+ All Categories
Home > Documents > Research Article Production and Decay of Up-Type and Down...

Research Article Production and Decay of Up-Type and Down...

Date post: 08-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
15
Research Article Production and Decay of Up-Type and Down-Type New Heavy Quarks through Anomalous Interactions at the LHC E. T. ÇakJr, 1 S. Kuday, 1 and O. ÇakJr 1,2 1 Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy, 34295 Istanbul, Turkey 2 Department of Physics, Ankara University, Tandogan, 06100 Ankara, Turkey Correspondence should be addressed to ˙ I. T. C ¸ akır; [email protected] Received 23 October 2014; Revised 19 January 2015; Accepted 26 January 2015 Academic Editor: Hong-Jian He Copyright © 2015 ˙ I. T. C ¸akır et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e publication of this article was funded by SCOAP 3 . We study the process + (where = , and = ,, and ) through the anomalous interactions of the new heavy quarks at the LHC. Considering the present limits on the masses and mixings, the signatures of the heavy quark anomalous interactions are discussed and analysed at the LHC for the center of mass energy of 13 TeV. An important sensitivity to anomalous couplings /Λ = 0.10 TeV −1 , /Λ = 0.14 TeV −1 , /Λ = 0.19 TeV −1 and /Λ = 0.15 TeV −1 , /Λ = 0.19 TeV −1 , /Λ = 0.30 TeV −1 for the mass of 750 GeV of the new heavy quarks and can be reached for an integrated luminosity of int = 100 −1 . 1. Introduction e standard model (SM) of the strong and electroweak interactions describes successfully the phenomena of particle physics. However, there are many unanswered questions suggesting the SM to be an effective theory. In order to answer some of the problems with the SM, additional new fermions can be accommodated in many models beyond the SM (see [19] and references therein). e new heavy quarks could also be produced in pairs at the LHC with center of mass energy of 13TeV. However, due to the expected smallness of the mixing between the new heavy quarks and known quarks, the decay modes can be quite different from the one relevant to charged weak interactions. A new symmetry beyond the SM is expected to explain the smallness of these mixings. e arguments given in [10] for anomalous interactions of the top quark are more valid for the new heavy quarks and due to their expected larger masses than the top quark. e ATLAS experiment [11] and CMS experiment [12] have searched for the fourth generation of quarks and set limits on the mass of > 480 GeV and > 570 GeV at =7 TeV. e pair production of new heavy quarks has been searched by the ATLAS experiment [13, 14] and the > 656 GeV mass limits are set at =7 TeV. e CMS experiment has excluded masses below 557 GeV [15]. e vector-like quarks have been searched by the ATLAS experi- ment [16, 17] and set bounds as 900 GeV for charged current channel and 760 GeV for neutral current channel at = 7 TeV. e CMS experiment [18] has set the lower bounds on the mass of 685 GeV at =8 TeV. Some of the final states in the searches of new phenomena can also be considered in relation with the new heavy quarks. e anomalous resonant productions of the fourth family quarks have been studied in [19, 20] at the LHC with = 14 TeV. e possible single productions of fourth generation quarks via anomalous interactions at Tevatron have also been studied in [21]. e parameter space for the mixing of the fourth generation quarks has been presented in [22]. e CP violating flavor changing neutral current processes of the fourth generation quarks have been analyzed in [23], and the large mixing between fourth generation and first three generations has been excluded under the proposed fit conditions. Investigation of the parameter space favored by the precision electroweak data has been performed for the fourth SM family fermions in [24]. In this work, we present the analysis of anomalous pro- ductions and decay of new heavy quarks and at the LHC. We have performed the fast simulation for the signal and Hindawi Publishing Corporation Advances in High Energy Physics Volume 2015, Article ID 134898, 14 pages http://dx.doi.org/10.1155/2015/134898
Transcript
Page 1: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

Research ArticleProduction and Decay of Up-Type and Down-Type New HeavyQuarks through Anomalous Interactions at the LHC

E T CcedilakJr1 S Kuday1 and O CcedilakJr12

1Application and Research Center for Advanced Studies Istanbul Aydin University Sefakoy 34295 Istanbul Turkey2Department of Physics Ankara University Tandogan 06100 Ankara Turkey

Correspondence should be addressed to I T Cakır ilkayturkcakircernch

Received 23 October 2014 Revised 19 January 2015 Accepted 26 January 2015

Academic Editor Hong-Jian He

Copyright copy 2015 I T Cakır et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited Thepublication of this article was funded by SCOAP3

We study the process 119901119901 rarr 119876119881 + 119883 (where 119876 = 119905 119887 and 119881 = 119892 120574 and 119885) through the anomalous interactions of the newheavy quarks at the LHC Considering the present limits on the masses and mixings the signatures of the heavy quark anomalousinteractions are discussed and analysed at the LHC for the center of mass energy of 13 TeV An important sensitivity to anomalouscouplings 120581119905

1015840

119892Λ = 010TeVminus1 120581119905

1015840

120574Λ = 014TeVminus1 120581119905

1015840

119885Λ = 019TeVminus1 and 120581119887

1015840

119892Λ = 015TeVminus1 120581119887

1015840

119885Λ = 019TeVminus1 120581119887

1015840

120574Λ =

030TeVminus1 for the mass of 750GeV of the new heavy quarks 1199051015840 and 1198871015840 can be reached for an integrated luminosity of 119871 int = 100fbminus1

1 Introduction

The standard model (SM) of the strong and electroweakinteractions describes successfully the phenomena of particlephysics However there are many unanswered questionssuggesting the SM to be an effective theory In order to answersome of the problems with the SM additional new fermionscan be accommodated in many models beyond the SM (see[1ndash9] and references therein) The new heavy quarks couldalso be produced in pairs at the LHC with center of massenergy of 13 TeV However due to the expected smallness ofthemixing between the newheavy quarks and known quarksthe decay modes can be quite different from the one relevantto charged weak interactions A new symmetry beyond theSM is expected to explain the smallness of these mixingsThearguments given in [10] for anomalous interactions of the topquark are more valid for the new heavy quarks 1199051015840 and 1198871015840 dueto their expected larger masses than the top quark

The ATLAS experiment [11] and CMS experiment [12]have searched for the fourth generation of quarks and setlimits on the mass of 119898

1198871015840 gt 480GeV and 119898

1199051015840 gt 570GeV at

radic119904 = 7TeV The pair production of new heavy quarks hasbeen searched by the ATLAS experiment [13 14] and the1198981199051015840 gt 656GeV mass limits are set at radic119904 = 7TeV The CMS

experiment has excluded 1199051015840 masses below 557GeV [15] Thevector-like quarks have been searched by the ATLAS experi-ment [16 17] and set bounds as 900GeV for charged currentchannel and 760GeV for neutral current channel at radic119904 =7TeVThe CMS experiment [18] has set the lower bounds onthe mass of 685GeV at radic119904 = 8TeV Some of the final statesin the searches of new phenomena can also be considered inrelation with the new heavy quarks

The anomalous resonant productions of the fourth familyquarks have been studied in [19 20] at the LHC with radic119904 =14TeV The possible single productions of fourth generationquarks via anomalous interactions at Tevatron have also beenstudied in [21] The parameter space for the mixing of thefourth generation quarks has been presented in [22] TheCP violating flavor changing neutral current processes ofthe fourth generation quarks have been analyzed in [23]and the large mixing between fourth generation and firstthree generations has been excluded under the proposed fitconditions Investigation of the parameter space favored bythe precision electroweak data has been performed for thefourth SM family fermions in [24]

In this work we present the analysis of anomalous pro-ductions and decay of new heavy quarks 1199051015840 and 1198871015840 at the LHCWe have performed the fast simulation for the signal and

Hindawi Publishing CorporationAdvances in High Energy PhysicsVolume 2015 Article ID 134898 14 pageshttpdxdoiorg1011552015134898

2 Advances in High Energy Physics

background Any observations of the invariant mass peak inthe range of 500ndash1000GeV and excess in the events with thefinal states originating from119882119887119881 and 119887119881 can be interpretedas the signal for the new heavy quarks 1199051015840 and 1198871015840 via theanomalous interactions

2 New Heavy Quarks Anomalous Interactions

A general theory that includes the standard model (SM) asits low energy limit can be written as an expansion seriesin powers of Λminus1 with operators obeying the required sym-metries The dimension six gauge invariant operators can bebuilt from the SM fields and they can induce dimension fiveoperators after spontaneous symmetry breaking The coef-ficients of the dimension five terms are related to those ofdimension six operators and they can lead to sizable effects inthe heavy quark associated production in high energy col-lisions [25] For our study the effective Lagrangian withdimension five terms for the anomalous interactions amongthe new heavy quarks (1198761015840 equiv 1199051015840 or 1198871015840) ordinary quarks 119902 andthe gauge bosons 119881 = 120574 119885 119892 can be written explicitly

119871 = sum

119902119894=119906119888119905

120581119902119894

120574

Λ119876119902119894

1198921198901199051015840

120590120583]119902119894119865120583]+ sum

119902119894=119906119888119905

120581119902119894

119911

2Λ1198921199111199051015840

120590120583]119902119894119885120583]

+ sum

119902119894=119906119888119905

120581119902119894

119892

2Λ1198921199041199051015840

120590120583]120582119886119902119894119866

120583]119886+ sum

119902119894=119889119904119887

120581119902119894

120574

Λ119876119902119894

1198921198901198871015840

120590120583]119902119894119865120583]

+ sum

119902119894=119889119904119887

120581119902119894

119911

2Λ1198921199111198871015840

120590120583]119902119894119885120583]+ sum

119902119894=119889119904119887

120581119902119894

119892

2Λ1198921199041198871015840

120590120583]120582119886119902119894119866

120583]119886

+ hc(1)

where 119865120583] 119885120583] and 119866120583] are the field strength tensors of thegauge bosons 120590

120583] = 119894(120574120583120574] minus 120574]120574120583)2 120582119886 are the Gell-Mannmatrices119876

119902is the electric charge of the quark (119902) 119892

119890 119892119885 and

119892119904are the electromagnetic neutral weak and strong coupling

constants respectively 119892119885= 119892119890 cos 120579

119908sin 120579119908 where 120579

119908is

the weak mixing angle 120581120574is the anomalous coupling with

photon 120581119911is for the 119885 boson and 120581

119892is the coupling with

gluon Finally Λ is the cutoff scale for the new interactions

3 Decay Widths and Branchings

For the decay channels 1198761015840 rarr 119881119902 where 119881 equiv 120574 119885 and 119892 weuse the effective Lagrangian to calculate the anomalous decaywidths

Γ (1198761015840997888rarr 119892119902) =

2

3(120581119902

119892

Λ)

2

1205721199041198983

11987610158401205820

Γ (1198761015840997888rarr 120574119902) =

1

2(120581119902

120574

Λ)

2

1205721198901198762

1199021198983

11987610158401205820

Γ (1198761015840997888rarr 119885119902) =

1

16(120581119902

119885

Λ)

21205721198901198983

1198761015840

sin2120579119882cos2120579119882

120582119885radic120582119903

(2)

Table 1 Branching ratios () and decay width of the new heavyquark (1199051015840) with only anomalous interactions for PI parametrizationand 120581Λ = 01 TeVminus1

Mass(GeV) 119892119906(119888) 119892119905 119885119906(119888) 119885119905 120574119906(119888) 120574119905

Γ

(GeV)500 335 229 286 182 092 063 023600 323 250 286 213 091 070 041700 316 262 287 234 090 075 065800 311 270 289 248 090 078 097900 307 275 291 258 091 081 1391000 305 278 293 266 091 083 190

with

1205820= 1 minus

31198982

119902

11989821198761015840

+31198984

119902

11989841198761015840

minus1198986

119902

11989861198761015840

120582119903= 1 +

1198984

119885

11989841198761015840

+1198984

119902

11989841198761015840

minus21198982

119885

11989821198761015840

minus21198982

119902

11989821198761015840

minus21198982

1198851198982

119902

11989841198761015840

120582119885= 2 minus

1198982

119885

11989821198761015840

minus41198982

119902

11989821198761015840

+21198984

119902

11989841198761015840

minus61198981199021198982

119885

11989831198761015840

minus1198982

1198851198982

119905

11989841198761015840

minus1198984

119885

11989841198761015840

(3)

The anomalous decay widths in different channels areproportional to Λminus2 and they are assumed to be dominantfor 120581Λ gt 01TeVminus1 over the charged current channels Inthis case if we take all the anomalous coupling equal then thebranching ratios will be nearly independent of 120581Λ We haveused three parametrization sets entitled PI PII and PIII Forthe PI parametrization we assume the constant value 120581

119894Λ =

01TeVminus1 and PII has the parameters 120581119894Λ = 01120582

4minus119894 TeVminus1with 120582 = 05 For PIII we take the couplings 120581

119894Λ =

051205824minus119894 TeVminus1 with the same value of 120582 The index 119894 is the

generation numberTables 1 and 2 present the decay width and branching

ratios of the new heavy quark 1199051015840 through anomalous inter-actions for the parametrization PI PII and PIII respectivelyTaking the anomalous coupling 120581Λ = 01TeVminus1 we calculatethe 1199051015840 decay width Γ = 065GeV and 190GeV for 119898

1199051015840 =

700GeV and 1000GeV respectivelyThe branching into 1199051015840 rarr119902119892 channel is the largest and branching into 1199051015840 rarr 119902120574

channel is the smallest for equal anomalous couplings withthe parametrization PI On the other hand PII and PIIIparametrization give higher branching ratios into 119905119881 (119881 =

119892 119885 120574) than 119902119881 (119902 = 119906 119888) channels due to 1205824minus119894 factor in theparametrization

For the new heavy quark 1198871015840 the decay width and branch-ing ratios are presented in Tables 3 and 4 for the parametriza-tions PI PII and PIII respectively We calculate the 1198871015840 decaywidth by taking the anomalous couplings 120581Λ = 01TeVminus1Γ = 068GeV and 192GeV for119898

1198871015840 = 700GeV and 1000GeV

respectively The branching for 1198871015840 rarr 119902119892 is the largest (30)and it is the smallest for 1198871015840 rarr 119902120574 (02) channel for equalanomalous couplings with the parametrization PI For PII

Advances in High Energy Physics 3

Table 2 The same as Table 1 but for PII (PIII) parametrization

Mass (GeV) 119892119906 119892119888 119892119905 119885119906 119885119888 119885119905 120574119906 120574119888 120574119905 Γ (GeV)500 566 2260 6190 048 193 492 015 062 171 0021 (0558)600 517 2070 6390 046 183 546 014 058 180 0040 (1024)700 490 1960 6490 044 178 579 014 056 187 0066 (168)800 473 1890 6560 044 176 602 014 055 191 0100 (2561)900 461 1840 6590 044 174 619 013 054 195 0145 (3680)1000 453 1810 6620 043 174 632 013 054 198 0200 (5070)

g

q

Q

V

Q998400

(a)

g Q

q V

Q998400

(b)

Figure 1 Diagrams for the subprocess 119892119902 rarr 119881119876 with anomalous vertices 1198761015840119902119881 and 1198761015840119876119881 (where 1198761015840 can be the new heavy quark 1198871015840 or 1199051015840depending on the type of light (119902) or heavy (119876 equiv 119905 119887) quarks resp)

Table 3 Branching ratios () and decay width of the new heavyquark (1198871015840) with only anomalous interactions for PI parametrizationand 120581Λ = 01 TeVminus1

Mass(GeV) 119892119889(119904 119887) 119885119889(119904 119887) 120574119889(119904 119887) Γ (GeV)

500 3050 260 021 0257600 3040 269 021 0436700 3040 276 022 0682800 3030 282 022 1005900 3020 286 022 14151000 3020 290 023 1921

and PIII parametrization the branching ratios into 119887119881 (119881 =

119892 119885 120574) are larger than 119902119881 (119902 = 119889 119904) channels The 1199051015840 and1198871015840 decay widths are about the same values for PII and PIIIparametrization

4 The Cross Sections

In order to study the new heavy quark productions at theLHC we have used effective anomalous interaction verticesand implemented these vertices into the CalcHEP package[26] In all of the numerical calculations the parton dis-tribution functions are set to the CTEQ6L parametrization[27] The new heavy quarks can be produced through theiranomalous couplings to the ordinary quarks and neutralvector bosons as shown in Figure 1

Total cross sections for the productions of new heavyquarks 1199051015840 and 119887

1015840 are given in Tables 5 and 6 for theparametrizations PI PII and PIII at the center of massenergy of 8 TeV and 13 TeV For an illustration taking themass of new heavy quarks as 700GeV the cross section of1199051015840(1198871015840) production is calculated as 850 pb (1003 pb) for the

parametrization PIII at radic119904 = 13TeV It can be seen fromTables 5 and 6 that the cross section decreases while the

PIIIPIPII

10minus1

100

101

102

500 600 700 800 900 1000

120590(p

b)

Mt998400 (GeV)

Figure 2The cross section for the process 119901119901 rarr 119905119881+119883 dependingon the mass for parameter sets PI PII and PIII at the center of massenergyradic119904 = 13TeV

mass of the new heavy quark increases The cross section for1199051015840 production is larger than the 1198871015840 production with a factor of12ndash18 (07ndash10) for PI (PII and PIII) parametrization depend-ing on the consideredmass range atradic119904 = 13TeVThe generalbehaviour of the production cross sections depending on themass of new heavy quarks is presented in Figures 2 and 3 fordifferent parametrizations

41 Analysis of the Process 119901119901 rarr 119882+119887119881+119883 (119881 = 119892 119885 120574) for

1199051015840 Signal The signal process 119901119901 rarr 119882

+119887119881 +119883 (119881 = 119892 119885 120574)

includes the 1199051015840 exchange in both the 119904-channel and 119905-channelThe 119904-channel contribution to the signal process wouldappear itself as resonance around the 1199051015840 mass value in the119882119887119881 invariant mass The 119905-channel gives the nonresonant

4 Advances in High Energy Physics

Table 4 The same as Table 3 but for PII (PIII) parametrization

Mass (GeV) 119892119889 119892119904 119892119887 119885119889 119885119904 119885119887 120574119889 120574119904 120574119887 Γ (GeV)500 436 1740 6980 037 149 595 0030 012 048 0028 (0704)600 435 1740 6950 038 154 616 0030 012 049 0047 (1194)700 434 1730 6940 039 158 631 0031 012 050 0074 (1866)800 433 1730 6920 040 161 644 0031 012 050 0110 (2749)900 432 1730 6910 041 164 654 0032 013 051 0154 (3869)1000 432 1730 6900 041 166 663 0032 013 052 0210 (5253)

Table 5The cross sections (in pb) of new heavy quark 1199051015840 production without cuts for PI PII and PIII parametrizations at the center of massenergy 13TeV (8TeV) respectively

Mass (GeV) PI PII PIIIradic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV)

500 13733 (530) 0664 (0244) 16736 (6113)600 10362 (372) 0464 (0159) 11770 (4031)700 7825 (264) 0337 (0109) 8502 (2718)800 5961 (189) 0250 (0075) 6276 (1882)900 4602 (136) 0189 (0053) 4701 (1326)1000 3593 (098) 0144 (0038) 3609 (0950)

PIIIPIPII

10minus1

100

101

102

500 600 700 800 900 1000

120590(p

b)

Mb998400 (GeV)

Figure 3The cross section for the process119901119901 rarr 119887119881+119883 dependingon the new heavy quark mass for parameter sets PI PII and PII atthe center of mass energyradic119904 = 13TeV

contribution We consider that the 119882 boson decays intolepton + missing transverse momentum with the branchingratio of 21 and 119885 boson decays into dilepton with thebranching ratio of 67 In our analyses we consider the 1199051015840signal in the 119897 + 119887jet + 120574 + MET 119897 + 119887jet + 119895 + MET and3119897 + 119887jet +MET channels where 119897 = 119890 120583 However if one takesthe hadronic119882 decay the signal will be enhanced by a factorof BR(119882 rarr hadrons)BR(119882 rarr 119897])

We have obtained the cross sections by using the cutspseudorapidity |120578

119895120574| lt 25 and transverse momentum 119901

119895120574

119879gt

20ndash200GeV for jets and photon in Table 7 (Tables 8 and 9)

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mtV

(pb

GeV

)

MtV (GeV)

pp rarr tg + X

pp rarr tZ + X

pp rarr t120574 + X

Figure 4 Invariant mass distributions 119898119905119881

(where 119881 = 120574 119892 and119885) for PI parametrization of the signal with 120581Λ = 02TeVminus1 and1198981199051015840 = 700GeV at the center of mass energy radic119904 = 13TeV

for PI (PII PIII) parametrization respectively Invariantmassdistribution of the 119905119881 (where 119881 = 120574 119892 and 119885) system isshown in Figure 4 for PI parametrization of the signal with120581Λ = 02TeVminus1 and 119898

1199051015840 = 700GeV at the center of mass

energy radic119904 = 13TeV It appears from signal significance cal-culations that the optimized transverse momentum cut is119901119895120574

119879gt 100GeV for 1199051015840 analysesThe backgrounds for the final state119882+119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 10 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879

gt 20ndash200GeV For the background cross section

Advances in High Energy Physics 5

Table 6The cross sections (in pb) of new heavy quark 1198871015840 production without cuts for PI PII and PIII parametrizations at the center of massenergy of 13TeV (8TeV) respectively

Mass (GeV) PI PII PIIIradic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV)

500 11340 (3913) 0970 (0285) 24474 (7114)600 7495 (2410) 0607 (0162) 15290 (409)700 5179 (1546) 0412 (0099) 10031 (2483)800 3697 (1025) 0286 (0062) 6832 (1566)900 2707 (0697) 01905 (0040) 4791 (1018)1000 2021 (0482) 0137 (0027) 3441 (0678)

Table 7 The cross sections (in pb) for 1199051015840 signal in different decay channels for PI parametrization with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 289 times 10minus1

210 times 10minus1

124 times 10minus1

102 times 10minus4

600 243 times 10minus1

164 times 10minus1

119 times 10minus1

123 times 10minus2

700 168 times 10minus1

12 times 10minus1

112 times 10minus1

225 times 10minus2

800 130 times 10minus1

103 times 10minus1

753 times 10minus2

325 times 10minus2

900 102 times 10minus1

808 times 10minus2

696 times 10minus2

302 times 10minus2

1000 761 times 10minus2

635 times 10minus2

507 times 10minus2

294 times 10minus2

119901119901 rarr 119882+119887119892 + 119883

500 778 times 100

602 times 100

363 times 100

474 times 10minus3

600 630 times 100

518 times 100

313 times 100

258 times 10minus1

700 499 times 100

363 times 100

304 times 100

932 times 10minus1

800 401 times 100

345 times 100

276 times 100

991 times 10minus1

900 332 times 100

277 times 100

213 times 100

108 times 100

1000 258 times 100

227 times 100

188 times 100

101 times 100

119901119901 rarr 119882+119887119885+119883

500 796 times 10minus1

601 times 10minus1

301 times 10minus1

101 times 10minus4

600 479 times 10minus1

386 times 10minus1

245 times 10minus1

271 times 10minus3

700 399 times 10minus1

312 times 10minus1

239 times 10minus1

696 times 10minus2

800 331 times 10minus1

289 times 10minus1

209 times 10minus1

805 times 10minus2

900 273 times 10minus1

273 times 10minus1

191 times 10minus1

954 times 10minus2

1000 223 times 10minus1

202 times 10minus1

161 times 10minus1

910 times 10minus2

estimates we assume the efficiency for 119887-tagging to be 120576119887=

50 and the rejection ratios to be 10 for 119888 (119888) quark jets and1 for light quark jets since they are assumed to bemistaggedas 119887-jets

In order to find the discovery limits we use the statisticalsignificance [28] defined as

119878119878 = radic2 [(119878 + 119861) ln(1 + 119878119861) minus 119878] (4)

where 119878 and 119861 are the numbers of the signal and backgroundevents respectively In Figures 5ndash7 the integrated luminosityrequired to reach 3120590 significance for the signal of 1199051015840 anoma-lous interactions is shown for parametrizations PI PII andPIII at the LHC with radic119904 = 13 TeV It is seen from these

figures that the channel 1199051015840 rarr 119905119885 requires more integratedluminosity than the other channels By requiring the signalsignificance 119878119878 = 3 the contour plots of 120581Λ and mass of1199051015840 quark are presented in Figure 8 The results show that onecan discover the 1199051015840 quark anomalous couplings 120581Λ down to01 TeVminus1 in the 119905119892 channel for119898

1199051015840 = 750GeV

411 Simulation for 1199051015840 Signal In order to include detectoreffects in the simulation we have generated 119905119881 (where 119881 =

120574 119892 and 119885) signal events for each subprocess and they aremixed using the ldquoevent mixerrdquo script which can be foundwithin the CALCHEP package [26] For further decay andhadronization these events are passed to PYTHIA [29] andsimulated with the PGS4 program [30] using generic LHC

6 Advances in High Energy Physics

Table 8 The same as Table 7 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 678 times 10minus3

507 times 10minus3

345 times 10minus3

264 times 10minus7

600 657 times 10minus3

542 times 10minus3

347 times 10minus3

534 times 10minus4

700 502 times 10minus3

431 times 10minus3

304 times 10minus3

873 times 10minus4

800 391 times 10minus3

376 times 10minus3

256 times 10minus3

103 times 10minus3

900 303 times 10minus3

268 times 10minus3

211 times 10minus3

101 times 10minus3

1000 240 times 10minus3

243 times 10minus3

177 times 10minus3

998 times 10minus4

119901119901 rarr 119882+119887119892 + 119883

500 347 times 10minus1

268 times 10minus1

152 times 10minus1

530 times 10minus6

600 251 times 10minus1

212 times 10minus1

135 times 10minus1

201 times 10minus2

700 187 times 10minus1

16 times 10minus1

116 times 10minus1

342 times 10minus2

800 146 times 10minus1

125 times 10minus1

939 times 10minus2

403 times 10minus2

900 112 times 10minus1

108 times 10minus1

780 times 10minus2

386 times 10minus2

1000 935 times 10minus2

837 times 10minus2

662 times 10minus2

368 times 10minus2

119901119901 rarr 119882+119887119885+119883

500 210 times 10minus2

177 times 10minus2

116 times 10minus2

264 times 10minus7

600 195 times 10minus2

175 times 10minus2

114 times 10minus2

134 times 10minus3

700 173 times 10minus2

143 times 10minus2

100 times 10minus2

29 times 10minus3

800 134 times 10minus2

119 times 10minus2

889 times 10minus3

342 times 10minus3

900 106 times 10minus2

955 times 10minus3

763 times 10minus3

337 times 10minus3

1000 809 times 10minus3

758 times 10minus3

631 times 10minus3

323 times 10minus3

Table 9 The same as Table 7 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 260 times 10minus1

278 times 10minus1

108 times 10minus1

159 times 10minus4

600 178 times 10minus1

161 times 10minus1

101 times 10minus1

142 times 10minus2

700 156 times 10minus1

135 times 10minus1

933 times 10minus2

272 times 10minus2

800 117 times 10minus1

106 times 10minus1

784 times 10minus2

332 times 10minus2

900 904 times 10minus2

842 times 10minus2

668 times 10minus2

325 times 10minus2

1000 760 times 10minus2

676 times 10minus2

516 times 10minus2

317 times 10minus2

119901119901 rarr 119882+119887119892 + 119883

500 839 times 100

649 times 100

386 times 100

465 times 10minus3

600 610 times 100

578 times 100

381 times 100

556 times 10minus1

700 539 times 100

464 times 100

341 times 100

970 times 10minus1

800 394 times 100

354 times 100

273 times 100

105 times 100

900 324 times 100

276 times 100

227 times 100

107 times 100

1000 233 times 100

229 times 100

184 times 100

998 times 10minus1

119901119901 rarr 119882+119887119885+119883

500 772 times 10minus1

101 times 100

217 times 10minus1

627 times 10minus4

600 624 times 10minus1

385 times 10minus1

292 times 10minus1

320 times 10minus2

700 500 times 10minus1

305 times 10minus1

286 times 10minus1

580 times 10minus2

800 378 times 10minus1

250 times 10minus1

242 times 10minus1

964 times 10minus2

900 304 times 10minus1

167 times 10minus1

206 times 10minus1

962 times 10minus2

1000 251 times 10minus1

129 times 10minus1

148 times 10minus1

961 times 10minus2

Advances in High Energy Physics 7

Table 10The cross sections (in pb) for the relevant backgrounds (119882+119887(119887)119881119882+119888(119888)119881 and119882+119895119881 where119881 = photon jet and119885 boson) with119901119879cuts on the jets at the center of mass energyradic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883 237 times 10

minus3362 times 10

minus4617 times 10

minus5699 times 10

minus6

119901119901 rarr 119882+119888120574 + 119883 415 times 10

0459 times 10

minus1625 times 10

minus2621 times 10

minus3

119901119901 rarr 119882+119895120574 + 119883 263 times 10

1430 times 10

0733 times 10

minus1127 times 10

minus1

119901119901 rarr 119882+119887(119887)119895 + 119883 726 times 10

1302 times 10

1611 times 10

0974 times 10

minus1

119901119901 rarr 119882+119888(119888)119895 + 119883 598 times 10

2965 times 10

1179 times 10

1242 times 10

0

119901119901 rarr 119882+119895119895 + 119883 731 times 10

3778 times 10

2161 times 10

2258 times 10

1

119901119901 rarr 119882+119887119885 + 119883 626 times 10

minus4399 times 10

minus4193 times 10

minus4471 times 10

minus5

119901119901 rarr 119882+119888119885 + 119883 529 times 10

minus1340 times 10

minus1166 times 10

minus1415 times 10

minus2

119901119901 rarr 119882+119895119885 + 119883 859 times 10

0483 times 10

0249 times 10

0791 times 10

minus1

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 5 Integrated luminosity required to reach 3120590 significancefor the signal of 1199051015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

102

103

104

500 600 700 800 900 1000

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 6 The same as Figure 5 but for parametrization PII

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 7 The same as Figure 5 but for parametrization PIII

detector parametersThis fast simulation includes the impor-tant detector effects such as tracking smearing effects of thecalorimeters resolution and tag efficiencies The EXROOT-ANALYSIS package [31] is used for the simulated events andthe output is analyzed and histogrammed with the ROOT[32] macros We consider jets (up to five) leptons (electronsor muons) photons and missing transverse momentumwithin the simulated events for the 119905120574 119905119895 and 119905119885 eventsgeneration The typical kinematical distributions are shownin Figures 9-10

In the analysis the signal (with 120581Λ = 02TeVminus1 and1198981199051015840 = 700GeV) and the corresponding background (119882119895119881)

are taken into accountThe 119904-channel contribution to the sig-nal process appears as a resonance around the 1199051015840mass value inthe reconstructed invariant mass 119898rec

1199051015840 The reconstructed

mass distribution for the 1199051015840 signal (reconstructed from a topquark and a vector boson) is shown in Figure 11

Similar to the single top processes the top quark in thefinal state is reconstructed from a leading jet (commonly 119887jet)and a119882 boson (which can be reconstructed from its leptonicor hadronic decay) For the 119905120574 production we require

8 Advances in High Energy Physics

500 600 700 800 900 1000

Mt998400 (GeV)

01

02

03

04

05120581Λ

(TeV

minus1 )

t998400 rarr WbZ

t998400 rarr Wb120574

t998400 rarr Wbg

Figure 8The contour plot of anomalous coupling and mass of newheavy quark 1199051015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

12000

14000

16000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 9 Transverse momentum distributions of leading jet (Jet 1)and other jets (Jet 2 and Jet 3) and photon for signal (119905120574 production)after detector simulation

systematically the large transverse momentum of photon(119901120574119879gt 100GeV) minimum jet transverse momentum (119901119895

119879gt

20GeV) and the pseudorapidity range (|120578119895120574| lt 25) inaddition to the requirements on mass reconstruction of119882-boson and top quark The large 119901120574

119879and the requirement of

single 119887-tagging allow a better separation of the signal (for 119905120574channel) from the background Other channels for 119905119892 and 119905119885productions are more challenging due to a large number ofjets which require additional discriminators such as angularandor total transverse energy variables However in orderto get rid of the backgrounds from 119882119905 and 119905119905 production

Entr

ies

50 100 150 200 250 300 350 4000

5000

10000

15000

20000

25000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 10 Transverse momentum distributions of leading jet (Jet1) and other jets (Jet 2 and Jet 3) and photon for background (119882119895120574production)

500 600 700 800 900 1000

40

60

80

100

120

BackgroundSignal

Mrect998400

(GeV)

Even

ts10

GeV

Figure 11The reconstructedmass distributions for background andsignal (119905120574) with119898

1199051015840 = 700GeV and 120581Λ = 015TeVminus1

(for a similar framework the production cross sections areabout 25 pb and 340 pb resp) one can consider the channel3119897 + 119887jet + MET for a distinctive signal from the 1199051015840 rarr 119905119885An analysis of the investigation of single top production withsimilar backgrounds at the LHC can be found in [33ndash35]

42 Analysis of the Process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574) for1198871015840 Signal The signal process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574)includes the new heavy quark 1198871015840 exchange in both the 119904-channel and the 119905-channel The 119904-channel contributes to thesignal process as resonance around the 1198871015840mass value in the 119887119881invariantmass while the 119905-channel contributes to the nonres-onant behaviour For this process we consider the leptonicdecay of 119885 boson In the analyses we consider the 1198871015840 signalto be 119887jet + 120574 119887jet + 119895 and 119887jet + dilepton

Advances in High Energy Physics 9

Table 11 The cross sections (in pb) for 1198871015840 signal in different decay channel for parametrization PI with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 564 times 10minus2

562 times 10minus2

549 times 10minus2

395 times 10minus2

600 396 times 10minus2

396 times 10minus2

390 times 10minus2

333 times 10minus2

700 287 times 10minus2

287 times 10minus2

286 times 10minus2

259 times 10minus2

800 212 times 10minus2

213 times 10minus2

212 times 10minus2

199 times 10minus2

900 160 times 10minus2

160 times 10minus2

160 times 10minus2

153 times 10minus2

1000 122 times 10minus2

122 times 10minus2

122 times 10minus2

119 times 10minus2

119901119901 rarr 119887119892 + 119883

500 813 times 100

813 times 100

793 times 100

596 times 100

600 559 times 100

559 times 100

553 times 100

488 times 100

700 398 times 100

398 times 100

396 times 100

373 times 100

800 291 times 100

291 times 100

290 times 100

281 times 100

900 216 times 100

216 times 100

216 times 100

214 times 100

1000 164 times 100

163 times 100

163 times 100

162 times 100

119901119901 rarr 119887119885 + 119883

500 787 times 10minus1

781 times 10minus1

750 times 10minus1

479 times 10minus1

600 548 times 10minus1

548 times 10minus1

531 times 10minus1

427 times 10minus1

700 395 times 10minus1

394 times 10minus1

386 times 10minus1

339 times 10minus1

800 292 times 10minus1

291 times 10minus1

286 times 10minus1

261 times 10minus1

900 218 times 10minus1

218 times 10minus1

215 times 10minus1

202 times 10minus1

1000 166 times 10minus1

166 times 10minus1

164 times 10minus1

156 times 10minus1

We have obtained the cross sections by using the pseu-dorapidity cuts |120578

119895120574| lt 25 and transverse momentum cuts

119901119895120574

119879gt 20ndash200GeV for jets and photon in Table 11 (Tables

12 and 13) for PI (PII PIII) parametrizations respectivelyInvariantmass distribution of the 119887119881 (where119881 = 120574 119892 and119885)system is shown in Figure 12 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the

center of mass energy radic119904 = 13TeV It appears from sig-nal significance calculation that the optimized transversemomentum cut is 119901

119879gt 200GeV for 1198871015840 analyses

The backgrounds for the final state 119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 14 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879gt 20ndash200GeV It can be noted that the background

cross section decreases as the119901119879cuts increaseWe assume the

efficiency for 119887-tagging to be 120576119887= 50and the rejection ratios

to be 10 for 119888 (119888) quark jets and 1 for light quark jetsIn order to reach 3120590 significance for the signal of 1198871015840

anomalous interactions the required integrated luminosityis shown in Figures 13ndash15 for parametrizations PI PII andPIII at the LHC with radic119904 = 13TeV The channel 1198871015840 rarr 119887120574

requires more integrated luminosity than the other channelsBy requiring the signal significance 119878119878 = 3 the contour plotsof 120581Λ and mass of 1198871015840 quark are presented in Figure 16 Theresults show that one can discover the 1198871015840 quark anomalouscouplings down to 01 in the 119887119892 channel for119898

1198871015840 = 500GeV

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mbV

(pb

GeV

)

MbV (GeV)

pp rarr bg + X

pprarr bZ + X

pprarr b120574 + X

Figure 12 Invariant mass distribution of the 119887119881 (where 119881 = 120574 119892and 119885) system is shown in Figure 5 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the center of

mass energyradic119904 = 13TeV

421 Simulation for 1198871015840 Signal In the simulation we havegenerated 119887119881 (where 119881 = 120574 119892 and 119885) events for each sub-process and these events are simulated using generic detector

10 Advances in High Energy Physics

Table 12 The same as Table 11 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 518 times 10minus3

526 times 10minus3

504 times 10minus3

354 times 10minus3

600 338 times 10minus3

337 times 10minus3

336 times 10minus3

277 times 10minus3

700 232 times 10minus3

231 times 10minus3

230 times 10minus3

205 times 10minus3

800 171 times 10minus3

163 times 10minus3

164 times 10minus3

150 times 10minus3

900 117 times 10minus3

116 times 10minus3

117 times 10minus3

111 times 10minus3

1000 860 times 10minus4

858 times 10minus4

855 times 10minus4

824 times 10minus4

119901119901 rarr 119887119892 + 119883

500 740 times 10minus1

739 times 10minus1

721 times 10minus1

516 times 10minus1

600 483 times 10minus1

480 times 10minus1

481 times 10minus1

398 times 10minus1

700 322 times 10minus1

322 times 10minus1

320 times 10minus1

289 times 10minus1

800 224 times 10minus1

221 times 10minus1

221 times 10minus1

204 times 10minus1

900 15 times 10minus1

158 times 10minus1

158 times 10minus1

149 times 10minus1

1000 114 times 10minus1

114 times 10minus1

113 times 10minus1

110 times 10minus1

119901119901 rarr 119887119885 + 119883

500 689 times 10minus2

685 times 10minus2

645 times 10minus2

423 times 10minus2

600 452 times 10minus2

451 times 10minus2

434 times 10minus2

353 times 10minus2

700 312 times 10minus2

311 times 10minus2

305 times 10minus2

265 times 10minus2

800 219 times 10minus2

218 times 10minus2

215 times 10minus2

195 times 10minus2

900 156 times 10minus2

156 times 10minus2

155 times 10minus2

144 times 10minus2

1000 114 times 10minus2

113 times 10minus2

113 times 10minus2

107 times 10minus2

Table 13 The same as Table 11 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 131 times 10minus2

1314 times 10minus2

1275 times 10minus2

892 times 10minus2

600 859 times 10minus2

858 times 10minus2

844 times 10minus2

703 times 10minus2

700 582 times 10minus2

582 times 10minus2

577 times 10minus2

517 times 10minus2

800 407 times 10minus2

407 times 10minus2

406 times 10minus2

377 times 10minus2

900 292 times 10minus2

292 times 10minus2

291 times 10minus2

277 times 10minus2

1000 214 times 10minus2

213 times 10minus2

213 times 10minus2

206 times 10minus2

119901119901 rarr 119887119892 + 119883

500 1904 times 100

1896 times 100

1843 times 100

1286 times 100

600 1219 times 100

1213 times 100

1193 times 100

992 times 100

700 808 times 100

807 times 100

802 times 100

717 times 100

800 557 times 100

557 times 100

555 times 100

515 times 100

900 394 times 100

394 times 100

394 times 100

374 times 100

1000 285 times 100

285 times 100

285 times 100

274 times 100

119901119901 rarr 119887119885 + 119883

500 176 times 100

175 times 100

165 times 100

105 times 100

600 115 times 100

114 times 100

111 times 100

880 times 10minus1

700 783 times 10minus1

780 times 10minus1

760 times 10minus1

661 times 10minus1

800 547 times 10minus1

541 times 10minus1

531 times 10minus1

480 times 10minus1

900 392 times 10minus1

390 times 10minus1

382 times 10minus1

360 times 10minus1

1000 286 times 10minus1

282 times 10minus1

280 times 10minus1

262 times 10minus1

Advances in High Energy Physics 11

Table 14 The cross sections (in pb) for the backgrounds (119887(119887)119881 119888(119888)119881 and 119895119881 where119881 = photon jet and 119885 boson) with 119901119879cuts on the jets

and photon at the center of mass energy radic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887(119887)120574 + 119883 299 times 103

135 times 102

904 times 100

402 times 10minus1

119901119901 rarr 119888(119888)120574 + 119883 187 times 104

815 times 102

540 times 101

243 times 100

119901119901 rarr 119895120574 + 119883 543 times 104

327 times 103

338 times 102

285 times 101

119901119901 rarr 119887(119887)119895 + 119883 783 times 106

305 times 105

192 times 104

893 times 102

119901119901 rarr 119888(119888)119895 + 119883 122 times 107

455 times 105

289 times 104

135 times 103

119901119901 rarr 119895119895 + 119883 243 times 108

854 times 106

544 times 105

280 times 104

119901119901 rarr 119887(119887)119885 + 119883 502 times 102

135 times 102

225 times 101

156 times 100

119901119901 rarr 119888(119888)119885 + 119883 596 times 102

158 times 102

264 times 101

183 times 100

119901119901 rarr 119895119885 + 119883 800 times 103

208 times 103

408 times 102

412 times 101

500 600 700 800 900 1000

Mb998400 (GeV)

10minus1

100

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 13 Integrated luminosity required to reach 3120590 significancefor the signal of 1198871015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

500 600 700 800 900 1000

Mb998400 (GeV)

104

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 14 The same as Figure 13 but for parametrization PII

500 600 700 800 900 100010minus1

100

101

102

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 15 The same as Figure 13 but for parametrization PIII

parameters to include detector effects such as tracking tag-ging efficiencies and smearing effects After the simulationthe typical kinematical distributions are shown in Figures 17-18

In the analysis the signal (with 120581Λ = 03TeVminus1 and1198981198871015840 = 700GeV) and the corresponding background are

taken into account The invariant mass of the new heavyquark 1198871015840 can be reconstructed from a 119887jet and a neutral gaugeboson (where the 119885 boson can also be reconstructed fromits dilepton or hadronic decay) For the 119887120574 production werequire a large 119901120574

119879(gt100GeV) for photon and large 119901119895

119879

(gt100GeV) for jet and pseudorapidity |120578119895120574| (lt25) For the 119887120574signal channel the invariantmass distributions for signal andbackground events are shown in Figure 19The large 119901119895120574

119879and

the requirement of single 119887-tagging allow a better separationof the signal (for 119887120574 channel) from the background and thenwe find a precise limit for the anomalous coupling in thischannel For the 119887119892 and 119887119885 production we require two high119901119879jets (one 119887-jet) and a high 119901

119879jet in addition to the

reconstructed mass 119898rec119885 respectively The main character of

12 Advances in High Energy Physics

500 600 700 800 900 100001

02

03

04

05120581Λ

(TeV

minus1 )

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 16The contour plot of anomalous coupling andmass of newheavy quark 1198871015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

PhotonJet 1

pT (GeV)

Figure 17 Transverse momentum distributions of leading jet andphoton (119887120574 production) for signal after detector simulation

the signal is the high 119901119895119879andor 119901120574

119879and single 119887-tagged jet

We calculate the signal and background events in the range|119898

rec1198871015840 (GeV) minus 700GeV| lt 50GeV and we find a similar

significance as shown in Figure 16

5 Conclusion

The new heavy quarks of up-type and down-type can be pro-duced with large numbers at the LHC if they have the anoma-lous couplings (via flavor changing neutral current) thatwell dominate over the charged current interactions The

Entr

ies

50 100 150 200 250 300 350 4000

2000

4000

6000

8000

10000

12000

PhotonJet 1

pT (GeV)

Figure 18 Transverse momentum distributions of leading jet andphoton (119895120574 production) for background at the given conditionsmentioned in the text

500 550 600 650 700 750 800 850 900 950 10000

500

1000

1500

2000

2500

3000

BackgroundSignal

Mrecb998400

(GeV)

Even

ts10

GeV

Figure 19The reconstructedmass distributions for background andsignal (119887120574) with119898

1198871015840 = 700GeV and 120581Λ = 03TeVminus1

single production of new heavy quarks can be achievedthrough the anomalous interactions at the LHC with radic119904 =13TeV The anomalous vertices could appear significantly atleading order processes due to the possibility of new heavyquarks From the results of signal significance calculationsfor 1199051015840 (1198871015840) anomalous productions the sensitivity to theanomalous couplings 120581119905

1015840

Λ (1205811198871015840

Λ) can be reached down to010 TeVminus1 (015 TeVminus1) in the lepton + 119887jet + jet +MET (119887jet +jet) channel at radic119904 = 13TeV assuming a dynamical para-metrization for the anomalous couplings and the mass of 750GeV for the new heavy quarks The observability limits onthe anomalous couplings obtained after the simulation arecomparable with the partonic level analysis in the photon and119885 boson associated channels whereas the productions 119905119892 and119887119892 are less comparable due to the fast simulation method In

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 2: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

2 Advances in High Energy Physics

background Any observations of the invariant mass peak inthe range of 500ndash1000GeV and excess in the events with thefinal states originating from119882119887119881 and 119887119881 can be interpretedas the signal for the new heavy quarks 1199051015840 and 1198871015840 via theanomalous interactions

2 New Heavy Quarks Anomalous Interactions

A general theory that includes the standard model (SM) asits low energy limit can be written as an expansion seriesin powers of Λminus1 with operators obeying the required sym-metries The dimension six gauge invariant operators can bebuilt from the SM fields and they can induce dimension fiveoperators after spontaneous symmetry breaking The coef-ficients of the dimension five terms are related to those ofdimension six operators and they can lead to sizable effects inthe heavy quark associated production in high energy col-lisions [25] For our study the effective Lagrangian withdimension five terms for the anomalous interactions amongthe new heavy quarks (1198761015840 equiv 1199051015840 or 1198871015840) ordinary quarks 119902 andthe gauge bosons 119881 = 120574 119885 119892 can be written explicitly

119871 = sum

119902119894=119906119888119905

120581119902119894

120574

Λ119876119902119894

1198921198901199051015840

120590120583]119902119894119865120583]+ sum

119902119894=119906119888119905

120581119902119894

119911

2Λ1198921199111199051015840

120590120583]119902119894119885120583]

+ sum

119902119894=119906119888119905

120581119902119894

119892

2Λ1198921199041199051015840

120590120583]120582119886119902119894119866

120583]119886+ sum

119902119894=119889119904119887

120581119902119894

120574

Λ119876119902119894

1198921198901198871015840

120590120583]119902119894119865120583]

+ sum

119902119894=119889119904119887

120581119902119894

119911

2Λ1198921199111198871015840

120590120583]119902119894119885120583]+ sum

119902119894=119889119904119887

120581119902119894

119892

2Λ1198921199041198871015840

120590120583]120582119886119902119894119866

120583]119886

+ hc(1)

where 119865120583] 119885120583] and 119866120583] are the field strength tensors of thegauge bosons 120590

120583] = 119894(120574120583120574] minus 120574]120574120583)2 120582119886 are the Gell-Mannmatrices119876

119902is the electric charge of the quark (119902) 119892

119890 119892119885 and

119892119904are the electromagnetic neutral weak and strong coupling

constants respectively 119892119885= 119892119890 cos 120579

119908sin 120579119908 where 120579

119908is

the weak mixing angle 120581120574is the anomalous coupling with

photon 120581119911is for the 119885 boson and 120581

119892is the coupling with

gluon Finally Λ is the cutoff scale for the new interactions

3 Decay Widths and Branchings

For the decay channels 1198761015840 rarr 119881119902 where 119881 equiv 120574 119885 and 119892 weuse the effective Lagrangian to calculate the anomalous decaywidths

Γ (1198761015840997888rarr 119892119902) =

2

3(120581119902

119892

Λ)

2

1205721199041198983

11987610158401205820

Γ (1198761015840997888rarr 120574119902) =

1

2(120581119902

120574

Λ)

2

1205721198901198762

1199021198983

11987610158401205820

Γ (1198761015840997888rarr 119885119902) =

1

16(120581119902

119885

Λ)

21205721198901198983

1198761015840

sin2120579119882cos2120579119882

120582119885radic120582119903

(2)

Table 1 Branching ratios () and decay width of the new heavyquark (1199051015840) with only anomalous interactions for PI parametrizationand 120581Λ = 01 TeVminus1

Mass(GeV) 119892119906(119888) 119892119905 119885119906(119888) 119885119905 120574119906(119888) 120574119905

Γ

(GeV)500 335 229 286 182 092 063 023600 323 250 286 213 091 070 041700 316 262 287 234 090 075 065800 311 270 289 248 090 078 097900 307 275 291 258 091 081 1391000 305 278 293 266 091 083 190

with

1205820= 1 minus

31198982

119902

11989821198761015840

+31198984

119902

11989841198761015840

minus1198986

119902

11989861198761015840

120582119903= 1 +

1198984

119885

11989841198761015840

+1198984

119902

11989841198761015840

minus21198982

119885

11989821198761015840

minus21198982

119902

11989821198761015840

minus21198982

1198851198982

119902

11989841198761015840

120582119885= 2 minus

1198982

119885

11989821198761015840

minus41198982

119902

11989821198761015840

+21198984

119902

11989841198761015840

minus61198981199021198982

119885

11989831198761015840

minus1198982

1198851198982

119905

11989841198761015840

minus1198984

119885

11989841198761015840

(3)

The anomalous decay widths in different channels areproportional to Λminus2 and they are assumed to be dominantfor 120581Λ gt 01TeVminus1 over the charged current channels Inthis case if we take all the anomalous coupling equal then thebranching ratios will be nearly independent of 120581Λ We haveused three parametrization sets entitled PI PII and PIII Forthe PI parametrization we assume the constant value 120581

119894Λ =

01TeVminus1 and PII has the parameters 120581119894Λ = 01120582

4minus119894 TeVminus1with 120582 = 05 For PIII we take the couplings 120581

119894Λ =

051205824minus119894 TeVminus1 with the same value of 120582 The index 119894 is the

generation numberTables 1 and 2 present the decay width and branching

ratios of the new heavy quark 1199051015840 through anomalous inter-actions for the parametrization PI PII and PIII respectivelyTaking the anomalous coupling 120581Λ = 01TeVminus1 we calculatethe 1199051015840 decay width Γ = 065GeV and 190GeV for 119898

1199051015840 =

700GeV and 1000GeV respectivelyThe branching into 1199051015840 rarr119902119892 channel is the largest and branching into 1199051015840 rarr 119902120574

channel is the smallest for equal anomalous couplings withthe parametrization PI On the other hand PII and PIIIparametrization give higher branching ratios into 119905119881 (119881 =

119892 119885 120574) than 119902119881 (119902 = 119906 119888) channels due to 1205824minus119894 factor in theparametrization

For the new heavy quark 1198871015840 the decay width and branch-ing ratios are presented in Tables 3 and 4 for the parametriza-tions PI PII and PIII respectively We calculate the 1198871015840 decaywidth by taking the anomalous couplings 120581Λ = 01TeVminus1Γ = 068GeV and 192GeV for119898

1198871015840 = 700GeV and 1000GeV

respectively The branching for 1198871015840 rarr 119902119892 is the largest (30)and it is the smallest for 1198871015840 rarr 119902120574 (02) channel for equalanomalous couplings with the parametrization PI For PII

Advances in High Energy Physics 3

Table 2 The same as Table 1 but for PII (PIII) parametrization

Mass (GeV) 119892119906 119892119888 119892119905 119885119906 119885119888 119885119905 120574119906 120574119888 120574119905 Γ (GeV)500 566 2260 6190 048 193 492 015 062 171 0021 (0558)600 517 2070 6390 046 183 546 014 058 180 0040 (1024)700 490 1960 6490 044 178 579 014 056 187 0066 (168)800 473 1890 6560 044 176 602 014 055 191 0100 (2561)900 461 1840 6590 044 174 619 013 054 195 0145 (3680)1000 453 1810 6620 043 174 632 013 054 198 0200 (5070)

g

q

Q

V

Q998400

(a)

g Q

q V

Q998400

(b)

Figure 1 Diagrams for the subprocess 119892119902 rarr 119881119876 with anomalous vertices 1198761015840119902119881 and 1198761015840119876119881 (where 1198761015840 can be the new heavy quark 1198871015840 or 1199051015840depending on the type of light (119902) or heavy (119876 equiv 119905 119887) quarks resp)

Table 3 Branching ratios () and decay width of the new heavyquark (1198871015840) with only anomalous interactions for PI parametrizationand 120581Λ = 01 TeVminus1

Mass(GeV) 119892119889(119904 119887) 119885119889(119904 119887) 120574119889(119904 119887) Γ (GeV)

500 3050 260 021 0257600 3040 269 021 0436700 3040 276 022 0682800 3030 282 022 1005900 3020 286 022 14151000 3020 290 023 1921

and PIII parametrization the branching ratios into 119887119881 (119881 =

119892 119885 120574) are larger than 119902119881 (119902 = 119889 119904) channels The 1199051015840 and1198871015840 decay widths are about the same values for PII and PIIIparametrization

4 The Cross Sections

In order to study the new heavy quark productions at theLHC we have used effective anomalous interaction verticesand implemented these vertices into the CalcHEP package[26] In all of the numerical calculations the parton dis-tribution functions are set to the CTEQ6L parametrization[27] The new heavy quarks can be produced through theiranomalous couplings to the ordinary quarks and neutralvector bosons as shown in Figure 1

Total cross sections for the productions of new heavyquarks 1199051015840 and 119887

1015840 are given in Tables 5 and 6 for theparametrizations PI PII and PIII at the center of massenergy of 8 TeV and 13 TeV For an illustration taking themass of new heavy quarks as 700GeV the cross section of1199051015840(1198871015840) production is calculated as 850 pb (1003 pb) for the

parametrization PIII at radic119904 = 13TeV It can be seen fromTables 5 and 6 that the cross section decreases while the

PIIIPIPII

10minus1

100

101

102

500 600 700 800 900 1000

120590(p

b)

Mt998400 (GeV)

Figure 2The cross section for the process 119901119901 rarr 119905119881+119883 dependingon the mass for parameter sets PI PII and PIII at the center of massenergyradic119904 = 13TeV

mass of the new heavy quark increases The cross section for1199051015840 production is larger than the 1198871015840 production with a factor of12ndash18 (07ndash10) for PI (PII and PIII) parametrization depend-ing on the consideredmass range atradic119904 = 13TeVThe generalbehaviour of the production cross sections depending on themass of new heavy quarks is presented in Figures 2 and 3 fordifferent parametrizations

41 Analysis of the Process 119901119901 rarr 119882+119887119881+119883 (119881 = 119892 119885 120574) for

1199051015840 Signal The signal process 119901119901 rarr 119882

+119887119881 +119883 (119881 = 119892 119885 120574)

includes the 1199051015840 exchange in both the 119904-channel and 119905-channelThe 119904-channel contribution to the signal process wouldappear itself as resonance around the 1199051015840 mass value in the119882119887119881 invariant mass The 119905-channel gives the nonresonant

4 Advances in High Energy Physics

Table 4 The same as Table 3 but for PII (PIII) parametrization

Mass (GeV) 119892119889 119892119904 119892119887 119885119889 119885119904 119885119887 120574119889 120574119904 120574119887 Γ (GeV)500 436 1740 6980 037 149 595 0030 012 048 0028 (0704)600 435 1740 6950 038 154 616 0030 012 049 0047 (1194)700 434 1730 6940 039 158 631 0031 012 050 0074 (1866)800 433 1730 6920 040 161 644 0031 012 050 0110 (2749)900 432 1730 6910 041 164 654 0032 013 051 0154 (3869)1000 432 1730 6900 041 166 663 0032 013 052 0210 (5253)

Table 5The cross sections (in pb) of new heavy quark 1199051015840 production without cuts for PI PII and PIII parametrizations at the center of massenergy 13TeV (8TeV) respectively

Mass (GeV) PI PII PIIIradic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV)

500 13733 (530) 0664 (0244) 16736 (6113)600 10362 (372) 0464 (0159) 11770 (4031)700 7825 (264) 0337 (0109) 8502 (2718)800 5961 (189) 0250 (0075) 6276 (1882)900 4602 (136) 0189 (0053) 4701 (1326)1000 3593 (098) 0144 (0038) 3609 (0950)

PIIIPIPII

10minus1

100

101

102

500 600 700 800 900 1000

120590(p

b)

Mb998400 (GeV)

Figure 3The cross section for the process119901119901 rarr 119887119881+119883 dependingon the new heavy quark mass for parameter sets PI PII and PII atthe center of mass energyradic119904 = 13TeV

contribution We consider that the 119882 boson decays intolepton + missing transverse momentum with the branchingratio of 21 and 119885 boson decays into dilepton with thebranching ratio of 67 In our analyses we consider the 1199051015840signal in the 119897 + 119887jet + 120574 + MET 119897 + 119887jet + 119895 + MET and3119897 + 119887jet +MET channels where 119897 = 119890 120583 However if one takesthe hadronic119882 decay the signal will be enhanced by a factorof BR(119882 rarr hadrons)BR(119882 rarr 119897])

We have obtained the cross sections by using the cutspseudorapidity |120578

119895120574| lt 25 and transverse momentum 119901

119895120574

119879gt

20ndash200GeV for jets and photon in Table 7 (Tables 8 and 9)

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mtV

(pb

GeV

)

MtV (GeV)

pp rarr tg + X

pp rarr tZ + X

pp rarr t120574 + X

Figure 4 Invariant mass distributions 119898119905119881

(where 119881 = 120574 119892 and119885) for PI parametrization of the signal with 120581Λ = 02TeVminus1 and1198981199051015840 = 700GeV at the center of mass energy radic119904 = 13TeV

for PI (PII PIII) parametrization respectively Invariantmassdistribution of the 119905119881 (where 119881 = 120574 119892 and 119885) system isshown in Figure 4 for PI parametrization of the signal with120581Λ = 02TeVminus1 and 119898

1199051015840 = 700GeV at the center of mass

energy radic119904 = 13TeV It appears from signal significance cal-culations that the optimized transverse momentum cut is119901119895120574

119879gt 100GeV for 1199051015840 analysesThe backgrounds for the final state119882+119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 10 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879

gt 20ndash200GeV For the background cross section

Advances in High Energy Physics 5

Table 6The cross sections (in pb) of new heavy quark 1198871015840 production without cuts for PI PII and PIII parametrizations at the center of massenergy of 13TeV (8TeV) respectively

Mass (GeV) PI PII PIIIradic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV)

500 11340 (3913) 0970 (0285) 24474 (7114)600 7495 (2410) 0607 (0162) 15290 (409)700 5179 (1546) 0412 (0099) 10031 (2483)800 3697 (1025) 0286 (0062) 6832 (1566)900 2707 (0697) 01905 (0040) 4791 (1018)1000 2021 (0482) 0137 (0027) 3441 (0678)

Table 7 The cross sections (in pb) for 1199051015840 signal in different decay channels for PI parametrization with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 289 times 10minus1

210 times 10minus1

124 times 10minus1

102 times 10minus4

600 243 times 10minus1

164 times 10minus1

119 times 10minus1

123 times 10minus2

700 168 times 10minus1

12 times 10minus1

112 times 10minus1

225 times 10minus2

800 130 times 10minus1

103 times 10minus1

753 times 10minus2

325 times 10minus2

900 102 times 10minus1

808 times 10minus2

696 times 10minus2

302 times 10minus2

1000 761 times 10minus2

635 times 10minus2

507 times 10minus2

294 times 10minus2

119901119901 rarr 119882+119887119892 + 119883

500 778 times 100

602 times 100

363 times 100

474 times 10minus3

600 630 times 100

518 times 100

313 times 100

258 times 10minus1

700 499 times 100

363 times 100

304 times 100

932 times 10minus1

800 401 times 100

345 times 100

276 times 100

991 times 10minus1

900 332 times 100

277 times 100

213 times 100

108 times 100

1000 258 times 100

227 times 100

188 times 100

101 times 100

119901119901 rarr 119882+119887119885+119883

500 796 times 10minus1

601 times 10minus1

301 times 10minus1

101 times 10minus4

600 479 times 10minus1

386 times 10minus1

245 times 10minus1

271 times 10minus3

700 399 times 10minus1

312 times 10minus1

239 times 10minus1

696 times 10minus2

800 331 times 10minus1

289 times 10minus1

209 times 10minus1

805 times 10minus2

900 273 times 10minus1

273 times 10minus1

191 times 10minus1

954 times 10minus2

1000 223 times 10minus1

202 times 10minus1

161 times 10minus1

910 times 10minus2

estimates we assume the efficiency for 119887-tagging to be 120576119887=

50 and the rejection ratios to be 10 for 119888 (119888) quark jets and1 for light quark jets since they are assumed to bemistaggedas 119887-jets

In order to find the discovery limits we use the statisticalsignificance [28] defined as

119878119878 = radic2 [(119878 + 119861) ln(1 + 119878119861) minus 119878] (4)

where 119878 and 119861 are the numbers of the signal and backgroundevents respectively In Figures 5ndash7 the integrated luminosityrequired to reach 3120590 significance for the signal of 1199051015840 anoma-lous interactions is shown for parametrizations PI PII andPIII at the LHC with radic119904 = 13 TeV It is seen from these

figures that the channel 1199051015840 rarr 119905119885 requires more integratedluminosity than the other channels By requiring the signalsignificance 119878119878 = 3 the contour plots of 120581Λ and mass of1199051015840 quark are presented in Figure 8 The results show that onecan discover the 1199051015840 quark anomalous couplings 120581Λ down to01 TeVminus1 in the 119905119892 channel for119898

1199051015840 = 750GeV

411 Simulation for 1199051015840 Signal In order to include detectoreffects in the simulation we have generated 119905119881 (where 119881 =

120574 119892 and 119885) signal events for each subprocess and they aremixed using the ldquoevent mixerrdquo script which can be foundwithin the CALCHEP package [26] For further decay andhadronization these events are passed to PYTHIA [29] andsimulated with the PGS4 program [30] using generic LHC

6 Advances in High Energy Physics

Table 8 The same as Table 7 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 678 times 10minus3

507 times 10minus3

345 times 10minus3

264 times 10minus7

600 657 times 10minus3

542 times 10minus3

347 times 10minus3

534 times 10minus4

700 502 times 10minus3

431 times 10minus3

304 times 10minus3

873 times 10minus4

800 391 times 10minus3

376 times 10minus3

256 times 10minus3

103 times 10minus3

900 303 times 10minus3

268 times 10minus3

211 times 10minus3

101 times 10minus3

1000 240 times 10minus3

243 times 10minus3

177 times 10minus3

998 times 10minus4

119901119901 rarr 119882+119887119892 + 119883

500 347 times 10minus1

268 times 10minus1

152 times 10minus1

530 times 10minus6

600 251 times 10minus1

212 times 10minus1

135 times 10minus1

201 times 10minus2

700 187 times 10minus1

16 times 10minus1

116 times 10minus1

342 times 10minus2

800 146 times 10minus1

125 times 10minus1

939 times 10minus2

403 times 10minus2

900 112 times 10minus1

108 times 10minus1

780 times 10minus2

386 times 10minus2

1000 935 times 10minus2

837 times 10minus2

662 times 10minus2

368 times 10minus2

119901119901 rarr 119882+119887119885+119883

500 210 times 10minus2

177 times 10minus2

116 times 10minus2

264 times 10minus7

600 195 times 10minus2

175 times 10minus2

114 times 10minus2

134 times 10minus3

700 173 times 10minus2

143 times 10minus2

100 times 10minus2

29 times 10minus3

800 134 times 10minus2

119 times 10minus2

889 times 10minus3

342 times 10minus3

900 106 times 10minus2

955 times 10minus3

763 times 10minus3

337 times 10minus3

1000 809 times 10minus3

758 times 10minus3

631 times 10minus3

323 times 10minus3

Table 9 The same as Table 7 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 260 times 10minus1

278 times 10minus1

108 times 10minus1

159 times 10minus4

600 178 times 10minus1

161 times 10minus1

101 times 10minus1

142 times 10minus2

700 156 times 10minus1

135 times 10minus1

933 times 10minus2

272 times 10minus2

800 117 times 10minus1

106 times 10minus1

784 times 10minus2

332 times 10minus2

900 904 times 10minus2

842 times 10minus2

668 times 10minus2

325 times 10minus2

1000 760 times 10minus2

676 times 10minus2

516 times 10minus2

317 times 10minus2

119901119901 rarr 119882+119887119892 + 119883

500 839 times 100

649 times 100

386 times 100

465 times 10minus3

600 610 times 100

578 times 100

381 times 100

556 times 10minus1

700 539 times 100

464 times 100

341 times 100

970 times 10minus1

800 394 times 100

354 times 100

273 times 100

105 times 100

900 324 times 100

276 times 100

227 times 100

107 times 100

1000 233 times 100

229 times 100

184 times 100

998 times 10minus1

119901119901 rarr 119882+119887119885+119883

500 772 times 10minus1

101 times 100

217 times 10minus1

627 times 10minus4

600 624 times 10minus1

385 times 10minus1

292 times 10minus1

320 times 10minus2

700 500 times 10minus1

305 times 10minus1

286 times 10minus1

580 times 10minus2

800 378 times 10minus1

250 times 10minus1

242 times 10minus1

964 times 10minus2

900 304 times 10minus1

167 times 10minus1

206 times 10minus1

962 times 10minus2

1000 251 times 10minus1

129 times 10minus1

148 times 10minus1

961 times 10minus2

Advances in High Energy Physics 7

Table 10The cross sections (in pb) for the relevant backgrounds (119882+119887(119887)119881119882+119888(119888)119881 and119882+119895119881 where119881 = photon jet and119885 boson) with119901119879cuts on the jets at the center of mass energyradic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883 237 times 10

minus3362 times 10

minus4617 times 10

minus5699 times 10

minus6

119901119901 rarr 119882+119888120574 + 119883 415 times 10

0459 times 10

minus1625 times 10

minus2621 times 10

minus3

119901119901 rarr 119882+119895120574 + 119883 263 times 10

1430 times 10

0733 times 10

minus1127 times 10

minus1

119901119901 rarr 119882+119887(119887)119895 + 119883 726 times 10

1302 times 10

1611 times 10

0974 times 10

minus1

119901119901 rarr 119882+119888(119888)119895 + 119883 598 times 10

2965 times 10

1179 times 10

1242 times 10

0

119901119901 rarr 119882+119895119895 + 119883 731 times 10

3778 times 10

2161 times 10

2258 times 10

1

119901119901 rarr 119882+119887119885 + 119883 626 times 10

minus4399 times 10

minus4193 times 10

minus4471 times 10

minus5

119901119901 rarr 119882+119888119885 + 119883 529 times 10

minus1340 times 10

minus1166 times 10

minus1415 times 10

minus2

119901119901 rarr 119882+119895119885 + 119883 859 times 10

0483 times 10

0249 times 10

0791 times 10

minus1

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 5 Integrated luminosity required to reach 3120590 significancefor the signal of 1199051015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

102

103

104

500 600 700 800 900 1000

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 6 The same as Figure 5 but for parametrization PII

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 7 The same as Figure 5 but for parametrization PIII

detector parametersThis fast simulation includes the impor-tant detector effects such as tracking smearing effects of thecalorimeters resolution and tag efficiencies The EXROOT-ANALYSIS package [31] is used for the simulated events andthe output is analyzed and histogrammed with the ROOT[32] macros We consider jets (up to five) leptons (electronsor muons) photons and missing transverse momentumwithin the simulated events for the 119905120574 119905119895 and 119905119885 eventsgeneration The typical kinematical distributions are shownin Figures 9-10

In the analysis the signal (with 120581Λ = 02TeVminus1 and1198981199051015840 = 700GeV) and the corresponding background (119882119895119881)

are taken into accountThe 119904-channel contribution to the sig-nal process appears as a resonance around the 1199051015840mass value inthe reconstructed invariant mass 119898rec

1199051015840 The reconstructed

mass distribution for the 1199051015840 signal (reconstructed from a topquark and a vector boson) is shown in Figure 11

Similar to the single top processes the top quark in thefinal state is reconstructed from a leading jet (commonly 119887jet)and a119882 boson (which can be reconstructed from its leptonicor hadronic decay) For the 119905120574 production we require

8 Advances in High Energy Physics

500 600 700 800 900 1000

Mt998400 (GeV)

01

02

03

04

05120581Λ

(TeV

minus1 )

t998400 rarr WbZ

t998400 rarr Wb120574

t998400 rarr Wbg

Figure 8The contour plot of anomalous coupling and mass of newheavy quark 1199051015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

12000

14000

16000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 9 Transverse momentum distributions of leading jet (Jet 1)and other jets (Jet 2 and Jet 3) and photon for signal (119905120574 production)after detector simulation

systematically the large transverse momentum of photon(119901120574119879gt 100GeV) minimum jet transverse momentum (119901119895

119879gt

20GeV) and the pseudorapidity range (|120578119895120574| lt 25) inaddition to the requirements on mass reconstruction of119882-boson and top quark The large 119901120574

119879and the requirement of

single 119887-tagging allow a better separation of the signal (for 119905120574channel) from the background Other channels for 119905119892 and 119905119885productions are more challenging due to a large number ofjets which require additional discriminators such as angularandor total transverse energy variables However in orderto get rid of the backgrounds from 119882119905 and 119905119905 production

Entr

ies

50 100 150 200 250 300 350 4000

5000

10000

15000

20000

25000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 10 Transverse momentum distributions of leading jet (Jet1) and other jets (Jet 2 and Jet 3) and photon for background (119882119895120574production)

500 600 700 800 900 1000

40

60

80

100

120

BackgroundSignal

Mrect998400

(GeV)

Even

ts10

GeV

Figure 11The reconstructedmass distributions for background andsignal (119905120574) with119898

1199051015840 = 700GeV and 120581Λ = 015TeVminus1

(for a similar framework the production cross sections areabout 25 pb and 340 pb resp) one can consider the channel3119897 + 119887jet + MET for a distinctive signal from the 1199051015840 rarr 119905119885An analysis of the investigation of single top production withsimilar backgrounds at the LHC can be found in [33ndash35]

42 Analysis of the Process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574) for1198871015840 Signal The signal process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574)includes the new heavy quark 1198871015840 exchange in both the 119904-channel and the 119905-channel The 119904-channel contributes to thesignal process as resonance around the 1198871015840mass value in the 119887119881invariantmass while the 119905-channel contributes to the nonres-onant behaviour For this process we consider the leptonicdecay of 119885 boson In the analyses we consider the 1198871015840 signalto be 119887jet + 120574 119887jet + 119895 and 119887jet + dilepton

Advances in High Energy Physics 9

Table 11 The cross sections (in pb) for 1198871015840 signal in different decay channel for parametrization PI with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 564 times 10minus2

562 times 10minus2

549 times 10minus2

395 times 10minus2

600 396 times 10minus2

396 times 10minus2

390 times 10minus2

333 times 10minus2

700 287 times 10minus2

287 times 10minus2

286 times 10minus2

259 times 10minus2

800 212 times 10minus2

213 times 10minus2

212 times 10minus2

199 times 10minus2

900 160 times 10minus2

160 times 10minus2

160 times 10minus2

153 times 10minus2

1000 122 times 10minus2

122 times 10minus2

122 times 10minus2

119 times 10minus2

119901119901 rarr 119887119892 + 119883

500 813 times 100

813 times 100

793 times 100

596 times 100

600 559 times 100

559 times 100

553 times 100

488 times 100

700 398 times 100

398 times 100

396 times 100

373 times 100

800 291 times 100

291 times 100

290 times 100

281 times 100

900 216 times 100

216 times 100

216 times 100

214 times 100

1000 164 times 100

163 times 100

163 times 100

162 times 100

119901119901 rarr 119887119885 + 119883

500 787 times 10minus1

781 times 10minus1

750 times 10minus1

479 times 10minus1

600 548 times 10minus1

548 times 10minus1

531 times 10minus1

427 times 10minus1

700 395 times 10minus1

394 times 10minus1

386 times 10minus1

339 times 10minus1

800 292 times 10minus1

291 times 10minus1

286 times 10minus1

261 times 10minus1

900 218 times 10minus1

218 times 10minus1

215 times 10minus1

202 times 10minus1

1000 166 times 10minus1

166 times 10minus1

164 times 10minus1

156 times 10minus1

We have obtained the cross sections by using the pseu-dorapidity cuts |120578

119895120574| lt 25 and transverse momentum cuts

119901119895120574

119879gt 20ndash200GeV for jets and photon in Table 11 (Tables

12 and 13) for PI (PII PIII) parametrizations respectivelyInvariantmass distribution of the 119887119881 (where119881 = 120574 119892 and119885)system is shown in Figure 12 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the

center of mass energy radic119904 = 13TeV It appears from sig-nal significance calculation that the optimized transversemomentum cut is 119901

119879gt 200GeV for 1198871015840 analyses

The backgrounds for the final state 119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 14 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879gt 20ndash200GeV It can be noted that the background

cross section decreases as the119901119879cuts increaseWe assume the

efficiency for 119887-tagging to be 120576119887= 50and the rejection ratios

to be 10 for 119888 (119888) quark jets and 1 for light quark jetsIn order to reach 3120590 significance for the signal of 1198871015840

anomalous interactions the required integrated luminosityis shown in Figures 13ndash15 for parametrizations PI PII andPIII at the LHC with radic119904 = 13TeV The channel 1198871015840 rarr 119887120574

requires more integrated luminosity than the other channelsBy requiring the signal significance 119878119878 = 3 the contour plotsof 120581Λ and mass of 1198871015840 quark are presented in Figure 16 Theresults show that one can discover the 1198871015840 quark anomalouscouplings down to 01 in the 119887119892 channel for119898

1198871015840 = 500GeV

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mbV

(pb

GeV

)

MbV (GeV)

pp rarr bg + X

pprarr bZ + X

pprarr b120574 + X

Figure 12 Invariant mass distribution of the 119887119881 (where 119881 = 120574 119892and 119885) system is shown in Figure 5 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the center of

mass energyradic119904 = 13TeV

421 Simulation for 1198871015840 Signal In the simulation we havegenerated 119887119881 (where 119881 = 120574 119892 and 119885) events for each sub-process and these events are simulated using generic detector

10 Advances in High Energy Physics

Table 12 The same as Table 11 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 518 times 10minus3

526 times 10minus3

504 times 10minus3

354 times 10minus3

600 338 times 10minus3

337 times 10minus3

336 times 10minus3

277 times 10minus3

700 232 times 10minus3

231 times 10minus3

230 times 10minus3

205 times 10minus3

800 171 times 10minus3

163 times 10minus3

164 times 10minus3

150 times 10minus3

900 117 times 10minus3

116 times 10minus3

117 times 10minus3

111 times 10minus3

1000 860 times 10minus4

858 times 10minus4

855 times 10minus4

824 times 10minus4

119901119901 rarr 119887119892 + 119883

500 740 times 10minus1

739 times 10minus1

721 times 10minus1

516 times 10minus1

600 483 times 10minus1

480 times 10minus1

481 times 10minus1

398 times 10minus1

700 322 times 10minus1

322 times 10minus1

320 times 10minus1

289 times 10minus1

800 224 times 10minus1

221 times 10minus1

221 times 10minus1

204 times 10minus1

900 15 times 10minus1

158 times 10minus1

158 times 10minus1

149 times 10minus1

1000 114 times 10minus1

114 times 10minus1

113 times 10minus1

110 times 10minus1

119901119901 rarr 119887119885 + 119883

500 689 times 10minus2

685 times 10minus2

645 times 10minus2

423 times 10minus2

600 452 times 10minus2

451 times 10minus2

434 times 10minus2

353 times 10minus2

700 312 times 10minus2

311 times 10minus2

305 times 10minus2

265 times 10minus2

800 219 times 10minus2

218 times 10minus2

215 times 10minus2

195 times 10minus2

900 156 times 10minus2

156 times 10minus2

155 times 10minus2

144 times 10minus2

1000 114 times 10minus2

113 times 10minus2

113 times 10minus2

107 times 10minus2

Table 13 The same as Table 11 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 131 times 10minus2

1314 times 10minus2

1275 times 10minus2

892 times 10minus2

600 859 times 10minus2

858 times 10minus2

844 times 10minus2

703 times 10minus2

700 582 times 10minus2

582 times 10minus2

577 times 10minus2

517 times 10minus2

800 407 times 10minus2

407 times 10minus2

406 times 10minus2

377 times 10minus2

900 292 times 10minus2

292 times 10minus2

291 times 10minus2

277 times 10minus2

1000 214 times 10minus2

213 times 10minus2

213 times 10minus2

206 times 10minus2

119901119901 rarr 119887119892 + 119883

500 1904 times 100

1896 times 100

1843 times 100

1286 times 100

600 1219 times 100

1213 times 100

1193 times 100

992 times 100

700 808 times 100

807 times 100

802 times 100

717 times 100

800 557 times 100

557 times 100

555 times 100

515 times 100

900 394 times 100

394 times 100

394 times 100

374 times 100

1000 285 times 100

285 times 100

285 times 100

274 times 100

119901119901 rarr 119887119885 + 119883

500 176 times 100

175 times 100

165 times 100

105 times 100

600 115 times 100

114 times 100

111 times 100

880 times 10minus1

700 783 times 10minus1

780 times 10minus1

760 times 10minus1

661 times 10minus1

800 547 times 10minus1

541 times 10minus1

531 times 10minus1

480 times 10minus1

900 392 times 10minus1

390 times 10minus1

382 times 10minus1

360 times 10minus1

1000 286 times 10minus1

282 times 10minus1

280 times 10minus1

262 times 10minus1

Advances in High Energy Physics 11

Table 14 The cross sections (in pb) for the backgrounds (119887(119887)119881 119888(119888)119881 and 119895119881 where119881 = photon jet and 119885 boson) with 119901119879cuts on the jets

and photon at the center of mass energy radic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887(119887)120574 + 119883 299 times 103

135 times 102

904 times 100

402 times 10minus1

119901119901 rarr 119888(119888)120574 + 119883 187 times 104

815 times 102

540 times 101

243 times 100

119901119901 rarr 119895120574 + 119883 543 times 104

327 times 103

338 times 102

285 times 101

119901119901 rarr 119887(119887)119895 + 119883 783 times 106

305 times 105

192 times 104

893 times 102

119901119901 rarr 119888(119888)119895 + 119883 122 times 107

455 times 105

289 times 104

135 times 103

119901119901 rarr 119895119895 + 119883 243 times 108

854 times 106

544 times 105

280 times 104

119901119901 rarr 119887(119887)119885 + 119883 502 times 102

135 times 102

225 times 101

156 times 100

119901119901 rarr 119888(119888)119885 + 119883 596 times 102

158 times 102

264 times 101

183 times 100

119901119901 rarr 119895119885 + 119883 800 times 103

208 times 103

408 times 102

412 times 101

500 600 700 800 900 1000

Mb998400 (GeV)

10minus1

100

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 13 Integrated luminosity required to reach 3120590 significancefor the signal of 1198871015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

500 600 700 800 900 1000

Mb998400 (GeV)

104

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 14 The same as Figure 13 but for parametrization PII

500 600 700 800 900 100010minus1

100

101

102

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 15 The same as Figure 13 but for parametrization PIII

parameters to include detector effects such as tracking tag-ging efficiencies and smearing effects After the simulationthe typical kinematical distributions are shown in Figures 17-18

In the analysis the signal (with 120581Λ = 03TeVminus1 and1198981198871015840 = 700GeV) and the corresponding background are

taken into account The invariant mass of the new heavyquark 1198871015840 can be reconstructed from a 119887jet and a neutral gaugeboson (where the 119885 boson can also be reconstructed fromits dilepton or hadronic decay) For the 119887120574 production werequire a large 119901120574

119879(gt100GeV) for photon and large 119901119895

119879

(gt100GeV) for jet and pseudorapidity |120578119895120574| (lt25) For the 119887120574signal channel the invariantmass distributions for signal andbackground events are shown in Figure 19The large 119901119895120574

119879and

the requirement of single 119887-tagging allow a better separationof the signal (for 119887120574 channel) from the background and thenwe find a precise limit for the anomalous coupling in thischannel For the 119887119892 and 119887119885 production we require two high119901119879jets (one 119887-jet) and a high 119901

119879jet in addition to the

reconstructed mass 119898rec119885 respectively The main character of

12 Advances in High Energy Physics

500 600 700 800 900 100001

02

03

04

05120581Λ

(TeV

minus1 )

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 16The contour plot of anomalous coupling andmass of newheavy quark 1198871015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

PhotonJet 1

pT (GeV)

Figure 17 Transverse momentum distributions of leading jet andphoton (119887120574 production) for signal after detector simulation

the signal is the high 119901119895119879andor 119901120574

119879and single 119887-tagged jet

We calculate the signal and background events in the range|119898

rec1198871015840 (GeV) minus 700GeV| lt 50GeV and we find a similar

significance as shown in Figure 16

5 Conclusion

The new heavy quarks of up-type and down-type can be pro-duced with large numbers at the LHC if they have the anoma-lous couplings (via flavor changing neutral current) thatwell dominate over the charged current interactions The

Entr

ies

50 100 150 200 250 300 350 4000

2000

4000

6000

8000

10000

12000

PhotonJet 1

pT (GeV)

Figure 18 Transverse momentum distributions of leading jet andphoton (119895120574 production) for background at the given conditionsmentioned in the text

500 550 600 650 700 750 800 850 900 950 10000

500

1000

1500

2000

2500

3000

BackgroundSignal

Mrecb998400

(GeV)

Even

ts10

GeV

Figure 19The reconstructedmass distributions for background andsignal (119887120574) with119898

1198871015840 = 700GeV and 120581Λ = 03TeVminus1

single production of new heavy quarks can be achievedthrough the anomalous interactions at the LHC with radic119904 =13TeV The anomalous vertices could appear significantly atleading order processes due to the possibility of new heavyquarks From the results of signal significance calculationsfor 1199051015840 (1198871015840) anomalous productions the sensitivity to theanomalous couplings 120581119905

1015840

Λ (1205811198871015840

Λ) can be reached down to010 TeVminus1 (015 TeVminus1) in the lepton + 119887jet + jet +MET (119887jet +jet) channel at radic119904 = 13TeV assuming a dynamical para-metrization for the anomalous couplings and the mass of 750GeV for the new heavy quarks The observability limits onthe anomalous couplings obtained after the simulation arecomparable with the partonic level analysis in the photon and119885 boson associated channels whereas the productions 119905119892 and119887119892 are less comparable due to the fast simulation method In

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 3: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

Advances in High Energy Physics 3

Table 2 The same as Table 1 but for PII (PIII) parametrization

Mass (GeV) 119892119906 119892119888 119892119905 119885119906 119885119888 119885119905 120574119906 120574119888 120574119905 Γ (GeV)500 566 2260 6190 048 193 492 015 062 171 0021 (0558)600 517 2070 6390 046 183 546 014 058 180 0040 (1024)700 490 1960 6490 044 178 579 014 056 187 0066 (168)800 473 1890 6560 044 176 602 014 055 191 0100 (2561)900 461 1840 6590 044 174 619 013 054 195 0145 (3680)1000 453 1810 6620 043 174 632 013 054 198 0200 (5070)

g

q

Q

V

Q998400

(a)

g Q

q V

Q998400

(b)

Figure 1 Diagrams for the subprocess 119892119902 rarr 119881119876 with anomalous vertices 1198761015840119902119881 and 1198761015840119876119881 (where 1198761015840 can be the new heavy quark 1198871015840 or 1199051015840depending on the type of light (119902) or heavy (119876 equiv 119905 119887) quarks resp)

Table 3 Branching ratios () and decay width of the new heavyquark (1198871015840) with only anomalous interactions for PI parametrizationand 120581Λ = 01 TeVminus1

Mass(GeV) 119892119889(119904 119887) 119885119889(119904 119887) 120574119889(119904 119887) Γ (GeV)

500 3050 260 021 0257600 3040 269 021 0436700 3040 276 022 0682800 3030 282 022 1005900 3020 286 022 14151000 3020 290 023 1921

and PIII parametrization the branching ratios into 119887119881 (119881 =

119892 119885 120574) are larger than 119902119881 (119902 = 119889 119904) channels The 1199051015840 and1198871015840 decay widths are about the same values for PII and PIIIparametrization

4 The Cross Sections

In order to study the new heavy quark productions at theLHC we have used effective anomalous interaction verticesand implemented these vertices into the CalcHEP package[26] In all of the numerical calculations the parton dis-tribution functions are set to the CTEQ6L parametrization[27] The new heavy quarks can be produced through theiranomalous couplings to the ordinary quarks and neutralvector bosons as shown in Figure 1

Total cross sections for the productions of new heavyquarks 1199051015840 and 119887

1015840 are given in Tables 5 and 6 for theparametrizations PI PII and PIII at the center of massenergy of 8 TeV and 13 TeV For an illustration taking themass of new heavy quarks as 700GeV the cross section of1199051015840(1198871015840) production is calculated as 850 pb (1003 pb) for the

parametrization PIII at radic119904 = 13TeV It can be seen fromTables 5 and 6 that the cross section decreases while the

PIIIPIPII

10minus1

100

101

102

500 600 700 800 900 1000

120590(p

b)

Mt998400 (GeV)

Figure 2The cross section for the process 119901119901 rarr 119905119881+119883 dependingon the mass for parameter sets PI PII and PIII at the center of massenergyradic119904 = 13TeV

mass of the new heavy quark increases The cross section for1199051015840 production is larger than the 1198871015840 production with a factor of12ndash18 (07ndash10) for PI (PII and PIII) parametrization depend-ing on the consideredmass range atradic119904 = 13TeVThe generalbehaviour of the production cross sections depending on themass of new heavy quarks is presented in Figures 2 and 3 fordifferent parametrizations

41 Analysis of the Process 119901119901 rarr 119882+119887119881+119883 (119881 = 119892 119885 120574) for

1199051015840 Signal The signal process 119901119901 rarr 119882

+119887119881 +119883 (119881 = 119892 119885 120574)

includes the 1199051015840 exchange in both the 119904-channel and 119905-channelThe 119904-channel contribution to the signal process wouldappear itself as resonance around the 1199051015840 mass value in the119882119887119881 invariant mass The 119905-channel gives the nonresonant

4 Advances in High Energy Physics

Table 4 The same as Table 3 but for PII (PIII) parametrization

Mass (GeV) 119892119889 119892119904 119892119887 119885119889 119885119904 119885119887 120574119889 120574119904 120574119887 Γ (GeV)500 436 1740 6980 037 149 595 0030 012 048 0028 (0704)600 435 1740 6950 038 154 616 0030 012 049 0047 (1194)700 434 1730 6940 039 158 631 0031 012 050 0074 (1866)800 433 1730 6920 040 161 644 0031 012 050 0110 (2749)900 432 1730 6910 041 164 654 0032 013 051 0154 (3869)1000 432 1730 6900 041 166 663 0032 013 052 0210 (5253)

Table 5The cross sections (in pb) of new heavy quark 1199051015840 production without cuts for PI PII and PIII parametrizations at the center of massenergy 13TeV (8TeV) respectively

Mass (GeV) PI PII PIIIradic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV)

500 13733 (530) 0664 (0244) 16736 (6113)600 10362 (372) 0464 (0159) 11770 (4031)700 7825 (264) 0337 (0109) 8502 (2718)800 5961 (189) 0250 (0075) 6276 (1882)900 4602 (136) 0189 (0053) 4701 (1326)1000 3593 (098) 0144 (0038) 3609 (0950)

PIIIPIPII

10minus1

100

101

102

500 600 700 800 900 1000

120590(p

b)

Mb998400 (GeV)

Figure 3The cross section for the process119901119901 rarr 119887119881+119883 dependingon the new heavy quark mass for parameter sets PI PII and PII atthe center of mass energyradic119904 = 13TeV

contribution We consider that the 119882 boson decays intolepton + missing transverse momentum with the branchingratio of 21 and 119885 boson decays into dilepton with thebranching ratio of 67 In our analyses we consider the 1199051015840signal in the 119897 + 119887jet + 120574 + MET 119897 + 119887jet + 119895 + MET and3119897 + 119887jet +MET channels where 119897 = 119890 120583 However if one takesthe hadronic119882 decay the signal will be enhanced by a factorof BR(119882 rarr hadrons)BR(119882 rarr 119897])

We have obtained the cross sections by using the cutspseudorapidity |120578

119895120574| lt 25 and transverse momentum 119901

119895120574

119879gt

20ndash200GeV for jets and photon in Table 7 (Tables 8 and 9)

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mtV

(pb

GeV

)

MtV (GeV)

pp rarr tg + X

pp rarr tZ + X

pp rarr t120574 + X

Figure 4 Invariant mass distributions 119898119905119881

(where 119881 = 120574 119892 and119885) for PI parametrization of the signal with 120581Λ = 02TeVminus1 and1198981199051015840 = 700GeV at the center of mass energy radic119904 = 13TeV

for PI (PII PIII) parametrization respectively Invariantmassdistribution of the 119905119881 (where 119881 = 120574 119892 and 119885) system isshown in Figure 4 for PI parametrization of the signal with120581Λ = 02TeVminus1 and 119898

1199051015840 = 700GeV at the center of mass

energy radic119904 = 13TeV It appears from signal significance cal-culations that the optimized transverse momentum cut is119901119895120574

119879gt 100GeV for 1199051015840 analysesThe backgrounds for the final state119882+119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 10 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879

gt 20ndash200GeV For the background cross section

Advances in High Energy Physics 5

Table 6The cross sections (in pb) of new heavy quark 1198871015840 production without cuts for PI PII and PIII parametrizations at the center of massenergy of 13TeV (8TeV) respectively

Mass (GeV) PI PII PIIIradic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV)

500 11340 (3913) 0970 (0285) 24474 (7114)600 7495 (2410) 0607 (0162) 15290 (409)700 5179 (1546) 0412 (0099) 10031 (2483)800 3697 (1025) 0286 (0062) 6832 (1566)900 2707 (0697) 01905 (0040) 4791 (1018)1000 2021 (0482) 0137 (0027) 3441 (0678)

Table 7 The cross sections (in pb) for 1199051015840 signal in different decay channels for PI parametrization with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 289 times 10minus1

210 times 10minus1

124 times 10minus1

102 times 10minus4

600 243 times 10minus1

164 times 10minus1

119 times 10minus1

123 times 10minus2

700 168 times 10minus1

12 times 10minus1

112 times 10minus1

225 times 10minus2

800 130 times 10minus1

103 times 10minus1

753 times 10minus2

325 times 10minus2

900 102 times 10minus1

808 times 10minus2

696 times 10minus2

302 times 10minus2

1000 761 times 10minus2

635 times 10minus2

507 times 10minus2

294 times 10minus2

119901119901 rarr 119882+119887119892 + 119883

500 778 times 100

602 times 100

363 times 100

474 times 10minus3

600 630 times 100

518 times 100

313 times 100

258 times 10minus1

700 499 times 100

363 times 100

304 times 100

932 times 10minus1

800 401 times 100

345 times 100

276 times 100

991 times 10minus1

900 332 times 100

277 times 100

213 times 100

108 times 100

1000 258 times 100

227 times 100

188 times 100

101 times 100

119901119901 rarr 119882+119887119885+119883

500 796 times 10minus1

601 times 10minus1

301 times 10minus1

101 times 10minus4

600 479 times 10minus1

386 times 10minus1

245 times 10minus1

271 times 10minus3

700 399 times 10minus1

312 times 10minus1

239 times 10minus1

696 times 10minus2

800 331 times 10minus1

289 times 10minus1

209 times 10minus1

805 times 10minus2

900 273 times 10minus1

273 times 10minus1

191 times 10minus1

954 times 10minus2

1000 223 times 10minus1

202 times 10minus1

161 times 10minus1

910 times 10minus2

estimates we assume the efficiency for 119887-tagging to be 120576119887=

50 and the rejection ratios to be 10 for 119888 (119888) quark jets and1 for light quark jets since they are assumed to bemistaggedas 119887-jets

In order to find the discovery limits we use the statisticalsignificance [28] defined as

119878119878 = radic2 [(119878 + 119861) ln(1 + 119878119861) minus 119878] (4)

where 119878 and 119861 are the numbers of the signal and backgroundevents respectively In Figures 5ndash7 the integrated luminosityrequired to reach 3120590 significance for the signal of 1199051015840 anoma-lous interactions is shown for parametrizations PI PII andPIII at the LHC with radic119904 = 13 TeV It is seen from these

figures that the channel 1199051015840 rarr 119905119885 requires more integratedluminosity than the other channels By requiring the signalsignificance 119878119878 = 3 the contour plots of 120581Λ and mass of1199051015840 quark are presented in Figure 8 The results show that onecan discover the 1199051015840 quark anomalous couplings 120581Λ down to01 TeVminus1 in the 119905119892 channel for119898

1199051015840 = 750GeV

411 Simulation for 1199051015840 Signal In order to include detectoreffects in the simulation we have generated 119905119881 (where 119881 =

120574 119892 and 119885) signal events for each subprocess and they aremixed using the ldquoevent mixerrdquo script which can be foundwithin the CALCHEP package [26] For further decay andhadronization these events are passed to PYTHIA [29] andsimulated with the PGS4 program [30] using generic LHC

6 Advances in High Energy Physics

Table 8 The same as Table 7 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 678 times 10minus3

507 times 10minus3

345 times 10minus3

264 times 10minus7

600 657 times 10minus3

542 times 10minus3

347 times 10minus3

534 times 10minus4

700 502 times 10minus3

431 times 10minus3

304 times 10minus3

873 times 10minus4

800 391 times 10minus3

376 times 10minus3

256 times 10minus3

103 times 10minus3

900 303 times 10minus3

268 times 10minus3

211 times 10minus3

101 times 10minus3

1000 240 times 10minus3

243 times 10minus3

177 times 10minus3

998 times 10minus4

119901119901 rarr 119882+119887119892 + 119883

500 347 times 10minus1

268 times 10minus1

152 times 10minus1

530 times 10minus6

600 251 times 10minus1

212 times 10minus1

135 times 10minus1

201 times 10minus2

700 187 times 10minus1

16 times 10minus1

116 times 10minus1

342 times 10minus2

800 146 times 10minus1

125 times 10minus1

939 times 10minus2

403 times 10minus2

900 112 times 10minus1

108 times 10minus1

780 times 10minus2

386 times 10minus2

1000 935 times 10minus2

837 times 10minus2

662 times 10minus2

368 times 10minus2

119901119901 rarr 119882+119887119885+119883

500 210 times 10minus2

177 times 10minus2

116 times 10minus2

264 times 10minus7

600 195 times 10minus2

175 times 10minus2

114 times 10minus2

134 times 10minus3

700 173 times 10minus2

143 times 10minus2

100 times 10minus2

29 times 10minus3

800 134 times 10minus2

119 times 10minus2

889 times 10minus3

342 times 10minus3

900 106 times 10minus2

955 times 10minus3

763 times 10minus3

337 times 10minus3

1000 809 times 10minus3

758 times 10minus3

631 times 10minus3

323 times 10minus3

Table 9 The same as Table 7 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 260 times 10minus1

278 times 10minus1

108 times 10minus1

159 times 10minus4

600 178 times 10minus1

161 times 10minus1

101 times 10minus1

142 times 10minus2

700 156 times 10minus1

135 times 10minus1

933 times 10minus2

272 times 10minus2

800 117 times 10minus1

106 times 10minus1

784 times 10minus2

332 times 10minus2

900 904 times 10minus2

842 times 10minus2

668 times 10minus2

325 times 10minus2

1000 760 times 10minus2

676 times 10minus2

516 times 10minus2

317 times 10minus2

119901119901 rarr 119882+119887119892 + 119883

500 839 times 100

649 times 100

386 times 100

465 times 10minus3

600 610 times 100

578 times 100

381 times 100

556 times 10minus1

700 539 times 100

464 times 100

341 times 100

970 times 10minus1

800 394 times 100

354 times 100

273 times 100

105 times 100

900 324 times 100

276 times 100

227 times 100

107 times 100

1000 233 times 100

229 times 100

184 times 100

998 times 10minus1

119901119901 rarr 119882+119887119885+119883

500 772 times 10minus1

101 times 100

217 times 10minus1

627 times 10minus4

600 624 times 10minus1

385 times 10minus1

292 times 10minus1

320 times 10minus2

700 500 times 10minus1

305 times 10minus1

286 times 10minus1

580 times 10minus2

800 378 times 10minus1

250 times 10minus1

242 times 10minus1

964 times 10minus2

900 304 times 10minus1

167 times 10minus1

206 times 10minus1

962 times 10minus2

1000 251 times 10minus1

129 times 10minus1

148 times 10minus1

961 times 10minus2

Advances in High Energy Physics 7

Table 10The cross sections (in pb) for the relevant backgrounds (119882+119887(119887)119881119882+119888(119888)119881 and119882+119895119881 where119881 = photon jet and119885 boson) with119901119879cuts on the jets at the center of mass energyradic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883 237 times 10

minus3362 times 10

minus4617 times 10

minus5699 times 10

minus6

119901119901 rarr 119882+119888120574 + 119883 415 times 10

0459 times 10

minus1625 times 10

minus2621 times 10

minus3

119901119901 rarr 119882+119895120574 + 119883 263 times 10

1430 times 10

0733 times 10

minus1127 times 10

minus1

119901119901 rarr 119882+119887(119887)119895 + 119883 726 times 10

1302 times 10

1611 times 10

0974 times 10

minus1

119901119901 rarr 119882+119888(119888)119895 + 119883 598 times 10

2965 times 10

1179 times 10

1242 times 10

0

119901119901 rarr 119882+119895119895 + 119883 731 times 10

3778 times 10

2161 times 10

2258 times 10

1

119901119901 rarr 119882+119887119885 + 119883 626 times 10

minus4399 times 10

minus4193 times 10

minus4471 times 10

minus5

119901119901 rarr 119882+119888119885 + 119883 529 times 10

minus1340 times 10

minus1166 times 10

minus1415 times 10

minus2

119901119901 rarr 119882+119895119885 + 119883 859 times 10

0483 times 10

0249 times 10

0791 times 10

minus1

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 5 Integrated luminosity required to reach 3120590 significancefor the signal of 1199051015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

102

103

104

500 600 700 800 900 1000

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 6 The same as Figure 5 but for parametrization PII

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 7 The same as Figure 5 but for parametrization PIII

detector parametersThis fast simulation includes the impor-tant detector effects such as tracking smearing effects of thecalorimeters resolution and tag efficiencies The EXROOT-ANALYSIS package [31] is used for the simulated events andthe output is analyzed and histogrammed with the ROOT[32] macros We consider jets (up to five) leptons (electronsor muons) photons and missing transverse momentumwithin the simulated events for the 119905120574 119905119895 and 119905119885 eventsgeneration The typical kinematical distributions are shownin Figures 9-10

In the analysis the signal (with 120581Λ = 02TeVminus1 and1198981199051015840 = 700GeV) and the corresponding background (119882119895119881)

are taken into accountThe 119904-channel contribution to the sig-nal process appears as a resonance around the 1199051015840mass value inthe reconstructed invariant mass 119898rec

1199051015840 The reconstructed

mass distribution for the 1199051015840 signal (reconstructed from a topquark and a vector boson) is shown in Figure 11

Similar to the single top processes the top quark in thefinal state is reconstructed from a leading jet (commonly 119887jet)and a119882 boson (which can be reconstructed from its leptonicor hadronic decay) For the 119905120574 production we require

8 Advances in High Energy Physics

500 600 700 800 900 1000

Mt998400 (GeV)

01

02

03

04

05120581Λ

(TeV

minus1 )

t998400 rarr WbZ

t998400 rarr Wb120574

t998400 rarr Wbg

Figure 8The contour plot of anomalous coupling and mass of newheavy quark 1199051015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

12000

14000

16000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 9 Transverse momentum distributions of leading jet (Jet 1)and other jets (Jet 2 and Jet 3) and photon for signal (119905120574 production)after detector simulation

systematically the large transverse momentum of photon(119901120574119879gt 100GeV) minimum jet transverse momentum (119901119895

119879gt

20GeV) and the pseudorapidity range (|120578119895120574| lt 25) inaddition to the requirements on mass reconstruction of119882-boson and top quark The large 119901120574

119879and the requirement of

single 119887-tagging allow a better separation of the signal (for 119905120574channel) from the background Other channels for 119905119892 and 119905119885productions are more challenging due to a large number ofjets which require additional discriminators such as angularandor total transverse energy variables However in orderto get rid of the backgrounds from 119882119905 and 119905119905 production

Entr

ies

50 100 150 200 250 300 350 4000

5000

10000

15000

20000

25000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 10 Transverse momentum distributions of leading jet (Jet1) and other jets (Jet 2 and Jet 3) and photon for background (119882119895120574production)

500 600 700 800 900 1000

40

60

80

100

120

BackgroundSignal

Mrect998400

(GeV)

Even

ts10

GeV

Figure 11The reconstructedmass distributions for background andsignal (119905120574) with119898

1199051015840 = 700GeV and 120581Λ = 015TeVminus1

(for a similar framework the production cross sections areabout 25 pb and 340 pb resp) one can consider the channel3119897 + 119887jet + MET for a distinctive signal from the 1199051015840 rarr 119905119885An analysis of the investigation of single top production withsimilar backgrounds at the LHC can be found in [33ndash35]

42 Analysis of the Process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574) for1198871015840 Signal The signal process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574)includes the new heavy quark 1198871015840 exchange in both the 119904-channel and the 119905-channel The 119904-channel contributes to thesignal process as resonance around the 1198871015840mass value in the 119887119881invariantmass while the 119905-channel contributes to the nonres-onant behaviour For this process we consider the leptonicdecay of 119885 boson In the analyses we consider the 1198871015840 signalto be 119887jet + 120574 119887jet + 119895 and 119887jet + dilepton

Advances in High Energy Physics 9

Table 11 The cross sections (in pb) for 1198871015840 signal in different decay channel for parametrization PI with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 564 times 10minus2

562 times 10minus2

549 times 10minus2

395 times 10minus2

600 396 times 10minus2

396 times 10minus2

390 times 10minus2

333 times 10minus2

700 287 times 10minus2

287 times 10minus2

286 times 10minus2

259 times 10minus2

800 212 times 10minus2

213 times 10minus2

212 times 10minus2

199 times 10minus2

900 160 times 10minus2

160 times 10minus2

160 times 10minus2

153 times 10minus2

1000 122 times 10minus2

122 times 10minus2

122 times 10minus2

119 times 10minus2

119901119901 rarr 119887119892 + 119883

500 813 times 100

813 times 100

793 times 100

596 times 100

600 559 times 100

559 times 100

553 times 100

488 times 100

700 398 times 100

398 times 100

396 times 100

373 times 100

800 291 times 100

291 times 100

290 times 100

281 times 100

900 216 times 100

216 times 100

216 times 100

214 times 100

1000 164 times 100

163 times 100

163 times 100

162 times 100

119901119901 rarr 119887119885 + 119883

500 787 times 10minus1

781 times 10minus1

750 times 10minus1

479 times 10minus1

600 548 times 10minus1

548 times 10minus1

531 times 10minus1

427 times 10minus1

700 395 times 10minus1

394 times 10minus1

386 times 10minus1

339 times 10minus1

800 292 times 10minus1

291 times 10minus1

286 times 10minus1

261 times 10minus1

900 218 times 10minus1

218 times 10minus1

215 times 10minus1

202 times 10minus1

1000 166 times 10minus1

166 times 10minus1

164 times 10minus1

156 times 10minus1

We have obtained the cross sections by using the pseu-dorapidity cuts |120578

119895120574| lt 25 and transverse momentum cuts

119901119895120574

119879gt 20ndash200GeV for jets and photon in Table 11 (Tables

12 and 13) for PI (PII PIII) parametrizations respectivelyInvariantmass distribution of the 119887119881 (where119881 = 120574 119892 and119885)system is shown in Figure 12 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the

center of mass energy radic119904 = 13TeV It appears from sig-nal significance calculation that the optimized transversemomentum cut is 119901

119879gt 200GeV for 1198871015840 analyses

The backgrounds for the final state 119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 14 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879gt 20ndash200GeV It can be noted that the background

cross section decreases as the119901119879cuts increaseWe assume the

efficiency for 119887-tagging to be 120576119887= 50and the rejection ratios

to be 10 for 119888 (119888) quark jets and 1 for light quark jetsIn order to reach 3120590 significance for the signal of 1198871015840

anomalous interactions the required integrated luminosityis shown in Figures 13ndash15 for parametrizations PI PII andPIII at the LHC with radic119904 = 13TeV The channel 1198871015840 rarr 119887120574

requires more integrated luminosity than the other channelsBy requiring the signal significance 119878119878 = 3 the contour plotsof 120581Λ and mass of 1198871015840 quark are presented in Figure 16 Theresults show that one can discover the 1198871015840 quark anomalouscouplings down to 01 in the 119887119892 channel for119898

1198871015840 = 500GeV

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mbV

(pb

GeV

)

MbV (GeV)

pp rarr bg + X

pprarr bZ + X

pprarr b120574 + X

Figure 12 Invariant mass distribution of the 119887119881 (where 119881 = 120574 119892and 119885) system is shown in Figure 5 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the center of

mass energyradic119904 = 13TeV

421 Simulation for 1198871015840 Signal In the simulation we havegenerated 119887119881 (where 119881 = 120574 119892 and 119885) events for each sub-process and these events are simulated using generic detector

10 Advances in High Energy Physics

Table 12 The same as Table 11 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 518 times 10minus3

526 times 10minus3

504 times 10minus3

354 times 10minus3

600 338 times 10minus3

337 times 10minus3

336 times 10minus3

277 times 10minus3

700 232 times 10minus3

231 times 10minus3

230 times 10minus3

205 times 10minus3

800 171 times 10minus3

163 times 10minus3

164 times 10minus3

150 times 10minus3

900 117 times 10minus3

116 times 10minus3

117 times 10minus3

111 times 10minus3

1000 860 times 10minus4

858 times 10minus4

855 times 10minus4

824 times 10minus4

119901119901 rarr 119887119892 + 119883

500 740 times 10minus1

739 times 10minus1

721 times 10minus1

516 times 10minus1

600 483 times 10minus1

480 times 10minus1

481 times 10minus1

398 times 10minus1

700 322 times 10minus1

322 times 10minus1

320 times 10minus1

289 times 10minus1

800 224 times 10minus1

221 times 10minus1

221 times 10minus1

204 times 10minus1

900 15 times 10minus1

158 times 10minus1

158 times 10minus1

149 times 10minus1

1000 114 times 10minus1

114 times 10minus1

113 times 10minus1

110 times 10minus1

119901119901 rarr 119887119885 + 119883

500 689 times 10minus2

685 times 10minus2

645 times 10minus2

423 times 10minus2

600 452 times 10minus2

451 times 10minus2

434 times 10minus2

353 times 10minus2

700 312 times 10minus2

311 times 10minus2

305 times 10minus2

265 times 10minus2

800 219 times 10minus2

218 times 10minus2

215 times 10minus2

195 times 10minus2

900 156 times 10minus2

156 times 10minus2

155 times 10minus2

144 times 10minus2

1000 114 times 10minus2

113 times 10minus2

113 times 10minus2

107 times 10minus2

Table 13 The same as Table 11 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 131 times 10minus2

1314 times 10minus2

1275 times 10minus2

892 times 10minus2

600 859 times 10minus2

858 times 10minus2

844 times 10minus2

703 times 10minus2

700 582 times 10minus2

582 times 10minus2

577 times 10minus2

517 times 10minus2

800 407 times 10minus2

407 times 10minus2

406 times 10minus2

377 times 10minus2

900 292 times 10minus2

292 times 10minus2

291 times 10minus2

277 times 10minus2

1000 214 times 10minus2

213 times 10minus2

213 times 10minus2

206 times 10minus2

119901119901 rarr 119887119892 + 119883

500 1904 times 100

1896 times 100

1843 times 100

1286 times 100

600 1219 times 100

1213 times 100

1193 times 100

992 times 100

700 808 times 100

807 times 100

802 times 100

717 times 100

800 557 times 100

557 times 100

555 times 100

515 times 100

900 394 times 100

394 times 100

394 times 100

374 times 100

1000 285 times 100

285 times 100

285 times 100

274 times 100

119901119901 rarr 119887119885 + 119883

500 176 times 100

175 times 100

165 times 100

105 times 100

600 115 times 100

114 times 100

111 times 100

880 times 10minus1

700 783 times 10minus1

780 times 10minus1

760 times 10minus1

661 times 10minus1

800 547 times 10minus1

541 times 10minus1

531 times 10minus1

480 times 10minus1

900 392 times 10minus1

390 times 10minus1

382 times 10minus1

360 times 10minus1

1000 286 times 10minus1

282 times 10minus1

280 times 10minus1

262 times 10minus1

Advances in High Energy Physics 11

Table 14 The cross sections (in pb) for the backgrounds (119887(119887)119881 119888(119888)119881 and 119895119881 where119881 = photon jet and 119885 boson) with 119901119879cuts on the jets

and photon at the center of mass energy radic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887(119887)120574 + 119883 299 times 103

135 times 102

904 times 100

402 times 10minus1

119901119901 rarr 119888(119888)120574 + 119883 187 times 104

815 times 102

540 times 101

243 times 100

119901119901 rarr 119895120574 + 119883 543 times 104

327 times 103

338 times 102

285 times 101

119901119901 rarr 119887(119887)119895 + 119883 783 times 106

305 times 105

192 times 104

893 times 102

119901119901 rarr 119888(119888)119895 + 119883 122 times 107

455 times 105

289 times 104

135 times 103

119901119901 rarr 119895119895 + 119883 243 times 108

854 times 106

544 times 105

280 times 104

119901119901 rarr 119887(119887)119885 + 119883 502 times 102

135 times 102

225 times 101

156 times 100

119901119901 rarr 119888(119888)119885 + 119883 596 times 102

158 times 102

264 times 101

183 times 100

119901119901 rarr 119895119885 + 119883 800 times 103

208 times 103

408 times 102

412 times 101

500 600 700 800 900 1000

Mb998400 (GeV)

10minus1

100

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 13 Integrated luminosity required to reach 3120590 significancefor the signal of 1198871015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

500 600 700 800 900 1000

Mb998400 (GeV)

104

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 14 The same as Figure 13 but for parametrization PII

500 600 700 800 900 100010minus1

100

101

102

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 15 The same as Figure 13 but for parametrization PIII

parameters to include detector effects such as tracking tag-ging efficiencies and smearing effects After the simulationthe typical kinematical distributions are shown in Figures 17-18

In the analysis the signal (with 120581Λ = 03TeVminus1 and1198981198871015840 = 700GeV) and the corresponding background are

taken into account The invariant mass of the new heavyquark 1198871015840 can be reconstructed from a 119887jet and a neutral gaugeboson (where the 119885 boson can also be reconstructed fromits dilepton or hadronic decay) For the 119887120574 production werequire a large 119901120574

119879(gt100GeV) for photon and large 119901119895

119879

(gt100GeV) for jet and pseudorapidity |120578119895120574| (lt25) For the 119887120574signal channel the invariantmass distributions for signal andbackground events are shown in Figure 19The large 119901119895120574

119879and

the requirement of single 119887-tagging allow a better separationof the signal (for 119887120574 channel) from the background and thenwe find a precise limit for the anomalous coupling in thischannel For the 119887119892 and 119887119885 production we require two high119901119879jets (one 119887-jet) and a high 119901

119879jet in addition to the

reconstructed mass 119898rec119885 respectively The main character of

12 Advances in High Energy Physics

500 600 700 800 900 100001

02

03

04

05120581Λ

(TeV

minus1 )

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 16The contour plot of anomalous coupling andmass of newheavy quark 1198871015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

PhotonJet 1

pT (GeV)

Figure 17 Transverse momentum distributions of leading jet andphoton (119887120574 production) for signal after detector simulation

the signal is the high 119901119895119879andor 119901120574

119879and single 119887-tagged jet

We calculate the signal and background events in the range|119898

rec1198871015840 (GeV) minus 700GeV| lt 50GeV and we find a similar

significance as shown in Figure 16

5 Conclusion

The new heavy quarks of up-type and down-type can be pro-duced with large numbers at the LHC if they have the anoma-lous couplings (via flavor changing neutral current) thatwell dominate over the charged current interactions The

Entr

ies

50 100 150 200 250 300 350 4000

2000

4000

6000

8000

10000

12000

PhotonJet 1

pT (GeV)

Figure 18 Transverse momentum distributions of leading jet andphoton (119895120574 production) for background at the given conditionsmentioned in the text

500 550 600 650 700 750 800 850 900 950 10000

500

1000

1500

2000

2500

3000

BackgroundSignal

Mrecb998400

(GeV)

Even

ts10

GeV

Figure 19The reconstructedmass distributions for background andsignal (119887120574) with119898

1198871015840 = 700GeV and 120581Λ = 03TeVminus1

single production of new heavy quarks can be achievedthrough the anomalous interactions at the LHC with radic119904 =13TeV The anomalous vertices could appear significantly atleading order processes due to the possibility of new heavyquarks From the results of signal significance calculationsfor 1199051015840 (1198871015840) anomalous productions the sensitivity to theanomalous couplings 120581119905

1015840

Λ (1205811198871015840

Λ) can be reached down to010 TeVminus1 (015 TeVminus1) in the lepton + 119887jet + jet +MET (119887jet +jet) channel at radic119904 = 13TeV assuming a dynamical para-metrization for the anomalous couplings and the mass of 750GeV for the new heavy quarks The observability limits onthe anomalous couplings obtained after the simulation arecomparable with the partonic level analysis in the photon and119885 boson associated channels whereas the productions 119905119892 and119887119892 are less comparable due to the fast simulation method In

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 4: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

4 Advances in High Energy Physics

Table 4 The same as Table 3 but for PII (PIII) parametrization

Mass (GeV) 119892119889 119892119904 119892119887 119885119889 119885119904 119885119887 120574119889 120574119904 120574119887 Γ (GeV)500 436 1740 6980 037 149 595 0030 012 048 0028 (0704)600 435 1740 6950 038 154 616 0030 012 049 0047 (1194)700 434 1730 6940 039 158 631 0031 012 050 0074 (1866)800 433 1730 6920 040 161 644 0031 012 050 0110 (2749)900 432 1730 6910 041 164 654 0032 013 051 0154 (3869)1000 432 1730 6900 041 166 663 0032 013 052 0210 (5253)

Table 5The cross sections (in pb) of new heavy quark 1199051015840 production without cuts for PI PII and PIII parametrizations at the center of massenergy 13TeV (8TeV) respectively

Mass (GeV) PI PII PIIIradic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV)

500 13733 (530) 0664 (0244) 16736 (6113)600 10362 (372) 0464 (0159) 11770 (4031)700 7825 (264) 0337 (0109) 8502 (2718)800 5961 (189) 0250 (0075) 6276 (1882)900 4602 (136) 0189 (0053) 4701 (1326)1000 3593 (098) 0144 (0038) 3609 (0950)

PIIIPIPII

10minus1

100

101

102

500 600 700 800 900 1000

120590(p

b)

Mb998400 (GeV)

Figure 3The cross section for the process119901119901 rarr 119887119881+119883 dependingon the new heavy quark mass for parameter sets PI PII and PII atthe center of mass energyradic119904 = 13TeV

contribution We consider that the 119882 boson decays intolepton + missing transverse momentum with the branchingratio of 21 and 119885 boson decays into dilepton with thebranching ratio of 67 In our analyses we consider the 1199051015840signal in the 119897 + 119887jet + 120574 + MET 119897 + 119887jet + 119895 + MET and3119897 + 119887jet +MET channels where 119897 = 119890 120583 However if one takesthe hadronic119882 decay the signal will be enhanced by a factorof BR(119882 rarr hadrons)BR(119882 rarr 119897])

We have obtained the cross sections by using the cutspseudorapidity |120578

119895120574| lt 25 and transverse momentum 119901

119895120574

119879gt

20ndash200GeV for jets and photon in Table 7 (Tables 8 and 9)

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mtV

(pb

GeV

)

MtV (GeV)

pp rarr tg + X

pp rarr tZ + X

pp rarr t120574 + X

Figure 4 Invariant mass distributions 119898119905119881

(where 119881 = 120574 119892 and119885) for PI parametrization of the signal with 120581Λ = 02TeVminus1 and1198981199051015840 = 700GeV at the center of mass energy radic119904 = 13TeV

for PI (PII PIII) parametrization respectively Invariantmassdistribution of the 119905119881 (where 119881 = 120574 119892 and 119885) system isshown in Figure 4 for PI parametrization of the signal with120581Λ = 02TeVminus1 and 119898

1199051015840 = 700GeV at the center of mass

energy radic119904 = 13TeV It appears from signal significance cal-culations that the optimized transverse momentum cut is119901119895120574

119879gt 100GeV for 1199051015840 analysesThe backgrounds for the final state119882+119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 10 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879

gt 20ndash200GeV For the background cross section

Advances in High Energy Physics 5

Table 6The cross sections (in pb) of new heavy quark 1198871015840 production without cuts for PI PII and PIII parametrizations at the center of massenergy of 13TeV (8TeV) respectively

Mass (GeV) PI PII PIIIradic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV)

500 11340 (3913) 0970 (0285) 24474 (7114)600 7495 (2410) 0607 (0162) 15290 (409)700 5179 (1546) 0412 (0099) 10031 (2483)800 3697 (1025) 0286 (0062) 6832 (1566)900 2707 (0697) 01905 (0040) 4791 (1018)1000 2021 (0482) 0137 (0027) 3441 (0678)

Table 7 The cross sections (in pb) for 1199051015840 signal in different decay channels for PI parametrization with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 289 times 10minus1

210 times 10minus1

124 times 10minus1

102 times 10minus4

600 243 times 10minus1

164 times 10minus1

119 times 10minus1

123 times 10minus2

700 168 times 10minus1

12 times 10minus1

112 times 10minus1

225 times 10minus2

800 130 times 10minus1

103 times 10minus1

753 times 10minus2

325 times 10minus2

900 102 times 10minus1

808 times 10minus2

696 times 10minus2

302 times 10minus2

1000 761 times 10minus2

635 times 10minus2

507 times 10minus2

294 times 10minus2

119901119901 rarr 119882+119887119892 + 119883

500 778 times 100

602 times 100

363 times 100

474 times 10minus3

600 630 times 100

518 times 100

313 times 100

258 times 10minus1

700 499 times 100

363 times 100

304 times 100

932 times 10minus1

800 401 times 100

345 times 100

276 times 100

991 times 10minus1

900 332 times 100

277 times 100

213 times 100

108 times 100

1000 258 times 100

227 times 100

188 times 100

101 times 100

119901119901 rarr 119882+119887119885+119883

500 796 times 10minus1

601 times 10minus1

301 times 10minus1

101 times 10minus4

600 479 times 10minus1

386 times 10minus1

245 times 10minus1

271 times 10minus3

700 399 times 10minus1

312 times 10minus1

239 times 10minus1

696 times 10minus2

800 331 times 10minus1

289 times 10minus1

209 times 10minus1

805 times 10minus2

900 273 times 10minus1

273 times 10minus1

191 times 10minus1

954 times 10minus2

1000 223 times 10minus1

202 times 10minus1

161 times 10minus1

910 times 10minus2

estimates we assume the efficiency for 119887-tagging to be 120576119887=

50 and the rejection ratios to be 10 for 119888 (119888) quark jets and1 for light quark jets since they are assumed to bemistaggedas 119887-jets

In order to find the discovery limits we use the statisticalsignificance [28] defined as

119878119878 = radic2 [(119878 + 119861) ln(1 + 119878119861) minus 119878] (4)

where 119878 and 119861 are the numbers of the signal and backgroundevents respectively In Figures 5ndash7 the integrated luminosityrequired to reach 3120590 significance for the signal of 1199051015840 anoma-lous interactions is shown for parametrizations PI PII andPIII at the LHC with radic119904 = 13 TeV It is seen from these

figures that the channel 1199051015840 rarr 119905119885 requires more integratedluminosity than the other channels By requiring the signalsignificance 119878119878 = 3 the contour plots of 120581Λ and mass of1199051015840 quark are presented in Figure 8 The results show that onecan discover the 1199051015840 quark anomalous couplings 120581Λ down to01 TeVminus1 in the 119905119892 channel for119898

1199051015840 = 750GeV

411 Simulation for 1199051015840 Signal In order to include detectoreffects in the simulation we have generated 119905119881 (where 119881 =

120574 119892 and 119885) signal events for each subprocess and they aremixed using the ldquoevent mixerrdquo script which can be foundwithin the CALCHEP package [26] For further decay andhadronization these events are passed to PYTHIA [29] andsimulated with the PGS4 program [30] using generic LHC

6 Advances in High Energy Physics

Table 8 The same as Table 7 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 678 times 10minus3

507 times 10minus3

345 times 10minus3

264 times 10minus7

600 657 times 10minus3

542 times 10minus3

347 times 10minus3

534 times 10minus4

700 502 times 10minus3

431 times 10minus3

304 times 10minus3

873 times 10minus4

800 391 times 10minus3

376 times 10minus3

256 times 10minus3

103 times 10minus3

900 303 times 10minus3

268 times 10minus3

211 times 10minus3

101 times 10minus3

1000 240 times 10minus3

243 times 10minus3

177 times 10minus3

998 times 10minus4

119901119901 rarr 119882+119887119892 + 119883

500 347 times 10minus1

268 times 10minus1

152 times 10minus1

530 times 10minus6

600 251 times 10minus1

212 times 10minus1

135 times 10minus1

201 times 10minus2

700 187 times 10minus1

16 times 10minus1

116 times 10minus1

342 times 10minus2

800 146 times 10minus1

125 times 10minus1

939 times 10minus2

403 times 10minus2

900 112 times 10minus1

108 times 10minus1

780 times 10minus2

386 times 10minus2

1000 935 times 10minus2

837 times 10minus2

662 times 10minus2

368 times 10minus2

119901119901 rarr 119882+119887119885+119883

500 210 times 10minus2

177 times 10minus2

116 times 10minus2

264 times 10minus7

600 195 times 10minus2

175 times 10minus2

114 times 10minus2

134 times 10minus3

700 173 times 10minus2

143 times 10minus2

100 times 10minus2

29 times 10minus3

800 134 times 10minus2

119 times 10minus2

889 times 10minus3

342 times 10minus3

900 106 times 10minus2

955 times 10minus3

763 times 10minus3

337 times 10minus3

1000 809 times 10minus3

758 times 10minus3

631 times 10minus3

323 times 10minus3

Table 9 The same as Table 7 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 260 times 10minus1

278 times 10minus1

108 times 10minus1

159 times 10minus4

600 178 times 10minus1

161 times 10minus1

101 times 10minus1

142 times 10minus2

700 156 times 10minus1

135 times 10minus1

933 times 10minus2

272 times 10minus2

800 117 times 10minus1

106 times 10minus1

784 times 10minus2

332 times 10minus2

900 904 times 10minus2

842 times 10minus2

668 times 10minus2

325 times 10minus2

1000 760 times 10minus2

676 times 10minus2

516 times 10minus2

317 times 10minus2

119901119901 rarr 119882+119887119892 + 119883

500 839 times 100

649 times 100

386 times 100

465 times 10minus3

600 610 times 100

578 times 100

381 times 100

556 times 10minus1

700 539 times 100

464 times 100

341 times 100

970 times 10minus1

800 394 times 100

354 times 100

273 times 100

105 times 100

900 324 times 100

276 times 100

227 times 100

107 times 100

1000 233 times 100

229 times 100

184 times 100

998 times 10minus1

119901119901 rarr 119882+119887119885+119883

500 772 times 10minus1

101 times 100

217 times 10minus1

627 times 10minus4

600 624 times 10minus1

385 times 10minus1

292 times 10minus1

320 times 10minus2

700 500 times 10minus1

305 times 10minus1

286 times 10minus1

580 times 10minus2

800 378 times 10minus1

250 times 10minus1

242 times 10minus1

964 times 10minus2

900 304 times 10minus1

167 times 10minus1

206 times 10minus1

962 times 10minus2

1000 251 times 10minus1

129 times 10minus1

148 times 10minus1

961 times 10minus2

Advances in High Energy Physics 7

Table 10The cross sections (in pb) for the relevant backgrounds (119882+119887(119887)119881119882+119888(119888)119881 and119882+119895119881 where119881 = photon jet and119885 boson) with119901119879cuts on the jets at the center of mass energyradic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883 237 times 10

minus3362 times 10

minus4617 times 10

minus5699 times 10

minus6

119901119901 rarr 119882+119888120574 + 119883 415 times 10

0459 times 10

minus1625 times 10

minus2621 times 10

minus3

119901119901 rarr 119882+119895120574 + 119883 263 times 10

1430 times 10

0733 times 10

minus1127 times 10

minus1

119901119901 rarr 119882+119887(119887)119895 + 119883 726 times 10

1302 times 10

1611 times 10

0974 times 10

minus1

119901119901 rarr 119882+119888(119888)119895 + 119883 598 times 10

2965 times 10

1179 times 10

1242 times 10

0

119901119901 rarr 119882+119895119895 + 119883 731 times 10

3778 times 10

2161 times 10

2258 times 10

1

119901119901 rarr 119882+119887119885 + 119883 626 times 10

minus4399 times 10

minus4193 times 10

minus4471 times 10

minus5

119901119901 rarr 119882+119888119885 + 119883 529 times 10

minus1340 times 10

minus1166 times 10

minus1415 times 10

minus2

119901119901 rarr 119882+119895119885 + 119883 859 times 10

0483 times 10

0249 times 10

0791 times 10

minus1

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 5 Integrated luminosity required to reach 3120590 significancefor the signal of 1199051015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

102

103

104

500 600 700 800 900 1000

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 6 The same as Figure 5 but for parametrization PII

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 7 The same as Figure 5 but for parametrization PIII

detector parametersThis fast simulation includes the impor-tant detector effects such as tracking smearing effects of thecalorimeters resolution and tag efficiencies The EXROOT-ANALYSIS package [31] is used for the simulated events andthe output is analyzed and histogrammed with the ROOT[32] macros We consider jets (up to five) leptons (electronsor muons) photons and missing transverse momentumwithin the simulated events for the 119905120574 119905119895 and 119905119885 eventsgeneration The typical kinematical distributions are shownin Figures 9-10

In the analysis the signal (with 120581Λ = 02TeVminus1 and1198981199051015840 = 700GeV) and the corresponding background (119882119895119881)

are taken into accountThe 119904-channel contribution to the sig-nal process appears as a resonance around the 1199051015840mass value inthe reconstructed invariant mass 119898rec

1199051015840 The reconstructed

mass distribution for the 1199051015840 signal (reconstructed from a topquark and a vector boson) is shown in Figure 11

Similar to the single top processes the top quark in thefinal state is reconstructed from a leading jet (commonly 119887jet)and a119882 boson (which can be reconstructed from its leptonicor hadronic decay) For the 119905120574 production we require

8 Advances in High Energy Physics

500 600 700 800 900 1000

Mt998400 (GeV)

01

02

03

04

05120581Λ

(TeV

minus1 )

t998400 rarr WbZ

t998400 rarr Wb120574

t998400 rarr Wbg

Figure 8The contour plot of anomalous coupling and mass of newheavy quark 1199051015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

12000

14000

16000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 9 Transverse momentum distributions of leading jet (Jet 1)and other jets (Jet 2 and Jet 3) and photon for signal (119905120574 production)after detector simulation

systematically the large transverse momentum of photon(119901120574119879gt 100GeV) minimum jet transverse momentum (119901119895

119879gt

20GeV) and the pseudorapidity range (|120578119895120574| lt 25) inaddition to the requirements on mass reconstruction of119882-boson and top quark The large 119901120574

119879and the requirement of

single 119887-tagging allow a better separation of the signal (for 119905120574channel) from the background Other channels for 119905119892 and 119905119885productions are more challenging due to a large number ofjets which require additional discriminators such as angularandor total transverse energy variables However in orderto get rid of the backgrounds from 119882119905 and 119905119905 production

Entr

ies

50 100 150 200 250 300 350 4000

5000

10000

15000

20000

25000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 10 Transverse momentum distributions of leading jet (Jet1) and other jets (Jet 2 and Jet 3) and photon for background (119882119895120574production)

500 600 700 800 900 1000

40

60

80

100

120

BackgroundSignal

Mrect998400

(GeV)

Even

ts10

GeV

Figure 11The reconstructedmass distributions for background andsignal (119905120574) with119898

1199051015840 = 700GeV and 120581Λ = 015TeVminus1

(for a similar framework the production cross sections areabout 25 pb and 340 pb resp) one can consider the channel3119897 + 119887jet + MET for a distinctive signal from the 1199051015840 rarr 119905119885An analysis of the investigation of single top production withsimilar backgrounds at the LHC can be found in [33ndash35]

42 Analysis of the Process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574) for1198871015840 Signal The signal process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574)includes the new heavy quark 1198871015840 exchange in both the 119904-channel and the 119905-channel The 119904-channel contributes to thesignal process as resonance around the 1198871015840mass value in the 119887119881invariantmass while the 119905-channel contributes to the nonres-onant behaviour For this process we consider the leptonicdecay of 119885 boson In the analyses we consider the 1198871015840 signalto be 119887jet + 120574 119887jet + 119895 and 119887jet + dilepton

Advances in High Energy Physics 9

Table 11 The cross sections (in pb) for 1198871015840 signal in different decay channel for parametrization PI with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 564 times 10minus2

562 times 10minus2

549 times 10minus2

395 times 10minus2

600 396 times 10minus2

396 times 10minus2

390 times 10minus2

333 times 10minus2

700 287 times 10minus2

287 times 10minus2

286 times 10minus2

259 times 10minus2

800 212 times 10minus2

213 times 10minus2

212 times 10minus2

199 times 10minus2

900 160 times 10minus2

160 times 10minus2

160 times 10minus2

153 times 10minus2

1000 122 times 10minus2

122 times 10minus2

122 times 10minus2

119 times 10minus2

119901119901 rarr 119887119892 + 119883

500 813 times 100

813 times 100

793 times 100

596 times 100

600 559 times 100

559 times 100

553 times 100

488 times 100

700 398 times 100

398 times 100

396 times 100

373 times 100

800 291 times 100

291 times 100

290 times 100

281 times 100

900 216 times 100

216 times 100

216 times 100

214 times 100

1000 164 times 100

163 times 100

163 times 100

162 times 100

119901119901 rarr 119887119885 + 119883

500 787 times 10minus1

781 times 10minus1

750 times 10minus1

479 times 10minus1

600 548 times 10minus1

548 times 10minus1

531 times 10minus1

427 times 10minus1

700 395 times 10minus1

394 times 10minus1

386 times 10minus1

339 times 10minus1

800 292 times 10minus1

291 times 10minus1

286 times 10minus1

261 times 10minus1

900 218 times 10minus1

218 times 10minus1

215 times 10minus1

202 times 10minus1

1000 166 times 10minus1

166 times 10minus1

164 times 10minus1

156 times 10minus1

We have obtained the cross sections by using the pseu-dorapidity cuts |120578

119895120574| lt 25 and transverse momentum cuts

119901119895120574

119879gt 20ndash200GeV for jets and photon in Table 11 (Tables

12 and 13) for PI (PII PIII) parametrizations respectivelyInvariantmass distribution of the 119887119881 (where119881 = 120574 119892 and119885)system is shown in Figure 12 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the

center of mass energy radic119904 = 13TeV It appears from sig-nal significance calculation that the optimized transversemomentum cut is 119901

119879gt 200GeV for 1198871015840 analyses

The backgrounds for the final state 119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 14 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879gt 20ndash200GeV It can be noted that the background

cross section decreases as the119901119879cuts increaseWe assume the

efficiency for 119887-tagging to be 120576119887= 50and the rejection ratios

to be 10 for 119888 (119888) quark jets and 1 for light quark jetsIn order to reach 3120590 significance for the signal of 1198871015840

anomalous interactions the required integrated luminosityis shown in Figures 13ndash15 for parametrizations PI PII andPIII at the LHC with radic119904 = 13TeV The channel 1198871015840 rarr 119887120574

requires more integrated luminosity than the other channelsBy requiring the signal significance 119878119878 = 3 the contour plotsof 120581Λ and mass of 1198871015840 quark are presented in Figure 16 Theresults show that one can discover the 1198871015840 quark anomalouscouplings down to 01 in the 119887119892 channel for119898

1198871015840 = 500GeV

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mbV

(pb

GeV

)

MbV (GeV)

pp rarr bg + X

pprarr bZ + X

pprarr b120574 + X

Figure 12 Invariant mass distribution of the 119887119881 (where 119881 = 120574 119892and 119885) system is shown in Figure 5 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the center of

mass energyradic119904 = 13TeV

421 Simulation for 1198871015840 Signal In the simulation we havegenerated 119887119881 (where 119881 = 120574 119892 and 119885) events for each sub-process and these events are simulated using generic detector

10 Advances in High Energy Physics

Table 12 The same as Table 11 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 518 times 10minus3

526 times 10minus3

504 times 10minus3

354 times 10minus3

600 338 times 10minus3

337 times 10minus3

336 times 10minus3

277 times 10minus3

700 232 times 10minus3

231 times 10minus3

230 times 10minus3

205 times 10minus3

800 171 times 10minus3

163 times 10minus3

164 times 10minus3

150 times 10minus3

900 117 times 10minus3

116 times 10minus3

117 times 10minus3

111 times 10minus3

1000 860 times 10minus4

858 times 10minus4

855 times 10minus4

824 times 10minus4

119901119901 rarr 119887119892 + 119883

500 740 times 10minus1

739 times 10minus1

721 times 10minus1

516 times 10minus1

600 483 times 10minus1

480 times 10minus1

481 times 10minus1

398 times 10minus1

700 322 times 10minus1

322 times 10minus1

320 times 10minus1

289 times 10minus1

800 224 times 10minus1

221 times 10minus1

221 times 10minus1

204 times 10minus1

900 15 times 10minus1

158 times 10minus1

158 times 10minus1

149 times 10minus1

1000 114 times 10minus1

114 times 10minus1

113 times 10minus1

110 times 10minus1

119901119901 rarr 119887119885 + 119883

500 689 times 10minus2

685 times 10minus2

645 times 10minus2

423 times 10minus2

600 452 times 10minus2

451 times 10minus2

434 times 10minus2

353 times 10minus2

700 312 times 10minus2

311 times 10minus2

305 times 10minus2

265 times 10minus2

800 219 times 10minus2

218 times 10minus2

215 times 10minus2

195 times 10minus2

900 156 times 10minus2

156 times 10minus2

155 times 10minus2

144 times 10minus2

1000 114 times 10minus2

113 times 10minus2

113 times 10minus2

107 times 10minus2

Table 13 The same as Table 11 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 131 times 10minus2

1314 times 10minus2

1275 times 10minus2

892 times 10minus2

600 859 times 10minus2

858 times 10minus2

844 times 10minus2

703 times 10minus2

700 582 times 10minus2

582 times 10minus2

577 times 10minus2

517 times 10minus2

800 407 times 10minus2

407 times 10minus2

406 times 10minus2

377 times 10minus2

900 292 times 10minus2

292 times 10minus2

291 times 10minus2

277 times 10minus2

1000 214 times 10minus2

213 times 10minus2

213 times 10minus2

206 times 10minus2

119901119901 rarr 119887119892 + 119883

500 1904 times 100

1896 times 100

1843 times 100

1286 times 100

600 1219 times 100

1213 times 100

1193 times 100

992 times 100

700 808 times 100

807 times 100

802 times 100

717 times 100

800 557 times 100

557 times 100

555 times 100

515 times 100

900 394 times 100

394 times 100

394 times 100

374 times 100

1000 285 times 100

285 times 100

285 times 100

274 times 100

119901119901 rarr 119887119885 + 119883

500 176 times 100

175 times 100

165 times 100

105 times 100

600 115 times 100

114 times 100

111 times 100

880 times 10minus1

700 783 times 10minus1

780 times 10minus1

760 times 10minus1

661 times 10minus1

800 547 times 10minus1

541 times 10minus1

531 times 10minus1

480 times 10minus1

900 392 times 10minus1

390 times 10minus1

382 times 10minus1

360 times 10minus1

1000 286 times 10minus1

282 times 10minus1

280 times 10minus1

262 times 10minus1

Advances in High Energy Physics 11

Table 14 The cross sections (in pb) for the backgrounds (119887(119887)119881 119888(119888)119881 and 119895119881 where119881 = photon jet and 119885 boson) with 119901119879cuts on the jets

and photon at the center of mass energy radic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887(119887)120574 + 119883 299 times 103

135 times 102

904 times 100

402 times 10minus1

119901119901 rarr 119888(119888)120574 + 119883 187 times 104

815 times 102

540 times 101

243 times 100

119901119901 rarr 119895120574 + 119883 543 times 104

327 times 103

338 times 102

285 times 101

119901119901 rarr 119887(119887)119895 + 119883 783 times 106

305 times 105

192 times 104

893 times 102

119901119901 rarr 119888(119888)119895 + 119883 122 times 107

455 times 105

289 times 104

135 times 103

119901119901 rarr 119895119895 + 119883 243 times 108

854 times 106

544 times 105

280 times 104

119901119901 rarr 119887(119887)119885 + 119883 502 times 102

135 times 102

225 times 101

156 times 100

119901119901 rarr 119888(119888)119885 + 119883 596 times 102

158 times 102

264 times 101

183 times 100

119901119901 rarr 119895119885 + 119883 800 times 103

208 times 103

408 times 102

412 times 101

500 600 700 800 900 1000

Mb998400 (GeV)

10minus1

100

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 13 Integrated luminosity required to reach 3120590 significancefor the signal of 1198871015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

500 600 700 800 900 1000

Mb998400 (GeV)

104

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 14 The same as Figure 13 but for parametrization PII

500 600 700 800 900 100010minus1

100

101

102

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 15 The same as Figure 13 but for parametrization PIII

parameters to include detector effects such as tracking tag-ging efficiencies and smearing effects After the simulationthe typical kinematical distributions are shown in Figures 17-18

In the analysis the signal (with 120581Λ = 03TeVminus1 and1198981198871015840 = 700GeV) and the corresponding background are

taken into account The invariant mass of the new heavyquark 1198871015840 can be reconstructed from a 119887jet and a neutral gaugeboson (where the 119885 boson can also be reconstructed fromits dilepton or hadronic decay) For the 119887120574 production werequire a large 119901120574

119879(gt100GeV) for photon and large 119901119895

119879

(gt100GeV) for jet and pseudorapidity |120578119895120574| (lt25) For the 119887120574signal channel the invariantmass distributions for signal andbackground events are shown in Figure 19The large 119901119895120574

119879and

the requirement of single 119887-tagging allow a better separationof the signal (for 119887120574 channel) from the background and thenwe find a precise limit for the anomalous coupling in thischannel For the 119887119892 and 119887119885 production we require two high119901119879jets (one 119887-jet) and a high 119901

119879jet in addition to the

reconstructed mass 119898rec119885 respectively The main character of

12 Advances in High Energy Physics

500 600 700 800 900 100001

02

03

04

05120581Λ

(TeV

minus1 )

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 16The contour plot of anomalous coupling andmass of newheavy quark 1198871015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

PhotonJet 1

pT (GeV)

Figure 17 Transverse momentum distributions of leading jet andphoton (119887120574 production) for signal after detector simulation

the signal is the high 119901119895119879andor 119901120574

119879and single 119887-tagged jet

We calculate the signal and background events in the range|119898

rec1198871015840 (GeV) minus 700GeV| lt 50GeV and we find a similar

significance as shown in Figure 16

5 Conclusion

The new heavy quarks of up-type and down-type can be pro-duced with large numbers at the LHC if they have the anoma-lous couplings (via flavor changing neutral current) thatwell dominate over the charged current interactions The

Entr

ies

50 100 150 200 250 300 350 4000

2000

4000

6000

8000

10000

12000

PhotonJet 1

pT (GeV)

Figure 18 Transverse momentum distributions of leading jet andphoton (119895120574 production) for background at the given conditionsmentioned in the text

500 550 600 650 700 750 800 850 900 950 10000

500

1000

1500

2000

2500

3000

BackgroundSignal

Mrecb998400

(GeV)

Even

ts10

GeV

Figure 19The reconstructedmass distributions for background andsignal (119887120574) with119898

1198871015840 = 700GeV and 120581Λ = 03TeVminus1

single production of new heavy quarks can be achievedthrough the anomalous interactions at the LHC with radic119904 =13TeV The anomalous vertices could appear significantly atleading order processes due to the possibility of new heavyquarks From the results of signal significance calculationsfor 1199051015840 (1198871015840) anomalous productions the sensitivity to theanomalous couplings 120581119905

1015840

Λ (1205811198871015840

Λ) can be reached down to010 TeVminus1 (015 TeVminus1) in the lepton + 119887jet + jet +MET (119887jet +jet) channel at radic119904 = 13TeV assuming a dynamical para-metrization for the anomalous couplings and the mass of 750GeV for the new heavy quarks The observability limits onthe anomalous couplings obtained after the simulation arecomparable with the partonic level analysis in the photon and119885 boson associated channels whereas the productions 119905119892 and119887119892 are less comparable due to the fast simulation method In

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 5: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

Advances in High Energy Physics 5

Table 6The cross sections (in pb) of new heavy quark 1198871015840 production without cuts for PI PII and PIII parametrizations at the center of massenergy of 13TeV (8TeV) respectively

Mass (GeV) PI PII PIIIradic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV) radic119904 = 13 TeV (8 TeV)

500 11340 (3913) 0970 (0285) 24474 (7114)600 7495 (2410) 0607 (0162) 15290 (409)700 5179 (1546) 0412 (0099) 10031 (2483)800 3697 (1025) 0286 (0062) 6832 (1566)900 2707 (0697) 01905 (0040) 4791 (1018)1000 2021 (0482) 0137 (0027) 3441 (0678)

Table 7 The cross sections (in pb) for 1199051015840 signal in different decay channels for PI parametrization with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 289 times 10minus1

210 times 10minus1

124 times 10minus1

102 times 10minus4

600 243 times 10minus1

164 times 10minus1

119 times 10minus1

123 times 10minus2

700 168 times 10minus1

12 times 10minus1

112 times 10minus1

225 times 10minus2

800 130 times 10minus1

103 times 10minus1

753 times 10minus2

325 times 10minus2

900 102 times 10minus1

808 times 10minus2

696 times 10minus2

302 times 10minus2

1000 761 times 10minus2

635 times 10minus2

507 times 10minus2

294 times 10minus2

119901119901 rarr 119882+119887119892 + 119883

500 778 times 100

602 times 100

363 times 100

474 times 10minus3

600 630 times 100

518 times 100

313 times 100

258 times 10minus1

700 499 times 100

363 times 100

304 times 100

932 times 10minus1

800 401 times 100

345 times 100

276 times 100

991 times 10minus1

900 332 times 100

277 times 100

213 times 100

108 times 100

1000 258 times 100

227 times 100

188 times 100

101 times 100

119901119901 rarr 119882+119887119885+119883

500 796 times 10minus1

601 times 10minus1

301 times 10minus1

101 times 10minus4

600 479 times 10minus1

386 times 10minus1

245 times 10minus1

271 times 10minus3

700 399 times 10minus1

312 times 10minus1

239 times 10minus1

696 times 10minus2

800 331 times 10minus1

289 times 10minus1

209 times 10minus1

805 times 10minus2

900 273 times 10minus1

273 times 10minus1

191 times 10minus1

954 times 10minus2

1000 223 times 10minus1

202 times 10minus1

161 times 10minus1

910 times 10minus2

estimates we assume the efficiency for 119887-tagging to be 120576119887=

50 and the rejection ratios to be 10 for 119888 (119888) quark jets and1 for light quark jets since they are assumed to bemistaggedas 119887-jets

In order to find the discovery limits we use the statisticalsignificance [28] defined as

119878119878 = radic2 [(119878 + 119861) ln(1 + 119878119861) minus 119878] (4)

where 119878 and 119861 are the numbers of the signal and backgroundevents respectively In Figures 5ndash7 the integrated luminosityrequired to reach 3120590 significance for the signal of 1199051015840 anoma-lous interactions is shown for parametrizations PI PII andPIII at the LHC with radic119904 = 13 TeV It is seen from these

figures that the channel 1199051015840 rarr 119905119885 requires more integratedluminosity than the other channels By requiring the signalsignificance 119878119878 = 3 the contour plots of 120581Λ and mass of1199051015840 quark are presented in Figure 8 The results show that onecan discover the 1199051015840 quark anomalous couplings 120581Λ down to01 TeVminus1 in the 119905119892 channel for119898

1199051015840 = 750GeV

411 Simulation for 1199051015840 Signal In order to include detectoreffects in the simulation we have generated 119905119881 (where 119881 =

120574 119892 and 119885) signal events for each subprocess and they aremixed using the ldquoevent mixerrdquo script which can be foundwithin the CALCHEP package [26] For further decay andhadronization these events are passed to PYTHIA [29] andsimulated with the PGS4 program [30] using generic LHC

6 Advances in High Energy Physics

Table 8 The same as Table 7 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 678 times 10minus3

507 times 10minus3

345 times 10minus3

264 times 10minus7

600 657 times 10minus3

542 times 10minus3

347 times 10minus3

534 times 10minus4

700 502 times 10minus3

431 times 10minus3

304 times 10minus3

873 times 10minus4

800 391 times 10minus3

376 times 10minus3

256 times 10minus3

103 times 10minus3

900 303 times 10minus3

268 times 10minus3

211 times 10minus3

101 times 10minus3

1000 240 times 10minus3

243 times 10minus3

177 times 10minus3

998 times 10minus4

119901119901 rarr 119882+119887119892 + 119883

500 347 times 10minus1

268 times 10minus1

152 times 10minus1

530 times 10minus6

600 251 times 10minus1

212 times 10minus1

135 times 10minus1

201 times 10minus2

700 187 times 10minus1

16 times 10minus1

116 times 10minus1

342 times 10minus2

800 146 times 10minus1

125 times 10minus1

939 times 10minus2

403 times 10minus2

900 112 times 10minus1

108 times 10minus1

780 times 10minus2

386 times 10minus2

1000 935 times 10minus2

837 times 10minus2

662 times 10minus2

368 times 10minus2

119901119901 rarr 119882+119887119885+119883

500 210 times 10minus2

177 times 10minus2

116 times 10minus2

264 times 10minus7

600 195 times 10minus2

175 times 10minus2

114 times 10minus2

134 times 10minus3

700 173 times 10minus2

143 times 10minus2

100 times 10minus2

29 times 10minus3

800 134 times 10minus2

119 times 10minus2

889 times 10minus3

342 times 10minus3

900 106 times 10minus2

955 times 10minus3

763 times 10minus3

337 times 10minus3

1000 809 times 10minus3

758 times 10minus3

631 times 10minus3

323 times 10minus3

Table 9 The same as Table 7 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 260 times 10minus1

278 times 10minus1

108 times 10minus1

159 times 10minus4

600 178 times 10minus1

161 times 10minus1

101 times 10minus1

142 times 10minus2

700 156 times 10minus1

135 times 10minus1

933 times 10minus2

272 times 10minus2

800 117 times 10minus1

106 times 10minus1

784 times 10minus2

332 times 10minus2

900 904 times 10minus2

842 times 10minus2

668 times 10minus2

325 times 10minus2

1000 760 times 10minus2

676 times 10minus2

516 times 10minus2

317 times 10minus2

119901119901 rarr 119882+119887119892 + 119883

500 839 times 100

649 times 100

386 times 100

465 times 10minus3

600 610 times 100

578 times 100

381 times 100

556 times 10minus1

700 539 times 100

464 times 100

341 times 100

970 times 10minus1

800 394 times 100

354 times 100

273 times 100

105 times 100

900 324 times 100

276 times 100

227 times 100

107 times 100

1000 233 times 100

229 times 100

184 times 100

998 times 10minus1

119901119901 rarr 119882+119887119885+119883

500 772 times 10minus1

101 times 100

217 times 10minus1

627 times 10minus4

600 624 times 10minus1

385 times 10minus1

292 times 10minus1

320 times 10minus2

700 500 times 10minus1

305 times 10minus1

286 times 10minus1

580 times 10minus2

800 378 times 10minus1

250 times 10minus1

242 times 10minus1

964 times 10minus2

900 304 times 10minus1

167 times 10minus1

206 times 10minus1

962 times 10minus2

1000 251 times 10minus1

129 times 10minus1

148 times 10minus1

961 times 10minus2

Advances in High Energy Physics 7

Table 10The cross sections (in pb) for the relevant backgrounds (119882+119887(119887)119881119882+119888(119888)119881 and119882+119895119881 where119881 = photon jet and119885 boson) with119901119879cuts on the jets at the center of mass energyradic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883 237 times 10

minus3362 times 10

minus4617 times 10

minus5699 times 10

minus6

119901119901 rarr 119882+119888120574 + 119883 415 times 10

0459 times 10

minus1625 times 10

minus2621 times 10

minus3

119901119901 rarr 119882+119895120574 + 119883 263 times 10

1430 times 10

0733 times 10

minus1127 times 10

minus1

119901119901 rarr 119882+119887(119887)119895 + 119883 726 times 10

1302 times 10

1611 times 10

0974 times 10

minus1

119901119901 rarr 119882+119888(119888)119895 + 119883 598 times 10

2965 times 10

1179 times 10

1242 times 10

0

119901119901 rarr 119882+119895119895 + 119883 731 times 10

3778 times 10

2161 times 10

2258 times 10

1

119901119901 rarr 119882+119887119885 + 119883 626 times 10

minus4399 times 10

minus4193 times 10

minus4471 times 10

minus5

119901119901 rarr 119882+119888119885 + 119883 529 times 10

minus1340 times 10

minus1166 times 10

minus1415 times 10

minus2

119901119901 rarr 119882+119895119885 + 119883 859 times 10

0483 times 10

0249 times 10

0791 times 10

minus1

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 5 Integrated luminosity required to reach 3120590 significancefor the signal of 1199051015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

102

103

104

500 600 700 800 900 1000

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 6 The same as Figure 5 but for parametrization PII

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 7 The same as Figure 5 but for parametrization PIII

detector parametersThis fast simulation includes the impor-tant detector effects such as tracking smearing effects of thecalorimeters resolution and tag efficiencies The EXROOT-ANALYSIS package [31] is used for the simulated events andthe output is analyzed and histogrammed with the ROOT[32] macros We consider jets (up to five) leptons (electronsor muons) photons and missing transverse momentumwithin the simulated events for the 119905120574 119905119895 and 119905119885 eventsgeneration The typical kinematical distributions are shownin Figures 9-10

In the analysis the signal (with 120581Λ = 02TeVminus1 and1198981199051015840 = 700GeV) and the corresponding background (119882119895119881)

are taken into accountThe 119904-channel contribution to the sig-nal process appears as a resonance around the 1199051015840mass value inthe reconstructed invariant mass 119898rec

1199051015840 The reconstructed

mass distribution for the 1199051015840 signal (reconstructed from a topquark and a vector boson) is shown in Figure 11

Similar to the single top processes the top quark in thefinal state is reconstructed from a leading jet (commonly 119887jet)and a119882 boson (which can be reconstructed from its leptonicor hadronic decay) For the 119905120574 production we require

8 Advances in High Energy Physics

500 600 700 800 900 1000

Mt998400 (GeV)

01

02

03

04

05120581Λ

(TeV

minus1 )

t998400 rarr WbZ

t998400 rarr Wb120574

t998400 rarr Wbg

Figure 8The contour plot of anomalous coupling and mass of newheavy quark 1199051015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

12000

14000

16000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 9 Transverse momentum distributions of leading jet (Jet 1)and other jets (Jet 2 and Jet 3) and photon for signal (119905120574 production)after detector simulation

systematically the large transverse momentum of photon(119901120574119879gt 100GeV) minimum jet transverse momentum (119901119895

119879gt

20GeV) and the pseudorapidity range (|120578119895120574| lt 25) inaddition to the requirements on mass reconstruction of119882-boson and top quark The large 119901120574

119879and the requirement of

single 119887-tagging allow a better separation of the signal (for 119905120574channel) from the background Other channels for 119905119892 and 119905119885productions are more challenging due to a large number ofjets which require additional discriminators such as angularandor total transverse energy variables However in orderto get rid of the backgrounds from 119882119905 and 119905119905 production

Entr

ies

50 100 150 200 250 300 350 4000

5000

10000

15000

20000

25000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 10 Transverse momentum distributions of leading jet (Jet1) and other jets (Jet 2 and Jet 3) and photon for background (119882119895120574production)

500 600 700 800 900 1000

40

60

80

100

120

BackgroundSignal

Mrect998400

(GeV)

Even

ts10

GeV

Figure 11The reconstructedmass distributions for background andsignal (119905120574) with119898

1199051015840 = 700GeV and 120581Λ = 015TeVminus1

(for a similar framework the production cross sections areabout 25 pb and 340 pb resp) one can consider the channel3119897 + 119887jet + MET for a distinctive signal from the 1199051015840 rarr 119905119885An analysis of the investigation of single top production withsimilar backgrounds at the LHC can be found in [33ndash35]

42 Analysis of the Process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574) for1198871015840 Signal The signal process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574)includes the new heavy quark 1198871015840 exchange in both the 119904-channel and the 119905-channel The 119904-channel contributes to thesignal process as resonance around the 1198871015840mass value in the 119887119881invariantmass while the 119905-channel contributes to the nonres-onant behaviour For this process we consider the leptonicdecay of 119885 boson In the analyses we consider the 1198871015840 signalto be 119887jet + 120574 119887jet + 119895 and 119887jet + dilepton

Advances in High Energy Physics 9

Table 11 The cross sections (in pb) for 1198871015840 signal in different decay channel for parametrization PI with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 564 times 10minus2

562 times 10minus2

549 times 10minus2

395 times 10minus2

600 396 times 10minus2

396 times 10minus2

390 times 10minus2

333 times 10minus2

700 287 times 10minus2

287 times 10minus2

286 times 10minus2

259 times 10minus2

800 212 times 10minus2

213 times 10minus2

212 times 10minus2

199 times 10minus2

900 160 times 10minus2

160 times 10minus2

160 times 10minus2

153 times 10minus2

1000 122 times 10minus2

122 times 10minus2

122 times 10minus2

119 times 10minus2

119901119901 rarr 119887119892 + 119883

500 813 times 100

813 times 100

793 times 100

596 times 100

600 559 times 100

559 times 100

553 times 100

488 times 100

700 398 times 100

398 times 100

396 times 100

373 times 100

800 291 times 100

291 times 100

290 times 100

281 times 100

900 216 times 100

216 times 100

216 times 100

214 times 100

1000 164 times 100

163 times 100

163 times 100

162 times 100

119901119901 rarr 119887119885 + 119883

500 787 times 10minus1

781 times 10minus1

750 times 10minus1

479 times 10minus1

600 548 times 10minus1

548 times 10minus1

531 times 10minus1

427 times 10minus1

700 395 times 10minus1

394 times 10minus1

386 times 10minus1

339 times 10minus1

800 292 times 10minus1

291 times 10minus1

286 times 10minus1

261 times 10minus1

900 218 times 10minus1

218 times 10minus1

215 times 10minus1

202 times 10minus1

1000 166 times 10minus1

166 times 10minus1

164 times 10minus1

156 times 10minus1

We have obtained the cross sections by using the pseu-dorapidity cuts |120578

119895120574| lt 25 and transverse momentum cuts

119901119895120574

119879gt 20ndash200GeV for jets and photon in Table 11 (Tables

12 and 13) for PI (PII PIII) parametrizations respectivelyInvariantmass distribution of the 119887119881 (where119881 = 120574 119892 and119885)system is shown in Figure 12 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the

center of mass energy radic119904 = 13TeV It appears from sig-nal significance calculation that the optimized transversemomentum cut is 119901

119879gt 200GeV for 1198871015840 analyses

The backgrounds for the final state 119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 14 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879gt 20ndash200GeV It can be noted that the background

cross section decreases as the119901119879cuts increaseWe assume the

efficiency for 119887-tagging to be 120576119887= 50and the rejection ratios

to be 10 for 119888 (119888) quark jets and 1 for light quark jetsIn order to reach 3120590 significance for the signal of 1198871015840

anomalous interactions the required integrated luminosityis shown in Figures 13ndash15 for parametrizations PI PII andPIII at the LHC with radic119904 = 13TeV The channel 1198871015840 rarr 119887120574

requires more integrated luminosity than the other channelsBy requiring the signal significance 119878119878 = 3 the contour plotsof 120581Λ and mass of 1198871015840 quark are presented in Figure 16 Theresults show that one can discover the 1198871015840 quark anomalouscouplings down to 01 in the 119887119892 channel for119898

1198871015840 = 500GeV

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mbV

(pb

GeV

)

MbV (GeV)

pp rarr bg + X

pprarr bZ + X

pprarr b120574 + X

Figure 12 Invariant mass distribution of the 119887119881 (where 119881 = 120574 119892and 119885) system is shown in Figure 5 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the center of

mass energyradic119904 = 13TeV

421 Simulation for 1198871015840 Signal In the simulation we havegenerated 119887119881 (where 119881 = 120574 119892 and 119885) events for each sub-process and these events are simulated using generic detector

10 Advances in High Energy Physics

Table 12 The same as Table 11 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 518 times 10minus3

526 times 10minus3

504 times 10minus3

354 times 10minus3

600 338 times 10minus3

337 times 10minus3

336 times 10minus3

277 times 10minus3

700 232 times 10minus3

231 times 10minus3

230 times 10minus3

205 times 10minus3

800 171 times 10minus3

163 times 10minus3

164 times 10minus3

150 times 10minus3

900 117 times 10minus3

116 times 10minus3

117 times 10minus3

111 times 10minus3

1000 860 times 10minus4

858 times 10minus4

855 times 10minus4

824 times 10minus4

119901119901 rarr 119887119892 + 119883

500 740 times 10minus1

739 times 10minus1

721 times 10minus1

516 times 10minus1

600 483 times 10minus1

480 times 10minus1

481 times 10minus1

398 times 10minus1

700 322 times 10minus1

322 times 10minus1

320 times 10minus1

289 times 10minus1

800 224 times 10minus1

221 times 10minus1

221 times 10minus1

204 times 10minus1

900 15 times 10minus1

158 times 10minus1

158 times 10minus1

149 times 10minus1

1000 114 times 10minus1

114 times 10minus1

113 times 10minus1

110 times 10minus1

119901119901 rarr 119887119885 + 119883

500 689 times 10minus2

685 times 10minus2

645 times 10minus2

423 times 10minus2

600 452 times 10minus2

451 times 10minus2

434 times 10minus2

353 times 10minus2

700 312 times 10minus2

311 times 10minus2

305 times 10minus2

265 times 10minus2

800 219 times 10minus2

218 times 10minus2

215 times 10minus2

195 times 10minus2

900 156 times 10minus2

156 times 10minus2

155 times 10minus2

144 times 10minus2

1000 114 times 10minus2

113 times 10minus2

113 times 10minus2

107 times 10minus2

Table 13 The same as Table 11 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 131 times 10minus2

1314 times 10minus2

1275 times 10minus2

892 times 10minus2

600 859 times 10minus2

858 times 10minus2

844 times 10minus2

703 times 10minus2

700 582 times 10minus2

582 times 10minus2

577 times 10minus2

517 times 10minus2

800 407 times 10minus2

407 times 10minus2

406 times 10minus2

377 times 10minus2

900 292 times 10minus2

292 times 10minus2

291 times 10minus2

277 times 10minus2

1000 214 times 10minus2

213 times 10minus2

213 times 10minus2

206 times 10minus2

119901119901 rarr 119887119892 + 119883

500 1904 times 100

1896 times 100

1843 times 100

1286 times 100

600 1219 times 100

1213 times 100

1193 times 100

992 times 100

700 808 times 100

807 times 100

802 times 100

717 times 100

800 557 times 100

557 times 100

555 times 100

515 times 100

900 394 times 100

394 times 100

394 times 100

374 times 100

1000 285 times 100

285 times 100

285 times 100

274 times 100

119901119901 rarr 119887119885 + 119883

500 176 times 100

175 times 100

165 times 100

105 times 100

600 115 times 100

114 times 100

111 times 100

880 times 10minus1

700 783 times 10minus1

780 times 10minus1

760 times 10minus1

661 times 10minus1

800 547 times 10minus1

541 times 10minus1

531 times 10minus1

480 times 10minus1

900 392 times 10minus1

390 times 10minus1

382 times 10minus1

360 times 10minus1

1000 286 times 10minus1

282 times 10minus1

280 times 10minus1

262 times 10minus1

Advances in High Energy Physics 11

Table 14 The cross sections (in pb) for the backgrounds (119887(119887)119881 119888(119888)119881 and 119895119881 where119881 = photon jet and 119885 boson) with 119901119879cuts on the jets

and photon at the center of mass energy radic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887(119887)120574 + 119883 299 times 103

135 times 102

904 times 100

402 times 10minus1

119901119901 rarr 119888(119888)120574 + 119883 187 times 104

815 times 102

540 times 101

243 times 100

119901119901 rarr 119895120574 + 119883 543 times 104

327 times 103

338 times 102

285 times 101

119901119901 rarr 119887(119887)119895 + 119883 783 times 106

305 times 105

192 times 104

893 times 102

119901119901 rarr 119888(119888)119895 + 119883 122 times 107

455 times 105

289 times 104

135 times 103

119901119901 rarr 119895119895 + 119883 243 times 108

854 times 106

544 times 105

280 times 104

119901119901 rarr 119887(119887)119885 + 119883 502 times 102

135 times 102

225 times 101

156 times 100

119901119901 rarr 119888(119888)119885 + 119883 596 times 102

158 times 102

264 times 101

183 times 100

119901119901 rarr 119895119885 + 119883 800 times 103

208 times 103

408 times 102

412 times 101

500 600 700 800 900 1000

Mb998400 (GeV)

10minus1

100

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 13 Integrated luminosity required to reach 3120590 significancefor the signal of 1198871015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

500 600 700 800 900 1000

Mb998400 (GeV)

104

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 14 The same as Figure 13 but for parametrization PII

500 600 700 800 900 100010minus1

100

101

102

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 15 The same as Figure 13 but for parametrization PIII

parameters to include detector effects such as tracking tag-ging efficiencies and smearing effects After the simulationthe typical kinematical distributions are shown in Figures 17-18

In the analysis the signal (with 120581Λ = 03TeVminus1 and1198981198871015840 = 700GeV) and the corresponding background are

taken into account The invariant mass of the new heavyquark 1198871015840 can be reconstructed from a 119887jet and a neutral gaugeboson (where the 119885 boson can also be reconstructed fromits dilepton or hadronic decay) For the 119887120574 production werequire a large 119901120574

119879(gt100GeV) for photon and large 119901119895

119879

(gt100GeV) for jet and pseudorapidity |120578119895120574| (lt25) For the 119887120574signal channel the invariantmass distributions for signal andbackground events are shown in Figure 19The large 119901119895120574

119879and

the requirement of single 119887-tagging allow a better separationof the signal (for 119887120574 channel) from the background and thenwe find a precise limit for the anomalous coupling in thischannel For the 119887119892 and 119887119885 production we require two high119901119879jets (one 119887-jet) and a high 119901

119879jet in addition to the

reconstructed mass 119898rec119885 respectively The main character of

12 Advances in High Energy Physics

500 600 700 800 900 100001

02

03

04

05120581Λ

(TeV

minus1 )

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 16The contour plot of anomalous coupling andmass of newheavy quark 1198871015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

PhotonJet 1

pT (GeV)

Figure 17 Transverse momentum distributions of leading jet andphoton (119887120574 production) for signal after detector simulation

the signal is the high 119901119895119879andor 119901120574

119879and single 119887-tagged jet

We calculate the signal and background events in the range|119898

rec1198871015840 (GeV) minus 700GeV| lt 50GeV and we find a similar

significance as shown in Figure 16

5 Conclusion

The new heavy quarks of up-type and down-type can be pro-duced with large numbers at the LHC if they have the anoma-lous couplings (via flavor changing neutral current) thatwell dominate over the charged current interactions The

Entr

ies

50 100 150 200 250 300 350 4000

2000

4000

6000

8000

10000

12000

PhotonJet 1

pT (GeV)

Figure 18 Transverse momentum distributions of leading jet andphoton (119895120574 production) for background at the given conditionsmentioned in the text

500 550 600 650 700 750 800 850 900 950 10000

500

1000

1500

2000

2500

3000

BackgroundSignal

Mrecb998400

(GeV)

Even

ts10

GeV

Figure 19The reconstructedmass distributions for background andsignal (119887120574) with119898

1198871015840 = 700GeV and 120581Λ = 03TeVminus1

single production of new heavy quarks can be achievedthrough the anomalous interactions at the LHC with radic119904 =13TeV The anomalous vertices could appear significantly atleading order processes due to the possibility of new heavyquarks From the results of signal significance calculationsfor 1199051015840 (1198871015840) anomalous productions the sensitivity to theanomalous couplings 120581119905

1015840

Λ (1205811198871015840

Λ) can be reached down to010 TeVminus1 (015 TeVminus1) in the lepton + 119887jet + jet +MET (119887jet +jet) channel at radic119904 = 13TeV assuming a dynamical para-metrization for the anomalous couplings and the mass of 750GeV for the new heavy quarks The observability limits onthe anomalous couplings obtained after the simulation arecomparable with the partonic level analysis in the photon and119885 boson associated channels whereas the productions 119905119892 and119887119892 are less comparable due to the fast simulation method In

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 6: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

6 Advances in High Energy Physics

Table 8 The same as Table 7 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 678 times 10minus3

507 times 10minus3

345 times 10minus3

264 times 10minus7

600 657 times 10minus3

542 times 10minus3

347 times 10minus3

534 times 10minus4

700 502 times 10minus3

431 times 10minus3

304 times 10minus3

873 times 10minus4

800 391 times 10minus3

376 times 10minus3

256 times 10minus3

103 times 10minus3

900 303 times 10minus3

268 times 10minus3

211 times 10minus3

101 times 10minus3

1000 240 times 10minus3

243 times 10minus3

177 times 10minus3

998 times 10minus4

119901119901 rarr 119882+119887119892 + 119883

500 347 times 10minus1

268 times 10minus1

152 times 10minus1

530 times 10minus6

600 251 times 10minus1

212 times 10minus1

135 times 10minus1

201 times 10minus2

700 187 times 10minus1

16 times 10minus1

116 times 10minus1

342 times 10minus2

800 146 times 10minus1

125 times 10minus1

939 times 10minus2

403 times 10minus2

900 112 times 10minus1

108 times 10minus1

780 times 10minus2

386 times 10minus2

1000 935 times 10minus2

837 times 10minus2

662 times 10minus2

368 times 10minus2

119901119901 rarr 119882+119887119885+119883

500 210 times 10minus2

177 times 10minus2

116 times 10minus2

264 times 10minus7

600 195 times 10minus2

175 times 10minus2

114 times 10minus2

134 times 10minus3

700 173 times 10minus2

143 times 10minus2

100 times 10minus2

29 times 10minus3

800 134 times 10minus2

119 times 10minus2

889 times 10minus3

342 times 10minus3

900 106 times 10minus2

955 times 10minus3

763 times 10minus3

337 times 10minus3

1000 809 times 10minus3

758 times 10minus3

631 times 10minus3

323 times 10minus3

Table 9 The same as Table 7 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883

500 260 times 10minus1

278 times 10minus1

108 times 10minus1

159 times 10minus4

600 178 times 10minus1

161 times 10minus1

101 times 10minus1

142 times 10minus2

700 156 times 10minus1

135 times 10minus1

933 times 10minus2

272 times 10minus2

800 117 times 10minus1

106 times 10minus1

784 times 10minus2

332 times 10minus2

900 904 times 10minus2

842 times 10minus2

668 times 10minus2

325 times 10minus2

1000 760 times 10minus2

676 times 10minus2

516 times 10minus2

317 times 10minus2

119901119901 rarr 119882+119887119892 + 119883

500 839 times 100

649 times 100

386 times 100

465 times 10minus3

600 610 times 100

578 times 100

381 times 100

556 times 10minus1

700 539 times 100

464 times 100

341 times 100

970 times 10minus1

800 394 times 100

354 times 100

273 times 100

105 times 100

900 324 times 100

276 times 100

227 times 100

107 times 100

1000 233 times 100

229 times 100

184 times 100

998 times 10minus1

119901119901 rarr 119882+119887119885+119883

500 772 times 10minus1

101 times 100

217 times 10minus1

627 times 10minus4

600 624 times 10minus1

385 times 10minus1

292 times 10minus1

320 times 10minus2

700 500 times 10minus1

305 times 10minus1

286 times 10minus1

580 times 10minus2

800 378 times 10minus1

250 times 10minus1

242 times 10minus1

964 times 10minus2

900 304 times 10minus1

167 times 10minus1

206 times 10minus1

962 times 10minus2

1000 251 times 10minus1

129 times 10minus1

148 times 10minus1

961 times 10minus2

Advances in High Energy Physics 7

Table 10The cross sections (in pb) for the relevant backgrounds (119882+119887(119887)119881119882+119888(119888)119881 and119882+119895119881 where119881 = photon jet and119885 boson) with119901119879cuts on the jets at the center of mass energyradic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883 237 times 10

minus3362 times 10

minus4617 times 10

minus5699 times 10

minus6

119901119901 rarr 119882+119888120574 + 119883 415 times 10

0459 times 10

minus1625 times 10

minus2621 times 10

minus3

119901119901 rarr 119882+119895120574 + 119883 263 times 10

1430 times 10

0733 times 10

minus1127 times 10

minus1

119901119901 rarr 119882+119887(119887)119895 + 119883 726 times 10

1302 times 10

1611 times 10

0974 times 10

minus1

119901119901 rarr 119882+119888(119888)119895 + 119883 598 times 10

2965 times 10

1179 times 10

1242 times 10

0

119901119901 rarr 119882+119895119895 + 119883 731 times 10

3778 times 10

2161 times 10

2258 times 10

1

119901119901 rarr 119882+119887119885 + 119883 626 times 10

minus4399 times 10

minus4193 times 10

minus4471 times 10

minus5

119901119901 rarr 119882+119888119885 + 119883 529 times 10

minus1340 times 10

minus1166 times 10

minus1415 times 10

minus2

119901119901 rarr 119882+119895119885 + 119883 859 times 10

0483 times 10

0249 times 10

0791 times 10

minus1

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 5 Integrated luminosity required to reach 3120590 significancefor the signal of 1199051015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

102

103

104

500 600 700 800 900 1000

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 6 The same as Figure 5 but for parametrization PII

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 7 The same as Figure 5 but for parametrization PIII

detector parametersThis fast simulation includes the impor-tant detector effects such as tracking smearing effects of thecalorimeters resolution and tag efficiencies The EXROOT-ANALYSIS package [31] is used for the simulated events andthe output is analyzed and histogrammed with the ROOT[32] macros We consider jets (up to five) leptons (electronsor muons) photons and missing transverse momentumwithin the simulated events for the 119905120574 119905119895 and 119905119885 eventsgeneration The typical kinematical distributions are shownin Figures 9-10

In the analysis the signal (with 120581Λ = 02TeVminus1 and1198981199051015840 = 700GeV) and the corresponding background (119882119895119881)

are taken into accountThe 119904-channel contribution to the sig-nal process appears as a resonance around the 1199051015840mass value inthe reconstructed invariant mass 119898rec

1199051015840 The reconstructed

mass distribution for the 1199051015840 signal (reconstructed from a topquark and a vector boson) is shown in Figure 11

Similar to the single top processes the top quark in thefinal state is reconstructed from a leading jet (commonly 119887jet)and a119882 boson (which can be reconstructed from its leptonicor hadronic decay) For the 119905120574 production we require

8 Advances in High Energy Physics

500 600 700 800 900 1000

Mt998400 (GeV)

01

02

03

04

05120581Λ

(TeV

minus1 )

t998400 rarr WbZ

t998400 rarr Wb120574

t998400 rarr Wbg

Figure 8The contour plot of anomalous coupling and mass of newheavy quark 1199051015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

12000

14000

16000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 9 Transverse momentum distributions of leading jet (Jet 1)and other jets (Jet 2 and Jet 3) and photon for signal (119905120574 production)after detector simulation

systematically the large transverse momentum of photon(119901120574119879gt 100GeV) minimum jet transverse momentum (119901119895

119879gt

20GeV) and the pseudorapidity range (|120578119895120574| lt 25) inaddition to the requirements on mass reconstruction of119882-boson and top quark The large 119901120574

119879and the requirement of

single 119887-tagging allow a better separation of the signal (for 119905120574channel) from the background Other channels for 119905119892 and 119905119885productions are more challenging due to a large number ofjets which require additional discriminators such as angularandor total transverse energy variables However in orderto get rid of the backgrounds from 119882119905 and 119905119905 production

Entr

ies

50 100 150 200 250 300 350 4000

5000

10000

15000

20000

25000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 10 Transverse momentum distributions of leading jet (Jet1) and other jets (Jet 2 and Jet 3) and photon for background (119882119895120574production)

500 600 700 800 900 1000

40

60

80

100

120

BackgroundSignal

Mrect998400

(GeV)

Even

ts10

GeV

Figure 11The reconstructedmass distributions for background andsignal (119905120574) with119898

1199051015840 = 700GeV and 120581Λ = 015TeVminus1

(for a similar framework the production cross sections areabout 25 pb and 340 pb resp) one can consider the channel3119897 + 119887jet + MET for a distinctive signal from the 1199051015840 rarr 119905119885An analysis of the investigation of single top production withsimilar backgrounds at the LHC can be found in [33ndash35]

42 Analysis of the Process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574) for1198871015840 Signal The signal process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574)includes the new heavy quark 1198871015840 exchange in both the 119904-channel and the 119905-channel The 119904-channel contributes to thesignal process as resonance around the 1198871015840mass value in the 119887119881invariantmass while the 119905-channel contributes to the nonres-onant behaviour For this process we consider the leptonicdecay of 119885 boson In the analyses we consider the 1198871015840 signalto be 119887jet + 120574 119887jet + 119895 and 119887jet + dilepton

Advances in High Energy Physics 9

Table 11 The cross sections (in pb) for 1198871015840 signal in different decay channel for parametrization PI with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 564 times 10minus2

562 times 10minus2

549 times 10minus2

395 times 10minus2

600 396 times 10minus2

396 times 10minus2

390 times 10minus2

333 times 10minus2

700 287 times 10minus2

287 times 10minus2

286 times 10minus2

259 times 10minus2

800 212 times 10minus2

213 times 10minus2

212 times 10minus2

199 times 10minus2

900 160 times 10minus2

160 times 10minus2

160 times 10minus2

153 times 10minus2

1000 122 times 10minus2

122 times 10minus2

122 times 10minus2

119 times 10minus2

119901119901 rarr 119887119892 + 119883

500 813 times 100

813 times 100

793 times 100

596 times 100

600 559 times 100

559 times 100

553 times 100

488 times 100

700 398 times 100

398 times 100

396 times 100

373 times 100

800 291 times 100

291 times 100

290 times 100

281 times 100

900 216 times 100

216 times 100

216 times 100

214 times 100

1000 164 times 100

163 times 100

163 times 100

162 times 100

119901119901 rarr 119887119885 + 119883

500 787 times 10minus1

781 times 10minus1

750 times 10minus1

479 times 10minus1

600 548 times 10minus1

548 times 10minus1

531 times 10minus1

427 times 10minus1

700 395 times 10minus1

394 times 10minus1

386 times 10minus1

339 times 10minus1

800 292 times 10minus1

291 times 10minus1

286 times 10minus1

261 times 10minus1

900 218 times 10minus1

218 times 10minus1

215 times 10minus1

202 times 10minus1

1000 166 times 10minus1

166 times 10minus1

164 times 10minus1

156 times 10minus1

We have obtained the cross sections by using the pseu-dorapidity cuts |120578

119895120574| lt 25 and transverse momentum cuts

119901119895120574

119879gt 20ndash200GeV for jets and photon in Table 11 (Tables

12 and 13) for PI (PII PIII) parametrizations respectivelyInvariantmass distribution of the 119887119881 (where119881 = 120574 119892 and119885)system is shown in Figure 12 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the

center of mass energy radic119904 = 13TeV It appears from sig-nal significance calculation that the optimized transversemomentum cut is 119901

119879gt 200GeV for 1198871015840 analyses

The backgrounds for the final state 119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 14 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879gt 20ndash200GeV It can be noted that the background

cross section decreases as the119901119879cuts increaseWe assume the

efficiency for 119887-tagging to be 120576119887= 50and the rejection ratios

to be 10 for 119888 (119888) quark jets and 1 for light quark jetsIn order to reach 3120590 significance for the signal of 1198871015840

anomalous interactions the required integrated luminosityis shown in Figures 13ndash15 for parametrizations PI PII andPIII at the LHC with radic119904 = 13TeV The channel 1198871015840 rarr 119887120574

requires more integrated luminosity than the other channelsBy requiring the signal significance 119878119878 = 3 the contour plotsof 120581Λ and mass of 1198871015840 quark are presented in Figure 16 Theresults show that one can discover the 1198871015840 quark anomalouscouplings down to 01 in the 119887119892 channel for119898

1198871015840 = 500GeV

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mbV

(pb

GeV

)

MbV (GeV)

pp rarr bg + X

pprarr bZ + X

pprarr b120574 + X

Figure 12 Invariant mass distribution of the 119887119881 (where 119881 = 120574 119892and 119885) system is shown in Figure 5 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the center of

mass energyradic119904 = 13TeV

421 Simulation for 1198871015840 Signal In the simulation we havegenerated 119887119881 (where 119881 = 120574 119892 and 119885) events for each sub-process and these events are simulated using generic detector

10 Advances in High Energy Physics

Table 12 The same as Table 11 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 518 times 10minus3

526 times 10minus3

504 times 10minus3

354 times 10minus3

600 338 times 10minus3

337 times 10minus3

336 times 10minus3

277 times 10minus3

700 232 times 10minus3

231 times 10minus3

230 times 10minus3

205 times 10minus3

800 171 times 10minus3

163 times 10minus3

164 times 10minus3

150 times 10minus3

900 117 times 10minus3

116 times 10minus3

117 times 10minus3

111 times 10minus3

1000 860 times 10minus4

858 times 10minus4

855 times 10minus4

824 times 10minus4

119901119901 rarr 119887119892 + 119883

500 740 times 10minus1

739 times 10minus1

721 times 10minus1

516 times 10minus1

600 483 times 10minus1

480 times 10minus1

481 times 10minus1

398 times 10minus1

700 322 times 10minus1

322 times 10minus1

320 times 10minus1

289 times 10minus1

800 224 times 10minus1

221 times 10minus1

221 times 10minus1

204 times 10minus1

900 15 times 10minus1

158 times 10minus1

158 times 10minus1

149 times 10minus1

1000 114 times 10minus1

114 times 10minus1

113 times 10minus1

110 times 10minus1

119901119901 rarr 119887119885 + 119883

500 689 times 10minus2

685 times 10minus2

645 times 10minus2

423 times 10minus2

600 452 times 10minus2

451 times 10minus2

434 times 10minus2

353 times 10minus2

700 312 times 10minus2

311 times 10minus2

305 times 10minus2

265 times 10minus2

800 219 times 10minus2

218 times 10minus2

215 times 10minus2

195 times 10minus2

900 156 times 10minus2

156 times 10minus2

155 times 10minus2

144 times 10minus2

1000 114 times 10minus2

113 times 10minus2

113 times 10minus2

107 times 10minus2

Table 13 The same as Table 11 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 131 times 10minus2

1314 times 10minus2

1275 times 10minus2

892 times 10minus2

600 859 times 10minus2

858 times 10minus2

844 times 10minus2

703 times 10minus2

700 582 times 10minus2

582 times 10minus2

577 times 10minus2

517 times 10minus2

800 407 times 10minus2

407 times 10minus2

406 times 10minus2

377 times 10minus2

900 292 times 10minus2

292 times 10minus2

291 times 10minus2

277 times 10minus2

1000 214 times 10minus2

213 times 10minus2

213 times 10minus2

206 times 10minus2

119901119901 rarr 119887119892 + 119883

500 1904 times 100

1896 times 100

1843 times 100

1286 times 100

600 1219 times 100

1213 times 100

1193 times 100

992 times 100

700 808 times 100

807 times 100

802 times 100

717 times 100

800 557 times 100

557 times 100

555 times 100

515 times 100

900 394 times 100

394 times 100

394 times 100

374 times 100

1000 285 times 100

285 times 100

285 times 100

274 times 100

119901119901 rarr 119887119885 + 119883

500 176 times 100

175 times 100

165 times 100

105 times 100

600 115 times 100

114 times 100

111 times 100

880 times 10minus1

700 783 times 10minus1

780 times 10minus1

760 times 10minus1

661 times 10minus1

800 547 times 10minus1

541 times 10minus1

531 times 10minus1

480 times 10minus1

900 392 times 10minus1

390 times 10minus1

382 times 10minus1

360 times 10minus1

1000 286 times 10minus1

282 times 10minus1

280 times 10minus1

262 times 10minus1

Advances in High Energy Physics 11

Table 14 The cross sections (in pb) for the backgrounds (119887(119887)119881 119888(119888)119881 and 119895119881 where119881 = photon jet and 119885 boson) with 119901119879cuts on the jets

and photon at the center of mass energy radic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887(119887)120574 + 119883 299 times 103

135 times 102

904 times 100

402 times 10minus1

119901119901 rarr 119888(119888)120574 + 119883 187 times 104

815 times 102

540 times 101

243 times 100

119901119901 rarr 119895120574 + 119883 543 times 104

327 times 103

338 times 102

285 times 101

119901119901 rarr 119887(119887)119895 + 119883 783 times 106

305 times 105

192 times 104

893 times 102

119901119901 rarr 119888(119888)119895 + 119883 122 times 107

455 times 105

289 times 104

135 times 103

119901119901 rarr 119895119895 + 119883 243 times 108

854 times 106

544 times 105

280 times 104

119901119901 rarr 119887(119887)119885 + 119883 502 times 102

135 times 102

225 times 101

156 times 100

119901119901 rarr 119888(119888)119885 + 119883 596 times 102

158 times 102

264 times 101

183 times 100

119901119901 rarr 119895119885 + 119883 800 times 103

208 times 103

408 times 102

412 times 101

500 600 700 800 900 1000

Mb998400 (GeV)

10minus1

100

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 13 Integrated luminosity required to reach 3120590 significancefor the signal of 1198871015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

500 600 700 800 900 1000

Mb998400 (GeV)

104

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 14 The same as Figure 13 but for parametrization PII

500 600 700 800 900 100010minus1

100

101

102

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 15 The same as Figure 13 but for parametrization PIII

parameters to include detector effects such as tracking tag-ging efficiencies and smearing effects After the simulationthe typical kinematical distributions are shown in Figures 17-18

In the analysis the signal (with 120581Λ = 03TeVminus1 and1198981198871015840 = 700GeV) and the corresponding background are

taken into account The invariant mass of the new heavyquark 1198871015840 can be reconstructed from a 119887jet and a neutral gaugeboson (where the 119885 boson can also be reconstructed fromits dilepton or hadronic decay) For the 119887120574 production werequire a large 119901120574

119879(gt100GeV) for photon and large 119901119895

119879

(gt100GeV) for jet and pseudorapidity |120578119895120574| (lt25) For the 119887120574signal channel the invariantmass distributions for signal andbackground events are shown in Figure 19The large 119901119895120574

119879and

the requirement of single 119887-tagging allow a better separationof the signal (for 119887120574 channel) from the background and thenwe find a precise limit for the anomalous coupling in thischannel For the 119887119892 and 119887119885 production we require two high119901119879jets (one 119887-jet) and a high 119901

119879jet in addition to the

reconstructed mass 119898rec119885 respectively The main character of

12 Advances in High Energy Physics

500 600 700 800 900 100001

02

03

04

05120581Λ

(TeV

minus1 )

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 16The contour plot of anomalous coupling andmass of newheavy quark 1198871015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

PhotonJet 1

pT (GeV)

Figure 17 Transverse momentum distributions of leading jet andphoton (119887120574 production) for signal after detector simulation

the signal is the high 119901119895119879andor 119901120574

119879and single 119887-tagged jet

We calculate the signal and background events in the range|119898

rec1198871015840 (GeV) minus 700GeV| lt 50GeV and we find a similar

significance as shown in Figure 16

5 Conclusion

The new heavy quarks of up-type and down-type can be pro-duced with large numbers at the LHC if they have the anoma-lous couplings (via flavor changing neutral current) thatwell dominate over the charged current interactions The

Entr

ies

50 100 150 200 250 300 350 4000

2000

4000

6000

8000

10000

12000

PhotonJet 1

pT (GeV)

Figure 18 Transverse momentum distributions of leading jet andphoton (119895120574 production) for background at the given conditionsmentioned in the text

500 550 600 650 700 750 800 850 900 950 10000

500

1000

1500

2000

2500

3000

BackgroundSignal

Mrecb998400

(GeV)

Even

ts10

GeV

Figure 19The reconstructedmass distributions for background andsignal (119887120574) with119898

1198871015840 = 700GeV and 120581Λ = 03TeVminus1

single production of new heavy quarks can be achievedthrough the anomalous interactions at the LHC with radic119904 =13TeV The anomalous vertices could appear significantly atleading order processes due to the possibility of new heavyquarks From the results of signal significance calculationsfor 1199051015840 (1198871015840) anomalous productions the sensitivity to theanomalous couplings 120581119905

1015840

Λ (1205811198871015840

Λ) can be reached down to010 TeVminus1 (015 TeVminus1) in the lepton + 119887jet + jet +MET (119887jet +jet) channel at radic119904 = 13TeV assuming a dynamical para-metrization for the anomalous couplings and the mass of 750GeV for the new heavy quarks The observability limits onthe anomalous couplings obtained after the simulation arecomparable with the partonic level analysis in the photon and119885 boson associated channels whereas the productions 119905119892 and119887119892 are less comparable due to the fast simulation method In

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 7: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

Advances in High Energy Physics 7

Table 10The cross sections (in pb) for the relevant backgrounds (119882+119887(119887)119881119882+119888(119888)119881 and119882+119895119881 where119881 = photon jet and119885 boson) with119901119879cuts on the jets at the center of mass energyradic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119882+119887120574 + 119883 237 times 10

minus3362 times 10

minus4617 times 10

minus5699 times 10

minus6

119901119901 rarr 119882+119888120574 + 119883 415 times 10

0459 times 10

minus1625 times 10

minus2621 times 10

minus3

119901119901 rarr 119882+119895120574 + 119883 263 times 10

1430 times 10

0733 times 10

minus1127 times 10

minus1

119901119901 rarr 119882+119887(119887)119895 + 119883 726 times 10

1302 times 10

1611 times 10

0974 times 10

minus1

119901119901 rarr 119882+119888(119888)119895 + 119883 598 times 10

2965 times 10

1179 times 10

1242 times 10

0

119901119901 rarr 119882+119895119895 + 119883 731 times 10

3778 times 10

2161 times 10

2258 times 10

1

119901119901 rarr 119882+119887119885 + 119883 626 times 10

minus4399 times 10

minus4193 times 10

minus4471 times 10

minus5

119901119901 rarr 119882+119888119885 + 119883 529 times 10

minus1340 times 10

minus1166 times 10

minus1415 times 10

minus2

119901119901 rarr 119882+119895119885 + 119883 859 times 10

0483 times 10

0249 times 10

0791 times 10

minus1

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 5 Integrated luminosity required to reach 3120590 significancefor the signal of 1199051015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

102

103

104

500 600 700 800 900 1000

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 6 The same as Figure 5 but for parametrization PII

500 600 700 800 900 100010minus2

10minus1

100

101

102

103

t998400 rarr tZ

t998400 rarr t120574

t998400 rarr tg

Mt998400 (GeV)

Lin

t(fb

minus1)

Figure 7 The same as Figure 5 but for parametrization PIII

detector parametersThis fast simulation includes the impor-tant detector effects such as tracking smearing effects of thecalorimeters resolution and tag efficiencies The EXROOT-ANALYSIS package [31] is used for the simulated events andthe output is analyzed and histogrammed with the ROOT[32] macros We consider jets (up to five) leptons (electronsor muons) photons and missing transverse momentumwithin the simulated events for the 119905120574 119905119895 and 119905119885 eventsgeneration The typical kinematical distributions are shownin Figures 9-10

In the analysis the signal (with 120581Λ = 02TeVminus1 and1198981199051015840 = 700GeV) and the corresponding background (119882119895119881)

are taken into accountThe 119904-channel contribution to the sig-nal process appears as a resonance around the 1199051015840mass value inthe reconstructed invariant mass 119898rec

1199051015840 The reconstructed

mass distribution for the 1199051015840 signal (reconstructed from a topquark and a vector boson) is shown in Figure 11

Similar to the single top processes the top quark in thefinal state is reconstructed from a leading jet (commonly 119887jet)and a119882 boson (which can be reconstructed from its leptonicor hadronic decay) For the 119905120574 production we require

8 Advances in High Energy Physics

500 600 700 800 900 1000

Mt998400 (GeV)

01

02

03

04

05120581Λ

(TeV

minus1 )

t998400 rarr WbZ

t998400 rarr Wb120574

t998400 rarr Wbg

Figure 8The contour plot of anomalous coupling and mass of newheavy quark 1199051015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

12000

14000

16000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 9 Transverse momentum distributions of leading jet (Jet 1)and other jets (Jet 2 and Jet 3) and photon for signal (119905120574 production)after detector simulation

systematically the large transverse momentum of photon(119901120574119879gt 100GeV) minimum jet transverse momentum (119901119895

119879gt

20GeV) and the pseudorapidity range (|120578119895120574| lt 25) inaddition to the requirements on mass reconstruction of119882-boson and top quark The large 119901120574

119879and the requirement of

single 119887-tagging allow a better separation of the signal (for 119905120574channel) from the background Other channels for 119905119892 and 119905119885productions are more challenging due to a large number ofjets which require additional discriminators such as angularandor total transverse energy variables However in orderto get rid of the backgrounds from 119882119905 and 119905119905 production

Entr

ies

50 100 150 200 250 300 350 4000

5000

10000

15000

20000

25000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 10 Transverse momentum distributions of leading jet (Jet1) and other jets (Jet 2 and Jet 3) and photon for background (119882119895120574production)

500 600 700 800 900 1000

40

60

80

100

120

BackgroundSignal

Mrect998400

(GeV)

Even

ts10

GeV

Figure 11The reconstructedmass distributions for background andsignal (119905120574) with119898

1199051015840 = 700GeV and 120581Λ = 015TeVminus1

(for a similar framework the production cross sections areabout 25 pb and 340 pb resp) one can consider the channel3119897 + 119887jet + MET for a distinctive signal from the 1199051015840 rarr 119905119885An analysis of the investigation of single top production withsimilar backgrounds at the LHC can be found in [33ndash35]

42 Analysis of the Process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574) for1198871015840 Signal The signal process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574)includes the new heavy quark 1198871015840 exchange in both the 119904-channel and the 119905-channel The 119904-channel contributes to thesignal process as resonance around the 1198871015840mass value in the 119887119881invariantmass while the 119905-channel contributes to the nonres-onant behaviour For this process we consider the leptonicdecay of 119885 boson In the analyses we consider the 1198871015840 signalto be 119887jet + 120574 119887jet + 119895 and 119887jet + dilepton

Advances in High Energy Physics 9

Table 11 The cross sections (in pb) for 1198871015840 signal in different decay channel for parametrization PI with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 564 times 10minus2

562 times 10minus2

549 times 10minus2

395 times 10minus2

600 396 times 10minus2

396 times 10minus2

390 times 10minus2

333 times 10minus2

700 287 times 10minus2

287 times 10minus2

286 times 10minus2

259 times 10minus2

800 212 times 10minus2

213 times 10minus2

212 times 10minus2

199 times 10minus2

900 160 times 10minus2

160 times 10minus2

160 times 10minus2

153 times 10minus2

1000 122 times 10minus2

122 times 10minus2

122 times 10minus2

119 times 10minus2

119901119901 rarr 119887119892 + 119883

500 813 times 100

813 times 100

793 times 100

596 times 100

600 559 times 100

559 times 100

553 times 100

488 times 100

700 398 times 100

398 times 100

396 times 100

373 times 100

800 291 times 100

291 times 100

290 times 100

281 times 100

900 216 times 100

216 times 100

216 times 100

214 times 100

1000 164 times 100

163 times 100

163 times 100

162 times 100

119901119901 rarr 119887119885 + 119883

500 787 times 10minus1

781 times 10minus1

750 times 10minus1

479 times 10minus1

600 548 times 10minus1

548 times 10minus1

531 times 10minus1

427 times 10minus1

700 395 times 10minus1

394 times 10minus1

386 times 10minus1

339 times 10minus1

800 292 times 10minus1

291 times 10minus1

286 times 10minus1

261 times 10minus1

900 218 times 10minus1

218 times 10minus1

215 times 10minus1

202 times 10minus1

1000 166 times 10minus1

166 times 10minus1

164 times 10minus1

156 times 10minus1

We have obtained the cross sections by using the pseu-dorapidity cuts |120578

119895120574| lt 25 and transverse momentum cuts

119901119895120574

119879gt 20ndash200GeV for jets and photon in Table 11 (Tables

12 and 13) for PI (PII PIII) parametrizations respectivelyInvariantmass distribution of the 119887119881 (where119881 = 120574 119892 and119885)system is shown in Figure 12 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the

center of mass energy radic119904 = 13TeV It appears from sig-nal significance calculation that the optimized transversemomentum cut is 119901

119879gt 200GeV for 1198871015840 analyses

The backgrounds for the final state 119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 14 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879gt 20ndash200GeV It can be noted that the background

cross section decreases as the119901119879cuts increaseWe assume the

efficiency for 119887-tagging to be 120576119887= 50and the rejection ratios

to be 10 for 119888 (119888) quark jets and 1 for light quark jetsIn order to reach 3120590 significance for the signal of 1198871015840

anomalous interactions the required integrated luminosityis shown in Figures 13ndash15 for parametrizations PI PII andPIII at the LHC with radic119904 = 13TeV The channel 1198871015840 rarr 119887120574

requires more integrated luminosity than the other channelsBy requiring the signal significance 119878119878 = 3 the contour plotsof 120581Λ and mass of 1198871015840 quark are presented in Figure 16 Theresults show that one can discover the 1198871015840 quark anomalouscouplings down to 01 in the 119887119892 channel for119898

1198871015840 = 500GeV

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mbV

(pb

GeV

)

MbV (GeV)

pp rarr bg + X

pprarr bZ + X

pprarr b120574 + X

Figure 12 Invariant mass distribution of the 119887119881 (where 119881 = 120574 119892and 119885) system is shown in Figure 5 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the center of

mass energyradic119904 = 13TeV

421 Simulation for 1198871015840 Signal In the simulation we havegenerated 119887119881 (where 119881 = 120574 119892 and 119885) events for each sub-process and these events are simulated using generic detector

10 Advances in High Energy Physics

Table 12 The same as Table 11 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 518 times 10minus3

526 times 10minus3

504 times 10minus3

354 times 10minus3

600 338 times 10minus3

337 times 10minus3

336 times 10minus3

277 times 10minus3

700 232 times 10minus3

231 times 10minus3

230 times 10minus3

205 times 10minus3

800 171 times 10minus3

163 times 10minus3

164 times 10minus3

150 times 10minus3

900 117 times 10minus3

116 times 10minus3

117 times 10minus3

111 times 10minus3

1000 860 times 10minus4

858 times 10minus4

855 times 10minus4

824 times 10minus4

119901119901 rarr 119887119892 + 119883

500 740 times 10minus1

739 times 10minus1

721 times 10minus1

516 times 10minus1

600 483 times 10minus1

480 times 10minus1

481 times 10minus1

398 times 10minus1

700 322 times 10minus1

322 times 10minus1

320 times 10minus1

289 times 10minus1

800 224 times 10minus1

221 times 10minus1

221 times 10minus1

204 times 10minus1

900 15 times 10minus1

158 times 10minus1

158 times 10minus1

149 times 10minus1

1000 114 times 10minus1

114 times 10minus1

113 times 10minus1

110 times 10minus1

119901119901 rarr 119887119885 + 119883

500 689 times 10minus2

685 times 10minus2

645 times 10minus2

423 times 10minus2

600 452 times 10minus2

451 times 10minus2

434 times 10minus2

353 times 10minus2

700 312 times 10minus2

311 times 10minus2

305 times 10minus2

265 times 10minus2

800 219 times 10minus2

218 times 10minus2

215 times 10minus2

195 times 10minus2

900 156 times 10minus2

156 times 10minus2

155 times 10minus2

144 times 10minus2

1000 114 times 10minus2

113 times 10minus2

113 times 10minus2

107 times 10minus2

Table 13 The same as Table 11 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 131 times 10minus2

1314 times 10minus2

1275 times 10minus2

892 times 10minus2

600 859 times 10minus2

858 times 10minus2

844 times 10minus2

703 times 10minus2

700 582 times 10minus2

582 times 10minus2

577 times 10minus2

517 times 10minus2

800 407 times 10minus2

407 times 10minus2

406 times 10minus2

377 times 10minus2

900 292 times 10minus2

292 times 10minus2

291 times 10minus2

277 times 10minus2

1000 214 times 10minus2

213 times 10minus2

213 times 10minus2

206 times 10minus2

119901119901 rarr 119887119892 + 119883

500 1904 times 100

1896 times 100

1843 times 100

1286 times 100

600 1219 times 100

1213 times 100

1193 times 100

992 times 100

700 808 times 100

807 times 100

802 times 100

717 times 100

800 557 times 100

557 times 100

555 times 100

515 times 100

900 394 times 100

394 times 100

394 times 100

374 times 100

1000 285 times 100

285 times 100

285 times 100

274 times 100

119901119901 rarr 119887119885 + 119883

500 176 times 100

175 times 100

165 times 100

105 times 100

600 115 times 100

114 times 100

111 times 100

880 times 10minus1

700 783 times 10minus1

780 times 10minus1

760 times 10minus1

661 times 10minus1

800 547 times 10minus1

541 times 10minus1

531 times 10minus1

480 times 10minus1

900 392 times 10minus1

390 times 10minus1

382 times 10minus1

360 times 10minus1

1000 286 times 10minus1

282 times 10minus1

280 times 10minus1

262 times 10minus1

Advances in High Energy Physics 11

Table 14 The cross sections (in pb) for the backgrounds (119887(119887)119881 119888(119888)119881 and 119895119881 where119881 = photon jet and 119885 boson) with 119901119879cuts on the jets

and photon at the center of mass energy radic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887(119887)120574 + 119883 299 times 103

135 times 102

904 times 100

402 times 10minus1

119901119901 rarr 119888(119888)120574 + 119883 187 times 104

815 times 102

540 times 101

243 times 100

119901119901 rarr 119895120574 + 119883 543 times 104

327 times 103

338 times 102

285 times 101

119901119901 rarr 119887(119887)119895 + 119883 783 times 106

305 times 105

192 times 104

893 times 102

119901119901 rarr 119888(119888)119895 + 119883 122 times 107

455 times 105

289 times 104

135 times 103

119901119901 rarr 119895119895 + 119883 243 times 108

854 times 106

544 times 105

280 times 104

119901119901 rarr 119887(119887)119885 + 119883 502 times 102

135 times 102

225 times 101

156 times 100

119901119901 rarr 119888(119888)119885 + 119883 596 times 102

158 times 102

264 times 101

183 times 100

119901119901 rarr 119895119885 + 119883 800 times 103

208 times 103

408 times 102

412 times 101

500 600 700 800 900 1000

Mb998400 (GeV)

10minus1

100

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 13 Integrated luminosity required to reach 3120590 significancefor the signal of 1198871015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

500 600 700 800 900 1000

Mb998400 (GeV)

104

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 14 The same as Figure 13 but for parametrization PII

500 600 700 800 900 100010minus1

100

101

102

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 15 The same as Figure 13 but for parametrization PIII

parameters to include detector effects such as tracking tag-ging efficiencies and smearing effects After the simulationthe typical kinematical distributions are shown in Figures 17-18

In the analysis the signal (with 120581Λ = 03TeVminus1 and1198981198871015840 = 700GeV) and the corresponding background are

taken into account The invariant mass of the new heavyquark 1198871015840 can be reconstructed from a 119887jet and a neutral gaugeboson (where the 119885 boson can also be reconstructed fromits dilepton or hadronic decay) For the 119887120574 production werequire a large 119901120574

119879(gt100GeV) for photon and large 119901119895

119879

(gt100GeV) for jet and pseudorapidity |120578119895120574| (lt25) For the 119887120574signal channel the invariantmass distributions for signal andbackground events are shown in Figure 19The large 119901119895120574

119879and

the requirement of single 119887-tagging allow a better separationof the signal (for 119887120574 channel) from the background and thenwe find a precise limit for the anomalous coupling in thischannel For the 119887119892 and 119887119885 production we require two high119901119879jets (one 119887-jet) and a high 119901

119879jet in addition to the

reconstructed mass 119898rec119885 respectively The main character of

12 Advances in High Energy Physics

500 600 700 800 900 100001

02

03

04

05120581Λ

(TeV

minus1 )

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 16The contour plot of anomalous coupling andmass of newheavy quark 1198871015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

PhotonJet 1

pT (GeV)

Figure 17 Transverse momentum distributions of leading jet andphoton (119887120574 production) for signal after detector simulation

the signal is the high 119901119895119879andor 119901120574

119879and single 119887-tagged jet

We calculate the signal and background events in the range|119898

rec1198871015840 (GeV) minus 700GeV| lt 50GeV and we find a similar

significance as shown in Figure 16

5 Conclusion

The new heavy quarks of up-type and down-type can be pro-duced with large numbers at the LHC if they have the anoma-lous couplings (via flavor changing neutral current) thatwell dominate over the charged current interactions The

Entr

ies

50 100 150 200 250 300 350 4000

2000

4000

6000

8000

10000

12000

PhotonJet 1

pT (GeV)

Figure 18 Transverse momentum distributions of leading jet andphoton (119895120574 production) for background at the given conditionsmentioned in the text

500 550 600 650 700 750 800 850 900 950 10000

500

1000

1500

2000

2500

3000

BackgroundSignal

Mrecb998400

(GeV)

Even

ts10

GeV

Figure 19The reconstructedmass distributions for background andsignal (119887120574) with119898

1198871015840 = 700GeV and 120581Λ = 03TeVminus1

single production of new heavy quarks can be achievedthrough the anomalous interactions at the LHC with radic119904 =13TeV The anomalous vertices could appear significantly atleading order processes due to the possibility of new heavyquarks From the results of signal significance calculationsfor 1199051015840 (1198871015840) anomalous productions the sensitivity to theanomalous couplings 120581119905

1015840

Λ (1205811198871015840

Λ) can be reached down to010 TeVminus1 (015 TeVminus1) in the lepton + 119887jet + jet +MET (119887jet +jet) channel at radic119904 = 13TeV assuming a dynamical para-metrization for the anomalous couplings and the mass of 750GeV for the new heavy quarks The observability limits onthe anomalous couplings obtained after the simulation arecomparable with the partonic level analysis in the photon and119885 boson associated channels whereas the productions 119905119892 and119887119892 are less comparable due to the fast simulation method In

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 8: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

8 Advances in High Energy Physics

500 600 700 800 900 1000

Mt998400 (GeV)

01

02

03

04

05120581Λ

(TeV

minus1 )

t998400 rarr WbZ

t998400 rarr Wb120574

t998400 rarr Wbg

Figure 8The contour plot of anomalous coupling and mass of newheavy quark 1199051015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

12000

14000

16000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 9 Transverse momentum distributions of leading jet (Jet 1)and other jets (Jet 2 and Jet 3) and photon for signal (119905120574 production)after detector simulation

systematically the large transverse momentum of photon(119901120574119879gt 100GeV) minimum jet transverse momentum (119901119895

119879gt

20GeV) and the pseudorapidity range (|120578119895120574| lt 25) inaddition to the requirements on mass reconstruction of119882-boson and top quark The large 119901120574

119879and the requirement of

single 119887-tagging allow a better separation of the signal (for 119905120574channel) from the background Other channels for 119905119892 and 119905119885productions are more challenging due to a large number ofjets which require additional discriminators such as angularandor total transverse energy variables However in orderto get rid of the backgrounds from 119882119905 and 119905119905 production

Entr

ies

50 100 150 200 250 300 350 4000

5000

10000

15000

20000

25000

PhotonJet 1

Jet 2Jet 3

pT (GeV)

Figure 10 Transverse momentum distributions of leading jet (Jet1) and other jets (Jet 2 and Jet 3) and photon for background (119882119895120574production)

500 600 700 800 900 1000

40

60

80

100

120

BackgroundSignal

Mrect998400

(GeV)

Even

ts10

GeV

Figure 11The reconstructedmass distributions for background andsignal (119905120574) with119898

1199051015840 = 700GeV and 120581Λ = 015TeVminus1

(for a similar framework the production cross sections areabout 25 pb and 340 pb resp) one can consider the channel3119897 + 119887jet + MET for a distinctive signal from the 1199051015840 rarr 119905119885An analysis of the investigation of single top production withsimilar backgrounds at the LHC can be found in [33ndash35]

42 Analysis of the Process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574) for1198871015840 Signal The signal process 119901119901 rarr 119887119881 + 119883 (119881 = 119892 119885 120574)includes the new heavy quark 1198871015840 exchange in both the 119904-channel and the 119905-channel The 119904-channel contributes to thesignal process as resonance around the 1198871015840mass value in the 119887119881invariantmass while the 119905-channel contributes to the nonres-onant behaviour For this process we consider the leptonicdecay of 119885 boson In the analyses we consider the 1198871015840 signalto be 119887jet + 120574 119887jet + 119895 and 119887jet + dilepton

Advances in High Energy Physics 9

Table 11 The cross sections (in pb) for 1198871015840 signal in different decay channel for parametrization PI with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 564 times 10minus2

562 times 10minus2

549 times 10minus2

395 times 10minus2

600 396 times 10minus2

396 times 10minus2

390 times 10minus2

333 times 10minus2

700 287 times 10minus2

287 times 10minus2

286 times 10minus2

259 times 10minus2

800 212 times 10minus2

213 times 10minus2

212 times 10minus2

199 times 10minus2

900 160 times 10minus2

160 times 10minus2

160 times 10minus2

153 times 10minus2

1000 122 times 10minus2

122 times 10minus2

122 times 10minus2

119 times 10minus2

119901119901 rarr 119887119892 + 119883

500 813 times 100

813 times 100

793 times 100

596 times 100

600 559 times 100

559 times 100

553 times 100

488 times 100

700 398 times 100

398 times 100

396 times 100

373 times 100

800 291 times 100

291 times 100

290 times 100

281 times 100

900 216 times 100

216 times 100

216 times 100

214 times 100

1000 164 times 100

163 times 100

163 times 100

162 times 100

119901119901 rarr 119887119885 + 119883

500 787 times 10minus1

781 times 10minus1

750 times 10minus1

479 times 10minus1

600 548 times 10minus1

548 times 10minus1

531 times 10minus1

427 times 10minus1

700 395 times 10minus1

394 times 10minus1

386 times 10minus1

339 times 10minus1

800 292 times 10minus1

291 times 10minus1

286 times 10minus1

261 times 10minus1

900 218 times 10minus1

218 times 10minus1

215 times 10minus1

202 times 10minus1

1000 166 times 10minus1

166 times 10minus1

164 times 10minus1

156 times 10minus1

We have obtained the cross sections by using the pseu-dorapidity cuts |120578

119895120574| lt 25 and transverse momentum cuts

119901119895120574

119879gt 20ndash200GeV for jets and photon in Table 11 (Tables

12 and 13) for PI (PII PIII) parametrizations respectivelyInvariantmass distribution of the 119887119881 (where119881 = 120574 119892 and119885)system is shown in Figure 12 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the

center of mass energy radic119904 = 13TeV It appears from sig-nal significance calculation that the optimized transversemomentum cut is 119901

119879gt 200GeV for 1198871015840 analyses

The backgrounds for the final state 119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 14 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879gt 20ndash200GeV It can be noted that the background

cross section decreases as the119901119879cuts increaseWe assume the

efficiency for 119887-tagging to be 120576119887= 50and the rejection ratios

to be 10 for 119888 (119888) quark jets and 1 for light quark jetsIn order to reach 3120590 significance for the signal of 1198871015840

anomalous interactions the required integrated luminosityis shown in Figures 13ndash15 for parametrizations PI PII andPIII at the LHC with radic119904 = 13TeV The channel 1198871015840 rarr 119887120574

requires more integrated luminosity than the other channelsBy requiring the signal significance 119878119878 = 3 the contour plotsof 120581Λ and mass of 1198871015840 quark are presented in Figure 16 Theresults show that one can discover the 1198871015840 quark anomalouscouplings down to 01 in the 119887119892 channel for119898

1198871015840 = 500GeV

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mbV

(pb

GeV

)

MbV (GeV)

pp rarr bg + X

pprarr bZ + X

pprarr b120574 + X

Figure 12 Invariant mass distribution of the 119887119881 (where 119881 = 120574 119892and 119885) system is shown in Figure 5 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the center of

mass energyradic119904 = 13TeV

421 Simulation for 1198871015840 Signal In the simulation we havegenerated 119887119881 (where 119881 = 120574 119892 and 119885) events for each sub-process and these events are simulated using generic detector

10 Advances in High Energy Physics

Table 12 The same as Table 11 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 518 times 10minus3

526 times 10minus3

504 times 10minus3

354 times 10minus3

600 338 times 10minus3

337 times 10minus3

336 times 10minus3

277 times 10minus3

700 232 times 10minus3

231 times 10minus3

230 times 10minus3

205 times 10minus3

800 171 times 10minus3

163 times 10minus3

164 times 10minus3

150 times 10minus3

900 117 times 10minus3

116 times 10minus3

117 times 10minus3

111 times 10minus3

1000 860 times 10minus4

858 times 10minus4

855 times 10minus4

824 times 10minus4

119901119901 rarr 119887119892 + 119883

500 740 times 10minus1

739 times 10minus1

721 times 10minus1

516 times 10minus1

600 483 times 10minus1

480 times 10minus1

481 times 10minus1

398 times 10minus1

700 322 times 10minus1

322 times 10minus1

320 times 10minus1

289 times 10minus1

800 224 times 10minus1

221 times 10minus1

221 times 10minus1

204 times 10minus1

900 15 times 10minus1

158 times 10minus1

158 times 10minus1

149 times 10minus1

1000 114 times 10minus1

114 times 10minus1

113 times 10minus1

110 times 10minus1

119901119901 rarr 119887119885 + 119883

500 689 times 10minus2

685 times 10minus2

645 times 10minus2

423 times 10minus2

600 452 times 10minus2

451 times 10minus2

434 times 10minus2

353 times 10minus2

700 312 times 10minus2

311 times 10minus2

305 times 10minus2

265 times 10minus2

800 219 times 10minus2

218 times 10minus2

215 times 10minus2

195 times 10minus2

900 156 times 10minus2

156 times 10minus2

155 times 10minus2

144 times 10minus2

1000 114 times 10minus2

113 times 10minus2

113 times 10minus2

107 times 10minus2

Table 13 The same as Table 11 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 131 times 10minus2

1314 times 10minus2

1275 times 10minus2

892 times 10minus2

600 859 times 10minus2

858 times 10minus2

844 times 10minus2

703 times 10minus2

700 582 times 10minus2

582 times 10minus2

577 times 10minus2

517 times 10minus2

800 407 times 10minus2

407 times 10minus2

406 times 10minus2

377 times 10minus2

900 292 times 10minus2

292 times 10minus2

291 times 10minus2

277 times 10minus2

1000 214 times 10minus2

213 times 10minus2

213 times 10minus2

206 times 10minus2

119901119901 rarr 119887119892 + 119883

500 1904 times 100

1896 times 100

1843 times 100

1286 times 100

600 1219 times 100

1213 times 100

1193 times 100

992 times 100

700 808 times 100

807 times 100

802 times 100

717 times 100

800 557 times 100

557 times 100

555 times 100

515 times 100

900 394 times 100

394 times 100

394 times 100

374 times 100

1000 285 times 100

285 times 100

285 times 100

274 times 100

119901119901 rarr 119887119885 + 119883

500 176 times 100

175 times 100

165 times 100

105 times 100

600 115 times 100

114 times 100

111 times 100

880 times 10minus1

700 783 times 10minus1

780 times 10minus1

760 times 10minus1

661 times 10minus1

800 547 times 10minus1

541 times 10minus1

531 times 10minus1

480 times 10minus1

900 392 times 10minus1

390 times 10minus1

382 times 10minus1

360 times 10minus1

1000 286 times 10minus1

282 times 10minus1

280 times 10minus1

262 times 10minus1

Advances in High Energy Physics 11

Table 14 The cross sections (in pb) for the backgrounds (119887(119887)119881 119888(119888)119881 and 119895119881 where119881 = photon jet and 119885 boson) with 119901119879cuts on the jets

and photon at the center of mass energy radic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887(119887)120574 + 119883 299 times 103

135 times 102

904 times 100

402 times 10minus1

119901119901 rarr 119888(119888)120574 + 119883 187 times 104

815 times 102

540 times 101

243 times 100

119901119901 rarr 119895120574 + 119883 543 times 104

327 times 103

338 times 102

285 times 101

119901119901 rarr 119887(119887)119895 + 119883 783 times 106

305 times 105

192 times 104

893 times 102

119901119901 rarr 119888(119888)119895 + 119883 122 times 107

455 times 105

289 times 104

135 times 103

119901119901 rarr 119895119895 + 119883 243 times 108

854 times 106

544 times 105

280 times 104

119901119901 rarr 119887(119887)119885 + 119883 502 times 102

135 times 102

225 times 101

156 times 100

119901119901 rarr 119888(119888)119885 + 119883 596 times 102

158 times 102

264 times 101

183 times 100

119901119901 rarr 119895119885 + 119883 800 times 103

208 times 103

408 times 102

412 times 101

500 600 700 800 900 1000

Mb998400 (GeV)

10minus1

100

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 13 Integrated luminosity required to reach 3120590 significancefor the signal of 1198871015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

500 600 700 800 900 1000

Mb998400 (GeV)

104

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 14 The same as Figure 13 but for parametrization PII

500 600 700 800 900 100010minus1

100

101

102

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 15 The same as Figure 13 but for parametrization PIII

parameters to include detector effects such as tracking tag-ging efficiencies and smearing effects After the simulationthe typical kinematical distributions are shown in Figures 17-18

In the analysis the signal (with 120581Λ = 03TeVminus1 and1198981198871015840 = 700GeV) and the corresponding background are

taken into account The invariant mass of the new heavyquark 1198871015840 can be reconstructed from a 119887jet and a neutral gaugeboson (where the 119885 boson can also be reconstructed fromits dilepton or hadronic decay) For the 119887120574 production werequire a large 119901120574

119879(gt100GeV) for photon and large 119901119895

119879

(gt100GeV) for jet and pseudorapidity |120578119895120574| (lt25) For the 119887120574signal channel the invariantmass distributions for signal andbackground events are shown in Figure 19The large 119901119895120574

119879and

the requirement of single 119887-tagging allow a better separationof the signal (for 119887120574 channel) from the background and thenwe find a precise limit for the anomalous coupling in thischannel For the 119887119892 and 119887119885 production we require two high119901119879jets (one 119887-jet) and a high 119901

119879jet in addition to the

reconstructed mass 119898rec119885 respectively The main character of

12 Advances in High Energy Physics

500 600 700 800 900 100001

02

03

04

05120581Λ

(TeV

minus1 )

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 16The contour plot of anomalous coupling andmass of newheavy quark 1198871015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

PhotonJet 1

pT (GeV)

Figure 17 Transverse momentum distributions of leading jet andphoton (119887120574 production) for signal after detector simulation

the signal is the high 119901119895119879andor 119901120574

119879and single 119887-tagged jet

We calculate the signal and background events in the range|119898

rec1198871015840 (GeV) minus 700GeV| lt 50GeV and we find a similar

significance as shown in Figure 16

5 Conclusion

The new heavy quarks of up-type and down-type can be pro-duced with large numbers at the LHC if they have the anoma-lous couplings (via flavor changing neutral current) thatwell dominate over the charged current interactions The

Entr

ies

50 100 150 200 250 300 350 4000

2000

4000

6000

8000

10000

12000

PhotonJet 1

pT (GeV)

Figure 18 Transverse momentum distributions of leading jet andphoton (119895120574 production) for background at the given conditionsmentioned in the text

500 550 600 650 700 750 800 850 900 950 10000

500

1000

1500

2000

2500

3000

BackgroundSignal

Mrecb998400

(GeV)

Even

ts10

GeV

Figure 19The reconstructedmass distributions for background andsignal (119887120574) with119898

1198871015840 = 700GeV and 120581Λ = 03TeVminus1

single production of new heavy quarks can be achievedthrough the anomalous interactions at the LHC with radic119904 =13TeV The anomalous vertices could appear significantly atleading order processes due to the possibility of new heavyquarks From the results of signal significance calculationsfor 1199051015840 (1198871015840) anomalous productions the sensitivity to theanomalous couplings 120581119905

1015840

Λ (1205811198871015840

Λ) can be reached down to010 TeVminus1 (015 TeVminus1) in the lepton + 119887jet + jet +MET (119887jet +jet) channel at radic119904 = 13TeV assuming a dynamical para-metrization for the anomalous couplings and the mass of 750GeV for the new heavy quarks The observability limits onthe anomalous couplings obtained after the simulation arecomparable with the partonic level analysis in the photon and119885 boson associated channels whereas the productions 119905119892 and119887119892 are less comparable due to the fast simulation method In

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 9: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

Advances in High Energy Physics 9

Table 11 The cross sections (in pb) for 1198871015840 signal in different decay channel for parametrization PI with 119901119879cuts on the jets and photon and

|120578119895120574| lt 25 at the center of mass energyradic119904 = 13TeV

SignalMass (GeV)

PI119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 564 times 10minus2

562 times 10minus2

549 times 10minus2

395 times 10minus2

600 396 times 10minus2

396 times 10minus2

390 times 10minus2

333 times 10minus2

700 287 times 10minus2

287 times 10minus2

286 times 10minus2

259 times 10minus2

800 212 times 10minus2

213 times 10minus2

212 times 10minus2

199 times 10minus2

900 160 times 10minus2

160 times 10minus2

160 times 10minus2

153 times 10minus2

1000 122 times 10minus2

122 times 10minus2

122 times 10minus2

119 times 10minus2

119901119901 rarr 119887119892 + 119883

500 813 times 100

813 times 100

793 times 100

596 times 100

600 559 times 100

559 times 100

553 times 100

488 times 100

700 398 times 100

398 times 100

396 times 100

373 times 100

800 291 times 100

291 times 100

290 times 100

281 times 100

900 216 times 100

216 times 100

216 times 100

214 times 100

1000 164 times 100

163 times 100

163 times 100

162 times 100

119901119901 rarr 119887119885 + 119883

500 787 times 10minus1

781 times 10minus1

750 times 10minus1

479 times 10minus1

600 548 times 10minus1

548 times 10minus1

531 times 10minus1

427 times 10minus1

700 395 times 10minus1

394 times 10minus1

386 times 10minus1

339 times 10minus1

800 292 times 10minus1

291 times 10minus1

286 times 10minus1

261 times 10minus1

900 218 times 10minus1

218 times 10minus1

215 times 10minus1

202 times 10minus1

1000 166 times 10minus1

166 times 10minus1

164 times 10minus1

156 times 10minus1

We have obtained the cross sections by using the pseu-dorapidity cuts |120578

119895120574| lt 25 and transverse momentum cuts

119901119895120574

119879gt 20ndash200GeV for jets and photon in Table 11 (Tables

12 and 13) for PI (PII PIII) parametrizations respectivelyInvariantmass distribution of the 119887119881 (where119881 = 120574 119892 and119885)system is shown in Figure 12 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the

center of mass energy radic119904 = 13TeV It appears from sig-nal significance calculation that the optimized transversemomentum cut is 119901

119879gt 200GeV for 1198871015840 analyses

The backgrounds for the final state 119887(119887)119881 (where 119881 equiv

photon jet and 119885 boson) are given in Table 14 We apply thefollowing cuts to the final state photon and jets as |120578

119895120574| lt 25

and 119901119895120574119879gt 20ndash200GeV It can be noted that the background

cross section decreases as the119901119879cuts increaseWe assume the

efficiency for 119887-tagging to be 120576119887= 50and the rejection ratios

to be 10 for 119888 (119888) quark jets and 1 for light quark jetsIn order to reach 3120590 significance for the signal of 1198871015840

anomalous interactions the required integrated luminosityis shown in Figures 13ndash15 for parametrizations PI PII andPIII at the LHC with radic119904 = 13TeV The channel 1198871015840 rarr 119887120574

requires more integrated luminosity than the other channelsBy requiring the signal significance 119878119878 = 3 the contour plotsof 120581Λ and mass of 1198871015840 quark are presented in Figure 16 Theresults show that one can discover the 1198871015840 quark anomalouscouplings down to 01 in the 119887119892 channel for119898

1198871015840 = 500GeV

500 600 700 800 900 100010minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

d120590d

mbV

(pb

GeV

)

MbV (GeV)

pp rarr bg + X

pprarr bZ + X

pprarr b120574 + X

Figure 12 Invariant mass distribution of the 119887119881 (where 119881 = 120574 119892and 119885) system is shown in Figure 5 for PI parametrization of thesignal with 120581Λ = 02TeVminus1 and 119898

1198871015840 = 700GeV at the center of

mass energyradic119904 = 13TeV

421 Simulation for 1198871015840 Signal In the simulation we havegenerated 119887119881 (where 119881 = 120574 119892 and 119885) events for each sub-process and these events are simulated using generic detector

10 Advances in High Energy Physics

Table 12 The same as Table 11 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 518 times 10minus3

526 times 10minus3

504 times 10minus3

354 times 10minus3

600 338 times 10minus3

337 times 10minus3

336 times 10minus3

277 times 10minus3

700 232 times 10minus3

231 times 10minus3

230 times 10minus3

205 times 10minus3

800 171 times 10minus3

163 times 10minus3

164 times 10minus3

150 times 10minus3

900 117 times 10minus3

116 times 10minus3

117 times 10minus3

111 times 10minus3

1000 860 times 10minus4

858 times 10minus4

855 times 10minus4

824 times 10minus4

119901119901 rarr 119887119892 + 119883

500 740 times 10minus1

739 times 10minus1

721 times 10minus1

516 times 10minus1

600 483 times 10minus1

480 times 10minus1

481 times 10minus1

398 times 10minus1

700 322 times 10minus1

322 times 10minus1

320 times 10minus1

289 times 10minus1

800 224 times 10minus1

221 times 10minus1

221 times 10minus1

204 times 10minus1

900 15 times 10minus1

158 times 10minus1

158 times 10minus1

149 times 10minus1

1000 114 times 10minus1

114 times 10minus1

113 times 10minus1

110 times 10minus1

119901119901 rarr 119887119885 + 119883

500 689 times 10minus2

685 times 10minus2

645 times 10minus2

423 times 10minus2

600 452 times 10minus2

451 times 10minus2

434 times 10minus2

353 times 10minus2

700 312 times 10minus2

311 times 10minus2

305 times 10minus2

265 times 10minus2

800 219 times 10minus2

218 times 10minus2

215 times 10minus2

195 times 10minus2

900 156 times 10minus2

156 times 10minus2

155 times 10minus2

144 times 10minus2

1000 114 times 10minus2

113 times 10minus2

113 times 10minus2

107 times 10minus2

Table 13 The same as Table 11 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 131 times 10minus2

1314 times 10minus2

1275 times 10minus2

892 times 10minus2

600 859 times 10minus2

858 times 10minus2

844 times 10minus2

703 times 10minus2

700 582 times 10minus2

582 times 10minus2

577 times 10minus2

517 times 10minus2

800 407 times 10minus2

407 times 10minus2

406 times 10minus2

377 times 10minus2

900 292 times 10minus2

292 times 10minus2

291 times 10minus2

277 times 10minus2

1000 214 times 10minus2

213 times 10minus2

213 times 10minus2

206 times 10minus2

119901119901 rarr 119887119892 + 119883

500 1904 times 100

1896 times 100

1843 times 100

1286 times 100

600 1219 times 100

1213 times 100

1193 times 100

992 times 100

700 808 times 100

807 times 100

802 times 100

717 times 100

800 557 times 100

557 times 100

555 times 100

515 times 100

900 394 times 100

394 times 100

394 times 100

374 times 100

1000 285 times 100

285 times 100

285 times 100

274 times 100

119901119901 rarr 119887119885 + 119883

500 176 times 100

175 times 100

165 times 100

105 times 100

600 115 times 100

114 times 100

111 times 100

880 times 10minus1

700 783 times 10minus1

780 times 10minus1

760 times 10minus1

661 times 10minus1

800 547 times 10minus1

541 times 10minus1

531 times 10minus1

480 times 10minus1

900 392 times 10minus1

390 times 10minus1

382 times 10minus1

360 times 10minus1

1000 286 times 10minus1

282 times 10minus1

280 times 10minus1

262 times 10minus1

Advances in High Energy Physics 11

Table 14 The cross sections (in pb) for the backgrounds (119887(119887)119881 119888(119888)119881 and 119895119881 where119881 = photon jet and 119885 boson) with 119901119879cuts on the jets

and photon at the center of mass energy radic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887(119887)120574 + 119883 299 times 103

135 times 102

904 times 100

402 times 10minus1

119901119901 rarr 119888(119888)120574 + 119883 187 times 104

815 times 102

540 times 101

243 times 100

119901119901 rarr 119895120574 + 119883 543 times 104

327 times 103

338 times 102

285 times 101

119901119901 rarr 119887(119887)119895 + 119883 783 times 106

305 times 105

192 times 104

893 times 102

119901119901 rarr 119888(119888)119895 + 119883 122 times 107

455 times 105

289 times 104

135 times 103

119901119901 rarr 119895119895 + 119883 243 times 108

854 times 106

544 times 105

280 times 104

119901119901 rarr 119887(119887)119885 + 119883 502 times 102

135 times 102

225 times 101

156 times 100

119901119901 rarr 119888(119888)119885 + 119883 596 times 102

158 times 102

264 times 101

183 times 100

119901119901 rarr 119895119885 + 119883 800 times 103

208 times 103

408 times 102

412 times 101

500 600 700 800 900 1000

Mb998400 (GeV)

10minus1

100

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 13 Integrated luminosity required to reach 3120590 significancefor the signal of 1198871015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

500 600 700 800 900 1000

Mb998400 (GeV)

104

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 14 The same as Figure 13 but for parametrization PII

500 600 700 800 900 100010minus1

100

101

102

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 15 The same as Figure 13 but for parametrization PIII

parameters to include detector effects such as tracking tag-ging efficiencies and smearing effects After the simulationthe typical kinematical distributions are shown in Figures 17-18

In the analysis the signal (with 120581Λ = 03TeVminus1 and1198981198871015840 = 700GeV) and the corresponding background are

taken into account The invariant mass of the new heavyquark 1198871015840 can be reconstructed from a 119887jet and a neutral gaugeboson (where the 119885 boson can also be reconstructed fromits dilepton or hadronic decay) For the 119887120574 production werequire a large 119901120574

119879(gt100GeV) for photon and large 119901119895

119879

(gt100GeV) for jet and pseudorapidity |120578119895120574| (lt25) For the 119887120574signal channel the invariantmass distributions for signal andbackground events are shown in Figure 19The large 119901119895120574

119879and

the requirement of single 119887-tagging allow a better separationof the signal (for 119887120574 channel) from the background and thenwe find a precise limit for the anomalous coupling in thischannel For the 119887119892 and 119887119885 production we require two high119901119879jets (one 119887-jet) and a high 119901

119879jet in addition to the

reconstructed mass 119898rec119885 respectively The main character of

12 Advances in High Energy Physics

500 600 700 800 900 100001

02

03

04

05120581Λ

(TeV

minus1 )

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 16The contour plot of anomalous coupling andmass of newheavy quark 1198871015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

PhotonJet 1

pT (GeV)

Figure 17 Transverse momentum distributions of leading jet andphoton (119887120574 production) for signal after detector simulation

the signal is the high 119901119895119879andor 119901120574

119879and single 119887-tagged jet

We calculate the signal and background events in the range|119898

rec1198871015840 (GeV) minus 700GeV| lt 50GeV and we find a similar

significance as shown in Figure 16

5 Conclusion

The new heavy quarks of up-type and down-type can be pro-duced with large numbers at the LHC if they have the anoma-lous couplings (via flavor changing neutral current) thatwell dominate over the charged current interactions The

Entr

ies

50 100 150 200 250 300 350 4000

2000

4000

6000

8000

10000

12000

PhotonJet 1

pT (GeV)

Figure 18 Transverse momentum distributions of leading jet andphoton (119895120574 production) for background at the given conditionsmentioned in the text

500 550 600 650 700 750 800 850 900 950 10000

500

1000

1500

2000

2500

3000

BackgroundSignal

Mrecb998400

(GeV)

Even

ts10

GeV

Figure 19The reconstructedmass distributions for background andsignal (119887120574) with119898

1198871015840 = 700GeV and 120581Λ = 03TeVminus1

single production of new heavy quarks can be achievedthrough the anomalous interactions at the LHC with radic119904 =13TeV The anomalous vertices could appear significantly atleading order processes due to the possibility of new heavyquarks From the results of signal significance calculationsfor 1199051015840 (1198871015840) anomalous productions the sensitivity to theanomalous couplings 120581119905

1015840

Λ (1205811198871015840

Λ) can be reached down to010 TeVminus1 (015 TeVminus1) in the lepton + 119887jet + jet +MET (119887jet +jet) channel at radic119904 = 13TeV assuming a dynamical para-metrization for the anomalous couplings and the mass of 750GeV for the new heavy quarks The observability limits onthe anomalous couplings obtained after the simulation arecomparable with the partonic level analysis in the photon and119885 boson associated channels whereas the productions 119905119892 and119887119892 are less comparable due to the fast simulation method In

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 10: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

10 Advances in High Energy Physics

Table 12 The same as Table 11 but for parametrization PII

SignalMass (GeV)

PII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 518 times 10minus3

526 times 10minus3

504 times 10minus3

354 times 10minus3

600 338 times 10minus3

337 times 10minus3

336 times 10minus3

277 times 10minus3

700 232 times 10minus3

231 times 10minus3

230 times 10minus3

205 times 10minus3

800 171 times 10minus3

163 times 10minus3

164 times 10minus3

150 times 10minus3

900 117 times 10minus3

116 times 10minus3

117 times 10minus3

111 times 10minus3

1000 860 times 10minus4

858 times 10minus4

855 times 10minus4

824 times 10minus4

119901119901 rarr 119887119892 + 119883

500 740 times 10minus1

739 times 10minus1

721 times 10minus1

516 times 10minus1

600 483 times 10minus1

480 times 10minus1

481 times 10minus1

398 times 10minus1

700 322 times 10minus1

322 times 10minus1

320 times 10minus1

289 times 10minus1

800 224 times 10minus1

221 times 10minus1

221 times 10minus1

204 times 10minus1

900 15 times 10minus1

158 times 10minus1

158 times 10minus1

149 times 10minus1

1000 114 times 10minus1

114 times 10minus1

113 times 10minus1

110 times 10minus1

119901119901 rarr 119887119885 + 119883

500 689 times 10minus2

685 times 10minus2

645 times 10minus2

423 times 10minus2

600 452 times 10minus2

451 times 10minus2

434 times 10minus2

353 times 10minus2

700 312 times 10minus2

311 times 10minus2

305 times 10minus2

265 times 10minus2

800 219 times 10minus2

218 times 10minus2

215 times 10minus2

195 times 10minus2

900 156 times 10minus2

156 times 10minus2

155 times 10minus2

144 times 10minus2

1000 114 times 10minus2

113 times 10minus2

113 times 10minus2

107 times 10minus2

Table 13 The same as Table 11 but for parametrization PIII

SignalMass (GeV)

PIII119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887120574 + 119883

500 131 times 10minus2

1314 times 10minus2

1275 times 10minus2

892 times 10minus2

600 859 times 10minus2

858 times 10minus2

844 times 10minus2

703 times 10minus2

700 582 times 10minus2

582 times 10minus2

577 times 10minus2

517 times 10minus2

800 407 times 10minus2

407 times 10minus2

406 times 10minus2

377 times 10minus2

900 292 times 10minus2

292 times 10minus2

291 times 10minus2

277 times 10minus2

1000 214 times 10minus2

213 times 10minus2

213 times 10minus2

206 times 10minus2

119901119901 rarr 119887119892 + 119883

500 1904 times 100

1896 times 100

1843 times 100

1286 times 100

600 1219 times 100

1213 times 100

1193 times 100

992 times 100

700 808 times 100

807 times 100

802 times 100

717 times 100

800 557 times 100

557 times 100

555 times 100

515 times 100

900 394 times 100

394 times 100

394 times 100

374 times 100

1000 285 times 100

285 times 100

285 times 100

274 times 100

119901119901 rarr 119887119885 + 119883

500 176 times 100

175 times 100

165 times 100

105 times 100

600 115 times 100

114 times 100

111 times 100

880 times 10minus1

700 783 times 10minus1

780 times 10minus1

760 times 10minus1

661 times 10minus1

800 547 times 10minus1

541 times 10minus1

531 times 10minus1

480 times 10minus1

900 392 times 10minus1

390 times 10minus1

382 times 10minus1

360 times 10minus1

1000 286 times 10minus1

282 times 10minus1

280 times 10minus1

262 times 10minus1

Advances in High Energy Physics 11

Table 14 The cross sections (in pb) for the backgrounds (119887(119887)119881 119888(119888)119881 and 119895119881 where119881 = photon jet and 119885 boson) with 119901119879cuts on the jets

and photon at the center of mass energy radic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887(119887)120574 + 119883 299 times 103

135 times 102

904 times 100

402 times 10minus1

119901119901 rarr 119888(119888)120574 + 119883 187 times 104

815 times 102

540 times 101

243 times 100

119901119901 rarr 119895120574 + 119883 543 times 104

327 times 103

338 times 102

285 times 101

119901119901 rarr 119887(119887)119895 + 119883 783 times 106

305 times 105

192 times 104

893 times 102

119901119901 rarr 119888(119888)119895 + 119883 122 times 107

455 times 105

289 times 104

135 times 103

119901119901 rarr 119895119895 + 119883 243 times 108

854 times 106

544 times 105

280 times 104

119901119901 rarr 119887(119887)119885 + 119883 502 times 102

135 times 102

225 times 101

156 times 100

119901119901 rarr 119888(119888)119885 + 119883 596 times 102

158 times 102

264 times 101

183 times 100

119901119901 rarr 119895119885 + 119883 800 times 103

208 times 103

408 times 102

412 times 101

500 600 700 800 900 1000

Mb998400 (GeV)

10minus1

100

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 13 Integrated luminosity required to reach 3120590 significancefor the signal of 1198871015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

500 600 700 800 900 1000

Mb998400 (GeV)

104

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 14 The same as Figure 13 but for parametrization PII

500 600 700 800 900 100010minus1

100

101

102

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 15 The same as Figure 13 but for parametrization PIII

parameters to include detector effects such as tracking tag-ging efficiencies and smearing effects After the simulationthe typical kinematical distributions are shown in Figures 17-18

In the analysis the signal (with 120581Λ = 03TeVminus1 and1198981198871015840 = 700GeV) and the corresponding background are

taken into account The invariant mass of the new heavyquark 1198871015840 can be reconstructed from a 119887jet and a neutral gaugeboson (where the 119885 boson can also be reconstructed fromits dilepton or hadronic decay) For the 119887120574 production werequire a large 119901120574

119879(gt100GeV) for photon and large 119901119895

119879

(gt100GeV) for jet and pseudorapidity |120578119895120574| (lt25) For the 119887120574signal channel the invariantmass distributions for signal andbackground events are shown in Figure 19The large 119901119895120574

119879and

the requirement of single 119887-tagging allow a better separationof the signal (for 119887120574 channel) from the background and thenwe find a precise limit for the anomalous coupling in thischannel For the 119887119892 and 119887119885 production we require two high119901119879jets (one 119887-jet) and a high 119901

119879jet in addition to the

reconstructed mass 119898rec119885 respectively The main character of

12 Advances in High Energy Physics

500 600 700 800 900 100001

02

03

04

05120581Λ

(TeV

minus1 )

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 16The contour plot of anomalous coupling andmass of newheavy quark 1198871015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

PhotonJet 1

pT (GeV)

Figure 17 Transverse momentum distributions of leading jet andphoton (119887120574 production) for signal after detector simulation

the signal is the high 119901119895119879andor 119901120574

119879and single 119887-tagged jet

We calculate the signal and background events in the range|119898

rec1198871015840 (GeV) minus 700GeV| lt 50GeV and we find a similar

significance as shown in Figure 16

5 Conclusion

The new heavy quarks of up-type and down-type can be pro-duced with large numbers at the LHC if they have the anoma-lous couplings (via flavor changing neutral current) thatwell dominate over the charged current interactions The

Entr

ies

50 100 150 200 250 300 350 4000

2000

4000

6000

8000

10000

12000

PhotonJet 1

pT (GeV)

Figure 18 Transverse momentum distributions of leading jet andphoton (119895120574 production) for background at the given conditionsmentioned in the text

500 550 600 650 700 750 800 850 900 950 10000

500

1000

1500

2000

2500

3000

BackgroundSignal

Mrecb998400

(GeV)

Even

ts10

GeV

Figure 19The reconstructedmass distributions for background andsignal (119887120574) with119898

1198871015840 = 700GeV and 120581Λ = 03TeVminus1

single production of new heavy quarks can be achievedthrough the anomalous interactions at the LHC with radic119904 =13TeV The anomalous vertices could appear significantly atleading order processes due to the possibility of new heavyquarks From the results of signal significance calculationsfor 1199051015840 (1198871015840) anomalous productions the sensitivity to theanomalous couplings 120581119905

1015840

Λ (1205811198871015840

Λ) can be reached down to010 TeVminus1 (015 TeVminus1) in the lepton + 119887jet + jet +MET (119887jet +jet) channel at radic119904 = 13TeV assuming a dynamical para-metrization for the anomalous couplings and the mass of 750GeV for the new heavy quarks The observability limits onthe anomalous couplings obtained after the simulation arecomparable with the partonic level analysis in the photon and119885 boson associated channels whereas the productions 119905119892 and119887119892 are less comparable due to the fast simulation method In

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 11: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

Advances in High Energy Physics 11

Table 14 The cross sections (in pb) for the backgrounds (119887(119887)119881 119888(119888)119881 and 119895119881 where119881 = photon jet and 119885 boson) with 119901119879cuts on the jets

and photon at the center of mass energy radic119904 = 13TeV

Background 119901119879gt 20GeV 119901

119879gt 50GeV 119901

119879gt 100GeV 119901

119879gt 200GeV

119901119901 rarr 119887(119887)120574 + 119883 299 times 103

135 times 102

904 times 100

402 times 10minus1

119901119901 rarr 119888(119888)120574 + 119883 187 times 104

815 times 102

540 times 101

243 times 100

119901119901 rarr 119895120574 + 119883 543 times 104

327 times 103

338 times 102

285 times 101

119901119901 rarr 119887(119887)119895 + 119883 783 times 106

305 times 105

192 times 104

893 times 102

119901119901 rarr 119888(119888)119895 + 119883 122 times 107

455 times 105

289 times 104

135 times 103

119901119901 rarr 119895119895 + 119883 243 times 108

854 times 106

544 times 105

280 times 104

119901119901 rarr 119887(119887)119885 + 119883 502 times 102

135 times 102

225 times 101

156 times 100

119901119901 rarr 119888(119888)119885 + 119883 596 times 102

158 times 102

264 times 101

183 times 100

119901119901 rarr 119895119885 + 119883 800 times 103

208 times 103

408 times 102

412 times 101

500 600 700 800 900 1000

Mb998400 (GeV)

10minus1

100

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 13 Integrated luminosity required to reach 3120590 significancefor the signal of 1198871015840 anomalous interactions for parametrization PI atthe LHC withradic119904 = 13TeV

500 600 700 800 900 1000

Mb998400 (GeV)

104

101

102

103

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Figure 14 The same as Figure 13 but for parametrization PII

500 600 700 800 900 100010minus1

100

101

102

Lin

t(fb

minus1)

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 15 The same as Figure 13 but for parametrization PIII

parameters to include detector effects such as tracking tag-ging efficiencies and smearing effects After the simulationthe typical kinematical distributions are shown in Figures 17-18

In the analysis the signal (with 120581Λ = 03TeVminus1 and1198981198871015840 = 700GeV) and the corresponding background are

taken into account The invariant mass of the new heavyquark 1198871015840 can be reconstructed from a 119887jet and a neutral gaugeboson (where the 119885 boson can also be reconstructed fromits dilepton or hadronic decay) For the 119887120574 production werequire a large 119901120574

119879(gt100GeV) for photon and large 119901119895

119879

(gt100GeV) for jet and pseudorapidity |120578119895120574| (lt25) For the 119887120574signal channel the invariantmass distributions for signal andbackground events are shown in Figure 19The large 119901119895120574

119879and

the requirement of single 119887-tagging allow a better separationof the signal (for 119887120574 channel) from the background and thenwe find a precise limit for the anomalous coupling in thischannel For the 119887119892 and 119887119885 production we require two high119901119879jets (one 119887-jet) and a high 119901

119879jet in addition to the

reconstructed mass 119898rec119885 respectively The main character of

12 Advances in High Energy Physics

500 600 700 800 900 100001

02

03

04

05120581Λ

(TeV

minus1 )

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 16The contour plot of anomalous coupling andmass of newheavy quark 1198871015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

PhotonJet 1

pT (GeV)

Figure 17 Transverse momentum distributions of leading jet andphoton (119887120574 production) for signal after detector simulation

the signal is the high 119901119895119879andor 119901120574

119879and single 119887-tagged jet

We calculate the signal and background events in the range|119898

rec1198871015840 (GeV) minus 700GeV| lt 50GeV and we find a similar

significance as shown in Figure 16

5 Conclusion

The new heavy quarks of up-type and down-type can be pro-duced with large numbers at the LHC if they have the anoma-lous couplings (via flavor changing neutral current) thatwell dominate over the charged current interactions The

Entr

ies

50 100 150 200 250 300 350 4000

2000

4000

6000

8000

10000

12000

PhotonJet 1

pT (GeV)

Figure 18 Transverse momentum distributions of leading jet andphoton (119895120574 production) for background at the given conditionsmentioned in the text

500 550 600 650 700 750 800 850 900 950 10000

500

1000

1500

2000

2500

3000

BackgroundSignal

Mrecb998400

(GeV)

Even

ts10

GeV

Figure 19The reconstructedmass distributions for background andsignal (119887120574) with119898

1198871015840 = 700GeV and 120581Λ = 03TeVminus1

single production of new heavy quarks can be achievedthrough the anomalous interactions at the LHC with radic119904 =13TeV The anomalous vertices could appear significantly atleading order processes due to the possibility of new heavyquarks From the results of signal significance calculationsfor 1199051015840 (1198871015840) anomalous productions the sensitivity to theanomalous couplings 120581119905

1015840

Λ (1205811198871015840

Λ) can be reached down to010 TeVminus1 (015 TeVminus1) in the lepton + 119887jet + jet +MET (119887jet +jet) channel at radic119904 = 13TeV assuming a dynamical para-metrization for the anomalous couplings and the mass of 750GeV for the new heavy quarks The observability limits onthe anomalous couplings obtained after the simulation arecomparable with the partonic level analysis in the photon and119885 boson associated channels whereas the productions 119905119892 and119887119892 are less comparable due to the fast simulation method In

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 12: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

12 Advances in High Energy Physics

500 600 700 800 900 100001

02

03

04

05120581Λ

(TeV

minus1 )

b998400 rarr b120574

b998400 rarr bZ

b998400 rarr bg

Mb998400 (GeV)

Figure 16The contour plot of anomalous coupling andmass of newheavy quark 1198871015840 for the dynamical parametrization explained in thetext with a significance of 3120590 atradic119904 = 13TeV and 119871 int = 100fb

minus1

50 100 150 200 250 300 350 400

Entr

ies

0

2000

4000

6000

8000

10000

PhotonJet 1

pT (GeV)

Figure 17 Transverse momentum distributions of leading jet andphoton (119887120574 production) for signal after detector simulation

the signal is the high 119901119895119879andor 119901120574

119879and single 119887-tagged jet

We calculate the signal and background events in the range|119898

rec1198871015840 (GeV) minus 700GeV| lt 50GeV and we find a similar

significance as shown in Figure 16

5 Conclusion

The new heavy quarks of up-type and down-type can be pro-duced with large numbers at the LHC if they have the anoma-lous couplings (via flavor changing neutral current) thatwell dominate over the charged current interactions The

Entr

ies

50 100 150 200 250 300 350 4000

2000

4000

6000

8000

10000

12000

PhotonJet 1

pT (GeV)

Figure 18 Transverse momentum distributions of leading jet andphoton (119895120574 production) for background at the given conditionsmentioned in the text

500 550 600 650 700 750 800 850 900 950 10000

500

1000

1500

2000

2500

3000

BackgroundSignal

Mrecb998400

(GeV)

Even

ts10

GeV

Figure 19The reconstructedmass distributions for background andsignal (119887120574) with119898

1198871015840 = 700GeV and 120581Λ = 03TeVminus1

single production of new heavy quarks can be achievedthrough the anomalous interactions at the LHC with radic119904 =13TeV The anomalous vertices could appear significantly atleading order processes due to the possibility of new heavyquarks From the results of signal significance calculationsfor 1199051015840 (1198871015840) anomalous productions the sensitivity to theanomalous couplings 120581119905

1015840

Λ (1205811198871015840

Λ) can be reached down to010 TeVminus1 (015 TeVminus1) in the lepton + 119887jet + jet +MET (119887jet +jet) channel at radic119904 = 13TeV assuming a dynamical para-metrization for the anomalous couplings and the mass of 750GeV for the new heavy quarks The observability limits onthe anomalous couplings obtained after the simulation arecomparable with the partonic level analysis in the photon and119885 boson associated channels whereas the productions 119905119892 and119887119892 are less comparable due to the fast simulation method In

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 13: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

Advances in High Energy Physics 13

any case the single 119887 tagging will play an important role inprobing new heavy quarks and reducing the background

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported in part by Turkish Atomic EnergyAuthority (TAEA) under Project Grant no 2011TAEKCERN-A5H2P101-19

References

[1] H J He N Polonsky and S F Su ldquoExtra families Higgs spec-trum and oblique correctionsrdquo Physical Review D vol 64 no5 Article ID 053004 11 pages 2001

[2] B Holdom W S Hou T Hurth M L Mangano S Sultansoyand G Unel ldquoFour statements about the fourth generationrdquoPMC Physics A vol 3 article 4 2009

[3] A Atre M Carena T Han and J Santiago ldquoHeavy quarksabove the top at the Tevatronrdquo Physical ReviewD vol 79 ArticleID 054018 2009

[4] A Atre G Azuelos M Carena et al ldquoModel-independentsearches for new quarks at the LHCrdquo Journal of High EnergyPhysics vol 2011 no 8 article 080 2011

[5] N Chen and H J He ldquoLHC signatures of two-Higgs-doubletswith fourth familyrdquo Journal of High Energy Physics vol 2012article 062 2012

[6] M S Chanowitz ldquoElectroweak constraints on the fourth gener-ation at two loop orderrdquo Physical Review D vol 88 Article ID015012 2013

[7] S Chakdar K Ghosh S Nandi and S K Rai ldquoCollider signa-tures of mirror fermions in the framework of a left-right mirrormodelrdquo Physical Review D vol 88 Article ID 095005 2013

[8] X F Wang C Du and H J He ldquoLHC Higgs signatures fromtopflavor seesaw mechanismrdquo Physics Letters B vol 723 no 4-5 pp 314ndash323 2013

[9] S Bar-Shalom M Geller S Nandi and A Soni ldquoTwo higgsdoublets a 4th generation and a 125GeV higgs a reviewrdquoAdvances in High Energy Physics vol 2013 Article ID 67297228 pages 2013

[10] H Fritzsch and D Holtmannspotter ldquoThe production of singlet-quarks at LEP and HERArdquo Physics Letters B vol 457 no 1ndash3pp 186ndash192 1999

[11] G Aad B Abbott J Abdallah et al ldquoSearch for down-typefourth generation quarks with the ATLAS detector in eventswith one lepton and hadronically decaying119882 bosonsrdquo PhysicalReview Letters vol 109 Article ID 032001 2012

[12] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor pair produced fourth-generation up-type quarks in ppcollisions atradic119904 = 7 TeV with a lepton in the final staterdquo PhysicsLetters B vol 718 pp 307ndash328 2012

[13] G Aad B Abbott J Abdallah et al ldquoSearch for pair and singleproduction of new heavy quarks that decay to a Z boson and athird-generation quark in pp collisions at radic119904 = 8TeV with theATLAS detectorrdquo Journal of High Energy Physics vol 2014 no11 article 104 2014

[14] G Aad T Abajyan B Abbott et al ldquoSearch for pair productionof heavy top-like quarks decaying to a high-pTW boson and ab quark in the lepton plus jets final state at radic119904 = 7TeV with theATLAS detectorrdquo Physics Letters B vol 718 no 4ndash5 pp 1284ndash1302 2013

[15] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoSearchfor heavy top-like quark pair production in the dilepton finalstate in pp collisions at radic119904 = 7TeVrdquo Physics Letters B vol 716no 1 pp 103ndash121 2012

[16] G Aad B Abbott J Abdallah et al ldquoSearch for heavy vector-like quarks coupling to light quarks in protonndashproton collisionsat radic119904 = 7 Tev with the ATLAS detectorrdquo Physics Letters B vol712 no 1-2 pp 22ndash39 2012

[17] G Aad T Abajyan B Abbott et al ldquoSearch for a heavy top-quark partner in final states with two leptons with the ATLASdetector at the LHCrdquo Journal of High Energy Physics vol 2012article 94 2012

[18] S Chatrchyan V Khachatryan A M Sirunyan et al ldquoCom-bined search for the quarks of a sequential fourth generationrdquoPhysical Review D vol 86 no 11 Article ID 112003 20 pages2012

[19] R Ciftci ldquoAnomalous single production of the fourth gener-ation quarks at the CERN LHCrdquo Physical Review D vol 78Article ID 075018 2008

[20] I T Cakır H D Yıldız O Cakır and G Unel ldquoAnomalousresonant production of the fourth-family up-type quarks at theLHCrdquo Physical Review D vol 80 Article ID 095009 2009

[21] M Sahin S Sultansoy and S Turkoz ldquoSearching for the fourthfamily quarks through anomalous decaysrdquo Physical Review Dvol 82 no 5 Article ID 051503 2010

[22] M Bobrowski A Lenz J Riedl and J Rohrwild ldquoHow muchspace is left for a new family of fermionsrdquo Physical Review Dvol 79 no 11 Article ID 113006 15 pages 2009

[23] G Eilam B Melic and J Trampetic ldquo119862119875 violation and thefourth generationrdquo Physical Review D vol 80 no 11 Article ID116003 2009

[24] O Cobanoglu E Ozcan S Sultansoy and G Unel ldquoOPUCEMa library with error checkingmechanism for computing obliqueparametersrdquo Computer Physics Communications vol 182 no 8pp 1732ndash1743 2011

[25] T Han and J L Hewett ldquoTop-charm associated production inhigh energy 119890+119890minus collisionsrdquo Physical Review D vol 60 ArticleID 074015 1999

[26] A Belyaev N D Christensen and A Pukhov ldquoCalcHEP 34for collider physics within and beyond the standard modelrdquoComputer Physics Communications vol 184 no 7 pp 1729ndash1769 2013

[27] J Pumplin D Robert Stump J Huston H-L Lai P Nadolskyand W-K Tung ldquoNew generation of Parton distributions withuncertainties from global QCD analysisrdquo Journal of High EnergyPhysics vol 2002 article 012 2002

[28] G L Bayatian S Chatrchyan G Hmayakyan et al ldquoCMSphysics technical design report volume II physics perfor-mancerdquo Journal of Physics G Nuclear and Particle Physics vol34 no 6 p 995 2007

[29] T Sjostrand S Mrenna and P Skands ldquoPYTHIA 64 physicsand manualrdquo Journal of High Energy Physics vol 2006 no 5 p026 2006

[30] J Conway R Culbertson and R Demina Pretty Good Sim-ulation (PGS4) httpwwwphysicsucdavisedusimconwayresearchsoftwarepgspgs4-generalhtm

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 14: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

14 Advances in High Energy Physics

[31] EXROOTANALYSIS package for PGS4 data analysishttpmadgraphhepuiuceduDownloadsExRootAnalysis

[32] R Brun et al An object oriented data analysis framework(ROOT) httpsrootcernchdrupal

[33] F del Aguila and J A Aguilar-Saavedra ldquoMultilepton produc-tion via top flavour-changing neutral couplings at the CERNLHCrdquo Nuclear Physics B vol 576 pp 56ndash84 2000

[34] T Han M Hosch K Whisnant B-L Young and X ZhangldquoSingle top quark production via FCNC couplings at hadroncollidersrdquo Physical Review D vol 58 Article ID 073008 1998

[35] T Stelzer Z Sullivan and S Willenbrock ldquoSingle-top-quarkproduction at hadron collidersrdquoPhysical ReviewD vol 58 no 9Article ID 094021 11 pages 1998

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 15: Research Article Production and Decay of Up-Type and Down …downloads.hindawi.com/journals/ahep/2015/134898.pdf · 2019-07-31 · forPI(PII,PIII)parametrization,respectively.Invariantmass

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of


Recommended