+ All Categories
Home > Documents > Response to referee comments on: Studying the impact of ......Response to referee comments on:...

Response to referee comments on: Studying the impact of ......Response to referee comments on:...

Date post: 31-Dec-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
11
Response to referee comments on: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth System Model. Ref: acp-2018-924 Firstly, we would like to thank the reviewers for their time and their constructive comments on the manuscript. We are glad that the reviewers find the paper well-written and of interest to the scientific community. Below please find our responses (in blue) to all reviewer comments (in black). We hope that the updated version of our manuscript is now suitable for publication in Atmospheric, Chemistry and Physics. All the best, Florent Malavelle on behalf of all co-authors. Anonymous Referee #1 Received and published: 9 November 2018 This study uses a coupled modelling framework based on the HadGEM2-ES Earth System model to quantify the effect of Amazon region biomass burning aerosol on the terrestrial carbon cycle through changes in direct and diffuse surface radiation and feedback from climate adjustments. Assessing the ability of Earth System models to fully simulate such effects is very important and this study is a timely and welcome addition to existing work in this area - especially as other coupled model studies investigating diffuse fertilisation effects are based on a different model. The manuscript has a very good structure and is generally well written. I have a few comments and recommendations that I would like to see addressed before publication. Specific comments: 1. It is not clear why the authors chose to use the CLASSIC aerosol scheme to represent aerosols in their model, instead of the modal aerosol microphysics scheme (GLOMAP-mode) which has already been implemented, tested and widely used in HadGEM models. As shown in Bellouin et al. (2013), GLOMAP- mode provides a better agreement with aerosol observations and re-analysis products than the CLASSIC scheme. The same study also found substantial differences in aerosol direct radiative forcing estimates between the two schemes, i.e. -0.49 Wm-2 for GLOMAP-mode vs. -0.18 Wm-2 for CLASSIC; such differences are likely to have an important impact on diffuse fertilisation effect estimates. If it is unfeasible to repeat simulations also using the modal scheme, could the authors comment on the potential uncertainty associated with the use of the CLASSIC scheme and maybe even estimate this uncertainty? We used HadGEM2-ES because: i) we wanted to be consistent with Pacifico et al. (2015) and ii) we wanted a configuration for our Earth System Model that is robust, well characterised and scientifically comparable with past published studies. This wasn’t possible with HadGEM3 when our analysis started as HadGEM3 was still in its infancy (one might argue it is still as UKESM will be the main contribution from the UK to CMIP6). HadGEM2-ES still represents the state-of-the-art. GLOMAP-mode was implemented within UKCA in HadGEM3, it is therefore not available in HadGEM2-ES. That is why we used the CLASSIC aerosol scheme in the present study. Back-porting this part of the code is unlikely to be feasible in a timely manner and would be a very time-consuming task and is not considered worthwhile. Radiative forcing (RF) may not be the ideal metric for discussing pro and cons of GLOMAP-Mode vs CLASSIC here. First these are global averages. Secondly, aerosol RF is RF due to the anthropogenic fraction of the aerosol. Thirdly, RF is calculated as a difference between present-day (PD) and pre-
Transcript
Page 1: Response to referee comments on: Studying the impact of ......Response to referee comments on: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon

Responsetorefereecommentson:StudyingtheimpactofbiomassburningaerosolradiativeandclimateeffectsontheAmazonrainforestproductivitywithanEarthSystemModel.Ref:acp-2018-924Firstly,wewouldliketothankthereviewersfortheirtimeandtheirconstructivecommentsonthemanuscript.Wearegladthatthereviewersfindthepaperwell-writtenandofinteresttothescientificcommunity.Belowpleasefindourresponses(inblue)toallreviewercomments(inblack).WehopethattheupdatedversionofourmanuscriptisnowsuitableforpublicationinAtmospheric,ChemistryandPhysics.Allthebest,FlorentMalavelleonbehalfofallco-authors.

AnonymousReferee#1

Receivedandpublished:9November2018

ThisstudyusesacoupledmodellingframeworkbasedontheHadGEM2-ESEarthSystemmodeltoquantifytheeffectofAmazonregionbiomassburningaerosolontheterrestrialcarboncyclethroughchangesindirectanddiffusesurfaceradiationandfeedbackfromclimateadjustments.AssessingtheabilityofEarthSystemmodelstofullysimulatesucheffectsisveryimportantandthisstudyisatimelyandwelcomeadditiontoexistingworkinthisarea-especiallyasothercoupledmodelstudiesinvestigatingdiffusefertilisationeffectsarebasedonadifferentmodel.Themanuscripthasaverygoodstructureandisgenerallywellwritten.

IhaveafewcommentsandrecommendationsthatIwouldliketoseeaddressedbeforepublication.

Specificcomments:

1.ItisnotclearwhytheauthorschosetousetheCLASSICaerosolschemetorepresentaerosolsintheirmodel,insteadofthemodalaerosolmicrophysicsscheme(GLOMAP-mode)whichhasalreadybeenimplemented,testedandwidelyusedinHadGEMmodels.AsshowninBellouinetal.(2013),GLOMAP-modeprovidesabetteragreementwithaerosolobservationsandre-analysisproductsthantheCLASSICscheme.Thesamestudyalsofoundsubstantialdifferencesinaerosoldirectradiativeforcingestimatesbetweenthetwoschemes,i.e.-0.49Wm-2forGLOMAP-modevs.-0.18Wm-2forCLASSIC;suchdifferencesarelikelytohaveanimportantimpactondiffusefertilisationeffectestimates.Ifitisunfeasibletorepeatsimulationsalsousingthemodalscheme,couldtheauthorscommentonthepotentialuncertaintyassociatedwiththeuseoftheCLASSICschemeandmaybeevenestimatethisuncertainty?

WeusedHadGEM2-ESbecause:i)wewantedtobeconsistentwithPacificoetal.(2015)andii)wewantedaconfigurationforourEarthSystemModelthatisrobust,wellcharacterisedandscientificallycomparablewithpastpublishedstudies.Thiswasn’tpossiblewithHadGEM3whenouranalysisstartedasHadGEM3wasstillinitsinfancy(onemightargueitisstillasUKESMwillbethemaincontributionfromtheUKtoCMIP6).HadGEM2-ESstillrepresentsthestate-of-the-art.GLOMAP-modewasimplementedwithinUKCAinHadGEM3,itisthereforenotavailableinHadGEM2-ES.ThatiswhyweusedtheCLASSICaerosolschemeinthepresentstudy.Back-portingthispartofthecodeisunlikelytobefeasibleinatimelymannerandwouldbeaverytime-consumingtaskandisnotconsideredworthwhile.

Radiativeforcing(RF)maynotbetheidealmetricfordiscussingproandconsofGLOMAP-ModevsCLASSIChere.Firsttheseareglobalaverages.Secondly,aerosolRFisRFduetotheanthropogenicfractionoftheaerosol.Thirdly,RFiscalculatedasadifferencebetweenpresent-day(PD)andpre-

Page 2: Response to referee comments on: Studying the impact of ......Response to referee comments on: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon

industrial(PI).AsactuallyhighlightedbyBellouinetal.(2013)“theimportanceofthe1850baselinehighlightshowmodelskillinpredictingpresent-dayaerosoldoesnotguaranteereliableforcingestimates”.

Thatbeingsaid,thisaspectofchoosingaspecificaerosolrepresentation(CLASSICvsGLOMAP-Mode)shouldnotaffectourresultssignificantly.Asarguedintheresponsetothenextcomment,tothefirstorder(assumingtherepresentationofvegetationprocessesisappropriate),investigationoftheimpactofBBAonvegetationonlyreallyrequiresaccuratesimulationofAOTs(i.e.thequantitythatcontrolsthedirectaerosolradiativeeffect).CLASSICistotallycapableofprovidingaccurateAOTs(asdepictedonFig2inthemainmanuscript)overtheregionstudiedandtheradiativetransferrepresentationhasn’tchangedsubstantiallybetweenHadGEM2andHadGEM3.

AnadditionpointregardingtheuseofCLASSICvsGLOMAPmode.Bellouinetal.(2013)usedadevelopmentalversionofHadGEM3.Theuseofdevelopmentalschemes,whileunderstandable,leadstosomedifferentresultsandconclusions.Indeed,amorerecentpublicationwhichfocussesonbiomassburningbyJohnsonetal.(2016)providesamoreup-to-dateassessmentofthedifferencesbetweenCLASSICandGLOMAP-modewithaspecificfocusonbiomassburningaerosols.ThereviewershouldalsokeepinmindthatthedifferencesinradiativeforcingthataredocumentedinBellouinetal(2013)arepresent-day–pre-industrial;wearefocussedonscalingpresentdayemissions,whichisratherdifferent.Indeed,Johnsonetal(2016)showthattheimpactoftheschemesforbiomassburningaerosolintheirbaseformisactuallyratherlittleovertheAmazonianregion.ThisisevidentinFigure2and3ofJohnsonetal(2016)whichareincludedbelowforthereviewer’sconvenienceforannualmeanandforSeptember(peakofBBseasonrespectively):

Fig2fromJohnsonetal.(2016).Annualmean.

Fig3fromJohnsonetal.(2016).Septembermean.

ItisdifficulttoseesignificantdifferencesintheAOD,andevenmoredifficulttosaywhichis‘better’whencomparedagainste.g.MODISobservationsoverSouthAmerica(Fig3fromJohnsonetal.2016).

Page 3: Response to referee comments on: Studying the impact of ......Response to referee comments on: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon

Fig3fromJohnsonetal.(2016).ComparisonofCLASSICandGLOMAP-modetotalaerosolcomparedagainst

C5andC6datafromMODIS(Johnsonetal.,2016)

Johnsonetal.(2016)alsoevaluatedifferenceine.g.,thesinglescatteringalbedoetcbetweenCLASSICandGLOMAP-Mode.Owingtoupdatesinabsorptionpropertiesandformulationintheschemes,differencesarerelativelymarginal.GenerallyCLASSICisabletorepresentaerosoldirecteffectswithfidelitybecause,althoughitisasinglemomentscheme(prognosticmassonly),aerosolmicrophysicalpropertiesandhencetheopticalparametersarebasedonaircraft-basedobservationsofbiomassburningaerosol.However,weagreewiththereviewerthattheindirectradiativeeffectsfromsinglemomentschemescanberadicallydifferentfromthosefromdualmomentschemeslikeGLOMAP-mode(asincreasesinaerosolmassdonotnecessarilyincreasetheaerosolnumberandhenceCCN,Malavelleetal.2017).

• Bellouin,N., et al., Impact of themodal aerosol schemeGLOMAP-mode on aerosol forcing in theHadleyCentreGlobalEnvironmentalModel,Atmos.Chem.Phys.,13,3027–3044,(2013).

• Johnson,B.T.,Haywood,J.M.,Langridge,J.M.,Darbyshire,E.,Morgan,W.T.,Szpek,K.,Brooke,J.K.,Marenco,F.,Coe,H.,Artaxo,P.,Longo,K.M.,Mulcahy,J.P.,Mann,G.W.,Dalvi,M.,andBellouin,N.:EvaluationofbiomassburningaerosolsintheHadGEM3climatemodelwithobservationsfromtheSAMBBA field campaign, Atmos. Chem. Phys., 16, 14657-14685, https://doi.org/10.5194/acp-16-14657-2016,(2016).

• Malavelle, F. F. et al., Strong constraints on aerosol–cloud interactions from volcanic eruptions,Nature,546,(2017).

2.ImighthavemisreadSection2.2,butaccordingtothefirstparagraph,year2000fireemissionshavebeenusedinallsimulations.RecordlowfireshavebeenrecordedthroughouttheAmazonregionduringyear2000,seee.g.Table7invanderWerfetal.(2010):137TgCyr-1ofSouthernHemisphereSouthAmericanfireemissions,i.e.∼50%ofthe271TgCyr-11997-2009mean.Pleaseclarifyexactlywhatfireemissionshavebeenusedinyoursimulations(alsostatingtheregionalamountsoffireemission).Ifitisonlyyear2000,thanadetaileddiscussionisneededoninterannualvariabilityandtheextenttowhichthelowfiresfromyear2000arerepresentativeforpresentday.

TheBBAemissionsusedherearenottheemissionsfortheexactyear2000butadecadalmeancentredon2000.ThisismentionedatP8,Lines15-16:

“AerosolandtheirprecursoremissionsaretakenfromtheCMIP5inventories(Lamarqueetal.,2010).Weusethedecadalmeanemissionscentredaroundtheyear2000representativeofpresent-dayemissions”

ThebiomassburningemissionsusedduringCMIP5arebasedontheGFEDv2inventory(vanderWerfetal.,2006)forthe1997–2006period.AsdetailedinLamarqueetal.(2010):“Giventhesubstantialinterannualvariabilityofbiomassburningonaglobalandregionalscale(e.g.,Duncanetal.,2003;Schultzetal.,2008),itisproblematictouseasnapshotdatasetfromanindividualyearforthedevelopmentofadatasetthatisconsideredtoberepresentativeforadecade.[…]forthe2000estimatewhichiscalculatedfromthe1997–2006average.”

Page 4: Response to referee comments on: Studying the impact of ......Response to referee comments on: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon

WehavemodifiedP8,Lines20-23tomakethisclearer:

“AerosolandtheirprecursoremissionsarethedatasetusedduringCMIP5(Lamarqueetal.,2010).[…]Giventhesubstantialinterannualvariabilityofbiomassburningonaglobalandregionalscale,apresent-dayclimatology(i.e.averageyear)iscalculatedastheGFEDv21997-2006average(Lamarqueetal.,2010).

NotethatthereasonforvaryingaerosolemissionswastoaccountforthevariabilityinBBAsourcesandintensity.ThesevariationsarereadilyvisiblefromtheMODISAOTretrievalswhenlookingattheindividualyearsbetween2001and2016(Fig.2binthemainmanuscript).TheemissionmultiplicationfactorswerethereforeconsideredsuchasHadGEM2couldrepresentasimilarrangeofAOTs.AOTisthequantityusedbytheradiativetransferandisresponsibleoftheaerosoldirectradiativeeffectswhicheventuallyaffectvegetation.WethereforefavouredconstrainingBBAviathe‘optics’inHadGEM2ratherthanviaemissionsasdiscrepanciesinmodelledparticulatematterandmodelledAOTareacommonfeatureofaerosolmodels(includingGLOMAP-Mode,e.g.Reddingtonetal.2016,2018).

• Reddington,C.L., Spracklen,D.V.,Artaxo,P.,Ridley,D.A.,Rizzo,L.V.,andArana,A.:Analysisofparticulateemissions fromtropicalbiomassburningusingaglobalaerosolmodeland long-termsurfaceobservations,Atmos.Chem.Phys.,16,11083-11106,https://doi.org/10.5194/acp-16-11083-2016,2016.

• Reddington,C.L.,Morgan,W.T.,Darbyshire,E.,Brito,J.,Coe,H.,Artaxo,P.,Marsham,J.,andSpracklen,D. V.: Biomass burning aerosol over the Amazon: analysis of aircraft, surface and satelliteobservationsusingaglobalaerosolmodel,Atmos.Chem.Phys.Discuss.,https://doi.org/10.5194/acp-2018-849,inreview,2018.

3a.Towhatextentistheorderofswitchingoffthe3mechanismsimportant(Table3showingtheexperimentaldesign)?Whatisthemagnitudeofthe3effectsifyouestimatetheminadifferentway:forexampleonpage14,retrievingdelta_NPP_climbycontrastingNPPˆBBAx1_clim.aer,Tot.aer,FD.aerwithNPPˆBBAx0_clim.aer,Tot.aer,FD.aer?

Thisisagoodquestion.Itwillbeaddressedinthenextcommentasouranswercoversbothcomments3aand3b.

3b.Regardingyourassumptiononpage12,line25,namely“neglectingtheinterdependencybetweenthethreeterms”,towhatextentisthistrue?Canyouconfirmwithyoursimulationsthattheoveralleffectisthesumofthe3individualeffects?

Thisisaverygoodquestiontoo.Weanswerthisasfollows:

Wewillstartbyansweringthesuggestionofusingtheterm[NPPˆBBAx1_clim.aer,TotPAR.aer,Fd.aer-NPPˆBBAx0_clim.aer,TotPAR.aer,Fd.aer]asanalternativewaytoretrieved_NPP_clim(comment3a).ThistermactuallycorrespondstotheneteffectofBBAonthevegetation(i.e.firsttermontheLHSineq.4),soitincludesboththeeffectofthefastclimateadjustmentsandeffectofchangesinradiationduetotheBBA.

Theequation3fromthemainmanuscriptisreproducedbelow:

𝛿𝑁𝑃𝑃 ≅𝜕𝑁𝑃𝑃𝜕𝑓'

𝛿𝑓' +𝜕𝑁𝑃𝑃

𝜕𝑇𝑜𝑡𝑃𝐴𝑅 𝛿𝑇𝑜𝑡𝑃𝐴𝑅 +𝜕𝑁𝑃𝑃𝜕𝐶𝑙𝑖𝑚 𝛿𝐶𝑙𝑖𝑚

Notethatweusedthesymbol≅insteadofastrictequalityaswehaveneglectedthehigherordertermshere.Thisisnowwrittenthiswayinthemanuscript.

Page 5: Response to referee comments on: Studying the impact of ......Response to referee comments on: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon

ThisequationcanbeinterpretedinanEffectiveRadiativeForcing(ERF)framework.ThenetchangeinNPP(thetermonLHS)istheresultofthecontributionofi)theaerosoldirectradiativeeffect(i.e.thechangeinradiationseenbythevegetationrepresentedbythetwofirsttermsontheRHS)andii)thefastclimateadjustmentsduetotheaerosolforcing(i.e.the3rdtermontheRHS).Inacondensedform,eq.3canberewrittenasfollow:

𝛿𝑁𝑃𝑃 ≅𝜕𝑁𝑃𝑃

𝜕Radiation𝛿𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 +𝜕𝑁𝑃𝑃𝜕𝐶𝑙𝑖𝑚 𝛿𝐶𝑙𝑖𝑚

WhereRadiationcontainstheeffectofchangesinTotPARandthediffusefraction(fd).Thetwocontributions(δRadiationandδClim)canbeassessedindependentlyalthoughthechangesoftheclimatecanslightlyaffectthevaluesoffdandTotPAR(e.g.viachangesincloudiness,moreonthislater).

Thefirstterm(δRadiation)iscalculatedateachmodeltime-step(i.e.forafixedclimate)whereasthesecondterm(δClim)iscalculatedfromapairofsimulationswheretheeffectofaerosolsontheradiationseenbythevegetationarenotconsidered(i.e.𝑇𝑜𝑡𝑃𝐴𝑅 = 𝑐𝑙𝑒𝑎𝑛, 𝐹𝑑 = 𝑐𝑙𝑒𝑎𝑛).

Thecontributionofthefastclimateadjustmentstotheaerosolforcing(δClim)isevaluatedusingeq.7.Analternativewritingforeq.7innumericalformthatisconsistentwitheq.5andeq.6isasfollows:

∆𝑁𝑃𝑃CCCCCCDEFGHHIJK = L𝑁𝑃𝑃CCCCCCMEFG.OPQ,RST.DEPOU,V'.DEPOUHHIJK −𝑁𝑃𝑃CCCCCCMEFG.XYZ[\,RST.DEPOU,V'.DEPOUHHIJK ]−L𝑁𝑃𝑃CCCCCCMEFG.OPQ,RST.DEPOU,V'.DEPOUHHIJ^ −𝑁𝑃𝑃CCCCCCMEFG.XYZ[\,RST.DEPOU,V'.DEPOUHHIJ^ ]

Asclim.cleancorrespondstotheclimatethathasnotexperiencedanyaerosolradiativeforcing,theterms𝑁𝑃𝑃CCCCCCMEFG.XYZ[\,RST.DEPOU,V'.DEPOUHHIJK and𝑁𝑃𝑃CCCCCCMEFG.XYZ[\,RST.DEPOU,V'.DEPOUHHIJ^ areeffectivelyequal.ThereforetheclimateeffectofBBAonvegetationcanbesimplifiedtoretrieveeq.7:

∆𝑁𝑃𝑃CCCCCCDEFGHHIJK = _𝑁𝑃𝑃CCCCCCMEFG.OPQ,RST.DEPOU,V'.DEPOUHHIJK ` −_𝑁𝑃𝑃CCCCCCMEFG.OPQ,RST.DEPOU,V'.DEPOUHHIJ^ ̀

WebelievethisisthecleanestestimateoftheimpactofclimateadjustmentsduetotheBBAforcingonthevegetationproductivity.

NowremainsthecalculationofthecontributionfromδRadiation.InthemanuscriptweassumedafirstorderexpansionsowecanevaluateindependentlythecontributionsfromfdandTotPAR,namely:

𝜕𝑁𝑃𝑃𝜕𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝛿𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 ≅

𝜕𝑁𝑃𝑃𝜕𝑓'

𝛿𝑓' +𝜕𝑁𝑃𝑃

𝜕𝑇𝑜𝑡𝑃𝐴𝑅 𝛿𝑇𝑜𝑡𝑃𝐴𝑅 = 𝐹 + 𝑇

WhereFrepresentstheeffectoffdandTtheeffectofTotPAR.InordertogetthemostaccurateestimationofFandT,theorderofswitchingon/offthe2mechanismsisindeedimportant.WecalculatetheeffectofthereductioninTotPARfirst.Thenwecalculatetheeffectoftheincreaseinfd.DoingtheotherwayaroundwouldgivetoomuchweighttotheDFEasahighfdwithahighTotPARwouldincreasethevegetationproductivityunrealistically(i.e.anincreaseinfdisalwaysconcomitantwithadecreaseinTotPAR).

Inequation3(seebeginningofthislengthyresponse),weneglectedthedependencybetweenfdandTotPARandClim.Theexactvalueofthecontributionof𝛿𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛couldthereforebewrittenas:

𝜕𝑁𝑃𝑃𝜕𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝛿𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 =

𝜕𝑁𝑃𝑃𝜕𝑓'

𝛿𝑓' +𝜕𝑁𝑃𝑃

𝜕𝑇𝑜𝑡𝑃𝐴𝑅 𝛿𝑇𝑜𝑡𝑃𝐴𝑅 + 𝑅 = 𝑇𝑅𝑈𝐸_𝑑𝑅𝐴𝐷

WhereRcorrespondstothehigherordercrossedtermsbetweenfdandTotPARandClim.

Inthemanuscript,weprovidedestimatesofFandT.Ifthisfirstorderlinearizationisasuitableapproximation,thenthesumofFandTshouldbeclosetoTRUE_dRAD(i.e.Rissmall).

Page 6: Response to referee comments on: Studying the impact of ......Response to referee comments on: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon

WithourdiagnosticsweareabletocalculatebothTRUE_dRAD(i.e.bysummingtheeffectoffdandTotPARbeforetemporalandspatialaveraging)andthesumofF+T(i.e.summingthetemporallyandspatiallyaveragedFandT).ThesecalculationshavebeendonefortheNPPoverthedomainofanalysisdefinedinthemanuscript.TheresultsareforthemonthofAugustbuttheseholdfortheothermonths.Resultsareshowninthetablebelow:

d_NPP(wrtBBAX0)inTgC/month F T F+T TRUE_dRAD R

BBAX0.5 13.7 -9.6 4.1 5.0 0.9BBAX1 22.4 -17.9 4.5 5.1 0.6BBAX2 33.5 -35.0 -1.5 -2.5 -1.0BBAX4 41.0 -66.8 -25.8 -34.6 -8.8

TheagreementbetweenF+TandTRUE_dRADisreasonablewhichsupportsthatafirstorderlinearisationisanappropriateapproximation.Itbecomescriticisableforthehighaerosolsimulation(BBAX4)however.Mathematically,itmeansthatthelinearisationstartstobeinaccurateasthedeviationfromthereferencepointbecomeslarge.Physicallyitcanbeexplainedbythesetwomechanisms:

- AsanincreaseinfdisalwaysconcomitantwithadecreaseinTotPAR,thetwovariablesarenottrulyindependent.

- Ifthechangeinclimateisimportant,thereisthepossibilitythatitaffectsfdandToTPAR(e.g.throughchangeincloudinessviaaerosolsemi-directeffects).

Insummary,whenAOTsgetveryhigh,theerrorbetweenF+TandTRUE_dRADislikelytoincrease.

IfthetwocontributionsfromδRadiationandδClimweretrulyindependent,thenaddingthemtogethershouldgiveusthesameamountofchangeinNPPaswhencalculatingthechangesfromeq.4.Toverifythis,wecalculatedthebudgetsinthesimilarwayasthetableabove:

d_NPP(wrtBBAX0)inTgC/month TRUE_dRAD δClim

(eq.7)TRUE_dRAD+δClim

NETd_NPP(eq.4)

Differences(i.e.~R)

BBAX0.5 5.0 20.6 25.6 24.8 -0.8BBAX1 5.1 21.9 27.0 26.4 -0.6BBAX2 -2.5 40.0 37.5 38.6 0.9BBAX4 -34.6 61.1 26.5 35.3 8.8

UnderstandingtheeffectofδclimonδRadiation(e.g.viachangeincloudiness)wouldcertainlybeaninterestingacademicproblembutitwouldbewaybeyondthescopeofthispaperandnotfeasiblewiththesetofsimulationswehaveconducted.Besidesthisseemstobeofsecondorder(asδClim>>TRUE_dRADunlessAOTislarge).

Thebottomlineisthatourconclusionsremainunchanged;wecanseparatethecontributionofthethreetermssafely.Overall,thevariationinradiationarecontributingmuchlesstothechangesinNPPthantheclimateadjustmentsresultingfromtheeffectofBBA.

4.Page4,lines12-13&lines30-31andparagraphstartingonp22,l27:whywastheozonedamageeffectnotincludedinyoursimulations?Asyoumentiononpage5line2,thePacificoetal.(2015)studyusedasimilarmodellingframework(samemodel),soonewouldexpectthatincludingtheeffectshouldberelativelystraight-forward?

Indeed,itwouldbeeasytoaddtheozoneeffectinthecurrentstudy.Thetwostudies(Pacificoetal,andthisone)wereconductedinparallelforthesameprojectthereforethesewereaddressingtwoscientificquestionsseparatelyinordertoconstructagoodunderstandingoftherespectivemechanisms.Besides,ozoneandaerosolseffectswillhaveadifferentspatialfootprint(duetothechemistryofOzone),whichwarrantsstudyingthemindependentlybefore.WearenowanalysingnewESMsimulationsattheglobalscalewhichcombineboththeDFEandtheOzonedamage.Weplantosubmittheseresultsforpublicationinaseparatemanuscript.

Page 7: Response to referee comments on: Studying the impact of ......Response to referee comments on: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon

Technicalcorrections:

-p1,l23-28:pleaseclearlystatethetimeperiod(year)theestimatedvaluescorrespondto.

Added:“Resultsshowthattheoverallnetimpactofpresent-day,definedasyear2000climate,biomassburningaerosolsistoincreasenetprimaryproductivity(NPP)by…”

Notethatasexplainedinthemethodsection,weuseclimatologicalforcing(includingtheBBAemissions)sowedonotspecificallysimulateagivenyearbutaperiodrepresentativeofthemeanstateoftheEarthclimate.

-p3,l21:“didnotaccounted”->“didnotaccount”.

Modified.-p7,l11-12:pleaserevisesentence–an“and”isprobablymissing.Indeed,sentencealtered:“Transportedspeciesexperienceboundarylayerandconvectivemixing,andareremovedbydryandwetdeposition”

-p8,l24:whatisthereasonbehindapplyingthe“multiplicationfactor”onlyforSouthAmericansources?

Tworeasons:

i) WewantedtobeconsistentwiththePacificoetal.,2015asexplainedabove.ii) WealsomultipliedBBAemissionsgloballyinseparatesimulations.Indoingso,wenoticedthat

thecontributionfromSouthernAfricanfiresovertheAmazonwasnon-negligible.Inaddition,astrongincreaseinglobalBBAemissions(e.g.X2andX4)introducesadditionaleffectsontheglobalclimatesuchasexpansionoftheHadleycells(duetotheabsorbingnatureoftheseaerosols).

-p11,eq(1):pleaseexplicitlystatewhatyoumeanby“dL”.-p11,l26:“analyse”->“analysis”.

dLwasremovedfromtheequation,thatwasinconsistentwritingoftheexponentialdecayprofile.NotationfortheleaflevelNitrogenwasslightlyalteredforimprovedclarity:

𝑁ePOf(L) = 𝑁e^𝑒jkle

-p12,l24-25:Ithinkdeltasaremissing,whenyouwanttodefine“deltaf_d”,“deltaTotPAR”and“deltaclim”.

Inthewaythesentencewasoriginallywritten,youarerightandthedeltasshouldappear.However,theaimwastodefinethenomenclaturethatisusedintheremainderofthemanuscript(e.g.fdfordiffusefraction).Assuchweslightlymodifiedthesentence:

“Asimpletheoreticalframeworkcanbeusedtodiscriminateafastcarbonflux,e.g.NPP,asafunctionofthe‘diffusefraction’,fd,the‘totalPAR’,TotPARandthe‘climatefeedback’,clim,suchasNPP(fd,TotPAR,clim).”

-p15,l12-14:sayingthattherevisedconfigurationprovidesabetterestimateofglobalGPPisprobablytoostrongastatementconsideringtheactualvalues.Also,sinceyourstudyisrestrictedtotheAmazonregion,itwouldbegoodtosaysomethingabouthowthesimulatedGPP/NPPvaluesoverthisregioncomparetoFLUXCOM,Shaoetal(2013)andMODIS.Figure1a-dsuggestsanover-predictionofthemodel(despiteanunder-predictionofglobalGPP)?

Thisisafairpoint.IfweweretoassumethatthebestestimatesitssomewhereinbetweenFLUXCOM(+129PgC/yr)andforShaoetal.(2013,+118PgC/yr),thentheupdatedGPPestimateinHadGEM2(i.e.

Page 8: Response to referee comments on: Studying the impact of ......Response to referee comments on: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon

+115PgC/yr)sitsslightlycloserthantheestimatefromtheoriginalmodelconfiguration(+140PgC/yr).Indeed,wecanarguethattheunderestimationofGPPintheupdatedHadGEM2configurationiscomparable(inmagnitude)totheoverestimationofGPPintheoriginalHadGEM2configuration.Wehintedtowards‘better’becausetheratioofNPPoverGPPintheupdatedversionofHadGEM2ismoreconsistentwithobservationally-basedratioestimates(e.g.Luyssaertetal.,2007)whereastheoriginalHadGEM2configurationhadtoolowNPP/GPPratios.Giventhelargeuncertaintiesinalltheseestimates,‘better’isprobablyabitofastretchsowehavemodifiedthetextaccordingly.InadditionwequantifiedtheGPPmorespecificallyfortheAmazonregionassuggested.

“TheunderestimationoftheGPPintheupdatedHadGEM2-ESconfigurationiscomparableinmagnitudetotheoverestimationoftheGPPintheHadGEM2-ESconfiguration.However,theratioofNPPoverGPP(notshown)intheupdatedversionofHadGEM2ismoreconsistentwithobservationally-basedratioestimates(e.g.Luyssaertetal.,2007).DespitetheinherentuncertaintiesinthetworeferenceestimatesoftheglobalGPP(i.e.between+118and129TgC/yr),itsuggeststhattheupdatedversionofHadGEM2-ESisabletoprovideamoreconsistentglobalGPPestimate.OverthecentralAmazondomainwhichisrepresentedbytheregionencapsulatedintheredboxonFig.2a.,HadGEM2-ESaveragedGPPinAugust(respectivelySeptember)is2750±250gC/m2/yr(respectively2600±200gC/m2/yrforSeptember)comparedto2250±125gC/m2/yr(respectively2500±180gC/m2/sforSeptember)forFLUXCOM.[…]DespiteobviousoverestimationbyHadGEM2-ESoftheNPPonannualmeanoverSouthAmericawhencomparedtoMOD17A2(Fig.1band1d)thefluxesarewellcapturedduringthepeakofthefireseasonoverthecentralAmazon.TheaverageGPPfromHadGEM2-ESinAugust(respectivelySeptember)is1080±140gC/m2/yr(respectively975±100gC/m2/yrforSeptember)comparedto990±550gC/m2/yr(respectively1025±590gC/m2/sforSeptember)forMOD17A2.“

-p15,l27-30:alreadydescribedwithinthefigurecaption,sononeedtoalsodescribewithinthetextwhateachlinerepresents.

Redundantfiguredescriptionremovedfrommaintext.

-p19,l21:abitconfusing,asintheFig.8captionyoudescribethelineas“grey”ratherthan“black”.Again,besttodescribefigureinthecaptionandonlydiscussininthetext.

Redundantfiguredescriptionremovedfrommaintext.Wechangedthecolournameto‘darkgrey’inthelegendoffig.8.

-p20,l17:youmighthavereversedABS_OPandDIFF_OP(less/morescattering).

Wellspotted.Ithasbeencorrected.

-p20,l23-27:pleasegiveexactvalueshere,asit’snotclearwhatyoumeanby“significantchange”soit’sbesttohaveactualvalueshere.

Wehaveaddedadiscussionwithmorequantifiedsubstance:

“However,wedonotobserveasignificantchangeinthemodelledBBAimpactonvegetationproductivityforthevaryingBBAscattering/absorbingassumptions(Fig.9b).Inthestandardsimulations,thenetchangeinNPPduetoBBAis+28.4to38.6TgC/monthinAugust.FortheDIFF_OPsimulation(respectivelyABS_OP)thenetchangeinNPPis+32.1to36.2TgC/month(respectively+17.9to18.2TgC/month).ForSeptember(notshown),weactuallyfoundthattheABS_OPsimulationhadthelargestincreaseinNPPwhichisnotconsistentwithourassumption.Insummary,theeffectofBBAopticalpropertiesonNPPchangesarewithinthenoiseandconsiderednegligible.ThiscanbeexplainedinthelightoftheresultsdiscussedinSect.3.3,whereweshowedthattheDFEfrompresent-dayBBAissmall(~+5TgC/monthinAugustinBBAX1)forthismodelinthisregionoftheworld.Therefore,alteringtheratioofdiffusefractionreachingthegroundviatheaerosolopticalproperties,thatismodulatingthemagnitudeoftheDFE,doesnothaveameasurableeffectonvegetationproductivity.”

-p20,l24andp21,l1:“do”->“does”.

Page 9: Response to referee comments on: Studying the impact of ......Response to referee comments on: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon

corrected

-p23,l18:“quantity”->“quantify”.

corrected

-p37,Fig1caption:lookslikea“(reference)”fortheEDMIprojectismissing.

I’veremovedthat‘(reference)’fromthelegend.EMDIdataareaccessibleonline.Thelinktothedatasetisprovidedinthemainmanuscript(P14,line13)andinthedataavailabilitysection.

-p44,Fig8captionreferstosomemissingdashedlines.

Figurecorrected.AlsochangedtheaxislabelsonFig.8forimprovedclarity.Notethatfigure8bisplottedagainstthetotalAOT.ThisisnowmentionedmoreclearlyinthetextP20,lines0-5.

References:

Bellouin,N.,etal.(2013),ImpactofthemodalaerosolschemeGLOMAP-modeonaerosolforcingintheHadleyCentreGlobalEnvironmentalModel,Atmos.Chem.Phys.,13,3027–3044.

vanderWerf,G.R.,etal.(2010),Globalfireemissionsandthecontributionofde-forestation,savanna,forest,agricultural,andpeatfires(1997–2009),Atmos.Chem.Phys.,10,11707–11735.

Page 10: Response to referee comments on: Studying the impact of ......Response to referee comments on: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon

AnonymousReferee#2

Receivedandpublished:19November2018

ThisstudyexplorestheimpactsofbiomassburningaerosolsonforestproductioninAmazon,takingintoaccountbothdiffusefertilizationeffectsandtheclimaticfeedbackoffireaerosols.Resultsshowthatthebenefitofincreaseddiffuseradiationisnearlyoffsetbythereducedtotalradiation,whileclimaticeffectsoffireaerosolsmakethedominantandpositivecontributionstotheregionalcarbonuptake.Thisisaninterestingandcomprehensivestudy,providingnewperspectivesforbiosphere-pollutioninteractions.Theauthorsperformedconsiderableamountofsensitivityexperimentstoisolateindividualfactorsandtoquantifyassociateduncertainties.HereIhaveonlysomeminorcomments.

Page2,Line23:NotsureSpracklenetal.(2012)providesresultsoffires.AbetterreferenceisRanderson,J.T.,etal.,Theimpactofborealforestfireonclimatewarming,Science,314(5802),1130-1132,2016.

Goodpoint,Sprackenetal.2012wasaboutanalysingthewatercontentofairmassesthatexperiencedvegetatedareaalongtransport.WewerethinkingofmorerecentworkfromD.Spracken’sgrouphoweverthisisnotthemostsuitablereferencetosupportthepointmadeinthissentence.WeusedZempetal.(2017)insteadofRandersonetal(2016)asthefocusismoreontropicalforests.

• Zemp,D.C.etal.:Self-amplifiedAmazonforestlossduetovegetation–atmospherefeedbacks.Nat.Commun.8,14681doi:10.1038/ncomms14681(2017).

Page2,Line32:“tociteafew”whatdoesthismean?

Rephrased:

“AssessingtheoverallimpactofAmazonianforestfiresonecosystemsischallengingasitencompassesacombinationofdirectlosses,andindirectimpactsfromthefireby-productswhichcandependonintricateinteractionsamongseveralearthsystemcomponents,including:thebiosphere,atmosphericcomposition,radiationandenergybudget,cloudsandthewatercycle(Bonan2008).”

Page3,Line21:“didnotaccounted”shouldbe“account”

Corrected.

Page4,Line1:“onlytwostudies”.Notcorrect.Forexample,Yueetal.(2017b)alsousedafullycoupledESMtoquantifyaerosolclimaticandradiativeeffectsonecosystem.It’sbettertosay“limitedstudies”.

Agreethat’sbetterwording.Asaconsequence,thenextsentencehasbeenmodifiedtotakeintoaccountYuanetal.(2007b)findings:

“OnlyalimitednumberofstudieshaveconsideredtheDFEwithinafullycoupledearthsystemframework(e.g.StradaandUnger,2016;Ungeretal.,2017,Yueetal.,2017busingtheNASAGISSModelE2–YIBs)toinvestigatetheroleofaerosolsandhazeonvegetation.AlthoughthesestudieshaveinvestigatedtheroleofdiffuseradiationonGPPandisopreneemissions(StradaandUnger,2016;Ungeretal.,2017),understandingoftheindirectimpactofclimateeffectsfromaerosolsonvegetationproductivityremainsveryuncertain.ThiswasaddressedoverChinabyYueetal.(2007b)whodemonstratedthataerosolinducedhydroclimaticfeedbackscanpromoteecosystemNPP.”

Page6,Line11:“Thephotosynthesismodelisbasedupontheobservedprocesses”,whatkindofprocesses?Moredetails.

Addedtheprocessesinthesentence.NotethatfulldescriptionoftheseareprovidedbyCollatzetal.(1991,1992)whichisreferencedattheendofthisparagraph:

Page 11: Response to referee comments on: Studying the impact of ......Response to referee comments on: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon

“Thephotosynthesismodelisbasedupontheobservedprocessesofgasandenergyexchangeattheleafscale,whicharethenscaleduptorepresentthecanopy.Ittakesintoaccountvariationsindirectanddiffuseradiationonsunlitandshadedcanopyphotosynthesisateachcanopylayer.Inthisway,photosynthesisofsunlitandshadedleavesiscalculatedseparatelyundertheassumptionthatshadedleavesreceiveonlydiffuselightandsunlitleavesreceivebothdiffuseanddirectradiation(Daietal.,2004;Clarketal.,2011).Leaf-levelphotosynthesisiscalculatedusingthebiochemistryofC3andC4photosynthesisfromCollatzetal.(1991)andCollatzetal.(1992).”

Page6,Line28:“thetropicalFrenchGuyanasite”.Itmightbeinadequatetocalibratemodelparametersusingdatafromasinglesite.

Wetotallyagree.Unfortunately,goodqualityobservationsthatincludemeasurementoftotalanddiffuselightinadditiontocarbonfluxesintheAmazonarerare.Notethatthisexercise(modellingoftheFrenchGuyanasite)isnotforvalidationpurposesbutforexploringJULESsensitivitytoparametersusingrealisticforcing.EvaluationofGPP/NPPisprovidedbycomparingHadGEM2againstMODISandFLUXCOMintheresultsection.

Page8,Line3:“30-years”shouldbe“30-year”

Modified30-yearsto30yearstobeconsistentwithotherpartofthetext.Page17,Line5:“Fig5d”shouldbe“Fig4d”,thenextlineshouldbe“Figs4a,b,c”.

Wellspotted.AlsocorrectedonPage16,Line32.Page21,Line28:“fertilisation”,it’sbettertouse“fertilization”tobeconsistentwithpreviousinstances.

Goodpointaboutconsistency.ACPacceptsallstandardvarietiesofEnglishinordertoretaintheauthor’svoice.However,thevarietyshouldbeconsistentwithineacharticle.BecausewehaveusedBritishEnglishintherestofthemanuscript,wehavereplacedoccurrencesofFertilizationwithFertilisation.

Figure2:JASshouldbeJuly-August-SeptemberCorrected.

Figure7:IsthatpossibletocalculatethesensitivityofdNPPtoBBA,andtocomparethevaluesamongdifferentmonths?Theseresultscantellustheimpactsofvariantenvironmental/climaticconditionsonfireaerosol-inducedNPPperturbations.

I’mnotsurethatweunderstandwhatissuggested.DoyousuggestcalculatingNPPsusceptibilitytoBBA(e.g.dln(NPP)/dln(BBA_emissions))?

NotethatthevastmajorityofBBAemissionsovertheAmazonoccurduringthedryseason(peakinginAugustandSeptember)soitisverylikelythatwewouldnotbeabletoderiveaclearsignaloutsidethatperiod.


Recommended