+ All Categories
Home > Documents > Research Goals IKT-Pipe Jacking Simulator ND 1600 · • Eccentricity of the axial forces and...

Research Goals IKT-Pipe Jacking Simulator ND 1600 · • Eccentricity of the axial forces and...

Date post: 30-Apr-2020
Category:
Upload: others
View: 9 times
Download: 0 times
Share this document with a friend
2
Prof. Dr.-Ing. B. Falter Dipl.-Ing. F. Holthoff ___________________ Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600 1 / 10 Febr. 14-2007 Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600 IKT – Institute for Underground Infrastructure University of Applied Sciences Department of Civil Engineering Contractor: Client: Working Group for Structural Analysis and Computer Science - Preliminary Report - Prof. Dr.-Ing. B. Falter Dipl.-Ing. F. Holthoff ___________________ Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600 2 / 10 Febr. 14-2007 Finite Element Method is applicable for the explanation of coupled pipes displacement phenomenon, stress distribution in intermediate layers including non linear geometrical and physical behavior and forces and friction between pipe and soil Research Goals Assistance for experimental work to explain measurement phenomena like displacements and jacking forces, plan further steps and define needs of additional measure data Prof. Dr.-Ing. B. Falter Dipl.-Ing. F. Holthoff ___________________ Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600 3 / 10 Febr. 14-2007 1. Description of the Finite Element Model Bild 1: Isometrische Ansicht des FE-Modells 1. Description of the FE-Model 2. First results Load case „Curve“ 3. Conclusion y z x Springline, left Springline, right Fig. 1 Symmetric Finite Element Model with dimensions of the IKT- Pipe Jacking Simulator: ND 1600, L = 16.2 m Prof. Dr.-Ing. B. Falter Dipl.-Ing. F. Holthoff ___________________ Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600 4 / 10 Febr. 14-2007 1. Description of the FE-Model 2. First results Load case „Curve“ 3. Conclusion String of 5 pipes y x z Side bedding Intermediate wooden layer Concrete pipe Fig. 2 Meshed Finite Element Model Prof. Dr.-Ing. B. Falter Dipl.-Ing. F. Holthoff ___________________ Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600 5 / 10 Febr. 14-2007 2. First result, Load case „Curve“ Fig. 4 Finite Element Model for load case „Curve” 1. Description of the FE-Model 2. First results Load case „Curve“ 3. Conclusion Fig. 3 Pipe arrangement for load case „Curve“ = 191 mm R = 540 m x y F x Prof. Dr.-Ing. B. Falter Dipl.-Ing. F. Holthoff ___________________ Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600 6 / 10 Febr. 14-2007 end pipe rotation Fig. 6 Deformations in y-direction (scaling factor 15) 1. Description of the FE-Model 2. First results Load case „Curve“ 3. Conclusion y z x R = 540 m Fig. 5 Mises stresses for the load case „Curve” (scaling factor 1) y x z
Transcript
Page 1: Research Goals IKT-Pipe Jacking Simulator ND 1600 · • Eccentricity of the axial forces and rotation of the end pipes in curves • Bedding reactions of the end pipes in the surrounding

Prof. Dr.-Ing. B. FalterDipl.-Ing. F. Holthoff___________________

Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600

1 / 10 Febr. 14-2007

Numerical Modeling of theIKT-Pipe Jacking Simulator ND 1600

IKT – Institute for Underground Infrastructure

University of Applied SciencesDepartment of Civil Engineering

Contractor:

Client:

Working Group for Structural Analysis and Computer Science

- Preliminary Report -

Prof. Dr.-Ing. B. FalterDipl.-Ing. F. Holthoff___________________

Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600

2 / 10 Febr. 14-2007

Finite Element Method is applicable for the explanation of • coupled pipes displacement phenomenon,• stress distribution in intermediate layers including non

linear geometrical and physical behavior and • forces and friction between pipe and soil

Research Goals

Assistance for experimental work to • explain measurement phenomena like displacementsand jacking forces,

• plan further steps and • define needs of additional measure data

Prof. Dr.-Ing. B. FalterDipl.-Ing. F. Holthoff___________________

Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600

3 / 10 Febr. 14-2007

1. Description of the Finite Element Model

Bild 1: Isometrische Ansicht des FE-Modells

1. Description of the FE-Model

2. First resultsLoad case „Curve“

3. Conclusionyz

x

Springline, left

Springline, right

Fig. 1 Symmetric Finite Element Model with dimensions of the IKT-Pipe Jacking Simulator: ND 1600, L = 16.2 m

Prof. Dr.-Ing. B. FalterDipl.-Ing. F. Holthoff___________________

Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600

4 / 10 Febr. 14-2007

1. Description of the FE-Model

2. First resultsLoad case „Curve“

3. Conclusion

String of 5 pipes

y

x

z

Side bedding

Intermediate wooden layer

Concrete pipeFig. 2 Meshed Finite Element Model

Prof. Dr.-Ing. B. FalterDipl.-Ing. F. Holthoff___________________

Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600

5 / 10 Febr. 14-2007

2. First result, Load case „Curve“

Fig. 4 Finite Element Model for load case „Curve”

1. Description of the FE-Model

2. First resultsLoad case „Curve“

3. Conclusion

Fig. 3 Pipe arrangement for load case „Curve“

= 191 mm

R = 540 m

x

y

Fx

Prof. Dr.-Ing. B. FalterDipl.-Ing. F. Holthoff___________________

Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600

6 / 10 Febr. 14-2007

end pipe rotation

Fig. 6 Deformations in y-direction (scaling factor 15)

1. Description of the FE-Model

2. First resultsLoad case „Curve“

3. Conclusion

y

z x

R = 540 m

Fig. 5 Mises stresses for the load case „Curve” (scaling factor 1)

y

xz

Page 2: Research Goals IKT-Pipe Jacking Simulator ND 1600 · • Eccentricity of the axial forces and rotation of the end pipes in curves • Bedding reactions of the end pipes in the surrounding

Prof. Dr.-Ing. B. FalterDipl.-Ing. F. Holthoff___________________

Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600

7 / 10 Febr. 14-2007

Fig 7a Jacking forces Fy, measured at the simulator

Fig. 7b Jacking forces Fy, calculated by the FE-Model

[kN] [kN] -363 309 341 328 315 115 -26073

1. Description of the FE-Model

2. First resultsLoad case „Curve“

3. Conclusion

y

x

Prof. Dr.-Ing. B. FalterDipl.-Ing. F. Holthoff___________________

Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600

8 / 10 Febr. 14-2007

Fig. 8 Distribution of contact stresses σx in the intermediate wooden layers

and eccentricity ey of the axial forces

ey = -301 mmey = -658 mm

ey = -673 mmey = -336 mm

y

x

z

pipe 1-2 pipe 2-3pipe 3-4 pipe 4-5

1. Description of the FE-Model

2. First resultsLoad case „Curve“

3. Conclusion

Prof. Dr.-Ing. B. FalterDipl.-Ing. F. Holthoff___________________

Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600

9 / 10 Febr. 14-2007

3. Conclusion3.1 Recommendations for further experiments

• Look for equilibrium ∑Fy = 0 in the horizontal direction

• Deformations and flexibility due to transversal loads Fy

• Evaluate angle differences and gaps width betweenneighbouring pipes

• Measure orthogonality of the pipe end planes after dismantlingthe simulator

3.2 Phenomena in real pipe jacking situations

• Eccentricity of the axial forces and rotation of the end pipes in curves

• Bedding reactions of the end pipes in the surrounding soil

• Friction caused by these reactions to be added to the total jacking force ∑Fx

1. Description of the FE-Model

2. First resultsLoad case „Curve“

3. Conclusion

Prof. Dr.-Ing. B. FalterDipl.-Ing. F. Holthoff___________________

Numerical Modeling of the IKT-Pipe Jacking Simulator ND 1600

10 / 10 Febr. 14-2007

References

1. Description of the FE-Model

2. First resultsLoad case „Curve“

3. Conclusion

1. IKT – Institut für unterirdische Infrastruktur: Forschungsantrag2. ABAQUS/Standard, Version 6.6, Hibbitt, Karlsson & Sorensen, Inc.,

Handbuch, 20063. Scherle, M.: Rohrvortrieb, Band 2: Statik, Planung, Ausführung.

Bauverlag GmbH, Wiesbaden und Berlin (1977)4. Stein, D.: Grabenloser Leitungsbau. Ernst & Sohn, Berlin 20035. Verburg, N.: An analysis of friction by microtunnelling. Final report TU Delft,

Dec. 20066. Bosseler, B.; Liebscher, M.; Redmann, A.: Simulation von Rohrvortrieben

im Maßstab 1:1. 3R international (45) H. 12/2006 7. Arbeitsblatt DWA-A 125: Rohrvortrieb und verwandte Verfahren.

Entwurf Mai 20068. Arbeitsblatt ATV-A 161: Statische Berechnung von Vortriebsrohren.

Jan. 1990 sowie Entwurf 2. Auflage 2007


Recommended