572119894(119894 = 1 2 119898) there

exists 1205721198940

gt 1 such that inf119909isin119866

1198861198940

(119909) gt 0 and there existnontrivial nonnegative functions 119886(119909) 119887(119909) isin 119862(119866) and apositive number 119888 120574 120575 119908

0such that

119888119886 (119909) 119887 (119910) le 119896 (119909 119910) le 119886 (119909)

119896 (119909 119910) le 119887 (119910) forall119909 119910 isin 119866

(32)

120574 gt 120575 gt 0 0 lt 1199080le 1 + min

119905isin[01]

119905120574

minus 119905120575

(33)

int119866

119902 (119910) 119889119910 lt 119888

int119866

119887 (119910) sdotmax(119898

sum

119894=1

119886119894(119910) 119902 (119910))119889119910 lt

1

2 minus 1199080

(34)

Then (31) has a nontrivial nonnegative solution in 119862(119866)

Proof Let the Banach space 1198641= 119862(119866) with the sup norm

sdot

1198751= 119906 isin 119864

1| 119906 (119909) ge 0 forall119909 isin 119866 (35)

1198642= 119871 (119866) 119875

2= 119906 isin 119864

2| 119906 (119909) ge 0 forall119909 isin 119866 (36)

119890 = 119888119886 (119909) 119902 = 119902 (119909)

119892 (119909) = max119902 (119909) 119898

sum

119894=1

119886119894(119909)

(37)

4 Abstract and Applied Analysis

119866119906 = 1198861198940(119909) 119906(119909)

1205721198940 forall119906 (119909) isin 119875

1 (38)

119865119906 =

119898

sum

119894=1

119886119894(119909) 119906(119909)

120572119894 + 119902 (119909) (119906(119909)

120574

minus 119906(119909)120575

minus 1199080)

forall119906 (119909) isin 1198751

(39)

119869119906 (119909) = 119906(119909)120572

if 119906 (119909) le 1

119906(119909)120573

if 119906 (119909) gt 1 forall119906 (119909) isin 119875

1 (40)

with 120572 = min1le119894le119899

120572119894 120573 = max

1le119894le119899120572119894

119867(119906) =10038171003817100381710038171003817119869119906 (119909) + 119906(119909)

120574

minus 119906(119909)120575

minus 1199080+ 1

10038171003817100381710038171003817119862 forall119906 (119909) isin 119875

1

(41)

119861119906 = int119866

119896 (119909 119910) 119906 (119910) 119889119910 1199030= 1 (42)

Then 1198751sub 1198641is normal minihedral the normal constant

119873 = 1 119890 isin 119875+

1 1198752is a cone of 119864

2 119902 119892 isin 119875

+

2 119866 119875

1rarr 1198752is

nondecreasing 1205721198940

-convex operator and119866119890 gt 120579119865 1198751rarr 1198642

is continuous ℎ 1198751rarr [0 +infin)

It is known easily that

minus1 lt min119905isin[01]

119905120574

minus 119905120575

le 119905120574

minus 119905120575

lt 0 119905 isin (0 1) (43)

thus 1199080exits in (33) and

119905120574

minus 119905120575

minus 1199080le minus1199080 119905 isin [0 1] (44)

By (33) (43) and 120574 gt 120575 we have

119906(119909)120574

minus 119906(119909)120575

minus 1199080ge 119906(119909)

120574

minus 119906(119909)120575

minus 1 minus min119905isin[01]

119905120574

minus 119905120575

ge minus1 forall119906 (119909) isin 119875+

1

(45)

therefore

119906(119909)120574

minus 119906(119909)120575

minus 1199080+ 1 ge 0 forall119906 (119909) isin 119875

+

1 (46)

From (33) (39) and (44) we know easily that there exists 1199060isin

1198751such that 119865119906 notin 119875

2 From (37)ndash(46) we obtain that

119866119906 le 119865119906+119902 =

119898

sum

119894=1

119886119894(119909) 119906(119909)

120572119894+119902 (119909) (119906(119909)

120574

minus119906(119909)120575

minus1199080+1)

le ((119869119906) (119909) + 119906(119909)120574

minus 119906(119909)120575

minus 1199080+ 1) 119892 (119909)

le 119867 (119906) 119892 (119909) forall119909 isin 119866 119906 isin 119875+

1

(47)

Equations (32) and (42) imply that 119861119906 le int119866119887(119910)119906(119910)119889119910

and hence

119861119906 ge 119888119886 (119909) int119866

119887 (119910) 119906 (119910) 119889119910 ge 119861119906 119890 forall119906 isin 1198751 (48)

By (42) (32) (34) and (37) we obtain that

119861119902 le 119886 (119909) int119866

119902 (119910) 119889119910 lt 119888119886 (119909) = 1199030119890 (49)

By (41) we have ℎ(1199030119873) = ℎ(1) = max

119906le1119867(119906) = 2 minus 119908

0

This and (34) and (42) get that

119861119892 = int119866

119896 (119909 119910) 119892 (119910) 119889119910

le int119866

119887 (119910) 119892 (119910) 119889119910 lt1

2 minus 1199080

=1199030

ℎ (1199030119873)

(50)

From (35) and (36) we know that (H1) is satisfied By (47)and (48) we obtain that (H2) and (H3) are satisfied Equations(49) and (50) imply that (H4) is satisfied Therefore usingTheorem 5 the integral equation (31) has a positive solutionin 119862(119866)

Acknowledgments

The authors are very grateful to the referee for his or hervaluable suggestions This research was supported by theNational Natural Science Foundation of China (10871116)the Doctoral Program Foundation of Education Ministry ofChina (20103705120002) Shandong Provincial Natural Sci-ence Foundation China (ZR2012AM006) and the Programfor Scientific Research Innovation Team in Colleges andUniversities of Shandong Province

References

[1] A J B Potter ldquoApplications of Hilbertrsquos projective metric tocertain classes of non-homogeneous operatorsrdquo The QuarterlyJournal of Mathematics Oxford Second Series vol 28 no 109pp 93ndash99 1977

[2] C Zhai and C Guo ldquoOn 120572-convex operatorsrdquo Journal ofMathematical Analysis and Applications vol 316 no 2 pp 556ndash565 2006

[3] Z Zhao and X Du ldquoFixed points of generalized 119890-concave(generalized 119890-convex) operators and their applicationsrdquo Jour-nal of Mathematical Analysis and Applications vol 334 no 2pp 1426ndash1438 2007

[4] J R L Webb ldquoRemarks on 1199060-positive operatorsrdquo Journal of

Fixed Point Theory and Applications vol 5 no 1 pp 37ndash452009

[5] Z Zhao ldquoMultiple fixed points of a sum operator and applica-tionsrdquo Journal of Mathematical Analysis and Applications vol360 no 1 pp 1ndash6 2009

[6] Z Zhao and X Chen ldquoFixed points of decreasing operators inordered Banach spaces and applications to nonlinear secondorder elliptic equationsrdquo Computers ampMathematics with Appli-cations vol 58 no 6 pp 1223ndash1229 2009

[7] C-B Zhai and X-M Cao ldquoFixed point theorems for 120591 minus 120593-concave operators and applicationsrdquo Computers ampMathematicswith Applications vol 59 no 1 pp 532ndash538 2010

[8] Z Zhao ldquoExistence and uniqueness of fixed points for somemixed monotone operatorsrdquo Nonlinear Analysis Theory Meth-ods amp Applications vol 73 no 6 pp 1481ndash1490 2010

[9] Z Zhao ldquoFixed points of 120591 minus 120593-convex operators and applica-tionsrdquo Applied Mathematics Letters vol 23 no 5 pp 561ndash5662010

[10] R P Agarwal S R Grace and D OrsquoRegan ldquoExistence of pos-itive solutions to semipositone Fredholm integral equationsrdquoFunkcialaj Ekvacioj vol 45 no 2 pp 223ndash235 2002

Abstract and Applied Analysis 5

[11] K Q Lan ldquoPositive solutions of semi-positone Hammersteinintegral equations and applicationsrdquo Communications on Pureand Applied Analysis vol 6 no 2 pp 441ndash451 2007

[12] K Q Lan ldquoEigenvalues of semi-positoneHammerstein integralequations and applications to boundary value problemsrdquo Non-linear Analysis Theory Methods amp Applications vol 71 no 12pp 5979ndash5993 2009

[13] J R Graef and L Kong ldquoPositive solutions for third ordersemipositone boundary value problemsrdquo Applied MathematicsLetters vol 22 no 8 pp 1154ndash1160 2009

[14] J R LWebb andG Infante ldquoSemi-positone nonlocal boundaryvalue problems of arbitrary orderrdquoCommunications onPure andApplied Analysis vol 9 no 2 pp 563ndash581 2010

[15] A Dogan J R Graef and L Kong ldquoHigher order semipositonemulti-point boundary value problems on time scalesrdquo Comput-ers amp Mathematics with Applications vol 60 no 1 pp 23ndash352010

[16] D R Anderson and C Zhai ldquoPositive solutions to semi-positone second-order three-point problems on time scalesrdquoApplied Mathematics and Computation vol 215 no 10 pp3713ndash3720 2010

[17] X Xian D OrsquoRegan and C Yanfang ldquoStructure of positivesolution sets of semi-positone singular boundary value prob-lemsrdquo Nonlinear Analysis Theory Methods amp Applications vol72 no 7-8 pp 3535ndash3550 2010

[18] D J Guo and V Lakshmikantham Nonlinear Problems inAbstract Cones vol 5 of Notes and Reports in Mathematics inScience and Engineering Academic Press Boston Mass USA1988

[19] K Deimling Nonlinear Functional Analysis Springer BerlinGermany 1985

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Positive Fixed Points for Semipositone ...downloads.hindawi.com/journals/aaa/2013/406727.pdfResearch Article Positive Fixed Points for Semipositone Operators in Ordered

Abstract and Applied Analysis 3

by (17) From (17) we know 119877 gt 1199030(1 minus 119898

01199030) thus (119877 minus

1199030)1199030ge 1198980119877 This and (H3) (4) and (19) imply

[1199101minus 1199090]+

= 1199101minus 1199090gt (

119877

1199030

minus 1)119861119902

ge 1198980119877119861119902 ge 119898

01198771003817100381710038171003817119861119902

1003817100381710038171003817 119890

(20)

By 120572-convexity of 119866 we know

119866 (119904119906) ge 119904120572

119866 (119906) forall119906 isin 1198751 119904 gt 1 (21)

By (17) we know1198980119877 119861119902 gt 1 hence (20) and (21) imply

119866([1199101minus 1199090]+

) ge 119866 (1198980119877

10038171003817100381710038171198611199021003817100381710038171003817 119890) ge (119898

01198771003817100381710038171003817119861119902

1003817100381710038171003817)120572

119866119890 (22)

This together with (5) and the condition (H2) imply

1199101ge 1198701199101= 119861 (119865 ([119910

1minus 1199090]+

) + 119902)

ge 119861 (119866 ([1199101minus 1199090]+

)) ge (11989801198771003817100381710038171003817119861119902

1003817100381710038171003817)120572

119861119866119890

(23)

This and (23) imply

119873119877 = 11987310038171003817100381710038171199101

1003817100381710038171003817 ge (11989801198771003817100381710038171003817119861119902

1003817100381710038171003817)120572

119861119866119890

= 119877120572

(1198980

10038171003817100381710038171198611199021003817100381710038171003817)120572

119861119866119890

(24)

therefore

1198731(120572minus1)

((1198980

10038171003817100381710038171198611199021003817100381710038171003817)120572

119861119866119890)minus1(120572minus1)

ge 119877 (25)

which contradicts (17) thus (18) holds Using Lemma 4 wehave

119894 (119870Ω119877cap 119875119890 119875119890) = 0 (26)

By (16) and (26) and additivity of fixed point indexes weknow that

119894 (119870 (Ω119877 Ω1199030

)⋂119875119890 119875119890) = minus1 (27)

Thus119870 has a fixed point 119911 on (Ω119877 Ω1199030

)⋂119875119890 Hence

119911 = 119861 (119865 ([119911 minus 1199090]+

) + 119902) 119911 isin 119875119890 1199030le 119911 le 119877 (28)

Let 119908 = 119911 minus 1199090 From (6) and 119911 ge 119903

0we know 119909

0lt

(119911 119911 )1199030le 119911 then [119911 minus 119909

0]+

= 119908 isin 119875+

1 This together with

(4) and (28) imply 119908 = 119911 minus 1199090= 119861119865(119908) = 119860(119908) so that 119908 is

a positive fixed point of 119860

3 Corollary and Applications

FromTheorem 5 we obtain the following corollary

Corollary 6 Suppose that conditions (H1) (H2) and (H3)hold and in addition assume the following

(H5) For any 119909 isin 119875+

2 there exists a positive number 119871

119909such

that 119861119909 le 119871119909119890

Then there exists a small enough 120582lowast gt 0 such that 119906 = 120582119860119906 hasa positive solution for any 120582 isin (0 120582lowast)

Proof For any fixed 1199030gt 0 by (H5) we can all take 120582 = 120582(119903

0)

such that

120582119861119902 lt 1199030119890 120582ℎ (119903

0119873)

10038171003817100381710038171198611198921003817100381710038171003817 lt

1199030

119873 forall120582 isin (0 120582) (29)

hence (H4) holds We take that

119865lowast

(119905 119906) = 120582119865 (119905 119906) 119866lowast

(119906) = 120582119866 (119906)

119902lowast

(119905) = 120582119902 (119905) 119892lowast

(119905) = 120582119892 (119905)

(30)

Then for 120582119860 = 119861(120582119865) the conditions in Theorem 5 aresatisfied Thus 120582119860 has a positive fixed point that is 119906 = 120582119860

has a positive solution and the proof is complete

We consider the integral equation

119906 (119909) = int119866

119896 (119909 119910)(

119898

sum

119894=1

119886119894(119910) 119906(119910)

120572119894

+ 119902 (119910)

times (119906(119910)120574

minus 119906(119910)120575

minus 1199080))119889119910

(31)

where 119866 is a bounded closed domain in 119877119899 and 120572119894ge 0 119886

119894(119909)

119902(119909) isin 119871(119866 [0infin)) 119894 = 1 2 119898 119896(119909 119910) is nonnegativecontinuous on 119866 times 119866

Theorem 7 Suppose that among 120572119894(119894 = 1 2 119898) there

exists 1205721198940

gt 1 such that inf119909isin119866

1198861198940

(119909) gt 0 and there existnontrivial nonnegative functions 119886(119909) 119887(119909) isin 119862(119866) and apositive number 119888 120574 120575 119908

0such that

119888119886 (119909) 119887 (119910) le 119896 (119909 119910) le 119886 (119909)

119896 (119909 119910) le 119887 (119910) forall119909 119910 isin 119866

(32)

120574 gt 120575 gt 0 0 lt 1199080le 1 + min

119905isin[01]

119905120574

minus 119905120575

(33)

int119866

119902 (119910) 119889119910 lt 119888

int119866

119887 (119910) sdotmax(119898

sum

119894=1

119886119894(119910) 119902 (119910))119889119910 lt

1

2 minus 1199080

(34)

Then (31) has a nontrivial nonnegative solution in 119862(119866)

Proof Let the Banach space 1198641= 119862(119866) with the sup norm

sdot

1198751= 119906 isin 119864

1| 119906 (119909) ge 0 forall119909 isin 119866 (35)

1198642= 119871 (119866) 119875

2= 119906 isin 119864

2| 119906 (119909) ge 0 forall119909 isin 119866 (36)

119890 = 119888119886 (119909) 119902 = 119902 (119909)

119892 (119909) = max119902 (119909) 119898

sum

119894=1

119886119894(119909)

(37)

4 Abstract and Applied Analysis

119866119906 = 1198861198940(119909) 119906(119909)

1205721198940 forall119906 (119909) isin 119875

1 (38)

119865119906 =

119898

sum

119894=1

119886119894(119909) 119906(119909)

120572119894 + 119902 (119909) (119906(119909)

120574

minus 119906(119909)120575

minus 1199080)

forall119906 (119909) isin 1198751

(39)

119869119906 (119909) = 119906(119909)120572

if 119906 (119909) le 1

119906(119909)120573

if 119906 (119909) gt 1 forall119906 (119909) isin 119875

1 (40)

with 120572 = min1le119894le119899

120572119894 120573 = max

1le119894le119899120572119894

119867(119906) =10038171003817100381710038171003817119869119906 (119909) + 119906(119909)

120574

minus 119906(119909)120575

minus 1199080+ 1

10038171003817100381710038171003817119862 forall119906 (119909) isin 119875

1

(41)

119861119906 = int119866

119896 (119909 119910) 119906 (119910) 119889119910 1199030= 1 (42)

Then 1198751sub 1198641is normal minihedral the normal constant

119873 = 1 119890 isin 119875+

1 1198752is a cone of 119864

2 119902 119892 isin 119875

+

2 119866 119875

1rarr 1198752is

nondecreasing 1205721198940

-convex operator and119866119890 gt 120579119865 1198751rarr 1198642

is continuous ℎ 1198751rarr [0 +infin)

It is known easily that

minus1 lt min119905isin[01]

119905120574

minus 119905120575

le 119905120574

minus 119905120575

lt 0 119905 isin (0 1) (43)

thus 1199080exits in (33) and

119905120574

minus 119905120575

minus 1199080le minus1199080 119905 isin [0 1] (44)

By (33) (43) and 120574 gt 120575 we have

119906(119909)120574

minus 119906(119909)120575

minus 1199080ge 119906(119909)

120574

minus 119906(119909)120575

minus 1 minus min119905isin[01]

119905120574

minus 119905120575

ge minus1 forall119906 (119909) isin 119875+

1

(45)

therefore

119906(119909)120574

minus 119906(119909)120575

minus 1199080+ 1 ge 0 forall119906 (119909) isin 119875

+

1 (46)

From (33) (39) and (44) we know easily that there exists 1199060isin

1198751such that 119865119906 notin 119875

2 From (37)ndash(46) we obtain that

119866119906 le 119865119906+119902 =

119898

sum

119894=1

119886119894(119909) 119906(119909)

120572119894+119902 (119909) (119906(119909)

120574

minus119906(119909)120575

minus1199080+1)

le ((119869119906) (119909) + 119906(119909)120574

minus 119906(119909)120575

minus 1199080+ 1) 119892 (119909)

le 119867 (119906) 119892 (119909) forall119909 isin 119866 119906 isin 119875+

1

(47)

Equations (32) and (42) imply that 119861119906 le int119866119887(119910)119906(119910)119889119910

and hence

119861119906 ge 119888119886 (119909) int119866

119887 (119910) 119906 (119910) 119889119910 ge 119861119906 119890 forall119906 isin 1198751 (48)

By (42) (32) (34) and (37) we obtain that

119861119902 le 119886 (119909) int119866

119902 (119910) 119889119910 lt 119888119886 (119909) = 1199030119890 (49)

By (41) we have ℎ(1199030119873) = ℎ(1) = max

119906le1119867(119906) = 2 minus 119908

0

This and (34) and (42) get that

119861119892 = int119866

119896 (119909 119910) 119892 (119910) 119889119910

le int119866

119887 (119910) 119892 (119910) 119889119910 lt1

2 minus 1199080

=1199030

ℎ (1199030119873)

(50)

From (35) and (36) we know that (H1) is satisfied By (47)and (48) we obtain that (H2) and (H3) are satisfied Equations(49) and (50) imply that (H4) is satisfied Therefore usingTheorem 5 the integral equation (31) has a positive solutionin 119862(119866)

Acknowledgments

The authors are very grateful to the referee for his or hervaluable suggestions This research was supported by theNational Natural Science Foundation of China (10871116)the Doctoral Program Foundation of Education Ministry ofChina (20103705120002) Shandong Provincial Natural Sci-ence Foundation China (ZR2012AM006) and the Programfor Scientific Research Innovation Team in Colleges andUniversities of Shandong Province

References

[1] A J B Potter ldquoApplications of Hilbertrsquos projective metric tocertain classes of non-homogeneous operatorsrdquo The QuarterlyJournal of Mathematics Oxford Second Series vol 28 no 109pp 93ndash99 1977

[2] C Zhai and C Guo ldquoOn 120572-convex operatorsrdquo Journal ofMathematical Analysis and Applications vol 316 no 2 pp 556ndash565 2006

[3] Z Zhao and X Du ldquoFixed points of generalized 119890-concave(generalized 119890-convex) operators and their applicationsrdquo Jour-nal of Mathematical Analysis and Applications vol 334 no 2pp 1426ndash1438 2007

[4] J R L Webb ldquoRemarks on 1199060-positive operatorsrdquo Journal of

Fixed Point Theory and Applications vol 5 no 1 pp 37ndash452009

[5] Z Zhao ldquoMultiple fixed points of a sum operator and applica-tionsrdquo Journal of Mathematical Analysis and Applications vol360 no 1 pp 1ndash6 2009

[6] Z Zhao and X Chen ldquoFixed points of decreasing operators inordered Banach spaces and applications to nonlinear secondorder elliptic equationsrdquo Computers ampMathematics with Appli-cations vol 58 no 6 pp 1223ndash1229 2009

[7] C-B Zhai and X-M Cao ldquoFixed point theorems for 120591 minus 120593-concave operators and applicationsrdquo Computers ampMathematicswith Applications vol 59 no 1 pp 532ndash538 2010

[8] Z Zhao ldquoExistence and uniqueness of fixed points for somemixed monotone operatorsrdquo Nonlinear Analysis Theory Meth-ods amp Applications vol 73 no 6 pp 1481ndash1490 2010

[9] Z Zhao ldquoFixed points of 120591 minus 120593-convex operators and applica-tionsrdquo Applied Mathematics Letters vol 23 no 5 pp 561ndash5662010

[10] R P Agarwal S R Grace and D OrsquoRegan ldquoExistence of pos-itive solutions to semipositone Fredholm integral equationsrdquoFunkcialaj Ekvacioj vol 45 no 2 pp 223ndash235 2002

Abstract and Applied Analysis 5

[11] K Q Lan ldquoPositive solutions of semi-positone Hammersteinintegral equations and applicationsrdquo Communications on Pureand Applied Analysis vol 6 no 2 pp 441ndash451 2007

[12] K Q Lan ldquoEigenvalues of semi-positoneHammerstein integralequations and applications to boundary value problemsrdquo Non-linear Analysis Theory Methods amp Applications vol 71 no 12pp 5979ndash5993 2009

[13] J R Graef and L Kong ldquoPositive solutions for third ordersemipositone boundary value problemsrdquo Applied MathematicsLetters vol 22 no 8 pp 1154ndash1160 2009

[14] J R LWebb andG Infante ldquoSemi-positone nonlocal boundaryvalue problems of arbitrary orderrdquoCommunications onPure andApplied Analysis vol 9 no 2 pp 563ndash581 2010

[15] A Dogan J R Graef and L Kong ldquoHigher order semipositonemulti-point boundary value problems on time scalesrdquo Comput-ers amp Mathematics with Applications vol 60 no 1 pp 23ndash352010

[16] D R Anderson and C Zhai ldquoPositive solutions to semi-positone second-order three-point problems on time scalesrdquoApplied Mathematics and Computation vol 215 no 10 pp3713ndash3720 2010

[17] X Xian D OrsquoRegan and C Yanfang ldquoStructure of positivesolution sets of semi-positone singular boundary value prob-lemsrdquo Nonlinear Analysis Theory Methods amp Applications vol72 no 7-8 pp 3535ndash3550 2010

[18] D J Guo and V Lakshmikantham Nonlinear Problems inAbstract Cones vol 5 of Notes and Reports in Mathematics inScience and Engineering Academic Press Boston Mass USA1988

[19] K Deimling Nonlinear Functional Analysis Springer BerlinGermany 1985

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Positive Fixed Points for Semipositone ...downloads.hindawi.com/journals/aaa/2013/406727.pdfResearch Article Positive Fixed Points for Semipositone Operators in Ordered

4 Abstract and Applied Analysis

119866119906 = 1198861198940(119909) 119906(119909)

1205721198940 forall119906 (119909) isin 119875

1 (38)

119865119906 =

119898

sum

119894=1

119886119894(119909) 119906(119909)

120572119894 + 119902 (119909) (119906(119909)

120574

minus 119906(119909)120575

minus 1199080)

forall119906 (119909) isin 1198751

(39)

119869119906 (119909) = 119906(119909)120572

if 119906 (119909) le 1

119906(119909)120573

if 119906 (119909) gt 1 forall119906 (119909) isin 119875

1 (40)

with 120572 = min1le119894le119899

120572119894 120573 = max

1le119894le119899120572119894

119867(119906) =10038171003817100381710038171003817119869119906 (119909) + 119906(119909)

120574

minus 119906(119909)120575

minus 1199080+ 1

10038171003817100381710038171003817119862 forall119906 (119909) isin 119875

1

(41)

119861119906 = int119866

119896 (119909 119910) 119906 (119910) 119889119910 1199030= 1 (42)

Then 1198751sub 1198641is normal minihedral the normal constant

119873 = 1 119890 isin 119875+

1 1198752is a cone of 119864

2 119902 119892 isin 119875

+

2 119866 119875

1rarr 1198752is

nondecreasing 1205721198940

-convex operator and119866119890 gt 120579119865 1198751rarr 1198642

is continuous ℎ 1198751rarr [0 +infin)

It is known easily that

minus1 lt min119905isin[01]

119905120574

minus 119905120575

le 119905120574

minus 119905120575

lt 0 119905 isin (0 1) (43)

thus 1199080exits in (33) and

119905120574

minus 119905120575

minus 1199080le minus1199080 119905 isin [0 1] (44)

By (33) (43) and 120574 gt 120575 we have

119906(119909)120574

minus 119906(119909)120575

minus 1199080ge 119906(119909)

120574

minus 119906(119909)120575

minus 1 minus min119905isin[01]

119905120574

minus 119905120575

ge minus1 forall119906 (119909) isin 119875+

1

(45)

therefore

119906(119909)120574

minus 119906(119909)120575

minus 1199080+ 1 ge 0 forall119906 (119909) isin 119875

+

1 (46)

From (33) (39) and (44) we know easily that there exists 1199060isin

1198751such that 119865119906 notin 119875

2 From (37)ndash(46) we obtain that

119866119906 le 119865119906+119902 =

119898

sum

119894=1

119886119894(119909) 119906(119909)

120572119894+119902 (119909) (119906(119909)

120574

minus119906(119909)120575

minus1199080+1)

le ((119869119906) (119909) + 119906(119909)120574

minus 119906(119909)120575

minus 1199080+ 1) 119892 (119909)

le 119867 (119906) 119892 (119909) forall119909 isin 119866 119906 isin 119875+

1

(47)

Equations (32) and (42) imply that 119861119906 le int119866119887(119910)119906(119910)119889119910

and hence

119861119906 ge 119888119886 (119909) int119866

119887 (119910) 119906 (119910) 119889119910 ge 119861119906 119890 forall119906 isin 1198751 (48)

By (42) (32) (34) and (37) we obtain that

119861119902 le 119886 (119909) int119866

119902 (119910) 119889119910 lt 119888119886 (119909) = 1199030119890 (49)

By (41) we have ℎ(1199030119873) = ℎ(1) = max

119906le1119867(119906) = 2 minus 119908

0

This and (34) and (42) get that

119861119892 = int119866

119896 (119909 119910) 119892 (119910) 119889119910

le int119866

119887 (119910) 119892 (119910) 119889119910 lt1

2 minus 1199080

=1199030

ℎ (1199030119873)

(50)

From (35) and (36) we know that (H1) is satisfied By (47)and (48) we obtain that (H2) and (H3) are satisfied Equations(49) and (50) imply that (H4) is satisfied Therefore usingTheorem 5 the integral equation (31) has a positive solutionin 119862(119866)

Acknowledgments

The authors are very grateful to the referee for his or hervaluable suggestions This research was supported by theNational Natural Science Foundation of China (10871116)the Doctoral Program Foundation of Education Ministry ofChina (20103705120002) Shandong Provincial Natural Sci-ence Foundation China (ZR2012AM006) and the Programfor Scientific Research Innovation Team in Colleges andUniversities of Shandong Province

References

[1] A J B Potter ldquoApplications of Hilbertrsquos projective metric tocertain classes of non-homogeneous operatorsrdquo The QuarterlyJournal of Mathematics Oxford Second Series vol 28 no 109pp 93ndash99 1977

[2] C Zhai and C Guo ldquoOn 120572-convex operatorsrdquo Journal ofMathematical Analysis and Applications vol 316 no 2 pp 556ndash565 2006

[3] Z Zhao and X Du ldquoFixed points of generalized 119890-concave(generalized 119890-convex) operators and their applicationsrdquo Jour-nal of Mathematical Analysis and Applications vol 334 no 2pp 1426ndash1438 2007

[4] J R L Webb ldquoRemarks on 1199060-positive operatorsrdquo Journal of

Fixed Point Theory and Applications vol 5 no 1 pp 37ndash452009

[5] Z Zhao ldquoMultiple fixed points of a sum operator and applica-tionsrdquo Journal of Mathematical Analysis and Applications vol360 no 1 pp 1ndash6 2009

[6] Z Zhao and X Chen ldquoFixed points of decreasing operators inordered Banach spaces and applications to nonlinear secondorder elliptic equationsrdquo Computers ampMathematics with Appli-cations vol 58 no 6 pp 1223ndash1229 2009

[7] C-B Zhai and X-M Cao ldquoFixed point theorems for 120591 minus 120593-concave operators and applicationsrdquo Computers ampMathematicswith Applications vol 59 no 1 pp 532ndash538 2010

[8] Z Zhao ldquoExistence and uniqueness of fixed points for somemixed monotone operatorsrdquo Nonlinear Analysis Theory Meth-ods amp Applications vol 73 no 6 pp 1481ndash1490 2010

[9] Z Zhao ldquoFixed points of 120591 minus 120593-convex operators and applica-tionsrdquo Applied Mathematics Letters vol 23 no 5 pp 561ndash5662010

[10] R P Agarwal S R Grace and D OrsquoRegan ldquoExistence of pos-itive solutions to semipositone Fredholm integral equationsrdquoFunkcialaj Ekvacioj vol 45 no 2 pp 223ndash235 2002

Abstract and Applied Analysis 5

[11] K Q Lan ldquoPositive solutions of semi-positone Hammersteinintegral equations and applicationsrdquo Communications on Pureand Applied Analysis vol 6 no 2 pp 441ndash451 2007

[12] K Q Lan ldquoEigenvalues of semi-positoneHammerstein integralequations and applications to boundary value problemsrdquo Non-linear Analysis Theory Methods amp Applications vol 71 no 12pp 5979ndash5993 2009

[13] J R Graef and L Kong ldquoPositive solutions for third ordersemipositone boundary value problemsrdquo Applied MathematicsLetters vol 22 no 8 pp 1154ndash1160 2009

[14] J R LWebb andG Infante ldquoSemi-positone nonlocal boundaryvalue problems of arbitrary orderrdquoCommunications onPure andApplied Analysis vol 9 no 2 pp 563ndash581 2010

[15] A Dogan J R Graef and L Kong ldquoHigher order semipositonemulti-point boundary value problems on time scalesrdquo Comput-ers amp Mathematics with Applications vol 60 no 1 pp 23ndash352010

[16] D R Anderson and C Zhai ldquoPositive solutions to semi-positone second-order three-point problems on time scalesrdquoApplied Mathematics and Computation vol 215 no 10 pp3713ndash3720 2010

[17] X Xian D OrsquoRegan and C Yanfang ldquoStructure of positivesolution sets of semi-positone singular boundary value prob-lemsrdquo Nonlinear Analysis Theory Methods amp Applications vol72 no 7-8 pp 3535ndash3550 2010

[18] D J Guo and V Lakshmikantham Nonlinear Problems inAbstract Cones vol 5 of Notes and Reports in Mathematics inScience and Engineering Academic Press Boston Mass USA1988

[19] K Deimling Nonlinear Functional Analysis Springer BerlinGermany 1985

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Positive Fixed Points for Semipositone ...downloads.hindawi.com/journals/aaa/2013/406727.pdfResearch Article Positive Fixed Points for Semipositone Operators in Ordered

Abstract and Applied Analysis 5

[11] K Q Lan ldquoPositive solutions of semi-positone Hammersteinintegral equations and applicationsrdquo Communications on Pureand Applied Analysis vol 6 no 2 pp 441ndash451 2007

[12] K Q Lan ldquoEigenvalues of semi-positoneHammerstein integralequations and applications to boundary value problemsrdquo Non-linear Analysis Theory Methods amp Applications vol 71 no 12pp 5979ndash5993 2009

[13] J R Graef and L Kong ldquoPositive solutions for third ordersemipositone boundary value problemsrdquo Applied MathematicsLetters vol 22 no 8 pp 1154ndash1160 2009

[14] J R LWebb andG Infante ldquoSemi-positone nonlocal boundaryvalue problems of arbitrary orderrdquoCommunications onPure andApplied Analysis vol 9 no 2 pp 563ndash581 2010

[15] A Dogan J R Graef and L Kong ldquoHigher order semipositonemulti-point boundary value problems on time scalesrdquo Comput-ers amp Mathematics with Applications vol 60 no 1 pp 23ndash352010

[16] D R Anderson and C Zhai ldquoPositive solutions to semi-positone second-order three-point problems on time scalesrdquoApplied Mathematics and Computation vol 215 no 10 pp3713ndash3720 2010

[17] X Xian D OrsquoRegan and C Yanfang ldquoStructure of positivesolution sets of semi-positone singular boundary value prob-lemsrdquo Nonlinear Analysis Theory Methods amp Applications vol72 no 7-8 pp 3535ndash3550 2010

[18] D J Guo and V Lakshmikantham Nonlinear Problems inAbstract Cones vol 5 of Notes and Reports in Mathematics inScience and Engineering Academic Press Boston Mass USA1988

[19] K Deimling Nonlinear Functional Analysis Springer BerlinGermany 1985

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Positive Fixed Points for Semipositone ...downloads.hindawi.com/journals/aaa/2013/406727.pdfResearch Article Positive Fixed Points for Semipositone Operators in Ordered

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended