+ All Categories
Home > Documents > Research Article Study on the Influence of Aerosol...

Research Article Study on the Influence of Aerosol...

Date post: 21-Apr-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
10
Research Article Study on the Influence of Aerosol Radiation Balance in One-Dimensional Atmospheric Medium Using -Approximation Method Yuan Yuan, 1 Xing Huang, 1 Yong Shuai, 1 and Qian-Jun Mao 2 1 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2 School of Civil Engineering and Architecture, Northeast Petroleum University, Daqing 163318, China Correspondence should be addressed to Yuan Yuan; [email protected] and Yong Shuai; [email protected] Received 17 May 2014; Revised 10 July 2014; Accepted 20 July 2014; Published 27 August 2014 Academic Editor: Hong-Liang Yi Copyright © 2014 Yuan Yuan et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A numerical study, used for the influence of aerosol on the atmospheric radiation transfer, is conducted in this paper. Based on the established atmospheric radiation transfer model, we calculated the effect of species, concentration, and height distribution of aerosols on atmosphere radiation. e calculation results show that the aerosol particles affect the atmospheric radiation balance greatly and thus are the important component of the radiation balance of the earth-troposphere system. 1. Introduction Atmospheric aerosols are suspensions of small solid or liquid particles with the diameters between 0.001 and 10 m. Aerosol affects the Earth’s radiation budget by direct and indirect effects and plays an important role in global climate systems. e direct effect is that aerosol particles scatter and absorb the solar radiation and surface infrared radiation [1]; the indirect effect is that aerosol particles act as cloud condensation nuclei and ice nuclei [2, 3]. When the climate system is in balance, its absorbing solar radiation energy is accurately equal to the infrared radiation energy that the earth and atmosphere emit into outer space. Any factor that disturbs this balance and then changes the climate is the radiative forcing factor. Its forcing on the earth-troposphere system is the radiative forcing [4, 5]. Radiative forcing (in W m −2 ) is defined as the change in the net radiative flux at the tropopause due to some factors change. Aerosol is a very important correction factor in the atmospheric radiation transfer. So it is significant to study the influence of aerosols particles on the atmospheric transfer. Many numerical methods have been developed to solve the problem of radiative heat transfer, such as the discrete ordinates method (DOM) [6, 7], finite volume method (FVM) [8], finite element method (FEM), Monte Carlo method (MCM) [9], and spherical harmonics method (SHM). e spherical harmonics method, also known as the -approximation method, was originally proposed by Jeans [10] for interstellar radiative transfer and further developed by Davison [11] and Kourganoff [12] for neutron transport. Khouaja et al. [13] developed the -approximation method for radiative heat transfer. Recently, Larsen et al. [14] used a double- approximation for the transfer equation in neutron transport, but only to low order in the expansion. McClarren et al. [15] analyzed numerical oscillations of the -approximation method and also suggested improvements based on wavelet analysis. We established atmospheric radiative transfer calcula- tions model based on the spherical harmonics method in one- dimensional media and analyzed the influence of aerosols on the atmospheric radiative transfer. e calculations from the species, number, and distribution height of aerosols were achieved and the results were given in Figure 1. Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2014, Article ID 767231, 9 pages http://dx.doi.org/10.1155/2014/767231
Transcript
Page 1: Research Article Study on the Influence of Aerosol ...downloads.hindawi.com/journals/mpe/2014/767231.pdf · Research Article Study on the Influence of Aerosol Radiation Balance in

Research ArticleStudy on the Influence of Aerosol RadiationBalance in One-Dimensional Atmospheric MediumUsing 119875

119899-Approximation Method

Yuan Yuan1 Xing Huang1 Yong Shuai1 and Qian-Jun Mao2

1 School of Energy Science and Engineering Harbin Institute of Technology Harbin 150001 China2 School of Civil Engineering and Architecture Northeast Petroleum University Daqing 163318 China

Correspondence should be addressed to Yuan Yuan yuanyuan83hiteducn and Yong Shuai shuaiyonghiteducn

Received 17 May 2014 Revised 10 July 2014 Accepted 20 July 2014 Published 27 August 2014

Academic Editor Hong-Liang Yi

Copyright copy 2014 Yuan Yuan et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

A numerical study used for the influence of aerosol on the atmospheric radiation transfer is conducted in this paper Based onthe established atmospheric radiation transfer model we calculated the effect of species concentration and height distribution ofaerosols on atmosphere radiation The calculation results show that the aerosol particles affect the atmospheric radiation balancegreatly and thus are the important component of the radiation balance of the earth-troposphere system

1 Introduction

Atmospheric aerosols are suspensions of small solid orliquid particles with the diameters between 0001 and 10 120583mAerosol affects the Earthrsquos radiation budget by direct andindirect effects and plays an important role in global climatesystems The direct effect is that aerosol particles scatterand absorb the solar radiation and surface infrared radiation[1] the indirect effect is that aerosol particles act as cloudcondensation nuclei and ice nuclei [2 3] When the climatesystem is in balance its absorbing solar radiation energy isaccurately equal to the infrared radiation energy that theearth and atmosphere emit into outer space Any factor thatdisturbs this balance and then changes the climate is theradiative forcing factor Its forcing on the earth-tropospheresystem is the radiative forcing [4 5] Radiative forcing (inW sdot mminus2) is defined as the change in the net radiative fluxat the tropopause due to some factors change Aerosol is avery important correction factor in the atmospheric radiationtransfer So it is significant to study the influence of aerosolsparticles on the atmospheric transfer

Many numerical methods have been developed to solvethe problem of radiative heat transfer such as the discreteordinates method (DOM) [6 7] finite volume method(FVM) [8] finite element method (FEM) Monte Carlomethod (MCM) [9] and spherical harmonics method(SHM) The spherical harmonics method also known as the119875119899

-approximation method was originally proposed by Jeans[10] for interstellar radiative transfer and further developedby Davison [11] and Kourganoff [12] for neutron transportKhouaja et al [13] developed the 119875

119899

-approximation methodfor radiative heat transfer Recently Larsen et al [14] useda double-119875

119899

approximation for the transfer equation inneutron transport but only to low order in the expansionMcClarren et al [15] analyzed numerical oscillations of the119875119899

-approximation method and also suggested improvementsbased on wavelet analysis

We established atmospheric radiative transfer calcula-tionsmodel based on the spherical harmonicsmethod in one-dimensional media and analyzed the influence of aerosolson the atmospheric radiative transfer The calculations fromthe species number and distribution height of aerosols wereachieved and the results were given in Figure 1

Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2014 Article ID 767231 9 pageshttpdxdoiorg1011552014767231

2 Mathematical Problems in Engineering

Ground

interface

radiation

Space

Semitransparent

Opaque interface

Solar incidence

Terrestrial surface

Attenuation Atmospheric

ScatteringAerosol

Figure 1 Radiative heat transfermodel diagramof one-dimensionalatmospheric layer

2 Numerical Model

The radiative transfer equation for one-dimensional absorb-ing emitting and scattering gray medium can be expressedas

120583

119889119868 (120591 120583)

119889120591

= minus119868 (120591 120583) + (1 minus 120596) 119868119887

(120591)

+

120596

2

int

1

minus1

119868 (120591 1205831015840

)Φ (1205831015840

120583) 1198891205831015840

(1)

where 120591 is the optical thickness given by 120591 = (120581119886

+ 120581119904

)119871120596 is the scattering albedo with 120596 = 120581

119904

(120581119886

+ 120581119904

) 119871 isthe medium thickness and 120581

119886

and 120581119904

are the absorbingand scattering coefficients respectively The radiative inten-sity 119868(120591 120583) and scattering phase function Φ(120583

1015840

120583) can beexpanded in terms of associated Legendre polynomials119875

119899

(120583)Using recurrence relations between these polynomials (1)becomes

119889

119889120591

(

119873

sum

119899=0

(119899 + 1) 119875119899+1

(120583) + 119899119875119899minus1

(120583)

2119899 + 1

119868119899

(120591))

= minus

119873

sum

119899=0

119868119899

(120591) 119875119899

(120583) + (1 minus 120596) 119868119887

(120591)

+

119873

sum

119899=0

120596119892119899

2119899 + 1

119868119899

(120591) 119875119899

(120583)

(2)

where 119892119899

is an asymmetry parameter Multiplying (2) by119875119899

(120583) and integrating over 120583 isin [minus1 1] we obtain using theorthogonality properties of the Legendre polynomials 119873 +

1 differential equations for coefficients 119868119899

(120591) that comprise

the119873+ 1 119875119899

-approximation equations Consider the follow-ing

1

3

1198891198681

(120591)

119889120591

+ (1 minus 1205961198920

) 1198680

(120591) = (1 minus 120596) 119868119887

(120591) 119899 = 0

2

5

1198891198682

(120591)

119889120591

+

1198891198680

(120591)

119889120591

+ (1 minus

1

3

1205961198921

) 1198681

(120591) = 0 119899 = 1

sdot sdot sdot

119899 + 1

2119899 + 3

119889119868119899+1

(120591)

119889120591

+

119899

2119899 minus 1

119889119868119899minus1

(120591)

119889120591

+ (1 minus

120596119892119899

2119899 + 1

) 119868119899

(120591)

= (1 minus 120596) 119868119887

(120591) 1205750119899

119899 = 2 3 119873

(3)

For one-dimensional opaque diffuse emitting and reflectinginterfaces odd terms in the Legendre polynomials forman orthogonal set The boundary conditions are givenby

int997888n sdot997888s gt0

119868 (120591119882=0

997888s ) 1198752119899+1

(997888s ) 119889Ω

= 120576119882

int997888n sdot997888s gt0

119868119882

(0997888s ) 1198752119899+1

(997888s ) 119889Ω

+ int997888n sdot997888s gt0

(1minus120576119882

)

1

2120587

int997888n sdot997888s lt0

119868 (120591119882

997888s 1015840) 119889Ω1015840119875

2119899+1

(997888s )119889Ω

(4)

where 120576 is the emissivity The boundary conditionsimposed on the spherical harmonics functions are givenby

119873

sum

119899=0

119868119899

(0) [int

1

0

119875119899

(120583) 1205832119899+1

119889120583

minus 120588119889

int

1

0

int

0

minus1

119875119899

(1205831015840

) 1205832119899+1

1198891205831015840

119889120583]

= 1198681198870

(1 minus 120588119889

0

)int

1

0

1205832119899+1

119889120583

119873

sum

119899=0

119868119899

(120591119871

) [int

0

minus1

119875119899

(120583) 1205832119899+1

119889120583

minus 120588119889

int

0

minus1

int

1

0

119875119899

(1205831015840

) 1205832119899+1

1198891205831015840

119889120583]

= 119868119887120591119871

(1 minus 120588119889

0

) int

0

minus1

1205832119899+1

119889120583

119899 = 0 1

119873 minus 1

2

(5)

Mathematical Problems in Engineering 3

The boundary conditions [16] are applicable in the one-dimensional case

int997888n sdot997888s gt0

119868 (120591119882=0

997888s ) 1198752119899+1

(997888s ) 119889Ω

= (1 minus 120588119889

0

) int997888n sdot997888s gt0

1198680

(997888s ) 1198752119899+1

(997888s ) 119889Ω

+ int997888n sdot997888s gt0

120588119889

1

2120587

int997888n sdot997888s lt0

119868 (120591119882

997888s 1015840) 119889Ω1015840119875

2119899+1

(997888s ) 119889Ω

(6)

where 1198680

(997888s ) is the circumstance radiation 120588119889

0

and 120588119889 are

reflectivities of the two sides of the boundary surfacesrespectively when considering total reflection and thevalues of these depend on the medium refractive index 119899

Separating the large refractive index from small thediffuse reflectance at the boundary surfaces is given by Siegeland Spuckler [17]

120588 (119899) equiv 119865 (119899) =

1

2

+

(3119899 + 1) (119899 minus 1)

6(119899 + 1)2

+

1198992

(1198992

minus 1)

2

(1198992

+ 1)3

ln(119899 minus 1

119899 + 1

)minus

21198993

(1198992

+2119899 minus 1)

(1198992

+1) (1198994

minus 1)

+

81198994

(1198994

+ 1)

(1198992

+ 1) (1198994

minus 1)2

ln (119899)

(7)

In contrast separating small refractive index from large thediffuse reflectance at the boundary surfaces is given by

120588 (119899) = 1 minus

1

1198992

[1 minus 119865 (119899)] (8)

where 119899 = (119899ℎ

119899119904

) 119899ℎ

ge 119899119904

In treating a semitransparentinterface we can use opaque interface treatment as reference

Considering one-dimensional unsteady coupled radiativeand conductive heat transfer the general form of the energyequation of the internal radiation and the transient coupledconductive heat transfer is defined as

120588119888

120597119879

120597119905

= div (119896119888

grad119879) minus div q119903 + 120601 (9)

Considering unsteady state no internal heat source andcoupled radiative and conductive heat transfer the energyequation (9) can be discretized as follows

120588119888Δ119909119894

119879119898+1

119894

minus 119879119898

119894

Δ119905

=

119896119890

(119879119898+1

119894+1

minus 119879119898+1

119894

) + 119896119908

(119879119898+1

119894minus1

minus 119879119898+1

119894

)

Δ119909119894

+ Φ119903

119894119898

(10)

In order to make the problem have universal significancethe dimensionless form of the energy equation (10) will beevaluated Introducing the following definitions referencetemperature 119879

119903119891

the dimensionless temperature 119879119898

119894

=

119879119898

119894

119879119903119891

unit heat capacity 119862 = 120588119888 the dimensionless timeΔ = (4120590119899

2

1198793

119903119891

119862119871)Δ119905 = (41205901198992

1198793

119903119891

119862119871)119905 the dimensionlesslength Δ119883

119894

= Δ119909119894

119871 the radiative and conductive parameter119873 = 1205824120590119899

2

1198793

119903119891

119871 the dimensionless convective heat transfercoefficient 119867 = ℎ4120590119899

2

1198793

119903119891

the dimensionless radiative heatflux Φ = Φ(4120590119899

2

1198794

119903119891

) (10) becomes

Δ119883119894

119879119898+1

119894

minus119879119898

119894

Δ

=

119873119890

(119879119898+1

119894+1

minus119879119898+1

119894

) + 119873119908

(119879119898+1

119894minus1

minus119879119898+1

119894

)

Δ119883119894

+ Φ119903

119894119898

(11)

According to [18] in considering one-dimensional non-steady coupled radiative and conductive heat transfers thethermal radiation source termΦ119903(119879) is found to be

Φ119903

(119879) = int

Δ119881

minus div q119903119889119881 = int

Δ119881

minus120581119886

[4120587119868119887

(120591) minus 119866 (120591)] 119889119881

(12)

Here the incident radiative power 119866(120591) = intΩ

119868(120591 Ω)119889Ω canbe transformed to 119866(120591) = 2120587 int

1

minus1

119868(120591 120583)119889120583 According to theproperties of Legendre polynomials and 119875

0

(120583) = 1 the aboveequation is rearranged into the form

119866 (120591) = 2120587int

1

minus1

1198680

(120591) 119889120583 (13)

Meanwhile considering the physical properties ofthe inhomogeneous medium we next develop a 119875

119899

-approximation method for a multilayer medium Weredetermine the boundary conditions of each layer Themodified boundary conditions are

119873

sum

119899=0

119868119899

(0) [int

1

0

119875119899

(120583) 1205832119894+1

119889120583 minus 120588119889

int

1

0

int

0

minus1

119875119899

(1205831015840

) 1205832119894+1

1198891205831015840

119889120583]

=

119873

sum

119899=0

1198681198991198870

(1 minus 120588119889

0

)int

1

0

119875119899

(120583) 1205832119894+1

119889120583

119873

sum

119899=0

119868119899

(120591119871

)[int

0

minus1

119875119899

(120583) 1205832119894+1

119889120583minus120588119889

int

0

minus1

int

1

0

119875119899

(1205831015840

)1205832119894+1

1198891205831015840

119889120583]

=

119873

sum

119899=0

119868119899119887120591120582

(1 minus 120588119889

0

) int

0

minus1

119875119899

(120583) 1205832119894+1

119889120583

119894 = 0 1

119873 minus 1

2

(14)

4 Mathematical Problems in Engineering

Table 1 The main input parameters of the atmospheric radiation calculation

Parameters Values

Initial condition

Initial temperature 1198790

280KReference temperature 119879rf 1000KDimensionless time 119905lowast 1 times 10

6

Relaxation factor 119891re 001

Boundary condition

Terrestrial temperature 119879minusinfin

280KTerrestrial emissivity 120576

minusinfin

07Solar radiation temperature 119879

+infin

5762KAngle factor 119860

+infin 2

55844 times 10minus6

Media physical propertiesLayers of height 7 layers seen in Table 3Bands absorption coefficient 12 bands seen in Table 4Thermal conductivity 119896

119888

0023 Wsdotmminus1sdotKminus1

Aerosol properties Distribution function Multilognormal distributionsHeight distribution 0-1 km

Table 2 Multilayer atmospheric radiative transfer model

Layer number Thickness (km) Upper-lower limit ofheight (km) Density (kgm3) Dimensionless

thermal conductivity Refractive index

1 1 0sim1 115566 751119890 minus 8 102 2 1sim3 096517 589119890 minus 8 103 6 3sim9 060438 374119890 minus 8 104 8 9sim17 030815 143119890 minus 8 105 10 17sim27 002573 323119890 minus 9 106 11 27sim38 0010076 690119890 minus 10 107 12 38sim50 0002195 423119890 minus 10 10

Here 1198681198991198870

and 119868119899119887120591120582

are the emission radiation intensities oftwo adjacent layers and the initial values are obtained fromthe temperature field The total emission radiation inten-sity is determined by an iterative calculation of intensitiesfrom successive layers the last providing the required totalThe convergence condition of the multilayer model calcula-tion is decided by the radiative intensity 119868

119899

After the intensitycalculation has converged the iterative calculation of thetemperature field is then performed

3 Results and Discussion

According to statistics 988 of the total atmospheric massdistributes in the atmospherewithin 30 km above the groundand with the height increasing to 50 km the proportionreaches 9992Most of the atmospheric radiation (involvingsolar radiation absorption and scattering of the groundinfrared radiation and the emission of the atmosphere itself)occurs within certain atmospheric thickness Compared withthe earth radius (6378 km) the atmospheric thickness canbe regarded as one-dimensional radiative media Thereforewe treated the atmosphere within 50 km above the groundas a multilayer one-dimensional media distributing along theradial of the earth The upper surface of the medium layer isnear to space and is considered as a semitransparentmediumThe lower interface is close to ground and is considered asopaque interface The emissivity and radiative temperature

related to the ground are given For the inner of the mediumlayer we mainly consider the gas absorption and emissionof the radiation energy and the aerosol particles scatteringand absorption of the radiation energy and consider theatmospheric coupled radiation and conduction in the verticaldirection

The atmospheric convection is very important for theenergy transfer of the atmosphere But we mainly discussthe influence of aerosols on the atmospheric radiative energyand investigate the atmospheric radiative balance and thevariation in radiation characteristic which is not affected bythe atmospheric convection that acts only as the backgroundTherefore we ignore the influence of the atmospheric con-vection

The atmospheric radiation physical model is shown inFigure 1 and the atmospheric radiation transfer model isshown in Figure 2 The atmospheric internal heat source isset as 120601 = 0

The standard atmospheric condition is given inTables 1ndash4

Table 1 gives themain input parameters for the calculationof atmospheric radiation transfer

Table 2 gives the parameters associated with layersdivided along the vertical height The density of each layer isdetermined by the calculation of the pressure We consider(1205881205880

) = (1199011199010

) (the standard atmosphere pressure 119901 is

Mathematical Problems in Engineering 5

Δxn

S+infinSminus infin S2S1

T+infin

Pnminus1

Tg2

Mt + 1Mtsum nminus1

i=1Mi + In

nnn2n1

sum nminus1

i=1Mi

middot middot middot

M1 + 1 M1 + 2M1I1

Δx2

2

Δxn

2Δx1

Δx1

2

xS1

I1

xP1

I2x

P119899minus1

I119899

xS1

I+11x

P1

I+11x

P119899minus1

I+1119899

xS2

I+1119899

LnL2 + L3 + middot middot middot + Lnminus1L1

Tminus infin

P1

Tg1

h1 h2

10 2

01

Figure 2 Physical model of one plane-parallel slab divided into 119899 sublayers

180 200 220 240 260 280 300 3200

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

MarineSoot

Water-solubleDust

(a) Atmosphere temperature field (0ndash50 km)

Alti

tude

(km

)

0

2

4

6

8

10

180 200 220 240 260 280 300 320Temperature (K)

MarineSoot

Water-solubleDust

(b) Atmosphere temperature field (0ndash10 km)

Figure 3 Influence of aerosols species on temperature fields

1225 kgm2) with the temperature fluctuating in small rangeTherefore the equation is as follows

120588 =

1205880

1199010

sdot 119901 =

1225

101325

sdot 119901 = 120898 times 10minus5

sdot 119901 (15)

Table 3 gives the wavelength range of each spectral bandThe atmosphere optical thicknesses of the layers at differentspectral bands are obtained from the HITRAN databaseunder the standard atmospheric condition of America in1976 The aerosol optical thicknesses are decided based onthe Mie scattering theory using the typical aerosol particlessize distribution assumption and combining the complex

refractive index of different aerosol species Table 3 liststhe spectral optical thicknesses of the dust aerosol and thescattering albedo parameters in the height of 0-1 km Theother parameters are not given in this paper as there are toomuch data

Table 4 gives the complex refractive index of differentaerosols

31 The Influence of Aerosol Species Variation Figure 3 showsthe influence of four aerosol species (dust soot marine andwater-soluble) on the atmospheric temperature The aerosol

6 Mathematical Problems in Engineering

180 200 220 240 260 280 3000

10

20

30

40

50A

ltitu

de (k

m)

Temperature (K)

Isotropic scatteringForward scatteringBack scattering

(a) Atmosphere temperature field (0ndash50km)

minus4 minus2 0 2 4Temperature (K)

Forward scatteringBack scattering

0

10

20

30

40

50

Alti

tude

(km

)

(b) Temperature difference betweendifferent scattering phase functionsand isotropic scattering

Figure 4 Influence of scattering phase function change on atmospheric temperature

Table 3 Spectral bands for the atmospheric radiative transfermodeland radiative characteristic parameters under the standard dustaerosol in the height of 0-1 km

Band number Wavelengthrange (120583m)

Opticalthickness Albedo

1 02sim05 9292 0862 05sim08 1230 0883 08sim125 442 0864 125sim159 4328 0805 159sim222 427 0486 222sim345 2365 0077 345sim50 9393 0028 50sim100 35322 0009 100sim1111 1251 01110 1111sim1299 162 04511 1299sim200 3529 00112 200sim500 95133 000

particle size distribution function is the multilognormaldistribution

From the results in the figure we can see that as the dif-ferent scattering effect of the aerosol particles their influenceon the temperature is greatly different Compared with dustaerosol the marine and water-soluble aerosol particles havestronger scattering effect They will scatter upwards moreradiation energy and decrease the atmospheric temperatureThe soot particles have stronger absorption and their exis-tence will cause the atmospheric temperature increasing

32 The Influence of the Scattering Phase Function VariationThe aerosol particles scattering characteristics are considered

as forward and back scatter (the scattering phase functionsare Φ1

(Θ) and Φ2

(Θ) resp see (16) and (17)) Other param-eters are not changed The results are shown in Figure 4

Φ1

(Θ) = 1 + 1198751

(cosΘ) (16)

Φ2

(Θ) = 1 minus 1198751

(cosΘ) (17)

It can be seen from Figure 4(a) that compared with theanisotropic scattering the variation in the scattering phasefunctions causes the atmospheric temperature to change Butthe effect is not obvious Figure 4(b) shows the differencevalue between the atmospheric temperature fields and theisotropic scattering with different scattering phase functionsFrom the figure we can see that the forward and back scattershave opposite effect on the atmospheric temperature fieldsbut the effect degree is similar

33 The Influence of the Aerosol Particles Concentration Theaerosol particles transport with the tropospheric movementwill cause the aerosol particles concentrations to vary InFigure 5 we consider the influence of the variation in totalparticles number concentrations and the particles numberconcentrations are increased or decreased by 50 So theradiation characteristics of the aerosol particles are changedthe atmospheric energy balance is affected and then theatmospheric temperature fields are influenced From theresults it can be seen that the variation in aerosol particlesconcentrations can affect the atmospheric temperature butnot obviously compared with other factors

34 The Influence of the Height Distribution of Aerosol Parti-cles We investigate the effect of the medium layer height onthe aerosol particles size distribution that is the atmosphericradiation temperature fields change with the aerosol particles

Mathematical Problems in Engineering 7

Table 4 Complex refractive index of different wavelength for different aerosol types [19]

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

0200 1530 0070 1530 0070 1429 287119864 minus 5 1500 03500250 1530 0030 1530 0030 1404 145119864 minus 6 1620 04500300 1530 0008 1530 0008 1395 583119864 minus 6 1740 04700337 1530 0008 1530 0005 1392 120119864 minus 7 1750 04700400 1530 0008 1530 0005 1385 990119864 minus 9 1750 04600488 1530 0008 1530 0005 1382 641119864 minus 9 1750 04500515 1530 0008 1530 0005 1381 370119864 minus 9 1750 04500550 1530 0008 1530 0006 1381 426119864 minus 9 1750 04400633 1530 0008 1530 0006 1377 162119864 minus 8 1750 04300694 1530 0008 1530 0007 1376 504119864 minus 8 1750 04300860 1520 0008 1520 0012 1372 109119864 minus 6 1750 04301060 1520 0008 1520 0017 1367 601119864 minus 5 1750 04401300 1460 0008 1510 0020 1365 141119864 minus 4 1760 04501536 1400 0008 1510 0023 1359 243119864 minus 4 1770 04601800 1330 0008 1460 0017 1351 311119864 minus 4 1790 04802000 1260 0008 1420 0008 1347 000107 1800 04902250 1220 0009 1420 0010 1334 850119864 minus 4 1810 05002500 1180 0009 1420 0012 1309 000239 1820 05102700 1180 0013 1400 0055 1249 00156 1830 05203000 1160 0012 1420 0022 1439 0197 1840 05403200 1220 0010 1430 0008 1481 00669 1860 05403392 1260 0013 1430 0007 1439 00151 1870 05503500 1280 0011 1450 0005 1423 000717 1880 05603750 1270 0011 1452 0004 1398 00029 1900 05704000 1260 0012 1455 0005 1388 000369 1920 05804500 1260 0014 1460 0013 1377 000997 1940 05905000 1250 0016 1450 0012 1366 000957 1970 06005500 1220 0021 1440 0018 1333 000931 1990 06106000 1150 0037 1410 0023 1306 00796 2020 06206200 1140 0039 1430 0027 1431 00691 2030 06256500 1130 0042 1460 0033 1374 00294 2040 06307200 1400 0055 1400 0070 1343 00249 2060 06507900 1150 0040 1200 0065 1324 00279 2120 06708200 1130 0074 1010 0100 1324 00308 2130 06808500 1300 0090 1300 0215 1336 00336 2150 06908700 1400 0100 2400 0290 1366 00356 2160 06909000 1700 0140 2560 0370 1373 00365 2170 07009200 1720 0150 2200 0420 1356 00371 2180 07009500 1730 0162 1950 0160 1339 00368 2190 07109800 1740 0162 1870 0095 1324 00388 2200 071510000 1750 0162 1820 0090 1310 00406 2210 072010591 1620 0120 1760 0070 1271 00522 2220 073011000 1620 0105 1720 0050 1246 00731 2230 073011500 1590 0100 1670 0047 1227 0105 2240 074012500 1510 0090 1620 0053 1208 0190 2270 075013000 1470 0100 1620 0055 1221 0223 2280 076014000 1520 0085 1560 0073 1267 0271 2310 077514800 1570 0100 1440 0100 1307 0292 2330 0790

8 Mathematical Problems in Engineering

Table 4 Continued

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

15000 1570 0100 1420 0200 1321 0297 2330 079016400 1600 0100 1750 0160 1407 0331 2360 081017200 1630 0100 2080 0240 1487 0341 2380 082018000 1640 0115 1980 0180 1525 0341 2400 082518500 1640 0120 1850 0170 1536 0339 2410 083020000 1680 0220 2120 0220 1560 0324 2450 085021300 1770 0280 2060 0230 1568 0318 2460 086022500 1900 0280 2000 0240 1579 0316 2480 087025000 1970 0240 1880 0280 1596 0313 2510 089027900 1890 0320 1840 0290 1612 0320 2540 091030000 1800 0420 1820 0300 1614 0320 2570 093035000 1900 0500 1920 0400 1597 0383 2630 097040000 2100 0600 1860 0500 1582 0561 2690 1000

180 200 220 240 260 280 3000

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

Concentration increasedConcentration decreased

(a) Atmosphere temperature field (0ndash50 km)

0

2

4

6

8

10

Alti

tude

(km

)

180 200 220 240 260 280 300Temperature (K)

Concentration increasedConcentration decreased

(b) Atmosphere temperature field (0ndash10 km)

Figure 5 Influence of the aerosol concentration on atmospheric temperature

being in different height medium layers The calculationconditions are as follows the aerosol particles distribute inthe height of 0sim1 km 1sim3 km and 3sim9 km respectively Thecalculation results are in Figure 6

From the calculation results in Figure 6 it can be seenthat with the aerosol particles transporting to the highaltitude the atmospheric temperature is affected greatly ifthe radiation characteristics of the aerosol particles have nochanges With the distribution height of the aerosol particlesincreasing the medium temperature above themedium layerin which the aerosol particles exist increases greatly but thebelow temperature decreases obviously This phenomenonshows the scattering effect of the aerosol particles on the

solar radiation energy that is as the scattering effect of theatmospheric aerosols most of the solar radiation energy tothe ground is scattered back to the high altitude and cannotreach lower atmosphere which causes the lower atmospherictemperature to decrease to about 200K

4 Conclusion

We analyzed the influence of the aerosol particles charac-teristics on the atmospheric radiation transfer model Theresults showed the different effect of aerosol types on theatmospheric radiation The dust marine and water-soluble

Mathematical Problems in Engineering 9

0

10

20

30

40

50A

ltitu

de (k

m)

180 200 220 240 260 280 300Temperature (K)

0-1 km1ndash3 km3ndash9 km

Figure 6 Influence of temperature fields on different aerosoldistribution altitude

aerosols had negative effects on the atmospheric absorptionbut the soot aerosol could increase the atmospheric absorp-tionThe scattering phase functions affected the ground tem-perature The variation of the aerosol particles distributionheight could determine the atmospheric temperature that isthe ground temperature decreased greatly with the aerosolparticles existing in the high altitude stable

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work was supported by the Foundation for InnovativeResearch Groups of the National Natural Science Foundationof China (Grant no 51121004) and the National NaturalScience Foundation of China (Grant nos 51176040 and51276193) A very special acknowledgement is made to theeditors and referees who made important comments toimprove this paper

References

[1] M Schulz C Textor S Kinne et al ldquoRadiative forcing byaerosols as derived from the AeroCom present-day and pre-industrial simulationsrdquoAtmospheric Chemistry and Physics vol6 pp 5225ndash5246 2006

[2] U Lohmann and J Feichter ldquoGlobal indirect aerosol effects areviewrdquo Atmospheric Chemistry and Physics vol 5 pp 715ndash7372005

[3] I Koren Y J Kaufman L A Remer and J V MartinsldquoMeasurement of the effect of Amazon smoke on inhibitionof cloud formationrdquo Science vol 303 no 5662 pp 1342ndash13452004

[4] W W Qing R S Chen and W M Sun ldquoEstimation of globalradiation in China and comparison with satellite productrdquoEnvironmental Earth Sciences vol 70 no 4 pp 1681ndash1687 2013

[5] X S Wang ldquoMetal geochemical and mineral magnetic char-acterization of the lt25 lm fraction of urban soils in Xuzhou(China)rdquo Environmental Earth Sciences vol 71 no 8 pp 3491ndash3501 2014

[6] L David B Nacer B Pascal and J Gerard ldquoTransient radiativeand conductive heat transfer in non-gray semitransparent two-dimensional media withmixed boundary conditionsrdquoHeat andMass Transfer vol 42 no 4 pp 322ndash337 2006

[7] S Dembele K L M Lima and J X Wen ldquoAssessment of anunstructured exponential scheme discrete ordinates radiationmodel for non-gray mediardquoHeat and Mass Transfer vol 47 no11 pp 1349ndash1362 2011

[8] P Talukdar F V Issendorff D Trimis and C J SimonsonldquoConduction-radiation interaction in 3D irregular enclosuresusing the finite volume methodrdquo Heat and Mass Transfer vol44 no 6 pp 695ndash704 2008

[9] C-Y Wu ldquoMonte Carlo simulation of radiative transfer in arefractive layeredmediumrdquoHeat andMass Transfer vol 46 no6 pp 607ndash613 2010

[10] J H Jeans ldquoThe equations of radiative transfer of energyrdquoMonthly Notices Royal Astronomical Society vol 78 pp 28ndash361917

[11] B DavisonNeutron TransportTheory Oxford University PressLondon UK 1958

[12] V Kourganoff Basic Methods in Transfer Problems Dover NewYork NY USA 1963

[13] H Khouaja D R Edwards and N Tsoulfanidis ldquoSphericalharmonicsmdashfinite element treatment of neutron transport incylindrical geometryrdquo Annals of Nuclear Energy vol 24 no 7pp 515ndash531 1997

[14] E W Larsen G Thommes A Klar M Seaıd and T GotzldquoSimplified 119875

119899

approximations to the equations of radiative heattransfer and applicationrdquo Journal of Computational Physics vol183 no 2 pp 652ndash675 2002

[15] R GMcClarren and C D Hauck ldquoRobust and accurate filteredspherical harmonics expansions for radiative transferrdquo Journalof Computational Physics vol 229 no 16 pp 5597ndash5614 2010

[16] M F Modest Radiative Heat Transfer Academic Press Ams-terdam The Netherlands 2nd edition 2003

[17] R Siegel and C M Spuckler ldquoRefractive index effects onradiation in an absorbing emitting and scattering laminatedlayerrdquo Journal of Heat Transfer vol 115 pp 194ndash200 1993

[18] Q Z Yu Principles of Radiative Heat Transfer Harbin Instituteof Technology Press Harbin China 2000

[19] G Y Shi Atmospheric Radiology Science Press Beijing China2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Study on the Influence of Aerosol ...downloads.hindawi.com/journals/mpe/2014/767231.pdf · Research Article Study on the Influence of Aerosol Radiation Balance in

2 Mathematical Problems in Engineering

Ground

interface

radiation

Space

Semitransparent

Opaque interface

Solar incidence

Terrestrial surface

Attenuation Atmospheric

ScatteringAerosol

Figure 1 Radiative heat transfermodel diagramof one-dimensionalatmospheric layer

2 Numerical Model

The radiative transfer equation for one-dimensional absorb-ing emitting and scattering gray medium can be expressedas

120583

119889119868 (120591 120583)

119889120591

= minus119868 (120591 120583) + (1 minus 120596) 119868119887

(120591)

+

120596

2

int

1

minus1

119868 (120591 1205831015840

)Φ (1205831015840

120583) 1198891205831015840

(1)

where 120591 is the optical thickness given by 120591 = (120581119886

+ 120581119904

)119871120596 is the scattering albedo with 120596 = 120581

119904

(120581119886

+ 120581119904

) 119871 isthe medium thickness and 120581

119886

and 120581119904

are the absorbingand scattering coefficients respectively The radiative inten-sity 119868(120591 120583) and scattering phase function Φ(120583

1015840

120583) can beexpanded in terms of associated Legendre polynomials119875

119899

(120583)Using recurrence relations between these polynomials (1)becomes

119889

119889120591

(

119873

sum

119899=0

(119899 + 1) 119875119899+1

(120583) + 119899119875119899minus1

(120583)

2119899 + 1

119868119899

(120591))

= minus

119873

sum

119899=0

119868119899

(120591) 119875119899

(120583) + (1 minus 120596) 119868119887

(120591)

+

119873

sum

119899=0

120596119892119899

2119899 + 1

119868119899

(120591) 119875119899

(120583)

(2)

where 119892119899

is an asymmetry parameter Multiplying (2) by119875119899

(120583) and integrating over 120583 isin [minus1 1] we obtain using theorthogonality properties of the Legendre polynomials 119873 +

1 differential equations for coefficients 119868119899

(120591) that comprise

the119873+ 1 119875119899

-approximation equations Consider the follow-ing

1

3

1198891198681

(120591)

119889120591

+ (1 minus 1205961198920

) 1198680

(120591) = (1 minus 120596) 119868119887

(120591) 119899 = 0

2

5

1198891198682

(120591)

119889120591

+

1198891198680

(120591)

119889120591

+ (1 minus

1

3

1205961198921

) 1198681

(120591) = 0 119899 = 1

sdot sdot sdot

119899 + 1

2119899 + 3

119889119868119899+1

(120591)

119889120591

+

119899

2119899 minus 1

119889119868119899minus1

(120591)

119889120591

+ (1 minus

120596119892119899

2119899 + 1

) 119868119899

(120591)

= (1 minus 120596) 119868119887

(120591) 1205750119899

119899 = 2 3 119873

(3)

For one-dimensional opaque diffuse emitting and reflectinginterfaces odd terms in the Legendre polynomials forman orthogonal set The boundary conditions are givenby

int997888n sdot997888s gt0

119868 (120591119882=0

997888s ) 1198752119899+1

(997888s ) 119889Ω

= 120576119882

int997888n sdot997888s gt0

119868119882

(0997888s ) 1198752119899+1

(997888s ) 119889Ω

+ int997888n sdot997888s gt0

(1minus120576119882

)

1

2120587

int997888n sdot997888s lt0

119868 (120591119882

997888s 1015840) 119889Ω1015840119875

2119899+1

(997888s )119889Ω

(4)

where 120576 is the emissivity The boundary conditionsimposed on the spherical harmonics functions are givenby

119873

sum

119899=0

119868119899

(0) [int

1

0

119875119899

(120583) 1205832119899+1

119889120583

minus 120588119889

int

1

0

int

0

minus1

119875119899

(1205831015840

) 1205832119899+1

1198891205831015840

119889120583]

= 1198681198870

(1 minus 120588119889

0

)int

1

0

1205832119899+1

119889120583

119873

sum

119899=0

119868119899

(120591119871

) [int

0

minus1

119875119899

(120583) 1205832119899+1

119889120583

minus 120588119889

int

0

minus1

int

1

0

119875119899

(1205831015840

) 1205832119899+1

1198891205831015840

119889120583]

= 119868119887120591119871

(1 minus 120588119889

0

) int

0

minus1

1205832119899+1

119889120583

119899 = 0 1

119873 minus 1

2

(5)

Mathematical Problems in Engineering 3

The boundary conditions [16] are applicable in the one-dimensional case

int997888n sdot997888s gt0

119868 (120591119882=0

997888s ) 1198752119899+1

(997888s ) 119889Ω

= (1 minus 120588119889

0

) int997888n sdot997888s gt0

1198680

(997888s ) 1198752119899+1

(997888s ) 119889Ω

+ int997888n sdot997888s gt0

120588119889

1

2120587

int997888n sdot997888s lt0

119868 (120591119882

997888s 1015840) 119889Ω1015840119875

2119899+1

(997888s ) 119889Ω

(6)

where 1198680

(997888s ) is the circumstance radiation 120588119889

0

and 120588119889 are

reflectivities of the two sides of the boundary surfacesrespectively when considering total reflection and thevalues of these depend on the medium refractive index 119899

Separating the large refractive index from small thediffuse reflectance at the boundary surfaces is given by Siegeland Spuckler [17]

120588 (119899) equiv 119865 (119899) =

1

2

+

(3119899 + 1) (119899 minus 1)

6(119899 + 1)2

+

1198992

(1198992

minus 1)

2

(1198992

+ 1)3

ln(119899 minus 1

119899 + 1

)minus

21198993

(1198992

+2119899 minus 1)

(1198992

+1) (1198994

minus 1)

+

81198994

(1198994

+ 1)

(1198992

+ 1) (1198994

minus 1)2

ln (119899)

(7)

In contrast separating small refractive index from large thediffuse reflectance at the boundary surfaces is given by

120588 (119899) = 1 minus

1

1198992

[1 minus 119865 (119899)] (8)

where 119899 = (119899ℎ

119899119904

) 119899ℎ

ge 119899119904

In treating a semitransparentinterface we can use opaque interface treatment as reference

Considering one-dimensional unsteady coupled radiativeand conductive heat transfer the general form of the energyequation of the internal radiation and the transient coupledconductive heat transfer is defined as

120588119888

120597119879

120597119905

= div (119896119888

grad119879) minus div q119903 + 120601 (9)

Considering unsteady state no internal heat source andcoupled radiative and conductive heat transfer the energyequation (9) can be discretized as follows

120588119888Δ119909119894

119879119898+1

119894

minus 119879119898

119894

Δ119905

=

119896119890

(119879119898+1

119894+1

minus 119879119898+1

119894

) + 119896119908

(119879119898+1

119894minus1

minus 119879119898+1

119894

)

Δ119909119894

+ Φ119903

119894119898

(10)

In order to make the problem have universal significancethe dimensionless form of the energy equation (10) will beevaluated Introducing the following definitions referencetemperature 119879

119903119891

the dimensionless temperature 119879119898

119894

=

119879119898

119894

119879119903119891

unit heat capacity 119862 = 120588119888 the dimensionless timeΔ = (4120590119899

2

1198793

119903119891

119862119871)Δ119905 = (41205901198992

1198793

119903119891

119862119871)119905 the dimensionlesslength Δ119883

119894

= Δ119909119894

119871 the radiative and conductive parameter119873 = 1205824120590119899

2

1198793

119903119891

119871 the dimensionless convective heat transfercoefficient 119867 = ℎ4120590119899

2

1198793

119903119891

the dimensionless radiative heatflux Φ = Φ(4120590119899

2

1198794

119903119891

) (10) becomes

Δ119883119894

119879119898+1

119894

minus119879119898

119894

Δ

=

119873119890

(119879119898+1

119894+1

minus119879119898+1

119894

) + 119873119908

(119879119898+1

119894minus1

minus119879119898+1

119894

)

Δ119883119894

+ Φ119903

119894119898

(11)

According to [18] in considering one-dimensional non-steady coupled radiative and conductive heat transfers thethermal radiation source termΦ119903(119879) is found to be

Φ119903

(119879) = int

Δ119881

minus div q119903119889119881 = int

Δ119881

minus120581119886

[4120587119868119887

(120591) minus 119866 (120591)] 119889119881

(12)

Here the incident radiative power 119866(120591) = intΩ

119868(120591 Ω)119889Ω canbe transformed to 119866(120591) = 2120587 int

1

minus1

119868(120591 120583)119889120583 According to theproperties of Legendre polynomials and 119875

0

(120583) = 1 the aboveequation is rearranged into the form

119866 (120591) = 2120587int

1

minus1

1198680

(120591) 119889120583 (13)

Meanwhile considering the physical properties ofthe inhomogeneous medium we next develop a 119875

119899

-approximation method for a multilayer medium Weredetermine the boundary conditions of each layer Themodified boundary conditions are

119873

sum

119899=0

119868119899

(0) [int

1

0

119875119899

(120583) 1205832119894+1

119889120583 minus 120588119889

int

1

0

int

0

minus1

119875119899

(1205831015840

) 1205832119894+1

1198891205831015840

119889120583]

=

119873

sum

119899=0

1198681198991198870

(1 minus 120588119889

0

)int

1

0

119875119899

(120583) 1205832119894+1

119889120583

119873

sum

119899=0

119868119899

(120591119871

)[int

0

minus1

119875119899

(120583) 1205832119894+1

119889120583minus120588119889

int

0

minus1

int

1

0

119875119899

(1205831015840

)1205832119894+1

1198891205831015840

119889120583]

=

119873

sum

119899=0

119868119899119887120591120582

(1 minus 120588119889

0

) int

0

minus1

119875119899

(120583) 1205832119894+1

119889120583

119894 = 0 1

119873 minus 1

2

(14)

4 Mathematical Problems in Engineering

Table 1 The main input parameters of the atmospheric radiation calculation

Parameters Values

Initial condition

Initial temperature 1198790

280KReference temperature 119879rf 1000KDimensionless time 119905lowast 1 times 10

6

Relaxation factor 119891re 001

Boundary condition

Terrestrial temperature 119879minusinfin

280KTerrestrial emissivity 120576

minusinfin

07Solar radiation temperature 119879

+infin

5762KAngle factor 119860

+infin 2

55844 times 10minus6

Media physical propertiesLayers of height 7 layers seen in Table 3Bands absorption coefficient 12 bands seen in Table 4Thermal conductivity 119896

119888

0023 Wsdotmminus1sdotKminus1

Aerosol properties Distribution function Multilognormal distributionsHeight distribution 0-1 km

Table 2 Multilayer atmospheric radiative transfer model

Layer number Thickness (km) Upper-lower limit ofheight (km) Density (kgm3) Dimensionless

thermal conductivity Refractive index

1 1 0sim1 115566 751119890 minus 8 102 2 1sim3 096517 589119890 minus 8 103 6 3sim9 060438 374119890 minus 8 104 8 9sim17 030815 143119890 minus 8 105 10 17sim27 002573 323119890 minus 9 106 11 27sim38 0010076 690119890 minus 10 107 12 38sim50 0002195 423119890 minus 10 10

Here 1198681198991198870

and 119868119899119887120591120582

are the emission radiation intensities oftwo adjacent layers and the initial values are obtained fromthe temperature field The total emission radiation inten-sity is determined by an iterative calculation of intensitiesfrom successive layers the last providing the required totalThe convergence condition of the multilayer model calcula-tion is decided by the radiative intensity 119868

119899

After the intensitycalculation has converged the iterative calculation of thetemperature field is then performed

3 Results and Discussion

According to statistics 988 of the total atmospheric massdistributes in the atmospherewithin 30 km above the groundand with the height increasing to 50 km the proportionreaches 9992Most of the atmospheric radiation (involvingsolar radiation absorption and scattering of the groundinfrared radiation and the emission of the atmosphere itself)occurs within certain atmospheric thickness Compared withthe earth radius (6378 km) the atmospheric thickness canbe regarded as one-dimensional radiative media Thereforewe treated the atmosphere within 50 km above the groundas a multilayer one-dimensional media distributing along theradial of the earth The upper surface of the medium layer isnear to space and is considered as a semitransparentmediumThe lower interface is close to ground and is considered asopaque interface The emissivity and radiative temperature

related to the ground are given For the inner of the mediumlayer we mainly consider the gas absorption and emissionof the radiation energy and the aerosol particles scatteringand absorption of the radiation energy and consider theatmospheric coupled radiation and conduction in the verticaldirection

The atmospheric convection is very important for theenergy transfer of the atmosphere But we mainly discussthe influence of aerosols on the atmospheric radiative energyand investigate the atmospheric radiative balance and thevariation in radiation characteristic which is not affected bythe atmospheric convection that acts only as the backgroundTherefore we ignore the influence of the atmospheric con-vection

The atmospheric radiation physical model is shown inFigure 1 and the atmospheric radiation transfer model isshown in Figure 2 The atmospheric internal heat source isset as 120601 = 0

The standard atmospheric condition is given inTables 1ndash4

Table 1 gives themain input parameters for the calculationof atmospheric radiation transfer

Table 2 gives the parameters associated with layersdivided along the vertical height The density of each layer isdetermined by the calculation of the pressure We consider(1205881205880

) = (1199011199010

) (the standard atmosphere pressure 119901 is

Mathematical Problems in Engineering 5

Δxn

S+infinSminus infin S2S1

T+infin

Pnminus1

Tg2

Mt + 1Mtsum nminus1

i=1Mi + In

nnn2n1

sum nminus1

i=1Mi

middot middot middot

M1 + 1 M1 + 2M1I1

Δx2

2

Δxn

2Δx1

Δx1

2

xS1

I1

xP1

I2x

P119899minus1

I119899

xS1

I+11x

P1

I+11x

P119899minus1

I+1119899

xS2

I+1119899

LnL2 + L3 + middot middot middot + Lnminus1L1

Tminus infin

P1

Tg1

h1 h2

10 2

01

Figure 2 Physical model of one plane-parallel slab divided into 119899 sublayers

180 200 220 240 260 280 300 3200

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

MarineSoot

Water-solubleDust

(a) Atmosphere temperature field (0ndash50 km)

Alti

tude

(km

)

0

2

4

6

8

10

180 200 220 240 260 280 300 320Temperature (K)

MarineSoot

Water-solubleDust

(b) Atmosphere temperature field (0ndash10 km)

Figure 3 Influence of aerosols species on temperature fields

1225 kgm2) with the temperature fluctuating in small rangeTherefore the equation is as follows

120588 =

1205880

1199010

sdot 119901 =

1225

101325

sdot 119901 = 120898 times 10minus5

sdot 119901 (15)

Table 3 gives the wavelength range of each spectral bandThe atmosphere optical thicknesses of the layers at differentspectral bands are obtained from the HITRAN databaseunder the standard atmospheric condition of America in1976 The aerosol optical thicknesses are decided based onthe Mie scattering theory using the typical aerosol particlessize distribution assumption and combining the complex

refractive index of different aerosol species Table 3 liststhe spectral optical thicknesses of the dust aerosol and thescattering albedo parameters in the height of 0-1 km Theother parameters are not given in this paper as there are toomuch data

Table 4 gives the complex refractive index of differentaerosols

31 The Influence of Aerosol Species Variation Figure 3 showsthe influence of four aerosol species (dust soot marine andwater-soluble) on the atmospheric temperature The aerosol

6 Mathematical Problems in Engineering

180 200 220 240 260 280 3000

10

20

30

40

50A

ltitu

de (k

m)

Temperature (K)

Isotropic scatteringForward scatteringBack scattering

(a) Atmosphere temperature field (0ndash50km)

minus4 minus2 0 2 4Temperature (K)

Forward scatteringBack scattering

0

10

20

30

40

50

Alti

tude

(km

)

(b) Temperature difference betweendifferent scattering phase functionsand isotropic scattering

Figure 4 Influence of scattering phase function change on atmospheric temperature

Table 3 Spectral bands for the atmospheric radiative transfermodeland radiative characteristic parameters under the standard dustaerosol in the height of 0-1 km

Band number Wavelengthrange (120583m)

Opticalthickness Albedo

1 02sim05 9292 0862 05sim08 1230 0883 08sim125 442 0864 125sim159 4328 0805 159sim222 427 0486 222sim345 2365 0077 345sim50 9393 0028 50sim100 35322 0009 100sim1111 1251 01110 1111sim1299 162 04511 1299sim200 3529 00112 200sim500 95133 000

particle size distribution function is the multilognormaldistribution

From the results in the figure we can see that as the dif-ferent scattering effect of the aerosol particles their influenceon the temperature is greatly different Compared with dustaerosol the marine and water-soluble aerosol particles havestronger scattering effect They will scatter upwards moreradiation energy and decrease the atmospheric temperatureThe soot particles have stronger absorption and their exis-tence will cause the atmospheric temperature increasing

32 The Influence of the Scattering Phase Function VariationThe aerosol particles scattering characteristics are considered

as forward and back scatter (the scattering phase functionsare Φ1

(Θ) and Φ2

(Θ) resp see (16) and (17)) Other param-eters are not changed The results are shown in Figure 4

Φ1

(Θ) = 1 + 1198751

(cosΘ) (16)

Φ2

(Θ) = 1 minus 1198751

(cosΘ) (17)

It can be seen from Figure 4(a) that compared with theanisotropic scattering the variation in the scattering phasefunctions causes the atmospheric temperature to change Butthe effect is not obvious Figure 4(b) shows the differencevalue between the atmospheric temperature fields and theisotropic scattering with different scattering phase functionsFrom the figure we can see that the forward and back scattershave opposite effect on the atmospheric temperature fieldsbut the effect degree is similar

33 The Influence of the Aerosol Particles Concentration Theaerosol particles transport with the tropospheric movementwill cause the aerosol particles concentrations to vary InFigure 5 we consider the influence of the variation in totalparticles number concentrations and the particles numberconcentrations are increased or decreased by 50 So theradiation characteristics of the aerosol particles are changedthe atmospheric energy balance is affected and then theatmospheric temperature fields are influenced From theresults it can be seen that the variation in aerosol particlesconcentrations can affect the atmospheric temperature butnot obviously compared with other factors

34 The Influence of the Height Distribution of Aerosol Parti-cles We investigate the effect of the medium layer height onthe aerosol particles size distribution that is the atmosphericradiation temperature fields change with the aerosol particles

Mathematical Problems in Engineering 7

Table 4 Complex refractive index of different wavelength for different aerosol types [19]

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

0200 1530 0070 1530 0070 1429 287119864 minus 5 1500 03500250 1530 0030 1530 0030 1404 145119864 minus 6 1620 04500300 1530 0008 1530 0008 1395 583119864 minus 6 1740 04700337 1530 0008 1530 0005 1392 120119864 minus 7 1750 04700400 1530 0008 1530 0005 1385 990119864 minus 9 1750 04600488 1530 0008 1530 0005 1382 641119864 minus 9 1750 04500515 1530 0008 1530 0005 1381 370119864 minus 9 1750 04500550 1530 0008 1530 0006 1381 426119864 minus 9 1750 04400633 1530 0008 1530 0006 1377 162119864 minus 8 1750 04300694 1530 0008 1530 0007 1376 504119864 minus 8 1750 04300860 1520 0008 1520 0012 1372 109119864 minus 6 1750 04301060 1520 0008 1520 0017 1367 601119864 minus 5 1750 04401300 1460 0008 1510 0020 1365 141119864 minus 4 1760 04501536 1400 0008 1510 0023 1359 243119864 minus 4 1770 04601800 1330 0008 1460 0017 1351 311119864 minus 4 1790 04802000 1260 0008 1420 0008 1347 000107 1800 04902250 1220 0009 1420 0010 1334 850119864 minus 4 1810 05002500 1180 0009 1420 0012 1309 000239 1820 05102700 1180 0013 1400 0055 1249 00156 1830 05203000 1160 0012 1420 0022 1439 0197 1840 05403200 1220 0010 1430 0008 1481 00669 1860 05403392 1260 0013 1430 0007 1439 00151 1870 05503500 1280 0011 1450 0005 1423 000717 1880 05603750 1270 0011 1452 0004 1398 00029 1900 05704000 1260 0012 1455 0005 1388 000369 1920 05804500 1260 0014 1460 0013 1377 000997 1940 05905000 1250 0016 1450 0012 1366 000957 1970 06005500 1220 0021 1440 0018 1333 000931 1990 06106000 1150 0037 1410 0023 1306 00796 2020 06206200 1140 0039 1430 0027 1431 00691 2030 06256500 1130 0042 1460 0033 1374 00294 2040 06307200 1400 0055 1400 0070 1343 00249 2060 06507900 1150 0040 1200 0065 1324 00279 2120 06708200 1130 0074 1010 0100 1324 00308 2130 06808500 1300 0090 1300 0215 1336 00336 2150 06908700 1400 0100 2400 0290 1366 00356 2160 06909000 1700 0140 2560 0370 1373 00365 2170 07009200 1720 0150 2200 0420 1356 00371 2180 07009500 1730 0162 1950 0160 1339 00368 2190 07109800 1740 0162 1870 0095 1324 00388 2200 071510000 1750 0162 1820 0090 1310 00406 2210 072010591 1620 0120 1760 0070 1271 00522 2220 073011000 1620 0105 1720 0050 1246 00731 2230 073011500 1590 0100 1670 0047 1227 0105 2240 074012500 1510 0090 1620 0053 1208 0190 2270 075013000 1470 0100 1620 0055 1221 0223 2280 076014000 1520 0085 1560 0073 1267 0271 2310 077514800 1570 0100 1440 0100 1307 0292 2330 0790

8 Mathematical Problems in Engineering

Table 4 Continued

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

15000 1570 0100 1420 0200 1321 0297 2330 079016400 1600 0100 1750 0160 1407 0331 2360 081017200 1630 0100 2080 0240 1487 0341 2380 082018000 1640 0115 1980 0180 1525 0341 2400 082518500 1640 0120 1850 0170 1536 0339 2410 083020000 1680 0220 2120 0220 1560 0324 2450 085021300 1770 0280 2060 0230 1568 0318 2460 086022500 1900 0280 2000 0240 1579 0316 2480 087025000 1970 0240 1880 0280 1596 0313 2510 089027900 1890 0320 1840 0290 1612 0320 2540 091030000 1800 0420 1820 0300 1614 0320 2570 093035000 1900 0500 1920 0400 1597 0383 2630 097040000 2100 0600 1860 0500 1582 0561 2690 1000

180 200 220 240 260 280 3000

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

Concentration increasedConcentration decreased

(a) Atmosphere temperature field (0ndash50 km)

0

2

4

6

8

10

Alti

tude

(km

)

180 200 220 240 260 280 300Temperature (K)

Concentration increasedConcentration decreased

(b) Atmosphere temperature field (0ndash10 km)

Figure 5 Influence of the aerosol concentration on atmospheric temperature

being in different height medium layers The calculationconditions are as follows the aerosol particles distribute inthe height of 0sim1 km 1sim3 km and 3sim9 km respectively Thecalculation results are in Figure 6

From the calculation results in Figure 6 it can be seenthat with the aerosol particles transporting to the highaltitude the atmospheric temperature is affected greatly ifthe radiation characteristics of the aerosol particles have nochanges With the distribution height of the aerosol particlesincreasing the medium temperature above themedium layerin which the aerosol particles exist increases greatly but thebelow temperature decreases obviously This phenomenonshows the scattering effect of the aerosol particles on the

solar radiation energy that is as the scattering effect of theatmospheric aerosols most of the solar radiation energy tothe ground is scattered back to the high altitude and cannotreach lower atmosphere which causes the lower atmospherictemperature to decrease to about 200K

4 Conclusion

We analyzed the influence of the aerosol particles charac-teristics on the atmospheric radiation transfer model Theresults showed the different effect of aerosol types on theatmospheric radiation The dust marine and water-soluble

Mathematical Problems in Engineering 9

0

10

20

30

40

50A

ltitu

de (k

m)

180 200 220 240 260 280 300Temperature (K)

0-1 km1ndash3 km3ndash9 km

Figure 6 Influence of temperature fields on different aerosoldistribution altitude

aerosols had negative effects on the atmospheric absorptionbut the soot aerosol could increase the atmospheric absorp-tionThe scattering phase functions affected the ground tem-perature The variation of the aerosol particles distributionheight could determine the atmospheric temperature that isthe ground temperature decreased greatly with the aerosolparticles existing in the high altitude stable

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work was supported by the Foundation for InnovativeResearch Groups of the National Natural Science Foundationof China (Grant no 51121004) and the National NaturalScience Foundation of China (Grant nos 51176040 and51276193) A very special acknowledgement is made to theeditors and referees who made important comments toimprove this paper

References

[1] M Schulz C Textor S Kinne et al ldquoRadiative forcing byaerosols as derived from the AeroCom present-day and pre-industrial simulationsrdquoAtmospheric Chemistry and Physics vol6 pp 5225ndash5246 2006

[2] U Lohmann and J Feichter ldquoGlobal indirect aerosol effects areviewrdquo Atmospheric Chemistry and Physics vol 5 pp 715ndash7372005

[3] I Koren Y J Kaufman L A Remer and J V MartinsldquoMeasurement of the effect of Amazon smoke on inhibitionof cloud formationrdquo Science vol 303 no 5662 pp 1342ndash13452004

[4] W W Qing R S Chen and W M Sun ldquoEstimation of globalradiation in China and comparison with satellite productrdquoEnvironmental Earth Sciences vol 70 no 4 pp 1681ndash1687 2013

[5] X S Wang ldquoMetal geochemical and mineral magnetic char-acterization of the lt25 lm fraction of urban soils in Xuzhou(China)rdquo Environmental Earth Sciences vol 71 no 8 pp 3491ndash3501 2014

[6] L David B Nacer B Pascal and J Gerard ldquoTransient radiativeand conductive heat transfer in non-gray semitransparent two-dimensional media withmixed boundary conditionsrdquoHeat andMass Transfer vol 42 no 4 pp 322ndash337 2006

[7] S Dembele K L M Lima and J X Wen ldquoAssessment of anunstructured exponential scheme discrete ordinates radiationmodel for non-gray mediardquoHeat and Mass Transfer vol 47 no11 pp 1349ndash1362 2011

[8] P Talukdar F V Issendorff D Trimis and C J SimonsonldquoConduction-radiation interaction in 3D irregular enclosuresusing the finite volume methodrdquo Heat and Mass Transfer vol44 no 6 pp 695ndash704 2008

[9] C-Y Wu ldquoMonte Carlo simulation of radiative transfer in arefractive layeredmediumrdquoHeat andMass Transfer vol 46 no6 pp 607ndash613 2010

[10] J H Jeans ldquoThe equations of radiative transfer of energyrdquoMonthly Notices Royal Astronomical Society vol 78 pp 28ndash361917

[11] B DavisonNeutron TransportTheory Oxford University PressLondon UK 1958

[12] V Kourganoff Basic Methods in Transfer Problems Dover NewYork NY USA 1963

[13] H Khouaja D R Edwards and N Tsoulfanidis ldquoSphericalharmonicsmdashfinite element treatment of neutron transport incylindrical geometryrdquo Annals of Nuclear Energy vol 24 no 7pp 515ndash531 1997

[14] E W Larsen G Thommes A Klar M Seaıd and T GotzldquoSimplified 119875

119899

approximations to the equations of radiative heattransfer and applicationrdquo Journal of Computational Physics vol183 no 2 pp 652ndash675 2002

[15] R GMcClarren and C D Hauck ldquoRobust and accurate filteredspherical harmonics expansions for radiative transferrdquo Journalof Computational Physics vol 229 no 16 pp 5597ndash5614 2010

[16] M F Modest Radiative Heat Transfer Academic Press Ams-terdam The Netherlands 2nd edition 2003

[17] R Siegel and C M Spuckler ldquoRefractive index effects onradiation in an absorbing emitting and scattering laminatedlayerrdquo Journal of Heat Transfer vol 115 pp 194ndash200 1993

[18] Q Z Yu Principles of Radiative Heat Transfer Harbin Instituteof Technology Press Harbin China 2000

[19] G Y Shi Atmospheric Radiology Science Press Beijing China2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Study on the Influence of Aerosol ...downloads.hindawi.com/journals/mpe/2014/767231.pdf · Research Article Study on the Influence of Aerosol Radiation Balance in

Mathematical Problems in Engineering 3

The boundary conditions [16] are applicable in the one-dimensional case

int997888n sdot997888s gt0

119868 (120591119882=0

997888s ) 1198752119899+1

(997888s ) 119889Ω

= (1 minus 120588119889

0

) int997888n sdot997888s gt0

1198680

(997888s ) 1198752119899+1

(997888s ) 119889Ω

+ int997888n sdot997888s gt0

120588119889

1

2120587

int997888n sdot997888s lt0

119868 (120591119882

997888s 1015840) 119889Ω1015840119875

2119899+1

(997888s ) 119889Ω

(6)

where 1198680

(997888s ) is the circumstance radiation 120588119889

0

and 120588119889 are

reflectivities of the two sides of the boundary surfacesrespectively when considering total reflection and thevalues of these depend on the medium refractive index 119899

Separating the large refractive index from small thediffuse reflectance at the boundary surfaces is given by Siegeland Spuckler [17]

120588 (119899) equiv 119865 (119899) =

1

2

+

(3119899 + 1) (119899 minus 1)

6(119899 + 1)2

+

1198992

(1198992

minus 1)

2

(1198992

+ 1)3

ln(119899 minus 1

119899 + 1

)minus

21198993

(1198992

+2119899 minus 1)

(1198992

+1) (1198994

minus 1)

+

81198994

(1198994

+ 1)

(1198992

+ 1) (1198994

minus 1)2

ln (119899)

(7)

In contrast separating small refractive index from large thediffuse reflectance at the boundary surfaces is given by

120588 (119899) = 1 minus

1

1198992

[1 minus 119865 (119899)] (8)

where 119899 = (119899ℎ

119899119904

) 119899ℎ

ge 119899119904

In treating a semitransparentinterface we can use opaque interface treatment as reference

Considering one-dimensional unsteady coupled radiativeand conductive heat transfer the general form of the energyequation of the internal radiation and the transient coupledconductive heat transfer is defined as

120588119888

120597119879

120597119905

= div (119896119888

grad119879) minus div q119903 + 120601 (9)

Considering unsteady state no internal heat source andcoupled radiative and conductive heat transfer the energyequation (9) can be discretized as follows

120588119888Δ119909119894

119879119898+1

119894

minus 119879119898

119894

Δ119905

=

119896119890

(119879119898+1

119894+1

minus 119879119898+1

119894

) + 119896119908

(119879119898+1

119894minus1

minus 119879119898+1

119894

)

Δ119909119894

+ Φ119903

119894119898

(10)

In order to make the problem have universal significancethe dimensionless form of the energy equation (10) will beevaluated Introducing the following definitions referencetemperature 119879

119903119891

the dimensionless temperature 119879119898

119894

=

119879119898

119894

119879119903119891

unit heat capacity 119862 = 120588119888 the dimensionless timeΔ = (4120590119899

2

1198793

119903119891

119862119871)Δ119905 = (41205901198992

1198793

119903119891

119862119871)119905 the dimensionlesslength Δ119883

119894

= Δ119909119894

119871 the radiative and conductive parameter119873 = 1205824120590119899

2

1198793

119903119891

119871 the dimensionless convective heat transfercoefficient 119867 = ℎ4120590119899

2

1198793

119903119891

the dimensionless radiative heatflux Φ = Φ(4120590119899

2

1198794

119903119891

) (10) becomes

Δ119883119894

119879119898+1

119894

minus119879119898

119894

Δ

=

119873119890

(119879119898+1

119894+1

minus119879119898+1

119894

) + 119873119908

(119879119898+1

119894minus1

minus119879119898+1

119894

)

Δ119883119894

+ Φ119903

119894119898

(11)

According to [18] in considering one-dimensional non-steady coupled radiative and conductive heat transfers thethermal radiation source termΦ119903(119879) is found to be

Φ119903

(119879) = int

Δ119881

minus div q119903119889119881 = int

Δ119881

minus120581119886

[4120587119868119887

(120591) minus 119866 (120591)] 119889119881

(12)

Here the incident radiative power 119866(120591) = intΩ

119868(120591 Ω)119889Ω canbe transformed to 119866(120591) = 2120587 int

1

minus1

119868(120591 120583)119889120583 According to theproperties of Legendre polynomials and 119875

0

(120583) = 1 the aboveequation is rearranged into the form

119866 (120591) = 2120587int

1

minus1

1198680

(120591) 119889120583 (13)

Meanwhile considering the physical properties ofthe inhomogeneous medium we next develop a 119875

119899

-approximation method for a multilayer medium Weredetermine the boundary conditions of each layer Themodified boundary conditions are

119873

sum

119899=0

119868119899

(0) [int

1

0

119875119899

(120583) 1205832119894+1

119889120583 minus 120588119889

int

1

0

int

0

minus1

119875119899

(1205831015840

) 1205832119894+1

1198891205831015840

119889120583]

=

119873

sum

119899=0

1198681198991198870

(1 minus 120588119889

0

)int

1

0

119875119899

(120583) 1205832119894+1

119889120583

119873

sum

119899=0

119868119899

(120591119871

)[int

0

minus1

119875119899

(120583) 1205832119894+1

119889120583minus120588119889

int

0

minus1

int

1

0

119875119899

(1205831015840

)1205832119894+1

1198891205831015840

119889120583]

=

119873

sum

119899=0

119868119899119887120591120582

(1 minus 120588119889

0

) int

0

minus1

119875119899

(120583) 1205832119894+1

119889120583

119894 = 0 1

119873 minus 1

2

(14)

4 Mathematical Problems in Engineering

Table 1 The main input parameters of the atmospheric radiation calculation

Parameters Values

Initial condition

Initial temperature 1198790

280KReference temperature 119879rf 1000KDimensionless time 119905lowast 1 times 10

6

Relaxation factor 119891re 001

Boundary condition

Terrestrial temperature 119879minusinfin

280KTerrestrial emissivity 120576

minusinfin

07Solar radiation temperature 119879

+infin

5762KAngle factor 119860

+infin 2

55844 times 10minus6

Media physical propertiesLayers of height 7 layers seen in Table 3Bands absorption coefficient 12 bands seen in Table 4Thermal conductivity 119896

119888

0023 Wsdotmminus1sdotKminus1

Aerosol properties Distribution function Multilognormal distributionsHeight distribution 0-1 km

Table 2 Multilayer atmospheric radiative transfer model

Layer number Thickness (km) Upper-lower limit ofheight (km) Density (kgm3) Dimensionless

thermal conductivity Refractive index

1 1 0sim1 115566 751119890 minus 8 102 2 1sim3 096517 589119890 minus 8 103 6 3sim9 060438 374119890 minus 8 104 8 9sim17 030815 143119890 minus 8 105 10 17sim27 002573 323119890 minus 9 106 11 27sim38 0010076 690119890 minus 10 107 12 38sim50 0002195 423119890 minus 10 10

Here 1198681198991198870

and 119868119899119887120591120582

are the emission radiation intensities oftwo adjacent layers and the initial values are obtained fromthe temperature field The total emission radiation inten-sity is determined by an iterative calculation of intensitiesfrom successive layers the last providing the required totalThe convergence condition of the multilayer model calcula-tion is decided by the radiative intensity 119868

119899

After the intensitycalculation has converged the iterative calculation of thetemperature field is then performed

3 Results and Discussion

According to statistics 988 of the total atmospheric massdistributes in the atmospherewithin 30 km above the groundand with the height increasing to 50 km the proportionreaches 9992Most of the atmospheric radiation (involvingsolar radiation absorption and scattering of the groundinfrared radiation and the emission of the atmosphere itself)occurs within certain atmospheric thickness Compared withthe earth radius (6378 km) the atmospheric thickness canbe regarded as one-dimensional radiative media Thereforewe treated the atmosphere within 50 km above the groundas a multilayer one-dimensional media distributing along theradial of the earth The upper surface of the medium layer isnear to space and is considered as a semitransparentmediumThe lower interface is close to ground and is considered asopaque interface The emissivity and radiative temperature

related to the ground are given For the inner of the mediumlayer we mainly consider the gas absorption and emissionof the radiation energy and the aerosol particles scatteringand absorption of the radiation energy and consider theatmospheric coupled radiation and conduction in the verticaldirection

The atmospheric convection is very important for theenergy transfer of the atmosphere But we mainly discussthe influence of aerosols on the atmospheric radiative energyand investigate the atmospheric radiative balance and thevariation in radiation characteristic which is not affected bythe atmospheric convection that acts only as the backgroundTherefore we ignore the influence of the atmospheric con-vection

The atmospheric radiation physical model is shown inFigure 1 and the atmospheric radiation transfer model isshown in Figure 2 The atmospheric internal heat source isset as 120601 = 0

The standard atmospheric condition is given inTables 1ndash4

Table 1 gives themain input parameters for the calculationof atmospheric radiation transfer

Table 2 gives the parameters associated with layersdivided along the vertical height The density of each layer isdetermined by the calculation of the pressure We consider(1205881205880

) = (1199011199010

) (the standard atmosphere pressure 119901 is

Mathematical Problems in Engineering 5

Δxn

S+infinSminus infin S2S1

T+infin

Pnminus1

Tg2

Mt + 1Mtsum nminus1

i=1Mi + In

nnn2n1

sum nminus1

i=1Mi

middot middot middot

M1 + 1 M1 + 2M1I1

Δx2

2

Δxn

2Δx1

Δx1

2

xS1

I1

xP1

I2x

P119899minus1

I119899

xS1

I+11x

P1

I+11x

P119899minus1

I+1119899

xS2

I+1119899

LnL2 + L3 + middot middot middot + Lnminus1L1

Tminus infin

P1

Tg1

h1 h2

10 2

01

Figure 2 Physical model of one plane-parallel slab divided into 119899 sublayers

180 200 220 240 260 280 300 3200

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

MarineSoot

Water-solubleDust

(a) Atmosphere temperature field (0ndash50 km)

Alti

tude

(km

)

0

2

4

6

8

10

180 200 220 240 260 280 300 320Temperature (K)

MarineSoot

Water-solubleDust

(b) Atmosphere temperature field (0ndash10 km)

Figure 3 Influence of aerosols species on temperature fields

1225 kgm2) with the temperature fluctuating in small rangeTherefore the equation is as follows

120588 =

1205880

1199010

sdot 119901 =

1225

101325

sdot 119901 = 120898 times 10minus5

sdot 119901 (15)

Table 3 gives the wavelength range of each spectral bandThe atmosphere optical thicknesses of the layers at differentspectral bands are obtained from the HITRAN databaseunder the standard atmospheric condition of America in1976 The aerosol optical thicknesses are decided based onthe Mie scattering theory using the typical aerosol particlessize distribution assumption and combining the complex

refractive index of different aerosol species Table 3 liststhe spectral optical thicknesses of the dust aerosol and thescattering albedo parameters in the height of 0-1 km Theother parameters are not given in this paper as there are toomuch data

Table 4 gives the complex refractive index of differentaerosols

31 The Influence of Aerosol Species Variation Figure 3 showsthe influence of four aerosol species (dust soot marine andwater-soluble) on the atmospheric temperature The aerosol

6 Mathematical Problems in Engineering

180 200 220 240 260 280 3000

10

20

30

40

50A

ltitu

de (k

m)

Temperature (K)

Isotropic scatteringForward scatteringBack scattering

(a) Atmosphere temperature field (0ndash50km)

minus4 minus2 0 2 4Temperature (K)

Forward scatteringBack scattering

0

10

20

30

40

50

Alti

tude

(km

)

(b) Temperature difference betweendifferent scattering phase functionsand isotropic scattering

Figure 4 Influence of scattering phase function change on atmospheric temperature

Table 3 Spectral bands for the atmospheric radiative transfermodeland radiative characteristic parameters under the standard dustaerosol in the height of 0-1 km

Band number Wavelengthrange (120583m)

Opticalthickness Albedo

1 02sim05 9292 0862 05sim08 1230 0883 08sim125 442 0864 125sim159 4328 0805 159sim222 427 0486 222sim345 2365 0077 345sim50 9393 0028 50sim100 35322 0009 100sim1111 1251 01110 1111sim1299 162 04511 1299sim200 3529 00112 200sim500 95133 000

particle size distribution function is the multilognormaldistribution

From the results in the figure we can see that as the dif-ferent scattering effect of the aerosol particles their influenceon the temperature is greatly different Compared with dustaerosol the marine and water-soluble aerosol particles havestronger scattering effect They will scatter upwards moreradiation energy and decrease the atmospheric temperatureThe soot particles have stronger absorption and their exis-tence will cause the atmospheric temperature increasing

32 The Influence of the Scattering Phase Function VariationThe aerosol particles scattering characteristics are considered

as forward and back scatter (the scattering phase functionsare Φ1

(Θ) and Φ2

(Θ) resp see (16) and (17)) Other param-eters are not changed The results are shown in Figure 4

Φ1

(Θ) = 1 + 1198751

(cosΘ) (16)

Φ2

(Θ) = 1 minus 1198751

(cosΘ) (17)

It can be seen from Figure 4(a) that compared with theanisotropic scattering the variation in the scattering phasefunctions causes the atmospheric temperature to change Butthe effect is not obvious Figure 4(b) shows the differencevalue between the atmospheric temperature fields and theisotropic scattering with different scattering phase functionsFrom the figure we can see that the forward and back scattershave opposite effect on the atmospheric temperature fieldsbut the effect degree is similar

33 The Influence of the Aerosol Particles Concentration Theaerosol particles transport with the tropospheric movementwill cause the aerosol particles concentrations to vary InFigure 5 we consider the influence of the variation in totalparticles number concentrations and the particles numberconcentrations are increased or decreased by 50 So theradiation characteristics of the aerosol particles are changedthe atmospheric energy balance is affected and then theatmospheric temperature fields are influenced From theresults it can be seen that the variation in aerosol particlesconcentrations can affect the atmospheric temperature butnot obviously compared with other factors

34 The Influence of the Height Distribution of Aerosol Parti-cles We investigate the effect of the medium layer height onthe aerosol particles size distribution that is the atmosphericradiation temperature fields change with the aerosol particles

Mathematical Problems in Engineering 7

Table 4 Complex refractive index of different wavelength for different aerosol types [19]

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

0200 1530 0070 1530 0070 1429 287119864 minus 5 1500 03500250 1530 0030 1530 0030 1404 145119864 minus 6 1620 04500300 1530 0008 1530 0008 1395 583119864 minus 6 1740 04700337 1530 0008 1530 0005 1392 120119864 minus 7 1750 04700400 1530 0008 1530 0005 1385 990119864 minus 9 1750 04600488 1530 0008 1530 0005 1382 641119864 minus 9 1750 04500515 1530 0008 1530 0005 1381 370119864 minus 9 1750 04500550 1530 0008 1530 0006 1381 426119864 minus 9 1750 04400633 1530 0008 1530 0006 1377 162119864 minus 8 1750 04300694 1530 0008 1530 0007 1376 504119864 minus 8 1750 04300860 1520 0008 1520 0012 1372 109119864 minus 6 1750 04301060 1520 0008 1520 0017 1367 601119864 minus 5 1750 04401300 1460 0008 1510 0020 1365 141119864 minus 4 1760 04501536 1400 0008 1510 0023 1359 243119864 minus 4 1770 04601800 1330 0008 1460 0017 1351 311119864 minus 4 1790 04802000 1260 0008 1420 0008 1347 000107 1800 04902250 1220 0009 1420 0010 1334 850119864 minus 4 1810 05002500 1180 0009 1420 0012 1309 000239 1820 05102700 1180 0013 1400 0055 1249 00156 1830 05203000 1160 0012 1420 0022 1439 0197 1840 05403200 1220 0010 1430 0008 1481 00669 1860 05403392 1260 0013 1430 0007 1439 00151 1870 05503500 1280 0011 1450 0005 1423 000717 1880 05603750 1270 0011 1452 0004 1398 00029 1900 05704000 1260 0012 1455 0005 1388 000369 1920 05804500 1260 0014 1460 0013 1377 000997 1940 05905000 1250 0016 1450 0012 1366 000957 1970 06005500 1220 0021 1440 0018 1333 000931 1990 06106000 1150 0037 1410 0023 1306 00796 2020 06206200 1140 0039 1430 0027 1431 00691 2030 06256500 1130 0042 1460 0033 1374 00294 2040 06307200 1400 0055 1400 0070 1343 00249 2060 06507900 1150 0040 1200 0065 1324 00279 2120 06708200 1130 0074 1010 0100 1324 00308 2130 06808500 1300 0090 1300 0215 1336 00336 2150 06908700 1400 0100 2400 0290 1366 00356 2160 06909000 1700 0140 2560 0370 1373 00365 2170 07009200 1720 0150 2200 0420 1356 00371 2180 07009500 1730 0162 1950 0160 1339 00368 2190 07109800 1740 0162 1870 0095 1324 00388 2200 071510000 1750 0162 1820 0090 1310 00406 2210 072010591 1620 0120 1760 0070 1271 00522 2220 073011000 1620 0105 1720 0050 1246 00731 2230 073011500 1590 0100 1670 0047 1227 0105 2240 074012500 1510 0090 1620 0053 1208 0190 2270 075013000 1470 0100 1620 0055 1221 0223 2280 076014000 1520 0085 1560 0073 1267 0271 2310 077514800 1570 0100 1440 0100 1307 0292 2330 0790

8 Mathematical Problems in Engineering

Table 4 Continued

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

15000 1570 0100 1420 0200 1321 0297 2330 079016400 1600 0100 1750 0160 1407 0331 2360 081017200 1630 0100 2080 0240 1487 0341 2380 082018000 1640 0115 1980 0180 1525 0341 2400 082518500 1640 0120 1850 0170 1536 0339 2410 083020000 1680 0220 2120 0220 1560 0324 2450 085021300 1770 0280 2060 0230 1568 0318 2460 086022500 1900 0280 2000 0240 1579 0316 2480 087025000 1970 0240 1880 0280 1596 0313 2510 089027900 1890 0320 1840 0290 1612 0320 2540 091030000 1800 0420 1820 0300 1614 0320 2570 093035000 1900 0500 1920 0400 1597 0383 2630 097040000 2100 0600 1860 0500 1582 0561 2690 1000

180 200 220 240 260 280 3000

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

Concentration increasedConcentration decreased

(a) Atmosphere temperature field (0ndash50 km)

0

2

4

6

8

10

Alti

tude

(km

)

180 200 220 240 260 280 300Temperature (K)

Concentration increasedConcentration decreased

(b) Atmosphere temperature field (0ndash10 km)

Figure 5 Influence of the aerosol concentration on atmospheric temperature

being in different height medium layers The calculationconditions are as follows the aerosol particles distribute inthe height of 0sim1 km 1sim3 km and 3sim9 km respectively Thecalculation results are in Figure 6

From the calculation results in Figure 6 it can be seenthat with the aerosol particles transporting to the highaltitude the atmospheric temperature is affected greatly ifthe radiation characteristics of the aerosol particles have nochanges With the distribution height of the aerosol particlesincreasing the medium temperature above themedium layerin which the aerosol particles exist increases greatly but thebelow temperature decreases obviously This phenomenonshows the scattering effect of the aerosol particles on the

solar radiation energy that is as the scattering effect of theatmospheric aerosols most of the solar radiation energy tothe ground is scattered back to the high altitude and cannotreach lower atmosphere which causes the lower atmospherictemperature to decrease to about 200K

4 Conclusion

We analyzed the influence of the aerosol particles charac-teristics on the atmospheric radiation transfer model Theresults showed the different effect of aerosol types on theatmospheric radiation The dust marine and water-soluble

Mathematical Problems in Engineering 9

0

10

20

30

40

50A

ltitu

de (k

m)

180 200 220 240 260 280 300Temperature (K)

0-1 km1ndash3 km3ndash9 km

Figure 6 Influence of temperature fields on different aerosoldistribution altitude

aerosols had negative effects on the atmospheric absorptionbut the soot aerosol could increase the atmospheric absorp-tionThe scattering phase functions affected the ground tem-perature The variation of the aerosol particles distributionheight could determine the atmospheric temperature that isthe ground temperature decreased greatly with the aerosolparticles existing in the high altitude stable

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work was supported by the Foundation for InnovativeResearch Groups of the National Natural Science Foundationof China (Grant no 51121004) and the National NaturalScience Foundation of China (Grant nos 51176040 and51276193) A very special acknowledgement is made to theeditors and referees who made important comments toimprove this paper

References

[1] M Schulz C Textor S Kinne et al ldquoRadiative forcing byaerosols as derived from the AeroCom present-day and pre-industrial simulationsrdquoAtmospheric Chemistry and Physics vol6 pp 5225ndash5246 2006

[2] U Lohmann and J Feichter ldquoGlobal indirect aerosol effects areviewrdquo Atmospheric Chemistry and Physics vol 5 pp 715ndash7372005

[3] I Koren Y J Kaufman L A Remer and J V MartinsldquoMeasurement of the effect of Amazon smoke on inhibitionof cloud formationrdquo Science vol 303 no 5662 pp 1342ndash13452004

[4] W W Qing R S Chen and W M Sun ldquoEstimation of globalradiation in China and comparison with satellite productrdquoEnvironmental Earth Sciences vol 70 no 4 pp 1681ndash1687 2013

[5] X S Wang ldquoMetal geochemical and mineral magnetic char-acterization of the lt25 lm fraction of urban soils in Xuzhou(China)rdquo Environmental Earth Sciences vol 71 no 8 pp 3491ndash3501 2014

[6] L David B Nacer B Pascal and J Gerard ldquoTransient radiativeand conductive heat transfer in non-gray semitransparent two-dimensional media withmixed boundary conditionsrdquoHeat andMass Transfer vol 42 no 4 pp 322ndash337 2006

[7] S Dembele K L M Lima and J X Wen ldquoAssessment of anunstructured exponential scheme discrete ordinates radiationmodel for non-gray mediardquoHeat and Mass Transfer vol 47 no11 pp 1349ndash1362 2011

[8] P Talukdar F V Issendorff D Trimis and C J SimonsonldquoConduction-radiation interaction in 3D irregular enclosuresusing the finite volume methodrdquo Heat and Mass Transfer vol44 no 6 pp 695ndash704 2008

[9] C-Y Wu ldquoMonte Carlo simulation of radiative transfer in arefractive layeredmediumrdquoHeat andMass Transfer vol 46 no6 pp 607ndash613 2010

[10] J H Jeans ldquoThe equations of radiative transfer of energyrdquoMonthly Notices Royal Astronomical Society vol 78 pp 28ndash361917

[11] B DavisonNeutron TransportTheory Oxford University PressLondon UK 1958

[12] V Kourganoff Basic Methods in Transfer Problems Dover NewYork NY USA 1963

[13] H Khouaja D R Edwards and N Tsoulfanidis ldquoSphericalharmonicsmdashfinite element treatment of neutron transport incylindrical geometryrdquo Annals of Nuclear Energy vol 24 no 7pp 515ndash531 1997

[14] E W Larsen G Thommes A Klar M Seaıd and T GotzldquoSimplified 119875

119899

approximations to the equations of radiative heattransfer and applicationrdquo Journal of Computational Physics vol183 no 2 pp 652ndash675 2002

[15] R GMcClarren and C D Hauck ldquoRobust and accurate filteredspherical harmonics expansions for radiative transferrdquo Journalof Computational Physics vol 229 no 16 pp 5597ndash5614 2010

[16] M F Modest Radiative Heat Transfer Academic Press Ams-terdam The Netherlands 2nd edition 2003

[17] R Siegel and C M Spuckler ldquoRefractive index effects onradiation in an absorbing emitting and scattering laminatedlayerrdquo Journal of Heat Transfer vol 115 pp 194ndash200 1993

[18] Q Z Yu Principles of Radiative Heat Transfer Harbin Instituteof Technology Press Harbin China 2000

[19] G Y Shi Atmospheric Radiology Science Press Beijing China2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Study on the Influence of Aerosol ...downloads.hindawi.com/journals/mpe/2014/767231.pdf · Research Article Study on the Influence of Aerosol Radiation Balance in

4 Mathematical Problems in Engineering

Table 1 The main input parameters of the atmospheric radiation calculation

Parameters Values

Initial condition

Initial temperature 1198790

280KReference temperature 119879rf 1000KDimensionless time 119905lowast 1 times 10

6

Relaxation factor 119891re 001

Boundary condition

Terrestrial temperature 119879minusinfin

280KTerrestrial emissivity 120576

minusinfin

07Solar radiation temperature 119879

+infin

5762KAngle factor 119860

+infin 2

55844 times 10minus6

Media physical propertiesLayers of height 7 layers seen in Table 3Bands absorption coefficient 12 bands seen in Table 4Thermal conductivity 119896

119888

0023 Wsdotmminus1sdotKminus1

Aerosol properties Distribution function Multilognormal distributionsHeight distribution 0-1 km

Table 2 Multilayer atmospheric radiative transfer model

Layer number Thickness (km) Upper-lower limit ofheight (km) Density (kgm3) Dimensionless

thermal conductivity Refractive index

1 1 0sim1 115566 751119890 minus 8 102 2 1sim3 096517 589119890 minus 8 103 6 3sim9 060438 374119890 minus 8 104 8 9sim17 030815 143119890 minus 8 105 10 17sim27 002573 323119890 minus 9 106 11 27sim38 0010076 690119890 minus 10 107 12 38sim50 0002195 423119890 minus 10 10

Here 1198681198991198870

and 119868119899119887120591120582

are the emission radiation intensities oftwo adjacent layers and the initial values are obtained fromthe temperature field The total emission radiation inten-sity is determined by an iterative calculation of intensitiesfrom successive layers the last providing the required totalThe convergence condition of the multilayer model calcula-tion is decided by the radiative intensity 119868

119899

After the intensitycalculation has converged the iterative calculation of thetemperature field is then performed

3 Results and Discussion

According to statistics 988 of the total atmospheric massdistributes in the atmospherewithin 30 km above the groundand with the height increasing to 50 km the proportionreaches 9992Most of the atmospheric radiation (involvingsolar radiation absorption and scattering of the groundinfrared radiation and the emission of the atmosphere itself)occurs within certain atmospheric thickness Compared withthe earth radius (6378 km) the atmospheric thickness canbe regarded as one-dimensional radiative media Thereforewe treated the atmosphere within 50 km above the groundas a multilayer one-dimensional media distributing along theradial of the earth The upper surface of the medium layer isnear to space and is considered as a semitransparentmediumThe lower interface is close to ground and is considered asopaque interface The emissivity and radiative temperature

related to the ground are given For the inner of the mediumlayer we mainly consider the gas absorption and emissionof the radiation energy and the aerosol particles scatteringand absorption of the radiation energy and consider theatmospheric coupled radiation and conduction in the verticaldirection

The atmospheric convection is very important for theenergy transfer of the atmosphere But we mainly discussthe influence of aerosols on the atmospheric radiative energyand investigate the atmospheric radiative balance and thevariation in radiation characteristic which is not affected bythe atmospheric convection that acts only as the backgroundTherefore we ignore the influence of the atmospheric con-vection

The atmospheric radiation physical model is shown inFigure 1 and the atmospheric radiation transfer model isshown in Figure 2 The atmospheric internal heat source isset as 120601 = 0

The standard atmospheric condition is given inTables 1ndash4

Table 1 gives themain input parameters for the calculationof atmospheric radiation transfer

Table 2 gives the parameters associated with layersdivided along the vertical height The density of each layer isdetermined by the calculation of the pressure We consider(1205881205880

) = (1199011199010

) (the standard atmosphere pressure 119901 is

Mathematical Problems in Engineering 5

Δxn

S+infinSminus infin S2S1

T+infin

Pnminus1

Tg2

Mt + 1Mtsum nminus1

i=1Mi + In

nnn2n1

sum nminus1

i=1Mi

middot middot middot

M1 + 1 M1 + 2M1I1

Δx2

2

Δxn

2Δx1

Δx1

2

xS1

I1

xP1

I2x

P119899minus1

I119899

xS1

I+11x

P1

I+11x

P119899minus1

I+1119899

xS2

I+1119899

LnL2 + L3 + middot middot middot + Lnminus1L1

Tminus infin

P1

Tg1

h1 h2

10 2

01

Figure 2 Physical model of one plane-parallel slab divided into 119899 sublayers

180 200 220 240 260 280 300 3200

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

MarineSoot

Water-solubleDust

(a) Atmosphere temperature field (0ndash50 km)

Alti

tude

(km

)

0

2

4

6

8

10

180 200 220 240 260 280 300 320Temperature (K)

MarineSoot

Water-solubleDust

(b) Atmosphere temperature field (0ndash10 km)

Figure 3 Influence of aerosols species on temperature fields

1225 kgm2) with the temperature fluctuating in small rangeTherefore the equation is as follows

120588 =

1205880

1199010

sdot 119901 =

1225

101325

sdot 119901 = 120898 times 10minus5

sdot 119901 (15)

Table 3 gives the wavelength range of each spectral bandThe atmosphere optical thicknesses of the layers at differentspectral bands are obtained from the HITRAN databaseunder the standard atmospheric condition of America in1976 The aerosol optical thicknesses are decided based onthe Mie scattering theory using the typical aerosol particlessize distribution assumption and combining the complex

refractive index of different aerosol species Table 3 liststhe spectral optical thicknesses of the dust aerosol and thescattering albedo parameters in the height of 0-1 km Theother parameters are not given in this paper as there are toomuch data

Table 4 gives the complex refractive index of differentaerosols

31 The Influence of Aerosol Species Variation Figure 3 showsthe influence of four aerosol species (dust soot marine andwater-soluble) on the atmospheric temperature The aerosol

6 Mathematical Problems in Engineering

180 200 220 240 260 280 3000

10

20

30

40

50A

ltitu

de (k

m)

Temperature (K)

Isotropic scatteringForward scatteringBack scattering

(a) Atmosphere temperature field (0ndash50km)

minus4 minus2 0 2 4Temperature (K)

Forward scatteringBack scattering

0

10

20

30

40

50

Alti

tude

(km

)

(b) Temperature difference betweendifferent scattering phase functionsand isotropic scattering

Figure 4 Influence of scattering phase function change on atmospheric temperature

Table 3 Spectral bands for the atmospheric radiative transfermodeland radiative characteristic parameters under the standard dustaerosol in the height of 0-1 km

Band number Wavelengthrange (120583m)

Opticalthickness Albedo

1 02sim05 9292 0862 05sim08 1230 0883 08sim125 442 0864 125sim159 4328 0805 159sim222 427 0486 222sim345 2365 0077 345sim50 9393 0028 50sim100 35322 0009 100sim1111 1251 01110 1111sim1299 162 04511 1299sim200 3529 00112 200sim500 95133 000

particle size distribution function is the multilognormaldistribution

From the results in the figure we can see that as the dif-ferent scattering effect of the aerosol particles their influenceon the temperature is greatly different Compared with dustaerosol the marine and water-soluble aerosol particles havestronger scattering effect They will scatter upwards moreradiation energy and decrease the atmospheric temperatureThe soot particles have stronger absorption and their exis-tence will cause the atmospheric temperature increasing

32 The Influence of the Scattering Phase Function VariationThe aerosol particles scattering characteristics are considered

as forward and back scatter (the scattering phase functionsare Φ1

(Θ) and Φ2

(Θ) resp see (16) and (17)) Other param-eters are not changed The results are shown in Figure 4

Φ1

(Θ) = 1 + 1198751

(cosΘ) (16)

Φ2

(Θ) = 1 minus 1198751

(cosΘ) (17)

It can be seen from Figure 4(a) that compared with theanisotropic scattering the variation in the scattering phasefunctions causes the atmospheric temperature to change Butthe effect is not obvious Figure 4(b) shows the differencevalue between the atmospheric temperature fields and theisotropic scattering with different scattering phase functionsFrom the figure we can see that the forward and back scattershave opposite effect on the atmospheric temperature fieldsbut the effect degree is similar

33 The Influence of the Aerosol Particles Concentration Theaerosol particles transport with the tropospheric movementwill cause the aerosol particles concentrations to vary InFigure 5 we consider the influence of the variation in totalparticles number concentrations and the particles numberconcentrations are increased or decreased by 50 So theradiation characteristics of the aerosol particles are changedthe atmospheric energy balance is affected and then theatmospheric temperature fields are influenced From theresults it can be seen that the variation in aerosol particlesconcentrations can affect the atmospheric temperature butnot obviously compared with other factors

34 The Influence of the Height Distribution of Aerosol Parti-cles We investigate the effect of the medium layer height onthe aerosol particles size distribution that is the atmosphericradiation temperature fields change with the aerosol particles

Mathematical Problems in Engineering 7

Table 4 Complex refractive index of different wavelength for different aerosol types [19]

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

0200 1530 0070 1530 0070 1429 287119864 minus 5 1500 03500250 1530 0030 1530 0030 1404 145119864 minus 6 1620 04500300 1530 0008 1530 0008 1395 583119864 minus 6 1740 04700337 1530 0008 1530 0005 1392 120119864 minus 7 1750 04700400 1530 0008 1530 0005 1385 990119864 minus 9 1750 04600488 1530 0008 1530 0005 1382 641119864 minus 9 1750 04500515 1530 0008 1530 0005 1381 370119864 minus 9 1750 04500550 1530 0008 1530 0006 1381 426119864 minus 9 1750 04400633 1530 0008 1530 0006 1377 162119864 minus 8 1750 04300694 1530 0008 1530 0007 1376 504119864 minus 8 1750 04300860 1520 0008 1520 0012 1372 109119864 minus 6 1750 04301060 1520 0008 1520 0017 1367 601119864 minus 5 1750 04401300 1460 0008 1510 0020 1365 141119864 minus 4 1760 04501536 1400 0008 1510 0023 1359 243119864 minus 4 1770 04601800 1330 0008 1460 0017 1351 311119864 minus 4 1790 04802000 1260 0008 1420 0008 1347 000107 1800 04902250 1220 0009 1420 0010 1334 850119864 minus 4 1810 05002500 1180 0009 1420 0012 1309 000239 1820 05102700 1180 0013 1400 0055 1249 00156 1830 05203000 1160 0012 1420 0022 1439 0197 1840 05403200 1220 0010 1430 0008 1481 00669 1860 05403392 1260 0013 1430 0007 1439 00151 1870 05503500 1280 0011 1450 0005 1423 000717 1880 05603750 1270 0011 1452 0004 1398 00029 1900 05704000 1260 0012 1455 0005 1388 000369 1920 05804500 1260 0014 1460 0013 1377 000997 1940 05905000 1250 0016 1450 0012 1366 000957 1970 06005500 1220 0021 1440 0018 1333 000931 1990 06106000 1150 0037 1410 0023 1306 00796 2020 06206200 1140 0039 1430 0027 1431 00691 2030 06256500 1130 0042 1460 0033 1374 00294 2040 06307200 1400 0055 1400 0070 1343 00249 2060 06507900 1150 0040 1200 0065 1324 00279 2120 06708200 1130 0074 1010 0100 1324 00308 2130 06808500 1300 0090 1300 0215 1336 00336 2150 06908700 1400 0100 2400 0290 1366 00356 2160 06909000 1700 0140 2560 0370 1373 00365 2170 07009200 1720 0150 2200 0420 1356 00371 2180 07009500 1730 0162 1950 0160 1339 00368 2190 07109800 1740 0162 1870 0095 1324 00388 2200 071510000 1750 0162 1820 0090 1310 00406 2210 072010591 1620 0120 1760 0070 1271 00522 2220 073011000 1620 0105 1720 0050 1246 00731 2230 073011500 1590 0100 1670 0047 1227 0105 2240 074012500 1510 0090 1620 0053 1208 0190 2270 075013000 1470 0100 1620 0055 1221 0223 2280 076014000 1520 0085 1560 0073 1267 0271 2310 077514800 1570 0100 1440 0100 1307 0292 2330 0790

8 Mathematical Problems in Engineering

Table 4 Continued

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

15000 1570 0100 1420 0200 1321 0297 2330 079016400 1600 0100 1750 0160 1407 0331 2360 081017200 1630 0100 2080 0240 1487 0341 2380 082018000 1640 0115 1980 0180 1525 0341 2400 082518500 1640 0120 1850 0170 1536 0339 2410 083020000 1680 0220 2120 0220 1560 0324 2450 085021300 1770 0280 2060 0230 1568 0318 2460 086022500 1900 0280 2000 0240 1579 0316 2480 087025000 1970 0240 1880 0280 1596 0313 2510 089027900 1890 0320 1840 0290 1612 0320 2540 091030000 1800 0420 1820 0300 1614 0320 2570 093035000 1900 0500 1920 0400 1597 0383 2630 097040000 2100 0600 1860 0500 1582 0561 2690 1000

180 200 220 240 260 280 3000

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

Concentration increasedConcentration decreased

(a) Atmosphere temperature field (0ndash50 km)

0

2

4

6

8

10

Alti

tude

(km

)

180 200 220 240 260 280 300Temperature (K)

Concentration increasedConcentration decreased

(b) Atmosphere temperature field (0ndash10 km)

Figure 5 Influence of the aerosol concentration on atmospheric temperature

being in different height medium layers The calculationconditions are as follows the aerosol particles distribute inthe height of 0sim1 km 1sim3 km and 3sim9 km respectively Thecalculation results are in Figure 6

From the calculation results in Figure 6 it can be seenthat with the aerosol particles transporting to the highaltitude the atmospheric temperature is affected greatly ifthe radiation characteristics of the aerosol particles have nochanges With the distribution height of the aerosol particlesincreasing the medium temperature above themedium layerin which the aerosol particles exist increases greatly but thebelow temperature decreases obviously This phenomenonshows the scattering effect of the aerosol particles on the

solar radiation energy that is as the scattering effect of theatmospheric aerosols most of the solar radiation energy tothe ground is scattered back to the high altitude and cannotreach lower atmosphere which causes the lower atmospherictemperature to decrease to about 200K

4 Conclusion

We analyzed the influence of the aerosol particles charac-teristics on the atmospheric radiation transfer model Theresults showed the different effect of aerosol types on theatmospheric radiation The dust marine and water-soluble

Mathematical Problems in Engineering 9

0

10

20

30

40

50A

ltitu

de (k

m)

180 200 220 240 260 280 300Temperature (K)

0-1 km1ndash3 km3ndash9 km

Figure 6 Influence of temperature fields on different aerosoldistribution altitude

aerosols had negative effects on the atmospheric absorptionbut the soot aerosol could increase the atmospheric absorp-tionThe scattering phase functions affected the ground tem-perature The variation of the aerosol particles distributionheight could determine the atmospheric temperature that isthe ground temperature decreased greatly with the aerosolparticles existing in the high altitude stable

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work was supported by the Foundation for InnovativeResearch Groups of the National Natural Science Foundationof China (Grant no 51121004) and the National NaturalScience Foundation of China (Grant nos 51176040 and51276193) A very special acknowledgement is made to theeditors and referees who made important comments toimprove this paper

References

[1] M Schulz C Textor S Kinne et al ldquoRadiative forcing byaerosols as derived from the AeroCom present-day and pre-industrial simulationsrdquoAtmospheric Chemistry and Physics vol6 pp 5225ndash5246 2006

[2] U Lohmann and J Feichter ldquoGlobal indirect aerosol effects areviewrdquo Atmospheric Chemistry and Physics vol 5 pp 715ndash7372005

[3] I Koren Y J Kaufman L A Remer and J V MartinsldquoMeasurement of the effect of Amazon smoke on inhibitionof cloud formationrdquo Science vol 303 no 5662 pp 1342ndash13452004

[4] W W Qing R S Chen and W M Sun ldquoEstimation of globalradiation in China and comparison with satellite productrdquoEnvironmental Earth Sciences vol 70 no 4 pp 1681ndash1687 2013

[5] X S Wang ldquoMetal geochemical and mineral magnetic char-acterization of the lt25 lm fraction of urban soils in Xuzhou(China)rdquo Environmental Earth Sciences vol 71 no 8 pp 3491ndash3501 2014

[6] L David B Nacer B Pascal and J Gerard ldquoTransient radiativeand conductive heat transfer in non-gray semitransparent two-dimensional media withmixed boundary conditionsrdquoHeat andMass Transfer vol 42 no 4 pp 322ndash337 2006

[7] S Dembele K L M Lima and J X Wen ldquoAssessment of anunstructured exponential scheme discrete ordinates radiationmodel for non-gray mediardquoHeat and Mass Transfer vol 47 no11 pp 1349ndash1362 2011

[8] P Talukdar F V Issendorff D Trimis and C J SimonsonldquoConduction-radiation interaction in 3D irregular enclosuresusing the finite volume methodrdquo Heat and Mass Transfer vol44 no 6 pp 695ndash704 2008

[9] C-Y Wu ldquoMonte Carlo simulation of radiative transfer in arefractive layeredmediumrdquoHeat andMass Transfer vol 46 no6 pp 607ndash613 2010

[10] J H Jeans ldquoThe equations of radiative transfer of energyrdquoMonthly Notices Royal Astronomical Society vol 78 pp 28ndash361917

[11] B DavisonNeutron TransportTheory Oxford University PressLondon UK 1958

[12] V Kourganoff Basic Methods in Transfer Problems Dover NewYork NY USA 1963

[13] H Khouaja D R Edwards and N Tsoulfanidis ldquoSphericalharmonicsmdashfinite element treatment of neutron transport incylindrical geometryrdquo Annals of Nuclear Energy vol 24 no 7pp 515ndash531 1997

[14] E W Larsen G Thommes A Klar M Seaıd and T GotzldquoSimplified 119875

119899

approximations to the equations of radiative heattransfer and applicationrdquo Journal of Computational Physics vol183 no 2 pp 652ndash675 2002

[15] R GMcClarren and C D Hauck ldquoRobust and accurate filteredspherical harmonics expansions for radiative transferrdquo Journalof Computational Physics vol 229 no 16 pp 5597ndash5614 2010

[16] M F Modest Radiative Heat Transfer Academic Press Ams-terdam The Netherlands 2nd edition 2003

[17] R Siegel and C M Spuckler ldquoRefractive index effects onradiation in an absorbing emitting and scattering laminatedlayerrdquo Journal of Heat Transfer vol 115 pp 194ndash200 1993

[18] Q Z Yu Principles of Radiative Heat Transfer Harbin Instituteof Technology Press Harbin China 2000

[19] G Y Shi Atmospheric Radiology Science Press Beijing China2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Study on the Influence of Aerosol ...downloads.hindawi.com/journals/mpe/2014/767231.pdf · Research Article Study on the Influence of Aerosol Radiation Balance in

Mathematical Problems in Engineering 5

Δxn

S+infinSminus infin S2S1

T+infin

Pnminus1

Tg2

Mt + 1Mtsum nminus1

i=1Mi + In

nnn2n1

sum nminus1

i=1Mi

middot middot middot

M1 + 1 M1 + 2M1I1

Δx2

2

Δxn

2Δx1

Δx1

2

xS1

I1

xP1

I2x

P119899minus1

I119899

xS1

I+11x

P1

I+11x

P119899minus1

I+1119899

xS2

I+1119899

LnL2 + L3 + middot middot middot + Lnminus1L1

Tminus infin

P1

Tg1

h1 h2

10 2

01

Figure 2 Physical model of one plane-parallel slab divided into 119899 sublayers

180 200 220 240 260 280 300 3200

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

MarineSoot

Water-solubleDust

(a) Atmosphere temperature field (0ndash50 km)

Alti

tude

(km

)

0

2

4

6

8

10

180 200 220 240 260 280 300 320Temperature (K)

MarineSoot

Water-solubleDust

(b) Atmosphere temperature field (0ndash10 km)

Figure 3 Influence of aerosols species on temperature fields

1225 kgm2) with the temperature fluctuating in small rangeTherefore the equation is as follows

120588 =

1205880

1199010

sdot 119901 =

1225

101325

sdot 119901 = 120898 times 10minus5

sdot 119901 (15)

Table 3 gives the wavelength range of each spectral bandThe atmosphere optical thicknesses of the layers at differentspectral bands are obtained from the HITRAN databaseunder the standard atmospheric condition of America in1976 The aerosol optical thicknesses are decided based onthe Mie scattering theory using the typical aerosol particlessize distribution assumption and combining the complex

refractive index of different aerosol species Table 3 liststhe spectral optical thicknesses of the dust aerosol and thescattering albedo parameters in the height of 0-1 km Theother parameters are not given in this paper as there are toomuch data

Table 4 gives the complex refractive index of differentaerosols

31 The Influence of Aerosol Species Variation Figure 3 showsthe influence of four aerosol species (dust soot marine andwater-soluble) on the atmospheric temperature The aerosol

6 Mathematical Problems in Engineering

180 200 220 240 260 280 3000

10

20

30

40

50A

ltitu

de (k

m)

Temperature (K)

Isotropic scatteringForward scatteringBack scattering

(a) Atmosphere temperature field (0ndash50km)

minus4 minus2 0 2 4Temperature (K)

Forward scatteringBack scattering

0

10

20

30

40

50

Alti

tude

(km

)

(b) Temperature difference betweendifferent scattering phase functionsand isotropic scattering

Figure 4 Influence of scattering phase function change on atmospheric temperature

Table 3 Spectral bands for the atmospheric radiative transfermodeland radiative characteristic parameters under the standard dustaerosol in the height of 0-1 km

Band number Wavelengthrange (120583m)

Opticalthickness Albedo

1 02sim05 9292 0862 05sim08 1230 0883 08sim125 442 0864 125sim159 4328 0805 159sim222 427 0486 222sim345 2365 0077 345sim50 9393 0028 50sim100 35322 0009 100sim1111 1251 01110 1111sim1299 162 04511 1299sim200 3529 00112 200sim500 95133 000

particle size distribution function is the multilognormaldistribution

From the results in the figure we can see that as the dif-ferent scattering effect of the aerosol particles their influenceon the temperature is greatly different Compared with dustaerosol the marine and water-soluble aerosol particles havestronger scattering effect They will scatter upwards moreradiation energy and decrease the atmospheric temperatureThe soot particles have stronger absorption and their exis-tence will cause the atmospheric temperature increasing

32 The Influence of the Scattering Phase Function VariationThe aerosol particles scattering characteristics are considered

as forward and back scatter (the scattering phase functionsare Φ1

(Θ) and Φ2

(Θ) resp see (16) and (17)) Other param-eters are not changed The results are shown in Figure 4

Φ1

(Θ) = 1 + 1198751

(cosΘ) (16)

Φ2

(Θ) = 1 minus 1198751

(cosΘ) (17)

It can be seen from Figure 4(a) that compared with theanisotropic scattering the variation in the scattering phasefunctions causes the atmospheric temperature to change Butthe effect is not obvious Figure 4(b) shows the differencevalue between the atmospheric temperature fields and theisotropic scattering with different scattering phase functionsFrom the figure we can see that the forward and back scattershave opposite effect on the atmospheric temperature fieldsbut the effect degree is similar

33 The Influence of the Aerosol Particles Concentration Theaerosol particles transport with the tropospheric movementwill cause the aerosol particles concentrations to vary InFigure 5 we consider the influence of the variation in totalparticles number concentrations and the particles numberconcentrations are increased or decreased by 50 So theradiation characteristics of the aerosol particles are changedthe atmospheric energy balance is affected and then theatmospheric temperature fields are influenced From theresults it can be seen that the variation in aerosol particlesconcentrations can affect the atmospheric temperature butnot obviously compared with other factors

34 The Influence of the Height Distribution of Aerosol Parti-cles We investigate the effect of the medium layer height onthe aerosol particles size distribution that is the atmosphericradiation temperature fields change with the aerosol particles

Mathematical Problems in Engineering 7

Table 4 Complex refractive index of different wavelength for different aerosol types [19]

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

0200 1530 0070 1530 0070 1429 287119864 minus 5 1500 03500250 1530 0030 1530 0030 1404 145119864 minus 6 1620 04500300 1530 0008 1530 0008 1395 583119864 minus 6 1740 04700337 1530 0008 1530 0005 1392 120119864 minus 7 1750 04700400 1530 0008 1530 0005 1385 990119864 minus 9 1750 04600488 1530 0008 1530 0005 1382 641119864 minus 9 1750 04500515 1530 0008 1530 0005 1381 370119864 minus 9 1750 04500550 1530 0008 1530 0006 1381 426119864 minus 9 1750 04400633 1530 0008 1530 0006 1377 162119864 minus 8 1750 04300694 1530 0008 1530 0007 1376 504119864 minus 8 1750 04300860 1520 0008 1520 0012 1372 109119864 minus 6 1750 04301060 1520 0008 1520 0017 1367 601119864 minus 5 1750 04401300 1460 0008 1510 0020 1365 141119864 minus 4 1760 04501536 1400 0008 1510 0023 1359 243119864 minus 4 1770 04601800 1330 0008 1460 0017 1351 311119864 minus 4 1790 04802000 1260 0008 1420 0008 1347 000107 1800 04902250 1220 0009 1420 0010 1334 850119864 minus 4 1810 05002500 1180 0009 1420 0012 1309 000239 1820 05102700 1180 0013 1400 0055 1249 00156 1830 05203000 1160 0012 1420 0022 1439 0197 1840 05403200 1220 0010 1430 0008 1481 00669 1860 05403392 1260 0013 1430 0007 1439 00151 1870 05503500 1280 0011 1450 0005 1423 000717 1880 05603750 1270 0011 1452 0004 1398 00029 1900 05704000 1260 0012 1455 0005 1388 000369 1920 05804500 1260 0014 1460 0013 1377 000997 1940 05905000 1250 0016 1450 0012 1366 000957 1970 06005500 1220 0021 1440 0018 1333 000931 1990 06106000 1150 0037 1410 0023 1306 00796 2020 06206200 1140 0039 1430 0027 1431 00691 2030 06256500 1130 0042 1460 0033 1374 00294 2040 06307200 1400 0055 1400 0070 1343 00249 2060 06507900 1150 0040 1200 0065 1324 00279 2120 06708200 1130 0074 1010 0100 1324 00308 2130 06808500 1300 0090 1300 0215 1336 00336 2150 06908700 1400 0100 2400 0290 1366 00356 2160 06909000 1700 0140 2560 0370 1373 00365 2170 07009200 1720 0150 2200 0420 1356 00371 2180 07009500 1730 0162 1950 0160 1339 00368 2190 07109800 1740 0162 1870 0095 1324 00388 2200 071510000 1750 0162 1820 0090 1310 00406 2210 072010591 1620 0120 1760 0070 1271 00522 2220 073011000 1620 0105 1720 0050 1246 00731 2230 073011500 1590 0100 1670 0047 1227 0105 2240 074012500 1510 0090 1620 0053 1208 0190 2270 075013000 1470 0100 1620 0055 1221 0223 2280 076014000 1520 0085 1560 0073 1267 0271 2310 077514800 1570 0100 1440 0100 1307 0292 2330 0790

8 Mathematical Problems in Engineering

Table 4 Continued

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

15000 1570 0100 1420 0200 1321 0297 2330 079016400 1600 0100 1750 0160 1407 0331 2360 081017200 1630 0100 2080 0240 1487 0341 2380 082018000 1640 0115 1980 0180 1525 0341 2400 082518500 1640 0120 1850 0170 1536 0339 2410 083020000 1680 0220 2120 0220 1560 0324 2450 085021300 1770 0280 2060 0230 1568 0318 2460 086022500 1900 0280 2000 0240 1579 0316 2480 087025000 1970 0240 1880 0280 1596 0313 2510 089027900 1890 0320 1840 0290 1612 0320 2540 091030000 1800 0420 1820 0300 1614 0320 2570 093035000 1900 0500 1920 0400 1597 0383 2630 097040000 2100 0600 1860 0500 1582 0561 2690 1000

180 200 220 240 260 280 3000

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

Concentration increasedConcentration decreased

(a) Atmosphere temperature field (0ndash50 km)

0

2

4

6

8

10

Alti

tude

(km

)

180 200 220 240 260 280 300Temperature (K)

Concentration increasedConcentration decreased

(b) Atmosphere temperature field (0ndash10 km)

Figure 5 Influence of the aerosol concentration on atmospheric temperature

being in different height medium layers The calculationconditions are as follows the aerosol particles distribute inthe height of 0sim1 km 1sim3 km and 3sim9 km respectively Thecalculation results are in Figure 6

From the calculation results in Figure 6 it can be seenthat with the aerosol particles transporting to the highaltitude the atmospheric temperature is affected greatly ifthe radiation characteristics of the aerosol particles have nochanges With the distribution height of the aerosol particlesincreasing the medium temperature above themedium layerin which the aerosol particles exist increases greatly but thebelow temperature decreases obviously This phenomenonshows the scattering effect of the aerosol particles on the

solar radiation energy that is as the scattering effect of theatmospheric aerosols most of the solar radiation energy tothe ground is scattered back to the high altitude and cannotreach lower atmosphere which causes the lower atmospherictemperature to decrease to about 200K

4 Conclusion

We analyzed the influence of the aerosol particles charac-teristics on the atmospheric radiation transfer model Theresults showed the different effect of aerosol types on theatmospheric radiation The dust marine and water-soluble

Mathematical Problems in Engineering 9

0

10

20

30

40

50A

ltitu

de (k

m)

180 200 220 240 260 280 300Temperature (K)

0-1 km1ndash3 km3ndash9 km

Figure 6 Influence of temperature fields on different aerosoldistribution altitude

aerosols had negative effects on the atmospheric absorptionbut the soot aerosol could increase the atmospheric absorp-tionThe scattering phase functions affected the ground tem-perature The variation of the aerosol particles distributionheight could determine the atmospheric temperature that isthe ground temperature decreased greatly with the aerosolparticles existing in the high altitude stable

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work was supported by the Foundation for InnovativeResearch Groups of the National Natural Science Foundationof China (Grant no 51121004) and the National NaturalScience Foundation of China (Grant nos 51176040 and51276193) A very special acknowledgement is made to theeditors and referees who made important comments toimprove this paper

References

[1] M Schulz C Textor S Kinne et al ldquoRadiative forcing byaerosols as derived from the AeroCom present-day and pre-industrial simulationsrdquoAtmospheric Chemistry and Physics vol6 pp 5225ndash5246 2006

[2] U Lohmann and J Feichter ldquoGlobal indirect aerosol effects areviewrdquo Atmospheric Chemistry and Physics vol 5 pp 715ndash7372005

[3] I Koren Y J Kaufman L A Remer and J V MartinsldquoMeasurement of the effect of Amazon smoke on inhibitionof cloud formationrdquo Science vol 303 no 5662 pp 1342ndash13452004

[4] W W Qing R S Chen and W M Sun ldquoEstimation of globalradiation in China and comparison with satellite productrdquoEnvironmental Earth Sciences vol 70 no 4 pp 1681ndash1687 2013

[5] X S Wang ldquoMetal geochemical and mineral magnetic char-acterization of the lt25 lm fraction of urban soils in Xuzhou(China)rdquo Environmental Earth Sciences vol 71 no 8 pp 3491ndash3501 2014

[6] L David B Nacer B Pascal and J Gerard ldquoTransient radiativeand conductive heat transfer in non-gray semitransparent two-dimensional media withmixed boundary conditionsrdquoHeat andMass Transfer vol 42 no 4 pp 322ndash337 2006

[7] S Dembele K L M Lima and J X Wen ldquoAssessment of anunstructured exponential scheme discrete ordinates radiationmodel for non-gray mediardquoHeat and Mass Transfer vol 47 no11 pp 1349ndash1362 2011

[8] P Talukdar F V Issendorff D Trimis and C J SimonsonldquoConduction-radiation interaction in 3D irregular enclosuresusing the finite volume methodrdquo Heat and Mass Transfer vol44 no 6 pp 695ndash704 2008

[9] C-Y Wu ldquoMonte Carlo simulation of radiative transfer in arefractive layeredmediumrdquoHeat andMass Transfer vol 46 no6 pp 607ndash613 2010

[10] J H Jeans ldquoThe equations of radiative transfer of energyrdquoMonthly Notices Royal Astronomical Society vol 78 pp 28ndash361917

[11] B DavisonNeutron TransportTheory Oxford University PressLondon UK 1958

[12] V Kourganoff Basic Methods in Transfer Problems Dover NewYork NY USA 1963

[13] H Khouaja D R Edwards and N Tsoulfanidis ldquoSphericalharmonicsmdashfinite element treatment of neutron transport incylindrical geometryrdquo Annals of Nuclear Energy vol 24 no 7pp 515ndash531 1997

[14] E W Larsen G Thommes A Klar M Seaıd and T GotzldquoSimplified 119875

119899

approximations to the equations of radiative heattransfer and applicationrdquo Journal of Computational Physics vol183 no 2 pp 652ndash675 2002

[15] R GMcClarren and C D Hauck ldquoRobust and accurate filteredspherical harmonics expansions for radiative transferrdquo Journalof Computational Physics vol 229 no 16 pp 5597ndash5614 2010

[16] M F Modest Radiative Heat Transfer Academic Press Ams-terdam The Netherlands 2nd edition 2003

[17] R Siegel and C M Spuckler ldquoRefractive index effects onradiation in an absorbing emitting and scattering laminatedlayerrdquo Journal of Heat Transfer vol 115 pp 194ndash200 1993

[18] Q Z Yu Principles of Radiative Heat Transfer Harbin Instituteof Technology Press Harbin China 2000

[19] G Y Shi Atmospheric Radiology Science Press Beijing China2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Study on the Influence of Aerosol ...downloads.hindawi.com/journals/mpe/2014/767231.pdf · Research Article Study on the Influence of Aerosol Radiation Balance in

6 Mathematical Problems in Engineering

180 200 220 240 260 280 3000

10

20

30

40

50A

ltitu

de (k

m)

Temperature (K)

Isotropic scatteringForward scatteringBack scattering

(a) Atmosphere temperature field (0ndash50km)

minus4 minus2 0 2 4Temperature (K)

Forward scatteringBack scattering

0

10

20

30

40

50

Alti

tude

(km

)

(b) Temperature difference betweendifferent scattering phase functionsand isotropic scattering

Figure 4 Influence of scattering phase function change on atmospheric temperature

Table 3 Spectral bands for the atmospheric radiative transfermodeland radiative characteristic parameters under the standard dustaerosol in the height of 0-1 km

Band number Wavelengthrange (120583m)

Opticalthickness Albedo

1 02sim05 9292 0862 05sim08 1230 0883 08sim125 442 0864 125sim159 4328 0805 159sim222 427 0486 222sim345 2365 0077 345sim50 9393 0028 50sim100 35322 0009 100sim1111 1251 01110 1111sim1299 162 04511 1299sim200 3529 00112 200sim500 95133 000

particle size distribution function is the multilognormaldistribution

From the results in the figure we can see that as the dif-ferent scattering effect of the aerosol particles their influenceon the temperature is greatly different Compared with dustaerosol the marine and water-soluble aerosol particles havestronger scattering effect They will scatter upwards moreradiation energy and decrease the atmospheric temperatureThe soot particles have stronger absorption and their exis-tence will cause the atmospheric temperature increasing

32 The Influence of the Scattering Phase Function VariationThe aerosol particles scattering characteristics are considered

as forward and back scatter (the scattering phase functionsare Φ1

(Θ) and Φ2

(Θ) resp see (16) and (17)) Other param-eters are not changed The results are shown in Figure 4

Φ1

(Θ) = 1 + 1198751

(cosΘ) (16)

Φ2

(Θ) = 1 minus 1198751

(cosΘ) (17)

It can be seen from Figure 4(a) that compared with theanisotropic scattering the variation in the scattering phasefunctions causes the atmospheric temperature to change Butthe effect is not obvious Figure 4(b) shows the differencevalue between the atmospheric temperature fields and theisotropic scattering with different scattering phase functionsFrom the figure we can see that the forward and back scattershave opposite effect on the atmospheric temperature fieldsbut the effect degree is similar

33 The Influence of the Aerosol Particles Concentration Theaerosol particles transport with the tropospheric movementwill cause the aerosol particles concentrations to vary InFigure 5 we consider the influence of the variation in totalparticles number concentrations and the particles numberconcentrations are increased or decreased by 50 So theradiation characteristics of the aerosol particles are changedthe atmospheric energy balance is affected and then theatmospheric temperature fields are influenced From theresults it can be seen that the variation in aerosol particlesconcentrations can affect the atmospheric temperature butnot obviously compared with other factors

34 The Influence of the Height Distribution of Aerosol Parti-cles We investigate the effect of the medium layer height onthe aerosol particles size distribution that is the atmosphericradiation temperature fields change with the aerosol particles

Mathematical Problems in Engineering 7

Table 4 Complex refractive index of different wavelength for different aerosol types [19]

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

0200 1530 0070 1530 0070 1429 287119864 minus 5 1500 03500250 1530 0030 1530 0030 1404 145119864 minus 6 1620 04500300 1530 0008 1530 0008 1395 583119864 minus 6 1740 04700337 1530 0008 1530 0005 1392 120119864 minus 7 1750 04700400 1530 0008 1530 0005 1385 990119864 minus 9 1750 04600488 1530 0008 1530 0005 1382 641119864 minus 9 1750 04500515 1530 0008 1530 0005 1381 370119864 minus 9 1750 04500550 1530 0008 1530 0006 1381 426119864 minus 9 1750 04400633 1530 0008 1530 0006 1377 162119864 minus 8 1750 04300694 1530 0008 1530 0007 1376 504119864 minus 8 1750 04300860 1520 0008 1520 0012 1372 109119864 minus 6 1750 04301060 1520 0008 1520 0017 1367 601119864 minus 5 1750 04401300 1460 0008 1510 0020 1365 141119864 minus 4 1760 04501536 1400 0008 1510 0023 1359 243119864 minus 4 1770 04601800 1330 0008 1460 0017 1351 311119864 minus 4 1790 04802000 1260 0008 1420 0008 1347 000107 1800 04902250 1220 0009 1420 0010 1334 850119864 minus 4 1810 05002500 1180 0009 1420 0012 1309 000239 1820 05102700 1180 0013 1400 0055 1249 00156 1830 05203000 1160 0012 1420 0022 1439 0197 1840 05403200 1220 0010 1430 0008 1481 00669 1860 05403392 1260 0013 1430 0007 1439 00151 1870 05503500 1280 0011 1450 0005 1423 000717 1880 05603750 1270 0011 1452 0004 1398 00029 1900 05704000 1260 0012 1455 0005 1388 000369 1920 05804500 1260 0014 1460 0013 1377 000997 1940 05905000 1250 0016 1450 0012 1366 000957 1970 06005500 1220 0021 1440 0018 1333 000931 1990 06106000 1150 0037 1410 0023 1306 00796 2020 06206200 1140 0039 1430 0027 1431 00691 2030 06256500 1130 0042 1460 0033 1374 00294 2040 06307200 1400 0055 1400 0070 1343 00249 2060 06507900 1150 0040 1200 0065 1324 00279 2120 06708200 1130 0074 1010 0100 1324 00308 2130 06808500 1300 0090 1300 0215 1336 00336 2150 06908700 1400 0100 2400 0290 1366 00356 2160 06909000 1700 0140 2560 0370 1373 00365 2170 07009200 1720 0150 2200 0420 1356 00371 2180 07009500 1730 0162 1950 0160 1339 00368 2190 07109800 1740 0162 1870 0095 1324 00388 2200 071510000 1750 0162 1820 0090 1310 00406 2210 072010591 1620 0120 1760 0070 1271 00522 2220 073011000 1620 0105 1720 0050 1246 00731 2230 073011500 1590 0100 1670 0047 1227 0105 2240 074012500 1510 0090 1620 0053 1208 0190 2270 075013000 1470 0100 1620 0055 1221 0223 2280 076014000 1520 0085 1560 0073 1267 0271 2310 077514800 1570 0100 1440 0100 1307 0292 2330 0790

8 Mathematical Problems in Engineering

Table 4 Continued

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

15000 1570 0100 1420 0200 1321 0297 2330 079016400 1600 0100 1750 0160 1407 0331 2360 081017200 1630 0100 2080 0240 1487 0341 2380 082018000 1640 0115 1980 0180 1525 0341 2400 082518500 1640 0120 1850 0170 1536 0339 2410 083020000 1680 0220 2120 0220 1560 0324 2450 085021300 1770 0280 2060 0230 1568 0318 2460 086022500 1900 0280 2000 0240 1579 0316 2480 087025000 1970 0240 1880 0280 1596 0313 2510 089027900 1890 0320 1840 0290 1612 0320 2540 091030000 1800 0420 1820 0300 1614 0320 2570 093035000 1900 0500 1920 0400 1597 0383 2630 097040000 2100 0600 1860 0500 1582 0561 2690 1000

180 200 220 240 260 280 3000

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

Concentration increasedConcentration decreased

(a) Atmosphere temperature field (0ndash50 km)

0

2

4

6

8

10

Alti

tude

(km

)

180 200 220 240 260 280 300Temperature (K)

Concentration increasedConcentration decreased

(b) Atmosphere temperature field (0ndash10 km)

Figure 5 Influence of the aerosol concentration on atmospheric temperature

being in different height medium layers The calculationconditions are as follows the aerosol particles distribute inthe height of 0sim1 km 1sim3 km and 3sim9 km respectively Thecalculation results are in Figure 6

From the calculation results in Figure 6 it can be seenthat with the aerosol particles transporting to the highaltitude the atmospheric temperature is affected greatly ifthe radiation characteristics of the aerosol particles have nochanges With the distribution height of the aerosol particlesincreasing the medium temperature above themedium layerin which the aerosol particles exist increases greatly but thebelow temperature decreases obviously This phenomenonshows the scattering effect of the aerosol particles on the

solar radiation energy that is as the scattering effect of theatmospheric aerosols most of the solar radiation energy tothe ground is scattered back to the high altitude and cannotreach lower atmosphere which causes the lower atmospherictemperature to decrease to about 200K

4 Conclusion

We analyzed the influence of the aerosol particles charac-teristics on the atmospheric radiation transfer model Theresults showed the different effect of aerosol types on theatmospheric radiation The dust marine and water-soluble

Mathematical Problems in Engineering 9

0

10

20

30

40

50A

ltitu

de (k

m)

180 200 220 240 260 280 300Temperature (K)

0-1 km1ndash3 km3ndash9 km

Figure 6 Influence of temperature fields on different aerosoldistribution altitude

aerosols had negative effects on the atmospheric absorptionbut the soot aerosol could increase the atmospheric absorp-tionThe scattering phase functions affected the ground tem-perature The variation of the aerosol particles distributionheight could determine the atmospheric temperature that isthe ground temperature decreased greatly with the aerosolparticles existing in the high altitude stable

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work was supported by the Foundation for InnovativeResearch Groups of the National Natural Science Foundationof China (Grant no 51121004) and the National NaturalScience Foundation of China (Grant nos 51176040 and51276193) A very special acknowledgement is made to theeditors and referees who made important comments toimprove this paper

References

[1] M Schulz C Textor S Kinne et al ldquoRadiative forcing byaerosols as derived from the AeroCom present-day and pre-industrial simulationsrdquoAtmospheric Chemistry and Physics vol6 pp 5225ndash5246 2006

[2] U Lohmann and J Feichter ldquoGlobal indirect aerosol effects areviewrdquo Atmospheric Chemistry and Physics vol 5 pp 715ndash7372005

[3] I Koren Y J Kaufman L A Remer and J V MartinsldquoMeasurement of the effect of Amazon smoke on inhibitionof cloud formationrdquo Science vol 303 no 5662 pp 1342ndash13452004

[4] W W Qing R S Chen and W M Sun ldquoEstimation of globalradiation in China and comparison with satellite productrdquoEnvironmental Earth Sciences vol 70 no 4 pp 1681ndash1687 2013

[5] X S Wang ldquoMetal geochemical and mineral magnetic char-acterization of the lt25 lm fraction of urban soils in Xuzhou(China)rdquo Environmental Earth Sciences vol 71 no 8 pp 3491ndash3501 2014

[6] L David B Nacer B Pascal and J Gerard ldquoTransient radiativeand conductive heat transfer in non-gray semitransparent two-dimensional media withmixed boundary conditionsrdquoHeat andMass Transfer vol 42 no 4 pp 322ndash337 2006

[7] S Dembele K L M Lima and J X Wen ldquoAssessment of anunstructured exponential scheme discrete ordinates radiationmodel for non-gray mediardquoHeat and Mass Transfer vol 47 no11 pp 1349ndash1362 2011

[8] P Talukdar F V Issendorff D Trimis and C J SimonsonldquoConduction-radiation interaction in 3D irregular enclosuresusing the finite volume methodrdquo Heat and Mass Transfer vol44 no 6 pp 695ndash704 2008

[9] C-Y Wu ldquoMonte Carlo simulation of radiative transfer in arefractive layeredmediumrdquoHeat andMass Transfer vol 46 no6 pp 607ndash613 2010

[10] J H Jeans ldquoThe equations of radiative transfer of energyrdquoMonthly Notices Royal Astronomical Society vol 78 pp 28ndash361917

[11] B DavisonNeutron TransportTheory Oxford University PressLondon UK 1958

[12] V Kourganoff Basic Methods in Transfer Problems Dover NewYork NY USA 1963

[13] H Khouaja D R Edwards and N Tsoulfanidis ldquoSphericalharmonicsmdashfinite element treatment of neutron transport incylindrical geometryrdquo Annals of Nuclear Energy vol 24 no 7pp 515ndash531 1997

[14] E W Larsen G Thommes A Klar M Seaıd and T GotzldquoSimplified 119875

119899

approximations to the equations of radiative heattransfer and applicationrdquo Journal of Computational Physics vol183 no 2 pp 652ndash675 2002

[15] R GMcClarren and C D Hauck ldquoRobust and accurate filteredspherical harmonics expansions for radiative transferrdquo Journalof Computational Physics vol 229 no 16 pp 5597ndash5614 2010

[16] M F Modest Radiative Heat Transfer Academic Press Ams-terdam The Netherlands 2nd edition 2003

[17] R Siegel and C M Spuckler ldquoRefractive index effects onradiation in an absorbing emitting and scattering laminatedlayerrdquo Journal of Heat Transfer vol 115 pp 194ndash200 1993

[18] Q Z Yu Principles of Radiative Heat Transfer Harbin Instituteof Technology Press Harbin China 2000

[19] G Y Shi Atmospheric Radiology Science Press Beijing China2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Study on the Influence of Aerosol ...downloads.hindawi.com/journals/mpe/2014/767231.pdf · Research Article Study on the Influence of Aerosol Radiation Balance in

Mathematical Problems in Engineering 7

Table 4 Complex refractive index of different wavelength for different aerosol types [19]

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

0200 1530 0070 1530 0070 1429 287119864 minus 5 1500 03500250 1530 0030 1530 0030 1404 145119864 minus 6 1620 04500300 1530 0008 1530 0008 1395 583119864 minus 6 1740 04700337 1530 0008 1530 0005 1392 120119864 minus 7 1750 04700400 1530 0008 1530 0005 1385 990119864 minus 9 1750 04600488 1530 0008 1530 0005 1382 641119864 minus 9 1750 04500515 1530 0008 1530 0005 1381 370119864 minus 9 1750 04500550 1530 0008 1530 0006 1381 426119864 minus 9 1750 04400633 1530 0008 1530 0006 1377 162119864 minus 8 1750 04300694 1530 0008 1530 0007 1376 504119864 minus 8 1750 04300860 1520 0008 1520 0012 1372 109119864 minus 6 1750 04301060 1520 0008 1520 0017 1367 601119864 minus 5 1750 04401300 1460 0008 1510 0020 1365 141119864 minus 4 1760 04501536 1400 0008 1510 0023 1359 243119864 minus 4 1770 04601800 1330 0008 1460 0017 1351 311119864 minus 4 1790 04802000 1260 0008 1420 0008 1347 000107 1800 04902250 1220 0009 1420 0010 1334 850119864 minus 4 1810 05002500 1180 0009 1420 0012 1309 000239 1820 05102700 1180 0013 1400 0055 1249 00156 1830 05203000 1160 0012 1420 0022 1439 0197 1840 05403200 1220 0010 1430 0008 1481 00669 1860 05403392 1260 0013 1430 0007 1439 00151 1870 05503500 1280 0011 1450 0005 1423 000717 1880 05603750 1270 0011 1452 0004 1398 00029 1900 05704000 1260 0012 1455 0005 1388 000369 1920 05804500 1260 0014 1460 0013 1377 000997 1940 05905000 1250 0016 1450 0012 1366 000957 1970 06005500 1220 0021 1440 0018 1333 000931 1990 06106000 1150 0037 1410 0023 1306 00796 2020 06206200 1140 0039 1430 0027 1431 00691 2030 06256500 1130 0042 1460 0033 1374 00294 2040 06307200 1400 0055 1400 0070 1343 00249 2060 06507900 1150 0040 1200 0065 1324 00279 2120 06708200 1130 0074 1010 0100 1324 00308 2130 06808500 1300 0090 1300 0215 1336 00336 2150 06908700 1400 0100 2400 0290 1366 00356 2160 06909000 1700 0140 2560 0370 1373 00365 2170 07009200 1720 0150 2200 0420 1356 00371 2180 07009500 1730 0162 1950 0160 1339 00368 2190 07109800 1740 0162 1870 0095 1324 00388 2200 071510000 1750 0162 1820 0090 1310 00406 2210 072010591 1620 0120 1760 0070 1271 00522 2220 073011000 1620 0105 1720 0050 1246 00731 2230 073011500 1590 0100 1670 0047 1227 0105 2240 074012500 1510 0090 1620 0053 1208 0190 2270 075013000 1470 0100 1620 0055 1221 0223 2280 076014000 1520 0085 1560 0073 1267 0271 2310 077514800 1570 0100 1440 0100 1307 0292 2330 0790

8 Mathematical Problems in Engineering

Table 4 Continued

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

15000 1570 0100 1420 0200 1321 0297 2330 079016400 1600 0100 1750 0160 1407 0331 2360 081017200 1630 0100 2080 0240 1487 0341 2380 082018000 1640 0115 1980 0180 1525 0341 2400 082518500 1640 0120 1850 0170 1536 0339 2410 083020000 1680 0220 2120 0220 1560 0324 2450 085021300 1770 0280 2060 0230 1568 0318 2460 086022500 1900 0280 2000 0240 1579 0316 2480 087025000 1970 0240 1880 0280 1596 0313 2510 089027900 1890 0320 1840 0290 1612 0320 2540 091030000 1800 0420 1820 0300 1614 0320 2570 093035000 1900 0500 1920 0400 1597 0383 2630 097040000 2100 0600 1860 0500 1582 0561 2690 1000

180 200 220 240 260 280 3000

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

Concentration increasedConcentration decreased

(a) Atmosphere temperature field (0ndash50 km)

0

2

4

6

8

10

Alti

tude

(km

)

180 200 220 240 260 280 300Temperature (K)

Concentration increasedConcentration decreased

(b) Atmosphere temperature field (0ndash10 km)

Figure 5 Influence of the aerosol concentration on atmospheric temperature

being in different height medium layers The calculationconditions are as follows the aerosol particles distribute inthe height of 0sim1 km 1sim3 km and 3sim9 km respectively Thecalculation results are in Figure 6

From the calculation results in Figure 6 it can be seenthat with the aerosol particles transporting to the highaltitude the atmospheric temperature is affected greatly ifthe radiation characteristics of the aerosol particles have nochanges With the distribution height of the aerosol particlesincreasing the medium temperature above themedium layerin which the aerosol particles exist increases greatly but thebelow temperature decreases obviously This phenomenonshows the scattering effect of the aerosol particles on the

solar radiation energy that is as the scattering effect of theatmospheric aerosols most of the solar radiation energy tothe ground is scattered back to the high altitude and cannotreach lower atmosphere which causes the lower atmospherictemperature to decrease to about 200K

4 Conclusion

We analyzed the influence of the aerosol particles charac-teristics on the atmospheric radiation transfer model Theresults showed the different effect of aerosol types on theatmospheric radiation The dust marine and water-soluble

Mathematical Problems in Engineering 9

0

10

20

30

40

50A

ltitu

de (k

m)

180 200 220 240 260 280 300Temperature (K)

0-1 km1ndash3 km3ndash9 km

Figure 6 Influence of temperature fields on different aerosoldistribution altitude

aerosols had negative effects on the atmospheric absorptionbut the soot aerosol could increase the atmospheric absorp-tionThe scattering phase functions affected the ground tem-perature The variation of the aerosol particles distributionheight could determine the atmospheric temperature that isthe ground temperature decreased greatly with the aerosolparticles existing in the high altitude stable

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work was supported by the Foundation for InnovativeResearch Groups of the National Natural Science Foundationof China (Grant no 51121004) and the National NaturalScience Foundation of China (Grant nos 51176040 and51276193) A very special acknowledgement is made to theeditors and referees who made important comments toimprove this paper

References

[1] M Schulz C Textor S Kinne et al ldquoRadiative forcing byaerosols as derived from the AeroCom present-day and pre-industrial simulationsrdquoAtmospheric Chemistry and Physics vol6 pp 5225ndash5246 2006

[2] U Lohmann and J Feichter ldquoGlobal indirect aerosol effects areviewrdquo Atmospheric Chemistry and Physics vol 5 pp 715ndash7372005

[3] I Koren Y J Kaufman L A Remer and J V MartinsldquoMeasurement of the effect of Amazon smoke on inhibitionof cloud formationrdquo Science vol 303 no 5662 pp 1342ndash13452004

[4] W W Qing R S Chen and W M Sun ldquoEstimation of globalradiation in China and comparison with satellite productrdquoEnvironmental Earth Sciences vol 70 no 4 pp 1681ndash1687 2013

[5] X S Wang ldquoMetal geochemical and mineral magnetic char-acterization of the lt25 lm fraction of urban soils in Xuzhou(China)rdquo Environmental Earth Sciences vol 71 no 8 pp 3491ndash3501 2014

[6] L David B Nacer B Pascal and J Gerard ldquoTransient radiativeand conductive heat transfer in non-gray semitransparent two-dimensional media withmixed boundary conditionsrdquoHeat andMass Transfer vol 42 no 4 pp 322ndash337 2006

[7] S Dembele K L M Lima and J X Wen ldquoAssessment of anunstructured exponential scheme discrete ordinates radiationmodel for non-gray mediardquoHeat and Mass Transfer vol 47 no11 pp 1349ndash1362 2011

[8] P Talukdar F V Issendorff D Trimis and C J SimonsonldquoConduction-radiation interaction in 3D irregular enclosuresusing the finite volume methodrdquo Heat and Mass Transfer vol44 no 6 pp 695ndash704 2008

[9] C-Y Wu ldquoMonte Carlo simulation of radiative transfer in arefractive layeredmediumrdquoHeat andMass Transfer vol 46 no6 pp 607ndash613 2010

[10] J H Jeans ldquoThe equations of radiative transfer of energyrdquoMonthly Notices Royal Astronomical Society vol 78 pp 28ndash361917

[11] B DavisonNeutron TransportTheory Oxford University PressLondon UK 1958

[12] V Kourganoff Basic Methods in Transfer Problems Dover NewYork NY USA 1963

[13] H Khouaja D R Edwards and N Tsoulfanidis ldquoSphericalharmonicsmdashfinite element treatment of neutron transport incylindrical geometryrdquo Annals of Nuclear Energy vol 24 no 7pp 515ndash531 1997

[14] E W Larsen G Thommes A Klar M Seaıd and T GotzldquoSimplified 119875

119899

approximations to the equations of radiative heattransfer and applicationrdquo Journal of Computational Physics vol183 no 2 pp 652ndash675 2002

[15] R GMcClarren and C D Hauck ldquoRobust and accurate filteredspherical harmonics expansions for radiative transferrdquo Journalof Computational Physics vol 229 no 16 pp 5597ndash5614 2010

[16] M F Modest Radiative Heat Transfer Academic Press Ams-terdam The Netherlands 2nd edition 2003

[17] R Siegel and C M Spuckler ldquoRefractive index effects onradiation in an absorbing emitting and scattering laminatedlayerrdquo Journal of Heat Transfer vol 115 pp 194ndash200 1993

[18] Q Z Yu Principles of Radiative Heat Transfer Harbin Instituteof Technology Press Harbin China 2000

[19] G Y Shi Atmospheric Radiology Science Press Beijing China2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Study on the Influence of Aerosol ...downloads.hindawi.com/journals/mpe/2014/767231.pdf · Research Article Study on the Influence of Aerosol Radiation Balance in

8 Mathematical Problems in Engineering

Table 4 Continued

120582

Dust Water-soluble Marine Soot119899 119896 119899 119896 119899 119896 119899 119896

15000 1570 0100 1420 0200 1321 0297 2330 079016400 1600 0100 1750 0160 1407 0331 2360 081017200 1630 0100 2080 0240 1487 0341 2380 082018000 1640 0115 1980 0180 1525 0341 2400 082518500 1640 0120 1850 0170 1536 0339 2410 083020000 1680 0220 2120 0220 1560 0324 2450 085021300 1770 0280 2060 0230 1568 0318 2460 086022500 1900 0280 2000 0240 1579 0316 2480 087025000 1970 0240 1880 0280 1596 0313 2510 089027900 1890 0320 1840 0290 1612 0320 2540 091030000 1800 0420 1820 0300 1614 0320 2570 093035000 1900 0500 1920 0400 1597 0383 2630 097040000 2100 0600 1860 0500 1582 0561 2690 1000

180 200 220 240 260 280 3000

10

20

30

40

50

Alti

tude

(km

)

Temperature (K)

Concentration increasedConcentration decreased

(a) Atmosphere temperature field (0ndash50 km)

0

2

4

6

8

10

Alti

tude

(km

)

180 200 220 240 260 280 300Temperature (K)

Concentration increasedConcentration decreased

(b) Atmosphere temperature field (0ndash10 km)

Figure 5 Influence of the aerosol concentration on atmospheric temperature

being in different height medium layers The calculationconditions are as follows the aerosol particles distribute inthe height of 0sim1 km 1sim3 km and 3sim9 km respectively Thecalculation results are in Figure 6

From the calculation results in Figure 6 it can be seenthat with the aerosol particles transporting to the highaltitude the atmospheric temperature is affected greatly ifthe radiation characteristics of the aerosol particles have nochanges With the distribution height of the aerosol particlesincreasing the medium temperature above themedium layerin which the aerosol particles exist increases greatly but thebelow temperature decreases obviously This phenomenonshows the scattering effect of the aerosol particles on the

solar radiation energy that is as the scattering effect of theatmospheric aerosols most of the solar radiation energy tothe ground is scattered back to the high altitude and cannotreach lower atmosphere which causes the lower atmospherictemperature to decrease to about 200K

4 Conclusion

We analyzed the influence of the aerosol particles charac-teristics on the atmospheric radiation transfer model Theresults showed the different effect of aerosol types on theatmospheric radiation The dust marine and water-soluble

Mathematical Problems in Engineering 9

0

10

20

30

40

50A

ltitu

de (k

m)

180 200 220 240 260 280 300Temperature (K)

0-1 km1ndash3 km3ndash9 km

Figure 6 Influence of temperature fields on different aerosoldistribution altitude

aerosols had negative effects on the atmospheric absorptionbut the soot aerosol could increase the atmospheric absorp-tionThe scattering phase functions affected the ground tem-perature The variation of the aerosol particles distributionheight could determine the atmospheric temperature that isthe ground temperature decreased greatly with the aerosolparticles existing in the high altitude stable

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work was supported by the Foundation for InnovativeResearch Groups of the National Natural Science Foundationof China (Grant no 51121004) and the National NaturalScience Foundation of China (Grant nos 51176040 and51276193) A very special acknowledgement is made to theeditors and referees who made important comments toimprove this paper

References

[1] M Schulz C Textor S Kinne et al ldquoRadiative forcing byaerosols as derived from the AeroCom present-day and pre-industrial simulationsrdquoAtmospheric Chemistry and Physics vol6 pp 5225ndash5246 2006

[2] U Lohmann and J Feichter ldquoGlobal indirect aerosol effects areviewrdquo Atmospheric Chemistry and Physics vol 5 pp 715ndash7372005

[3] I Koren Y J Kaufman L A Remer and J V MartinsldquoMeasurement of the effect of Amazon smoke on inhibitionof cloud formationrdquo Science vol 303 no 5662 pp 1342ndash13452004

[4] W W Qing R S Chen and W M Sun ldquoEstimation of globalradiation in China and comparison with satellite productrdquoEnvironmental Earth Sciences vol 70 no 4 pp 1681ndash1687 2013

[5] X S Wang ldquoMetal geochemical and mineral magnetic char-acterization of the lt25 lm fraction of urban soils in Xuzhou(China)rdquo Environmental Earth Sciences vol 71 no 8 pp 3491ndash3501 2014

[6] L David B Nacer B Pascal and J Gerard ldquoTransient radiativeand conductive heat transfer in non-gray semitransparent two-dimensional media withmixed boundary conditionsrdquoHeat andMass Transfer vol 42 no 4 pp 322ndash337 2006

[7] S Dembele K L M Lima and J X Wen ldquoAssessment of anunstructured exponential scheme discrete ordinates radiationmodel for non-gray mediardquoHeat and Mass Transfer vol 47 no11 pp 1349ndash1362 2011

[8] P Talukdar F V Issendorff D Trimis and C J SimonsonldquoConduction-radiation interaction in 3D irregular enclosuresusing the finite volume methodrdquo Heat and Mass Transfer vol44 no 6 pp 695ndash704 2008

[9] C-Y Wu ldquoMonte Carlo simulation of radiative transfer in arefractive layeredmediumrdquoHeat andMass Transfer vol 46 no6 pp 607ndash613 2010

[10] J H Jeans ldquoThe equations of radiative transfer of energyrdquoMonthly Notices Royal Astronomical Society vol 78 pp 28ndash361917

[11] B DavisonNeutron TransportTheory Oxford University PressLondon UK 1958

[12] V Kourganoff Basic Methods in Transfer Problems Dover NewYork NY USA 1963

[13] H Khouaja D R Edwards and N Tsoulfanidis ldquoSphericalharmonicsmdashfinite element treatment of neutron transport incylindrical geometryrdquo Annals of Nuclear Energy vol 24 no 7pp 515ndash531 1997

[14] E W Larsen G Thommes A Klar M Seaıd and T GotzldquoSimplified 119875

119899

approximations to the equations of radiative heattransfer and applicationrdquo Journal of Computational Physics vol183 no 2 pp 652ndash675 2002

[15] R GMcClarren and C D Hauck ldquoRobust and accurate filteredspherical harmonics expansions for radiative transferrdquo Journalof Computational Physics vol 229 no 16 pp 5597ndash5614 2010

[16] M F Modest Radiative Heat Transfer Academic Press Ams-terdam The Netherlands 2nd edition 2003

[17] R Siegel and C M Spuckler ldquoRefractive index effects onradiation in an absorbing emitting and scattering laminatedlayerrdquo Journal of Heat Transfer vol 115 pp 194ndash200 1993

[18] Q Z Yu Principles of Radiative Heat Transfer Harbin Instituteof Technology Press Harbin China 2000

[19] G Y Shi Atmospheric Radiology Science Press Beijing China2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Study on the Influence of Aerosol ...downloads.hindawi.com/journals/mpe/2014/767231.pdf · Research Article Study on the Influence of Aerosol Radiation Balance in

Mathematical Problems in Engineering 9

0

10

20

30

40

50A

ltitu

de (k

m)

180 200 220 240 260 280 300Temperature (K)

0-1 km1ndash3 km3ndash9 km

Figure 6 Influence of temperature fields on different aerosoldistribution altitude

aerosols had negative effects on the atmospheric absorptionbut the soot aerosol could increase the atmospheric absorp-tionThe scattering phase functions affected the ground tem-perature The variation of the aerosol particles distributionheight could determine the atmospheric temperature that isthe ground temperature decreased greatly with the aerosolparticles existing in the high altitude stable

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work was supported by the Foundation for InnovativeResearch Groups of the National Natural Science Foundationof China (Grant no 51121004) and the National NaturalScience Foundation of China (Grant nos 51176040 and51276193) A very special acknowledgement is made to theeditors and referees who made important comments toimprove this paper

References

[1] M Schulz C Textor S Kinne et al ldquoRadiative forcing byaerosols as derived from the AeroCom present-day and pre-industrial simulationsrdquoAtmospheric Chemistry and Physics vol6 pp 5225ndash5246 2006

[2] U Lohmann and J Feichter ldquoGlobal indirect aerosol effects areviewrdquo Atmospheric Chemistry and Physics vol 5 pp 715ndash7372005

[3] I Koren Y J Kaufman L A Remer and J V MartinsldquoMeasurement of the effect of Amazon smoke on inhibitionof cloud formationrdquo Science vol 303 no 5662 pp 1342ndash13452004

[4] W W Qing R S Chen and W M Sun ldquoEstimation of globalradiation in China and comparison with satellite productrdquoEnvironmental Earth Sciences vol 70 no 4 pp 1681ndash1687 2013

[5] X S Wang ldquoMetal geochemical and mineral magnetic char-acterization of the lt25 lm fraction of urban soils in Xuzhou(China)rdquo Environmental Earth Sciences vol 71 no 8 pp 3491ndash3501 2014

[6] L David B Nacer B Pascal and J Gerard ldquoTransient radiativeand conductive heat transfer in non-gray semitransparent two-dimensional media withmixed boundary conditionsrdquoHeat andMass Transfer vol 42 no 4 pp 322ndash337 2006

[7] S Dembele K L M Lima and J X Wen ldquoAssessment of anunstructured exponential scheme discrete ordinates radiationmodel for non-gray mediardquoHeat and Mass Transfer vol 47 no11 pp 1349ndash1362 2011

[8] P Talukdar F V Issendorff D Trimis and C J SimonsonldquoConduction-radiation interaction in 3D irregular enclosuresusing the finite volume methodrdquo Heat and Mass Transfer vol44 no 6 pp 695ndash704 2008

[9] C-Y Wu ldquoMonte Carlo simulation of radiative transfer in arefractive layeredmediumrdquoHeat andMass Transfer vol 46 no6 pp 607ndash613 2010

[10] J H Jeans ldquoThe equations of radiative transfer of energyrdquoMonthly Notices Royal Astronomical Society vol 78 pp 28ndash361917

[11] B DavisonNeutron TransportTheory Oxford University PressLondon UK 1958

[12] V Kourganoff Basic Methods in Transfer Problems Dover NewYork NY USA 1963

[13] H Khouaja D R Edwards and N Tsoulfanidis ldquoSphericalharmonicsmdashfinite element treatment of neutron transport incylindrical geometryrdquo Annals of Nuclear Energy vol 24 no 7pp 515ndash531 1997

[14] E W Larsen G Thommes A Klar M Seaıd and T GotzldquoSimplified 119875

119899

approximations to the equations of radiative heattransfer and applicationrdquo Journal of Computational Physics vol183 no 2 pp 652ndash675 2002

[15] R GMcClarren and C D Hauck ldquoRobust and accurate filteredspherical harmonics expansions for radiative transferrdquo Journalof Computational Physics vol 229 no 16 pp 5597ndash5614 2010

[16] M F Modest Radiative Heat Transfer Academic Press Ams-terdam The Netherlands 2nd edition 2003

[17] R Siegel and C M Spuckler ldquoRefractive index effects onradiation in an absorbing emitting and scattering laminatedlayerrdquo Journal of Heat Transfer vol 115 pp 194ndash200 1993

[18] Q Z Yu Principles of Radiative Heat Transfer Harbin Instituteof Technology Press Harbin China 2000

[19] G Y Shi Atmospheric Radiology Science Press Beijing China2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Study on the Influence of Aerosol ...downloads.hindawi.com/journals/mpe/2014/767231.pdf · Research Article Study on the Influence of Aerosol Radiation Balance in

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended