+ All Categories
Home > Documents > Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan...

Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan...

Date post: 23-May-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
51
Restricted four and five body problems in the Solar System Frederic Gabern and ` Angel Jorba CDS Seminar. October 8, 2003. Frederic Gabern Applied Mathematics and Analysis Control and Dynamical Systems University of Barcelona California Institute of Technology 1
Transcript
Page 1: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Restricted four and five body problemsin the Solar System

Frederic Gabern andAngel Jorba

CDS Seminar.October 8, 2003.

Frederic Gabern

Applied Mathematics and Analysis Control and Dynamical Systems

University of Barcelona California Institute of Technology

1

Page 2: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Contents

• Introduction.

– The Trojan asteroids.

– Review of the existing results.

– Motivation for the present work.

• Periodic models.

– The Bicircular Coherent Problem.

– The Elliptic Restricted Three Body Problem.

• Quasi-periodic models.

– The Bianular Problem.

– The Tricircular Coherent Problem.

• Conclusions.

2

Page 3: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The Trojan asteroids (I)

Sun

Jupiter

60

60

L5: Trojan asteroids

L4: Greek asteroids

L4: L5:

Achilles Patroclus

Hector Aeneas

Nestor Memnon

Agamemnon Paris

3

Page 4: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The Trojan asteroids (II)

4

Page 5: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The Trojan asteroids (III)

5

Page 6: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Previous Work

The Restricted Three Body Problem

• Analytic Tools.

• Semi-analytic tools.

Theoretical Results

mThe Outer Solar System

• Frequency analysis.

• Lyapunov exponents.

Numerical Results

6

Page 7: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The Restricted Three Body Problem

� �

����� �

�����

� � � � � � ����� � � ����� � � ���

� � �

��

�� � ��� �

Thedynamicsaround the triangular points of theSun-Jupitersystem has

been studied using analytical and semi-analytical tools (transformation of

the Hamiltonian to anormal form, computation of some approximatefirst

integrals) by several authors:Giorgilli, Delshams, Fontich, Galgani &

Simo, 1989;Simo, 1989;Celletti & Giorgilli , 1991;Jorba & Simo, 1994

(in the elliptic case);Giorgilli & Skokos, 1997;Skokos & Dokoumetzidis,

2000.

7

Page 8: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Realistic Model: OSS

The dynamics of some jovianTrojan asteroidshas been studied in several

papers using theOuter Solar System: Bien & Schubart, 1987;Milani,

1993;Levison, Shoemaker & Shoemaker, 1997;Pilat-Lohinger, Dvorak

& Burger, 1999;Tsiganis, Dvorak & Pilat-Lohinger, 2000.

8

Page 9: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Some New Models

We want to build and study models more sophisticated than the RTBP.

These models will try tosimulatein a better way the relativeSun-Jupiter

motion and they will be written as aRTBP perturbationin order the

semi-analytical tools can be applied.

In this work, we focus on the following models:

• TheBicircular Coherent Problem(BCCP).

• TheElliptic Restricted Three Body Problem(ERTBP).

• TheBianular Problem(BAP).

• TheTricircular Coherent Problem(TCCP).

9

Page 10: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The BCCP Model (I)

• We look for aperiodicsolution of the planar Sun-Jupiter-Saturn

Three Body Problem.

• Theperiodis chosen to be the relative period ofSaturnin the

Sun-Jupiter RTBP system:Tsat.

• The osculating eccentricity ofJupiteris small (about 50 times smaller

than the real one) but thesemi-major axisand theperiodare quite

well adjusted to the actual ones.

10

Page 11: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The BCCP Model (II)

It is possible to write the equations of a massless particle that moves underthe attraction of the three primaries. The correspondingHamiltonianis:

HBCCP =1

2α1(θ)(p

2x + p2

y + p2z) + α2(θ)(xpx + ypy + zpz)

+α3(θ)(ypx − xpy) + α4(θ)x + α5(θ)y − α6(θ)

[1− µ

qS+

µ

qJ+

msat

qsat

]where

q2S = (x − µ)2 + y2 + z2,

q2J = (x − µ + 1)2 + y2 + z2,

q2sat = (x − α7(θ))

2 + (y − α8(θ))2 + z2,

andθ = ωsatt + θ0. The auxiliaryαi(θ) functions are2π-periodic and are

obtained by means of Fourier analysis.

Note: The construction and study of the BCCP model can be found inGabern &

Jorba, DCDS–B 1:2, 2001.

11

Page 12: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The ERTBP

Theelliptic RTBPis a classical model for studying the dynamics of asmall particle in the Sun-Jupiter system. We rewrite it in such a way thatthephysical timeis the independent variable.

HERTBP =1

2α1(θ)(p

2x + p2

y + p2z) + α2(θ)(xpx + ypy + zpz)

+α3(θ)(ypx − xpy)− α4(θ)

[1− µ

qS+

µ

qJ

]where

q2S = (x − µ)2 + y2 + z2,

q2J = (x − µ + 1)2 + y2 + z2,

θ = t + θ0, and

αj(θ) =∑k≥0

αjk cos(kθ), j = 1, 3, 4 ; α2(θ) =∑k≥1

α2k sin(kθ),

are2π-periodicfunctions that are obtained from the elliptic orbit.

12

Page 13: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Local Study aroundL5

In theBCCPandERTBPsystems, theL5 point is replaced by aperiodic

orbit.

0.8645

0.865

0.8655

0.866

0.8665

0.867

0.8675

-0.501 -0.5005 -0.5 -0.4995 -0.499 -0.4985 -0.498 -0.4975 -0.497

(BCCP case: x-y projection)

The linear dynamics around these orbits is totallyelliptic.

13

Page 14: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Expansion of the Hamiltonian

We compose three linear changes of variables:

1. A PeriodicTranslation.

2. A Symplectic FloquetTransformation.

3. A Complexification.

to write the second degree of the Hamiltonians as:

H2(q, p) = iω1q1p1 + iω2q2p2 + iω3q3p3.

The frequencies are

BCCP ERTBP

ω1 -0.08047340341466 -0.08080364304385

ω2 0.99668687782956 0.99675885471089

ω3 1.00006744139040 1.0

Finally, we expand the Hamiltonians inFourier-Taylorseries.

14

Page 15: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Truncated Normal Forms

Using theLie series methodimplemented as inJorba 99, we transform

the expanded Hamiltonians to truncated normal forms up to high degree:

HBCCP = ωsatIθ + ω1I1 + ω2I2 + ω3I3

+

[N/2]∑n=2

H(n)(I1, I2, I3) +∑k≥N

Hk(q, p, θ)

HERTBP = Iθ + ω1I1 + ω2I2 + I3

+

[N/2]∑n=2

H(n)(I1, I2, I3, ϕ3 − θ) +∑k≥N

Hk(q, p, θ)

whereI1, I2 andI3 are the actionsIj = qj · pj .

Iθ andIθ are the “fictitious” momenta corresponding to the variablesθ = t + θ0

andθ = ωsatt + θ0.

15

Page 16: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Local Non-Linear Dynamics (I)

• BCCP: The phase space around the periodic orbit is completely

foliated by 1, 2 and 3-parametric families ofinvariant tori. In

particular, in the initial BCCP coordinates, they give rise to2, 3 and

4-dimensional tori(the perturbation adds an extra frequency).

• ERTBP: (Jorba & Simo, 94) The phase space

(J3, ψ3) = (Iθ + I3, ϕ3 − θ)

corresponds essentially to a perturbed pendulum depending on the

parametersI1 andI2. In particular, near the periodic orbit replacing

L5 we havenormally hyperbolic invariant toriof dimensions2 and3.

16

Page 17: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Local Non-Linear Dynamics (II): ERTBP

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

-0.54 -0.53 -0.52 -0.51 -0.5 -0.49 -0.48 -0.47 -0.46-0.58

-0.56

-0.54

-0.52

-0.5

-0.48

-0.46

-0.44

-0.42

-0.91 -0.9 -0.89 -0.88 -0.87 -0.86 -0.85 -0.84 -0.83 -0.82

0.858

0.86

0.862

0.864

0.866

0.868

0.87

0.872

0.874

-0.508 -0.506 -0.504 -0.502 -0.5 -0.498 -0.496 -0.494 -0.492 -0.49-0.55

-0.54

-0.53

-0.52

-0.51

-0.5

-0.49

-0.48

-0.47

-0.46

-0.45

-0.89 -0.885 -0.88 -0.875 -0.87 -0.865 -0.86 -0.855 -0.85 -0.845 -0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

-0.53 -0.52 -0.51 -0.5 -0.49 -0.48 -0.47-0.58

-0.56

-0.54

-0.52

-0.5

-0.48

-0.46

-0.44

-0.42

-0.91 -0.9 -0.89 -0.88 -0.87 -0.86 -0.85 -0.84 -0.83 -0.82

17

Page 18: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Local Non-Linear Dynamics (III): BCCP

0.86

0.861

0.862

0.863

0.864

0.865

0.866

0.867

-0.503 -0.502 -0.501 -0.5 -0.499 -0.498 -0.497 -0.496 -0.495-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

-0.55 -0.54 -0.53 -0.52 -0.51 -0.5 -0.49 -0.48 -0.47 -0.46 -0.45 -0.440.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

-0.56 -0.54 -0.52 -0.5 -0.48 -0.46 -0.44

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

-0.54 -0.53 -0.52 -0.51 -0.5 -0.49 -0.48 -0.47 -0.460.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

-0.55 -0.54 -0.53 -0.52 -0.51 -0.5 -0.49 -0.48 -0.47 -0.46 -0.45

18

Page 19: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Approximate First Integrals

Given the expanded Hamiltonians

HM(q, p, θ, pθ) = ωMpθ + HM2 (q, p) +∑n≥3

HMn (q, p, θ),

whereωBCCP = ωsat andωERTBP = 1, we look for functions

FM(q, p, θ) =∑n≥2

FMn (q, p, θ)

such that

{HM, FM} = 0.

This equation gives a recursive way of computing the approximatefirst

integralsFM. We solve it, for both models, up to order 16.

ERTBP BCCP

FM2 iq1p1 + iq2p2 iq1p1 + iq2p2 + iq3p3

19

Page 20: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

BCCP: Zones of Effective Stability

Normal Form First Integral

(x-y section fort = 0) (x-y section fort = 0)

0.8669

0.86695

0.867

0.86705

0.8671

-0.4993 -0.49925 -0.4992 -0.49915 -0.4991 -0.49905 -0.499 -0.49895 -0.49890.86688

0.8669

0.86692

0.86694

0.86696

0.86698

0.867

0.86702

0.86704

0.86706

0.86708

0.8671

-0.4993 -0.49925 -0.4992 -0.49915 -0.4991 -0.49905 -0.499 -0.49895 -0.4989

(x-y projection)

0.8645

0.865

0.8655

0.866

0.8665

0.867

0.8675

-0.501 -0.5005 -0.5 -0.4995 -0.499 -0.4985 -0.498 -0.4975 -0.497

20

Page 21: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Quasi-Periodic Models

• TheBianular Problem(BAP).

• TheTricircular Coherent Problem(TCCP).

• A Preliminary Studyof theTCCP.

21

Page 22: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The Bianular Problem (I)

• We compute aquasi-periodicsolution, withtwo basic frequencies,

of the planarSun-Jupiter-SaturnThree Body Problem.

• This quasi-periodic solution lies on atorus. As the problem is

Hamiltonian, this torus belongs to afamily of tori.

• We look for a torus on this family for which the osculating

eccentricityof Jupiter’s orbit is quite well adjusted to the actual

one.

22

Page 23: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The Bianular Problem (II)

We split theconstructionof the model in four parts:

1. The reduced Hamiltonian of the planarThree Body Problem.

2. A methodfor computing 2-Dinvariant tori.

3. Finding the desired torus.

Continuationof the family of invariant curves.

4. TheHamiltonianof theBianular Problem.

23

Page 24: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The reduced Hamiltonian of the Three Body Problem

We take the Hamiltonian of the planarThree Body Problemwritten in theJacobicoordinates in a uniformlyrotatingreference frame and we make acanonical changeof variables (using theangular momentumfirst integral)in order to reduce this Hamiltonian from4 to 3 degrees of freedom.

H =1

(P 2

1 +A2

Q21

)+

1

(P 2

2 + P 23

)− K

−α

r− (1− µ)msat

r13− µmsat

r23

where

α = µ(1− µ)

β = msat/(1 + msat)

A = Q2P3 − Q3P2 + K

24

Page 25: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Computing 2-D invariant tori (I)

• The method can be found inCastella & Jorba, CelMech, 2000.

Basically, it is a method for computinginvariant curvesof maps.

• The map is choosen as thePoincare mapof the time-T flow

corresponding to the reduced Three Body Problem (let us call it

ΦT (·)), where the fixed timeT is the relative period of Saturn in the

Sun-Jupiter system(Tsat = 2π

ωsat

).

25

Page 26: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Computing 2-D invariant tori (II)

Let

ϕ(θ) = A0 +∑k>0

(Ak cos(kθ) +Bk sin(kθ))

be a parameterization of the invariant curve andω its rotation number.

Let, also,C(T1,Rn) be the space of continuous functions fromT1 in Rn,

and let us define the mapF : C(T1,Rn) → C(T1,Rn) as

F (ϕ)(θ) = ΦT (ϕ(θ))− (Tωϕ)(θ) ∀ϕ ∈ C(T1,Rn),

whereTω : C(T1,Rn) → C(T1,Rn) is the translation byω:

(Tωϕ)(θ) = ϕ(θ + ω).

It is clear that the zeros ofF in C(T1,Rn) correspond toinvariant curves

of rotation numberω.

26

Page 27: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Computing 2-D invariant tori (III)

As we do thecomputations numerically, we fix a truncation value for the

series (Nf ) and we construct adiscretizedversion of the functionF on

the following mesh of2Nf + 1 points onT1:

θj =2πj

2Nf + 1, 0 ≤ j ≤ 2Nf .

LetFNfbe this discretization ofF :

ΦT (ϕ(θj))− ϕ(θj + ω) , ∀0 ≤ j ≤ 2Nf .

So, given a set ofFouriercoefficientsA0,Ak andBk (1 ≤ k ≤ Nf ),

we can compute the pointsϕ(θj), thenΦT (ϕ(θj)) and next the points

ΦT (ϕ(θj))− ϕ(θj + ω), 0 ≤ j ≤ Nf .

27

Page 28: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Finding the desired torus (I)

For solving the equations, we use the well knownNewton method.

The initial approximationto the unknowns in the Newton method is given

by thelinearizationof the Poincare map around a fixed point (a periodic

orbit, for the flow)X0. We use theperiodic orbitcomputed in theBCCP

model.

X0 = ΦTsat(X0)

As there aretwo different non-neutralnormal directions, there will betwo

families of toristarting at the periodic orbit.

28

Page 29: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Finding the desired torus (II)

1. We compute a first torus for each family.

2. We add to the invariant curve equations the following one:

eccen(x1, x2, x3, x4, x5, x6,K) = e

whereeccen(·) is a function that gives usJupiter’s osculating

eccentricity(we evaluate it when Sun, Jupiter and Saturn are in a

particular collinear configuration); ande is a fixed constant that will

be used as acontrol parameter.

3. We makecontinuation of each familyincreasing the parametere to

its actual value. This is equivalent to use theangular momentumK

as parameter.

29

Page 30: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Finding the desired torus (III)

The results differ depending on the family.

• Family 1: As the parametere is increased, the number of harmonics

(Nf ) increases very much. We stop the continuation whenNf = 90(181 harmonics). The solution’s orbital elements are not as desired.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

30

Page 31: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Finding the desired torus (IV)

• Family 2: Here, it is possible to continue the family of tori until

Jupiter’s eccentricityis e = 0.0484. The two frequencies of the

final torus are:

ω1 = 0.597039074021947 (Saturn’s frequency).

ω2 = 0.194113943490717 (ω1·ω2π ).

TheBianularSolution:

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(Rotating Ref. Frame) (Inertial Ref. Frame)

31

Page 32: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The Hamiltonian of the BAP Model

It is possible to write theequationsof amassless particlethat moves under

the attraction of the three primaries. The correspondingHamiltonianis:

HBAP =1

2α1(θ1, θ2)(p

2x + p2

y + p2z) + α2(θ1, θ2)(xpx + ypy + zpz)

+α3(θ1, θ2)(ypx − xpy) + α4(θ1, θ2)x + α5(θ1, θ2)y

−α6(θ1, θ2)

[1− µ

qS+

µ

qJ+

msat

qsat

]

where

q2S = (x − µ)2 + y2 + z2, q2

J = (x − µ + 1)2 + y2 + z2,

q2sat = (x − α7(θ1, θ2))

2 + (y − α8(θ1, θ2))2 + z2,

θ1 = ω1t + θ(0)1 , θ2 = ω2t + θ

(0)2 .

32

Page 33: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The functionsα1(θ1, θ2) and α2(θ1, θ2)

α1(θ1, θ2) =∑

k≥(0,0)

α+1k cos(k1θ1 + k2θ2) +

∑k≥(1,1)

α−1k cos(k1θ1 − k2θ2)

α2(θ1, θ2) =∑

k>(0,0)

α+2k sin(k1θ1 + k2θ2) +

∑k≥(1,1)

α−2k sin(k1θ1 − k2θ2)

k1 k2 α+1k

α−1k

α+2k

α−2k

0 0 1.0012005708e+00

1 0 -2.4815098142e-04 7.3672422723e-05

0 1 1.4029937539e-04 -8.5639486462e-06

2 0 1.0960862810e-03 -6.4890366115e-04

1 1 -6.9015522178e-05 -1.7613232873e-06 2.9159795163e-05 -2.0823826150e-06

0 2 -8.1796687544e-07 3.7365269957e-07

3 0 1.0139637739e-04 -9.3726011699e-05

2 1 2.2645717633e-05 9.7074096718e-02 -1.4685465534e-05 -4.8448545618e-02

1 2 -3.7513125445e-05 -9.4041573332e-06 1.8541850579e-05 6.3099860119e-07

0 3 -4.9135929446e-08 2.3959571832e-08

4 0 3.1920890353e-05 -3.6373210600e-05

3 1 4.7465358994e-07 -4.2502882354e-05 -1.8465965247e-06 2.4285825409e-05

2 2 6.6876937521e-07 -1.3940506628e-05 -4.5339192162e-07 8.5955542933e-06

1 3 4.3128955834e-08 -5.8373958936e-07 -2.1231004810e-08 -8.7460026101e-09

0 4 7.0718574586e-10 1.0155648952e-10

33

Page 34: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The Tricircular Coherent Problem

• We compute aquasi-periodicsolution, withtwo basic frequencies, of

the planarSun-Jupiter-Saturn-UranusFour Body Problem. We use

theJacobi coordinates.

• We take the frequencies ofSaturnandUranusin the rotating

Sun-Jupiter system.

• Finally, we write theHamiltonianof a fifth masslessparticlethat

moves under the action of the four primaries, supposing that they are

following the solution found before.

34

Page 35: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The Jacobi coordinates

r

R

z

SUN

JUPITER

SATURN

URANUS

35

Page 36: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The Hamiltonian of the SJSU problem

We take the Hamiltonian of theplanar 4BPwritten in theJacobicoordinates in a

uniformly rotatingreference frame and we make a canonical change of variables

(using theangular momentumfirst integral) in order to reduce thisHamiltonian

from 6 to 5 degrees of freedom.

H =1

(P 2

1 +A2

Q21

)+

1

(P 2

2 + P 23

)+

1

(P 2

4 + P 25

)− K

−α

r− (1− µ)msat

r13− µmsat

r23

− (1− µ)mura

r14− µmura

r24− msatmura

r34

whereα = µ(1− µ) γ = (1+msat)mura

1+msat+mura

β = msat/(1 + msat) A = Q2P3 − Q3P2 + Q4P5 − Q5P4 + K

36

Page 37: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Computation of a first torus (I)

First, we look for aquasi-periodic solutionof SJSU equations formura = 0. We use the same method as before. That is, to computeaninvariant curveϕ(·) of the mapΦT (·):

ΦT (ϕ(θ)) = ϕ(θ + ω) , ∀θ ∈ T.

As a first approximation for theNewton method, we use the previouslycomputedperiodic orbitfor SJS and theKeplerianorbit for Uranus.

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

37

Page 38: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Computation of a first torus (II)

The angle between the initial and final position ofUranusin the last

trajectory is very close to:

ω =2πωura

ωsat(mod2π) = 2.750807556.

Thus, if we keep constant the valueTsat and if we imposeω to be the

rotation numberof the invariant curve, thefrequenciesof the 2-D

invariant torus that we are computing will be:

• ωsat (Saturn’s relative frequency in the Sun-Jupiter system)

• ωura (Uranus’ relative frequency in the Sun-Jupiter system).

38

Page 39: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The Tricircular Coherent Solution of the SJSU Problem

Once a solution formura = 0 is computed, by means of acontinuation

method we proceed to increase the parametermura up to its actual value,

mantaining the two internalfrequenciesof the torus.

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

(Rotating Ref. Frame) (Inertial Ref. Frame)

39

Page 40: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

The Hamiltonian of the TCCP Model

Finally, it is possible to write the equations of amassless particlethatmoves under the attraction of thefour primaries. The correspondingHamiltonianis:

HTCCP =1

2α1(θ1, θ2)(p

2x + p2

y + p2z) + α2(θ1, θ2)(xpx + ypy + zpz)

+α3(θ1, θ2)(ypx − xpy) + α4(θ1, θ2)x + α5(θ1, θ2)y

−α6(θ1, θ2)

[1− µ

qS+

µ

qJ+

msat

qsat+

mura

qura

]where

q2S = (x− µ)2 + y2 + z2, q2

J = (x− µ + 1)2 + y2 + z2,

q2sat = (x− α7(θ1, θ2))2 + (y − α8(θ1, θ2))2 + z2,

q2ura = (x− α9(θ1, θ2))2 + (y − α10(θ1, θ2))2 + z2,

θ1 = ωsatt + θ(0)1 , θ2 = ωurat + θ

(0)2 .

40

Page 41: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Preliminary Study of the TCCP

• Local linear analysisnear the triangular points.

– Symplecticquasi-periodic FloquetTransformation.

• High-ordernormal form.

– Non-lineardynamics.

• Approximatefirst integral.

– EffectiveStability.

41

Page 42: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Local Study aroundL5

Jorba & Simo, 96:

In theTCCPsystem, theL5 point is replaced by a2-D invariant torus: T5.

T5

0.8645

0.865

0.8655

0.866

0.8665

0.867

0.8675

-0.501 -0.5005 -0.5 -0.4995 -0.499 -0.4985 -0.498 -0.4975 -0.497-0.5005

-0.5

-0.4995

-0.499

-0.4985

-0.498

-0.4975

-0.8675 -0.867 -0.8665 -0.866 -0.8655 -0.865 -0.8645

(x-y projection) (px-py projection)

We will see that the linearnormal modesof T5 have modulus exactly1

=⇒ T5 is Linearly Stable

42

Page 43: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Symplectic Quasi-Periodic Floquet Transformation (I)

Thelinear flowaround the 2-D invariant torusT5:

z = Q(θ1, θ2)z

θ1 = ωsat

θ2 = ωura

(θ1 = 2π)-Poincaresection=⇒ Linear quasi-periodicskew product:

z = A(θ)z

θ = θ + ω

whereω = 2π(

ωura

ωsat− 1

)= 2.75080755611202.

43

Page 44: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Symplectic Quasi-Periodic Floquet Transformation (II)

Using the method byJorba 2001, we reduce thisquasi-periodicskewproduct to

y = Λy,

by implementing a linear change of variablesz = C(θ)y.

Λ:

• Diagonal complex6× 6 matrix.

• Constantcoefficients.

• A(θ)C(θ) = C(θ + ω)Λ.

If we define

• Tω : Ψ(θ) ∈ C(T1,Cn) → Ψ(θ + ω) ∈ C(T1,Cn).

• Ψj(θ): j-th column of the matrixC(θ).we obtain ageneralized eigenvalueproblem:

A(θ)Ψj(θ) = λjTωΨj(θ).

44

Page 45: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Symplectic Quasi-Periodic Floquet Transformation (III)

Complex change:

z = Q(θ1, θ2)zz=P c(θ1,θ2)y−−−−−−−−−→

(1)y = DByy y

z = A(θ)zz=C(θ)y−−−−−−→

(2)y = Λy

(1) DB = diag(iω1, iω2, iω3,−iω1,−iω2,−iω3)

ωj is such thatλj = exp(iωjTsat)

(2) P c(θ1, θ2) = Q(θ1, θ2)Pc(θ1, θ2)− P c(θ1, θ2)DB ; P c(t = 0) = C(θ

(0)2 )

(3) A(θ)C(θ) = C(θ + ω)Λ

Real change: z = Q(θ1, θ2)zz=P r(θ1,θ2)y−−−−−−−−−→

(3)x = Bx

(3) P r(θ1, θ2) = Q(θ1, θ2)Pr(θ1, θ2)− P r(θ1, θ2)B ; P r(t = 0) = R(θ

(0)2 )

45

Page 46: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Symplectic Quasi-Periodic Floquet Transformation (IV)

Matrices:

R(θ) =1

2C(θ)

I3 −iI3

I3 iI3

B = R−1CDBC−1R =

0 0 0 ω1 0 0

0 0 0 0 ω2 0

0 0 0 0 0 ω3

−ω1 0 0 0 0 0

0 −ω2 0 0 0 0

0 0 −ω3 0 0 0

P r(θ1, θ2) is asymplecticmatrix.

Thesecond degreeterms of the Hamiltonian:

Hr2 (x, y) =

1

2ω1(x

21 + y2

1) +1

2ω2(x

22 + y2

2) +1

2ω3(x

23 + y2

3)

where thefrequenciesareω1 = − 0.080473064872369,

ω2 = 0.996680625156409 andω3 = 1.00006269133083.

46

Page 47: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

High-Order Normal Form

• Expansionof the Hamiltonian by means of theLegendrepolynomials

recurrence.

• Normalizingprocedure with theLie series method implemented as in

Jorba ’99.

H = 〈$, pθ〉+N (q1p1, q2p2, q3p3) +R(q1, q2, q3, p1, p2, p3, θ1, θ2)

In realaction-anglecoordinates,N does not depend on the anglesϕj but

only on the actionsIj :

N =[N/2]∑|k|=1

hkIk11 Ik2

2 Ik33 , k ∈ Z3, hk ∈ R

47

Page 48: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Non-Linear Dynamics (I)

0.864

0.8645

0.865

0.8655

0.866

0.8665

0.867

0.8675

-0.501 -0.5005 -0.5 -0.4995 -0.499 -0.4985 -0.498 -0.4975 -0.497-0.5005

-0.5

-0.4995

-0.499

-0.4985

-0.498

-0.4975

-0.8675 -0.867 -0.8665 -0.866 -0.8655 -0.865 -0.8645 -0.864

-0.501-0.5005 -0.5 -0.4995-0.499-0.4985-0.498-0.4975-0.497 0.864 0.8645

0.865 0.8655

0.866 0.8665

0.867 0.8675

-0.04-0.03-0.02-0.01

0 0.01 0.02 0.03 0.04

48

Page 49: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Non-Linear Dynamics (II)

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

-0.52 -0.515 -0.51 -0.505 -0.5 -0.495 -0.49 -0.485 -0.48 -0.475-0.515

-0.51

-0.505

-0.5

-0.495

-0.49

-0.485

-0.88 -0.875 -0.87 -0.865 -0.86 -0.855 -0.85

-0.52-0.515-0.51-0.505 -0.5 -0.495-0.49-0.485-0.48-0.475 0.85 0.855

0.86 0.865

0.87 0.875

0.88 0.885

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

-0.88-0.875

-0.87-0.865

-0.86-0.855

-0.85-0.515-0.51

-0.505-0.5

-0.495-0.49

-0.485

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

-0.55 -0.54 -0.53 -0.52 -0.51 -0.5 -0.49 -0.48 -0.47 -0.46 -0.45-0.015

-0.01

-0.005

0

0.005

0.01

0.015

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

49

Page 50: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Approximate First Integral

{H, F} = 0

F (q, p, θ1, θ2) = i(q1p1 + q2p2 + q3p3) +

N∑n=3

∑|k|=n

∑j=(j1,j2)

(f

kn,je

i(j1θ1+j2θ2))

qk1

pk2

wherefkn,j =

ickn,j

j1ωsat+j2ωura−〈k2−k1,ω〉 andckn,j are known.

Zone ofEffective Stability:

0.8645

0.865

0.8655

0.866

0.8665

0.867

0.8675

-0.501 -0.5005 -0.5 -0.4995 -0.499 -0.4985 -0.498 -0.4975 -0.497

50

Page 51: Restricted four and five body problems · The Trojan asteroids (I) Sun Jupiter 60 60 L5: Trojan asteroids L4: Greek asteroids L 4: L 5: Achilles Patroclus Hector Aeneas Nestor Memnon

Conclusions

• First Stepof aLong-term projectwhichUltimate Goalis:To compute an approximate

quasi-periodic solution for a

Trojanasteroid.

−→To conclude its practicalstabil-

ity for the estimated life time of

theSolar system.

• Models:

RTBP −→ BCCP −→ TCCP

↓ ↓

ERTBP −→ BAP

• Numerical methods

andsoftware:

– Quasi-periodicsolutions.

– Symplectic Quasi-PeriodicFloquetTheory.

– High-OrderNormal Forms.

– ApproximateFirst Integrals.

– Regions ofEffective Stability.

51


Recommended