+ All Categories
Home > Documents > Respiratory Physiology. heart circuitry heart circuitry tissues.

Respiratory Physiology. heart circuitry heart circuitry tissues.

Date post: 16-Dec-2015
Category:
Upload: yosef-atkins
View: 228 times
Download: 5 times
Share this document with a friend
Popular Tags:
88
Respiratory Physiology Respiratory Physiology
Transcript

Respiratory PhysiologyRespiratory PhysiologyRespiratory PhysiologyRespiratory Physiology

heart

heart

circuitry

heart

circuitry

tissues

lungheart

circuitry tissues

lungheart

circuitry tissues

cell

STRUCTURE of respiratory system

- Conducting zone

- Respiratory zone

STRUCTURE of respiratory system

- Conducting zone (nose, larynx, trachea, bronchi, bronchioles)

The walls conducting airwayscontain smooth muscle

-Sympathetic-Parasympathetic

2 receptors

relaxation, dilatation of the airway

STRUCTURE of respiratory system

- Conducting zone

Anatomic dead space

-V of the conducting airways

Physiologic dead space

-V of the lungs that does not participapate in gas exchance

STRUCTURE of respiratory system

- Conducting zone

Physiologic dead space (VD)

-V of the lungs that does not participapate in gas exchance

PaCO2 – PECO2

VD = VT x ---------------- PaCO2

VT – tidal volumePaCO2 – PCO2 of arterial bloodPECO2 – PCO2 of mixed expired air

STRUCTURE of respiratory system

Respiratory zone

Alveoli

Lung ~ 300 x 106 alveoli

diaphragm

inspiration expiration

inspiration – mm. intercosales externi

expiration – mm. intercosteles interni

inspiration – mm. intercosales externi

expiration – mm. intercosteles interni

inspiration – mm. intercosales externi

expiration – mm. intercosteles interni

inspiration – mm. intercosales externi

expiration – mm. intercosteles interni

inspiration – mm. intercosales externi

expiration – mm. intercosteles interni

inspiration – mm. intercosales externi

expiration – mm. intercosteles interni

inspiration – mm. intercosales externi

expiration – mm. intercosteles interni

diaphragm

inspiration expiration

pleura parietalis

diaphragm

inspiration expiration

pleura visceralis

diaphragm

inspiration expiration

pleura parietalis

pleura visceralis

transmural pressure

diaphragm

inspiration expiration

pleura parietalis

pleura visceralis

transpulmonal pressure

diaphragm

inspiration expiration

pleura parietalis

pleura visceralisintrapulmonal

pressure

diaphragm

inspiration expiration

pleura parietalis

pleura visceralis

transmural pressure

transpulmonal p.intrapulmonal

pressure

diaphragm

inspiration expiration

pleura parietalis

pleura visceralis

transpulmonal p.

bránice - diaphragma

inspirace expirace

pleura parietalis

pleura visceralis

transmural p.

PNEUMOTHORAX

diaphragm

inspiration expiration

pleura parietalis

pleura visceralis

transmural p.

transpulmonal p.

intrapulmonal pressure

alveoli

ventilationV

Physiologic dead space Physiologic dead space Physiologic dead space Physiologic dead space

Is the volume of air in the lungs that does not participate in gas exchance (i.e.e it is dead)

Anatomic dead space – is the volume of conducting airways

Functional dead space volume – which is made up of alveoli that do not participate in gas exchance (alveoli that are ventilated,

but are not perfused by pulmonary capilary blood)

Physiologic dead space Physiologic dead space Physiologic dead space Physiologic dead space

PaCO2 – PECO2

V D = VT x ----------------------- PaCO2

VD – physiologic dead space (mL)VT – tidal volume (mL)PaCO2 – PCO2 of arterial blood (mmHg)PECO2 - PCO2 of expered air (mmHg)

Physiologic dead space Physiologic dead space Physiologic dead space Physiologic dead space

PaCO2 – PECO2

V D = VT x ----------------------- PaCO2

40 - 30VD = 500 x --------------

40

= 500 x 0.25= 125

Alveolar ventilationAlveolar ventilationAlveolar ventilationAlveolar ventilation

VA = (VT – VD) x breasths/min

VA - alveolar ventilation (mL/min)

VT - tidal volume (mL)

VD - physiologic dead space (mL/min)

Alveolar ventilationAlveolar ventilationAlveolar ventilationAlveolar ventilation

VA = (VT – VD) x breasths/min

VA = (500 – 125) x 16

= 375 x 16

= 6000 mL/min

lungheart

circuitry tissues

cell

diffusion

perfusion

ventilation

diffusion

perfusion

ventilation - static volums - dynamic volums

STATIC VOLUMS

1 s

FEV1VC

V

t

DYNAMIC VOLUMS

FEV1-------- x 100VC

> 80 %

Physiological value:

1 s

FEV1

VC

V

t

DYNAMIC VOLUMS

OBSTRUCTION

FEV1= VC

Restriction

VC= FEV1

Infection

inhaled allergens

inhaled irritants

food allergens

inducing stimuli

mental stress medicines

Triggers

respiratory irritant factors

physical activity

preventing infection sick people, vaccination, intensive treatment

sufficient fluid intake

eat small portions

breathing exercises

Differential diagnosis

steroid

potentiation of beta-adrenergic receptor bronchospasmolytic effect

cholinergic antagonism reduction in mucus production

- anti-inflammatory effect - block the formation of antibodies - stabilization of lysosomes block- formation and release of histamine

1 s

FEV1

VC

V

t

DYNAMIC VOLUMS

RESTRICTION = FEV1 VC

difusionalveolo-capillarymembrane(surfactant)

difusionalveolo-capillar membrane(surfactant)

perfusion(heart)

Pulmonary edema- cardiogenic- noncardiogenic

Cyanosis(right ventricle)

Causes of cyanosisCauses of cyanosis

Central cyanosis

Decreased arterial saturationHemoglobin abnormalities

Peripheral cyanosis

Reduced cardiac outputCold exposureRedistribution of blood flow from extremitiesArterial obstructionVenous obstruction

lungheart

circuitry tissues

cell

perfusion(anemia)

perfusion(emboli)

perfusion(emboli)

dg. pulmonal emboli

Dg. pulmonal emboli

% hemoglobinsaturation

100

pO2

Bohrs effects

% hemoglobinsaturation

100

Bohrs effect – O2 hemoglobin dissociation curve

0 25 50 75 100 pO2

% hemoglobinsaturation

100

Shift to the right

0 25 50 75 100 pO2

100

čas

Shift to the right

temperature pH [H+] 2,3 - DPG

% hemoglobinsaturation

0 25 50 75 100 pO2

100

Shift to the left

temperature

pH

[H+]

2,3 - DPG

% hemoglobinsaturation

0 25 50 75 100 pO2

% hemoglobinsaturation

100

Bohr effect

0 25 50 75 100 pO2

pO2 mmHg saturation (%)

10 25

20 35

25 50

30 60

40 75

50 85

60 90

80 96

100 98

Values of pO2 and corresponding values of percent saturation of hemoglobin

lungheart

circuitry tissues

cell


Recommended