+ All Categories
Home > Documents > Results of Parametric Design Studies of MOX Lead Test …

Results of Parametric Design Studies of MOX Lead Test …

Date post: 21-Oct-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
66
* * # a ?! i! Results of P MOX 0RNLISUB198-85B99398V-I arametric Design Studies of Lead Test Assembly Project Manager A. M. Pavlovitchev Executed by S. A. Bychkov A. A. Lazarenko V. D. Sidorenko Y. A. Styrin
Transcript
Page 1: Results of Parametric Design Studies of MOX Lead Test …

*

*

#

a

?!

i!

Results of PMOX

0RNLISUB198-85B99398V-I “

arametric Design Studies ofLead Test Assembly

Project Manager

A. M. Pavlovitchev

Executed by

S. A. BychkovA. A. LazarenkoV. D. Sidorenko

Y. A. Styrin

Page 2: Results of Parametric Design Studies of MOX Lead Test …

u

This report has been reproduced from the best available copy,

Reports are available to the public from the following source.

National Technical Information Service

5285 Port Royal RoadSpringfield, VA 22161Telephone 703-605-6000 (1-800-553-6847’)TDD 703-487-4639Fax 703-605-6900Einail orders @ntis.fedworld.gov

Web site httpWw.ntis.gov/ordering.htm

Reports are available to U.S. Department of Energy (DOE) employees, DOE contractors, EnergyTechnology Data Exchange (ETDE) representatives, and International Nuclear Information

System (INIS) representatives from the following source.

Office of Scientific and Technical informationP.O. BOX 62

Oak Ridge, TN 37831

Telephone 423-576-8401Fax 423-576-5728

E-mail reports@ adonis.osti.gov

Web site httpWwww.osti.gov/products/sources.html

Reports produced after January 1, 1996, are generally available via the DOE Information Bridge.

Web site http://www.doe. gov/trridge

This report was prepared as an account of work sponsored byanagency of the United

States Government. Neither the United States Government noranyagency theraof, noranyof

their employees, makes any warranty, express or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,product, or process disclosed, or represents that its use would not infringe privately owned rights.’

Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,recommendation, or favoring by the United States Government oranyagency thereof .The views

and opinions of authors expressed herein do not necessarily state orreflect those’of the UnitedStates Government or any agency thereof.

.

.

.#

Page 3: Results of Parametric Design Studies of MOX Lead Test …

DISCLAIMER

Portions of this document may be illegiblein electronic image products. Images areproduced from the best available originaldocument.

Page 4: Results of Parametric Design Studies of MOX Lead Test …

0RNL/SUB/98-85B99398 V-l

.

.

RESULTS OF PARAMETRIC DESIGN STUDIES OFMOX LEAD TEST ASSEMBLY

Project Manager

A.M. Pavlovitchev

Executed by

S. A. BychkovA. A. LazarenkoV. D. Sidorenko

Y. A. Styrin

Date Published: December 1998

Report Prepared byLOCKHEED MARti E~-RGY tiSEARCH CORP.

P.O. BOX 2008Oak Ridge, Tennessee 37831-6363

underSubcontract Number 85B99398V

Funded byOffice of Fissile Materials DispositionUnited States Department of Energy

Prepared for

Computational Physics and Engineering Division ‘Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831managed by

LOCKHEED MARTIN ENERGY RESEARCH CORP.for the

U.S. DEPARTMENT OF ENERGYunder contract DE-960R22464

Page 5: Results of Parametric Design Studies of MOX Lead Test …

Russian Research Center “Kurchatov Institute”Institute of Nuclear Reactors

VVER Division

Joint U.S. /Russian Project to Update, Verify and ValidateReactor Dasign/Safety Computer Codes

Associated with Weapons-Grade Plutonium Disposition in WERReactors

Results of Parametric Design Studies of MOX LeadTest Assembly

(Final Report for FY98)

Project Manager

A.M.Pavlovitchev

Executed by

S.A.BychkovA.A. LazarenkoV.I). Sldorenko

Y.A.Styrin

MOSCOW1998

Page 6: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly (lGnalReport for FY98)

ACRONYMS

BOCBPRCREOCFPLTAMOXSORUoxVVER

beginning of cycleboron poison rodcontrol rodend of cyclefission productslead test assemblymixed oxidesystem of regulationuranium oxideRussian water-water reactor

.

2

Page 7: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURC!HATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly (FhIal Report for FY98)

EXECUTIVE SUMMARY

In this document the results of parametric neutronics studies of MOX LTA designare presented. Two options of MOX LTA design are considered: 10OOAplutonium and of“island type. The main part of studies is executed by the Russian code TVS-M.

.

3

Page 8: Results of Parametric Design Studies of MOX Lead Test …

.

.

.

.

.

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98)

CONTENTS

INTRODUCTION ................................................................................................................................... 8

1. DEFINITIONS .................................................................................................................................... 8

2. SHORT DESCIUP’ITON OF TVS-M ................................................................................................ 12

3. CALCULATIONAL MODEL. ‘.......................................................................................................... 13

3.1. FUELIRRADIATIONSIMULATION...................................................................................................l43.2. ZEROPOWERC~WATIONS........................................................................................................l4

4. CALCULATIONS OF 100 ~0 PLUTONIUM MOX LTA ................................................................ 14

4.1. ZONNGP~E~C S~IES ......................................................................................................l44.2. ZEROPOWRC~ULATIONS........................................................................................................l5

5. CALCULATIONS OF “ISLAND* TYPE MOX LTA...................................................................... 16

5.1. “ISLAND-l”OPTION......................................................................................................................l65.2. “ISLAND:2”OPTION...................................................................................................................... 175.3 “PLUTONIUMISLAND”SIZEVARIATION........................................................................................... 175.4 INTER-PINISOTOPXCCONTENTANDPowERD1smBmoN ................................................................l75.5 SPECTRUMCHARACTERISTICSNWYsls ........................................................................................l8

CONCLUSION ...................................................................................................................................... 19

REFERENCES ...................................................................................................................................... 20

TABLE 1. COtiOSITION OF WEAPONS GRADE PLUTONIUM ................................................21

TABLE 2. MAIN CORE PARAMETERS .............................................................................................22

TABLE 3. FUEL ASSEMBLY DESIGN PARAMETERS ...................................................................23

TABLE 4. URANIUM FUEL PIN DESIGN PAMMETERS ..............................................................24

TABLE 5. MOX FUEL PIN DESIGN PARAMETERS 25.......................................................................

TABLE 6. DISCRETE BURNABLE POISON PIN DESIGN PARAMETERS .... . ...... ........... ........26

TABLE 7. KEFF IN ZERO POWER STATES ....................................................................................27

TABLE 8. PARAME TERS EVOLUTION IN THE PROCESS OF FUEL IRRADIATION.REFERENCE URANIUM ASSEMBLAGE. NO’BPR .........................................................................28

TABLE 9. PARAMETERS EVOLUTION IN THE PROCESS OF FUEL IRRADIATION.REFERENCE URANIUM ASSEMBLAGE WITH BPR.....................................................................29

TABLE 10. PARAMETERS EVOLUTION IN THE PROCESS OF FUEL IRRADIATION. MOXLTA 4.413.012.4......................................................................................................................................30

4

Page 9: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98)

TABLE 11. PARAME TERS EVOLUTION IN THE PROCESS OF FUEL IRRADIATION. MOX “LTA 4.413.0/2.0 ...................................................................................................................................... 31

TABLE 12. PARAMETERS EVOLUTION IN THE PROCESS OF FUEL IRRADIATION. MOXLTA 4.413.212JI...................................................................................................................................... 32

TABLE 13. PARAME TERS EVOLUTION IN THE PROCESS OF FUEL IRRADIATION. MOXLTA 4.2/3.012.0...................................................................................................................................... 33

TADLE 14. PARAMETERS EVOLUTION IN THE PROCESS OF FUEL IRRADIATION. MOXLTA 3.8/2.8/U-3.7 .................................................................................................................................. 34

l?lGURE 1. SJ?MPLIFLED DESIGN FOR URANIUM REFERENCEASSEMBLY ..............................35

FIGURE 2. CALCULATIONAL MODEL FOR REFERENCE URANIUM ASSEMBLYSURROUNDED BY URANIUMASSEMBLIES. 60“SECTOR .............................................................36

FIGURE 3. SIMPLIFIED DESIGN FOR 3-ZONES (100% PLUTONIUM) MOXLTA ......................37

FIGURE 4. CALCULATION MODEL FOR 3-ZONES (10096 PLUTONIUM MOXLTASURROUNDED BY UR4NIUMASSEMBLIES. 60 ‘SECTOR .............................................................38

FIGURE 5. SIMPLIFIED DESIGN FOR “ISLAND-I” TYPE MOXLTA ............................................39 “

FIGURE 6. CALCL?L4TIONAL MODEL FOR “ISLAND-1” MOXLTA SURROUNDED BY

URANIUM ASSEMBLIES. 60‘SECTOR 40.

..............................................................................................

FIGURE 7.SIMPLIFIED DESIGN FOR “ISLAND-2” TYPE LTA .....................................................41

FIGURE 8. CALCULATIONAL MODEL FOR “ISLAND-2” MOXLTA SURROUNDED BYURANIUM ASSEMBLIES. 60“SECTOR ..............................................................................................42

FIGURE 9. PINS NUMERATION IN CS MODEL ...............................................................................43

FIGURE 10. EVOLUTION OF KO IN PLUTONIUM-URANIUM SUPER-CELLS IN THE PROCESSOF FUEL HWADL4TION .....................................................................................................................44

FIGURE 11. KK EVOLUTION IN URANIUWZ?LUTONIUM SUPER-CELLS IN THE PROCESS OFFUEL IRRADL4TION ...........................................................................................................................45

FIGURE 12. PARAMETHCSTUDIES OF idSLt4ND~~TYPE MOXLTA (U3. 7??)............................46

FIGURE 13. PARAMETMC STUDIES OF uISLAND}~ TYPE MOXLTA (U4.4!%) ............................47

FIGURE 14. SIMPLIl?lED DESIGN FOR “INCREASED ISLAND-2” TYPE MOXLTA .................48

FIGURE 15. KKAGAINST “ISLAND” PERIPHERY ENRICHMENT FOR DIFFERENT “ISLAND”SIZE. “ISLAND” CENTW ENRICHMENT -4. 0%, UUANIUM ENRICHMENT -3. T??................49

FIGURE 16. KKAGAINST ‘ISLAND” PERIPHERY ENRICHMENT FOR DIFFERENT “ISLAND”SIZE. “ISLAND” CENTRAL Enrichment -4.096, URANIUM ENRICHMENT - 4.4% ................49

5

Page 10: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly (Fhial Report for FY98)

FIGURE 17. INTER-PIN RELATIVE BURNUPDISTMBUTION ......................................................50.

FIGURE 18. INTER-PIN REIL4TIW RNYER DISTRIBUTION ........................................................51

. FIGURE 19. INTER-PIN ISOTOPIC DISTRIBUTION .......................................................................52

l?fGURE 20. INTER-PIN ISOTOPIC DISTWBUTION .......................................................................52

l?fGURE 21. INTER-PIN ISOTOPIC DISTMBUTION .......................................................................53

FIGURE 22. INTER-PIN ISOTOPIC DISTMBUTION .......................................................................53

l?fGURE 23. INTER-PIN ISOTOPIC DISTIUBUTION .......... ............................................................54

FIGURE 24. INTER-PIN ISOTOPIC DISTRLBUHON .......... ............................................................54

FfGURE 25. INTER-PIN ISOTOPIC DISTMBUTION .......................................................................55

FIGURE 26. INTER-PIN ISOTOPIC DISTIUBUTION .......................................................................55

FIGURE 27. INTER-PIN ISOTOPICDISTMBUTION .......................................................................56

FZGURE 28. INTER-PZN ISOTOPIC DISTRIBUTION .......................................................................56

FIGURE 29. SPECTRUM PARAMETERS DISTRIBUTION IN MOXASSEMBLY (PU3.8. SECTOR609 .........................................................................................................................................................57

FZGURE 30. SPECTRUM PAR,4METERS DISTRZBUTZON ZN MOXASSEMBLY (PU 3.8_3.8_U 3.7.b

SECTOR 609 .........................................................................................................................................58

FIGURE 31. SPECTRUM PARAMETERS DISTIUBUTION IN MOXASSEMBLY (PU3.8_2.8_U3. 7.

SECTOR 609 .........................................................................................................................................59

FIGURE 32. POWER DIST~BUTION IN “ISLAND” TYPE MOXASSEMBLY (7WJ3.8_2.8_U3. 7.

SECTOR 609 .........................................................................................................................................60

FIGURE 33. POWER DIST~UTION IN “ISLAND” TYPE MOXASSEMBLY (PU3.8_2.8_U3. 7.

SECTOR 609 .........................................................................................................................................61

FIGURE 34. BURNZZPDISTWBUTION IN “ISLAND” TH?EMOXASSEMBLY (PU3.8_2.8_U3. ZSECTOR 609 .........................................................................................................................................62

FIGURE 35. ASSEMBLY PARAMETERS EVOLUTION FOR DIFFERENT ENRICHMENTCOMlY2SITIONS ...................................................................................................................................63

FIGURE 36. ASSEMBLYPARAMETERS EVOLUTION FOR DIFFERENT ENRICHMENT. COM~SITIONS ........................................................... .......................................................................64

FIGURE 37. EVOLUTION OF PIN ISOTOPIC CONTENT ................................................................65.

FIGURE 38. EVOLUTION OFPINISOTOPIC CONTENT ................................................................65

FIGURE 39. EVOLUTZON OFPIN ISOTOPIC CONTENT ................................................................66

6

Page 11: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCR CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly (MIMIReport for FY98)

FIGURE 40. EVOLUTION OFPIN ISOTOPIC CONTENT ................................................................66

l?fGURE 41. EVOLUTION OFPIN ISOTOPIC CONTENT ................................................................67

FIGURE 42. EVOLUTION OF PIN ISOTOPIC CONTENT ................................................................67

7

.

Page 12: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98)

. INTRODUCTION

This work is a part of Joint U.S. / Russian Project with Weapons-Grade Plutonium.Disposition in VVER Reactor and presents the results obtained in the process ofparametric studies of MOX LTA design.

The volume and sequence of these studies have been defined in [2] as the stage“Assembly”. This report completes the studies partially executed in [3].

At the stage “Assembly” two options of infinite grid are considered:- grid consisting of single MOX LTAs;- grid consisting of the following elements: central MOX LTAs surrounded by

typical uranium assemblies.Parametric studies must be resulted in the following features of MOX LTA design:

● Proximity of power generation in MOX LTA and “in replaced uraniumassembly (Figure 1);

● MOX LTA zoning that ensures acceptable power peaking factor incalculational system.

Two options of MOX LTA are considered● 100% plutonium (Figure 3);

. ● “Island” type (Figure 5, 7).

within parametric studies:

The Russian cell code TVS-M [3] is used as a calculational instrument. Its main* features we evoked in Chapter 2.

In Chapter 3 the calculational model is described.The results obtained for 100% plutonium option of MOX LTA are presented in

Chapter 4, for “island” type option – in Chapter 5.In the Annex the studies executed in IPPE are presented.

1. Definitions

In the following table the parameters used in current studies are described according to[2].

.

.

8

Page 13: Results of Parametric Design Studies of MOX Lead Test …

RUSSIANRESEARCHCENTERKURCHATOVINSTITUTEResults of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98)

Parameter Abbreviation

Calculational system CsReactivity of CS ROEffective multiplication Keff

factor of CS

coolantCritical boron acid Cb crit

concentration in coolant2-D power distribution in Kk-CS

CsPeaking factor of 2-D “Kkmax-

2-D power peaking factor in (Kk)max

assembly1-D burnup distribution in BUpin

fiel pin

Units Remarks

Relation of neutron generationto neutron absorption.

ppm H3B03 fraction in coolant (mgof boron acid in 1 Kg of H20 )

ppm Cb value ensuring Keff=l

Power of fhel pins normalizedby average fbel pin power in

concentric zones of equal volumein fuel pin, normalized by averagezone burnup.

a Boron acid concentrationdivided by the coefficient5.72 means natural boron (nat B) concentmtion,concentrationis widelyused.Below,Cb meansboronacidconcent@on if thereis no specialindication.

.

In VVER-1000 calculations the term of boron acid

, .

Page 14: Results of Parametric Design Studies of MOX Lead Test …

* * , < ,, ,

RUSSIANRESEARCHCENTERKURCHATOVINSTITUTEResults of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98)

1-D power distribution in qpin Power distribution in concentricfhel pin zones of equal volume in fbel pin,

normalized by average zone power.Fission cross section for

Xffastcm- 1

fast netitronsFission cross section for

Z{hcm- 1

thermal neutronsAbsorption cross section for ~ fast cm- 1

fast neutrons a

Absorption cross section for ~“th (.~- 1thermal neutrons a

Fast neutron flux F1

Thermal neutron flux F2

Effective fraction of ~eff General characteristic of infinitedelayed neutrons grid

Specific reactor thermal “ Wv kwl Reactor thermal power in CSpower in CS Iitre volume unit. For nominal

conditions Wv = 108KBt / litre.Minimum controllable level MCL MW In calculations corresponds to

of reactor power Zero Power and uniformtemperature 280°C in core.

Average coolant-moderator T mod ‘ctemperature in CS

Average fbel temperature in T fiel ‘KCs

Average temperature of T con ‘cother”CS components

Xenon- 135 concentration Xe - For 1‘cc in fbel

distribution IO*24/cc—- -——

10

Page 15: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTERKURCHATOVXNsTITuTEResults of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98)

Equilibrium Xenon- 135 Xe eq Io*24 Concentration formed duringconcentration distribution (Wv) /cc long working with a constant WV.

Sm- 149 concentration Sm IO*24 For 1 cc in fieldistribution Icc

Equilibrium Sm-149 Sm eq 10*24 Concentration formed duringconcentration distribution /cc long working with constant

parameters

, , ,

11

.

Page 16: Results of Parametric Design Studies of MOX Lead Test …

RIJSSIANRESEARCHCENTERKURCHATOVlNSTIT~E-.. ——..—Results of Parametric Design Studies of MOX Lead Test Assembly (Rinal Report for N98)

2. Short Description of TVS-M

TVS-M is the spectral code for calculations of neutronic constants of cells, super-cellsand fbel assemblies of VVER-type reactors. It is a component of code package forVVERS calculations.

A constants library used by TVS-M has the following main features:

in the fast energy region (&> 4.65 KeV) multigroup cross-sections libraryABBN is applied. This energy range includes 12 groups of the library. In parallelwith the nuclides group constants the subgroup ones are used.

resonance energy range (4.65 KeV >E> 0.625 ev). includes the ABBNgroups from 13-th to 24-th ( the cross-sections of 24-th group are modified,because the lower boundary of this group is not coincident with the one of theABBN library). In this energy range the TVS-M code also uses both sub~oup andgroup constants. Besides, the files of resonance parameters from LIPAR-3 libraryare applied for resonance nuclides. For the most of these nuclides the cross-section calculation is based on the Breit-Wigner multi-level model (and on theAdler-Adler model for fissile nuclides ).

– thermal energy range ( E.< 0.625 eV ) is subdivided into 24 groups. A setof scattering matrices calculated for various temperatures by the Koppel-Youngmodel is applied for hydrogen bonded in a water molecule. Group cross-sectionsof nuclides and the scattering matrixes have been obtained with the use of thesame algorithms and nuclear data (TEPCON library) as in case of MCLJ-RFFI/Acode.

– 96 fission products are taken into account under burnup calculation. TVS-M code uses library of their yields based on ENDF/&VI data and group cross-sections from MCU data library.

TVS-M calculation technique consists of the following main stages :

– firstly a detailed calculation of all cell types forming a &e] assembly (suchas fiel cell, absorber cell and so on ) is performed and corresponding sets of few-group constants are computed ( number of the groups is arbitrary)

— then these group effective constants are used in a group nodal diffi.wioncalculation of the whole assembly.

Computing of neutrons spatial distribution in specified energy group (or at specified,.

. energy point) is pefiormed by the method of passing through probability (similar to firstcollision probability method). At the present time an angular distribution of the one-direction neutrons current at a given zone boundary is described by 6 angular harmonics.

.A neutrons reflection at a cell boundary takes into account a real hexagonal form of theboundary. For a calculation of an effective dlffision coefficient both isotropic andanisotropic probabilities in R and Z directions are computed in the same manner.

12

Page 17: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Results of ParametricDesignStudiesof MOXLeadTest Assembly(Hnal Reportfor FY98)

In the fast energy region a detailed calculation is carried out with the use of group andsubgroup micro cross-sections horn the ABBN library. In doing so each energy group issubdivided into arbitrary number of intervals of uniform width. The energy loss of aneutron on non-elastic slowing down is described by continuous fbnction specified by thegroup matrix of non-elastic transfers. The neutron energy loss on elastic slowing down isalso described continuously with taking into account of scattering anisotropy in a systemof inertia centre.

In the resonance region the slowing down of neutrons is calculated in the same manneras in the case of fast energy region. Cross-sections of resonance nuclides at each energypoint are calculated with the CROSS code using the file of resonance parameters for eachnuclide. An interference between potential and resonance scattering, cross-sectionstemperature dependence, p-wave contribution into scattering cross~section are strictlytaken into consideration. An effect of mutual overlapping of different nuclides resonancesis also taken into account.

A calculation technique applied in thermal energy region is traditional. The groupthermalization equation is solved by the method of passing through probability. Thesources are shaped when the upper energy groups are calculated, with the Nellcheasymptotic limit of”scattering applied for hydrogen.

Nodal diffision approach with asymptotic and transient trial finctions (both for fluxand current ) is applied for pin-by-pin calculation of fiel assembly. The asymptoticsolution corresponds to the problem with a non-zero source (slowing down or fission) andzero current at the cell boundary. The transient trial finction corresponds to the problemon finding neutron distribution in the cell placed at the center of super-cell when a sourcein it is equal to zero. And in such super-cell a fiel cell is surrounded by the water and acell of the other type - by homogenized fiel cells. A correction for mesh width is alsoinvolved in the balance equation. This correction takes into account the differencebetween an average flux and a flux at the cell boundary. The similar correction for acurrent flowed through the cell also appears in the balance equation.

The burnup equations are solved for every fiel pin, which can be subdivided intoseveral concentric rings forming separate burnup zones. Concentration changing of thefollowing heavy nuclides is taken into consideration:

Th2 Pa2 U23 U23 U23 U23 U23 Np PU2 Np32 33 3 4 5 6 8 237 38 239

PU2 PU2 PU2 PU2 A A A Cm Cm Cm39 40 41 42 m241 m242m m243 242 243 244

Equilibrium concentrations of Xe135and Sm149are also calculated.

3. Calculational Model

Calculational system (CS) for MOX LTA design parametric studies is presented bytwo principal options:

- infhite grid of single plutonium or uranium assemblies (Fig. );

13

Page 18: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly (Jhal Report for FY98)

.

.

,.

.

- infinite grid of central plutonium assemblies surrounded by uranium assemblies of3.7 %Wt. U-235. The 60° sector of CS for different options of MOX LTA design isshown in Figures 4, 6 and 8. The reference uranium CS is shown in Figure 2.

Composition of weapons grade plutonium is presented in Table 1. The designparameters of plutonium and uranium assemblies are described in Tables 2-5.

The calculational model includes the following two principal regimes describedbelow.

3.1. Fuel Irradiation Simulation

This regime is used for MOX LTA zoning studies under the conditions described in[2]. They comprise irradiation simulation in CS as a rule on the interval [0-40 MWd/kg]with the step 2 MWdlkg.

In the process of irradiation:● Axial buckling is 1.E-4cm-2. A set of calculations has been executed with

a critical buckling ensuring Ke&l;● Cb (nat B)= 600 ppm;● Wv = 108 KW/litre;● Tmod = 302”C;● Tcon = 302°C;● Tfiel = 1027”K;● Xe=Xe eq;● Sm=Sm eq.

3.2. Zero Power Calculations

This regime is aimed to define reactivity effects due to temperature and Cb variationsand to compare Keff with eventual verification calculations to be carried out by othercodes.

Calculations are executed in five irradiation points:0, 10, 20,30,40 GWd/twhere states are to be formed by different combinations of the following values:Cb (nat.B): O, 600,1200 ppm;Tmod=Tcon=Tfiel: 20,280 ‘C.

4. Calculations of 100 YO Plutonium MOX LTA

4.1. Zoning Parametric Studies

Zoning parametric studies consisted in variation of fissile plutonium content in 3-zones MOX LTA (Figure 3).

The results of calculations simulating fiel irradiation in plutonium and uraniumassemblies are presented in Tables 7-13. Two options of Uranium reference assembly areconsidered:

● without BPR id. with guide tubes filled by water in 18 positions inassembly (see Figure 1);

14

Page 19: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98)

● with BPRs of properties presented in Table 6.It can be seen that 2% fissile plutonium content in periphery (it is the minimum

allowable value according to [2]) entails significantly lower values of power peakingfactor “Kkmax-CS” than 2.4V0 content (compare Tables 10 and 11). That is why 2?40content in periphery has been adopted. Plutonium content in the central and intermediatezones was variable to obtain Ko value similar to reference uranium CS.

Finally the plutonium content of 4.2/3 .0/2.0 has been chosen as acceptable. The Koevolution in the process of fiel irradiation for the reference uranium and differentplutonium assemblies is shown in Figure 10.

Figure 11 shows “Kkmax-CS” evolution in the process of irradiation. The increase of“IQrnax-CS” for 3-zones MOX LTAs is observed from a certain moment. As it is seenhorn the Table 13 and Figure 9, during irradiation maximum CS power passes fromuranium pins out of MOX LTA to the interior of MOX LTA. This effect should bestudied in fiture more attentively takhg into account that in real conditions a fresh MOXLTA will be surrounded by both flesh and irradiated uranium assemblies that can lead tomitigating of the mentioned effect.

It is evident that the described procedure of preliminary studies of CS serves only forestimation of eventual performance of MOX LTA in core and that real performance ofMOX LTA in core will depend on its real location there. It is quite possible that weshould return to the stage “Assembl y“ after core calculations.

4.2. Zero Power Calculations

The results of calculations are presented in Table 7. It may be seen that the positivetemperature reactivity effect appears for the great boron concentrations of 1200 ppm. InMOX LTA this effect is”lower owing to more absorbable properties of MOX he] ascompared with uranium one.

15

Page 20: Results of Parametric Design Studies of MOX Lead Test …

RUSSIANRESEARCHCENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Aasembly (Final Report for FY98)

.

5. Calculations of “island” Type MOX LTA.

In these calculations the size of “island” in the center of assembly has been fixed: 54plutonium fiel pins i.e. 4 pin rows. Two options of “island” have been considered:

● one-zone island or “Island-l’’(Figure 5);● two-zones island or “Island-2’’(Figure 7).

The studies are divided into three parts:● studies of ird%nitegrid of fresh MOX LTA by means of plutonium content

variation to ensure acceptable value of power peaking factor Kk. tilal bucklingin this case was variable to provide KefFl.

● calculation of CS, where MOX LTA is surrounded by uranium assemblies,for zoning option chosen in the previous part. In this part plutoniunduranium i%elirradiation has been simulated.

● studies of infinite grid of plutonium assemblies for zoning option chosenin the first part. Axial buckling in this case was variable to provide Ke&l. In thispart plutonium/uranium fiel irradiation has been simulated. Inter-pin isotopic andpower distributions have been calculated.The comparison of different spectrum parameters has been also made for a

number of combinations of uranium and plutonium he] enrichments.

Two levels of acceptable values of power peaking factor Kk have been considered:

● Kk=l.20;● Kk=l.15.

This rather high value of Kk=l .20 was considered in the hope that a proper choice of

MOX LTA location in core could lead to rather low power values qi in MOX LTA and

finally to an acceptable value of qi*Kk according to safety limits [1, 2].Uranium zone enrichment inside MOX LTA was equal to 3.7% as a base. In some

calculations the option of 4.40/0 has been also considered.

.

The studies forplutonium content

5.1. “Island-l” option

uranium zone enrichment of 3 .7°A have shown (Figure 12) that fissilein plutonium zone cannot exceed:

. ● 2.4% if Kk maximum is 1.15;● 2.7?40if Kk maximum is 1.20.

These values are too low to justify practical using of “Island-l” option in this case.

16

Page 21: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembiy (Final Report for FY98)

For uranium zone enrichment of 4.4’XO,fissile plutonium content in plutonium zonecannot exceed (Figure 13):

o 3.0% ifKk maximum is 1.15;● 3.4’%0if Kk maximum is 1.20.

5.2. “island-2” option

Results of parametric calculations of “Island-2” option have allowed to obtain thepares of plutonium content values in two plutonium zones which could ensure theacceptable value of Kk. The Figures 12 and 13 (correspondingly for uranium zoneenrichment of 3 .7°/0 and of 4.4°/0) allow to choose fissile plutonium content ensuringoptimum (i.e. minimum) Kk values.

Finally, the chosen zoning is the pair “3.8% in the central part – 2.8% in the islandperiphery” with uranium environment of 3.7%. In this case, the acceptable powerpeal&g factor, as well as Ko values, close to the reference uranium CS, have beenensured according to Figures 12 and 10.

I5.3 “Plutonium island” size variation

Increased size of “Plutonium Island}) that comprises 6 plutonium rows (Fig. 14)has been also considered. In Fig. 15 and 16 the central plutonium enrichment has beenfixed by 4% while considering two uranium environment enrichments: 3.7% and 4$Y0.TheFigures 15 and 16 shows an optimum plutonium periphery enrichment about 3?40whereKk minimum is reached.

5.4 Inter-pin isotopic content and power distribution

Inter-pin isotopic content and power distributions are of interest for thermo-hydraulicanalysis of MOX fuel behavior. TVS-M allows obtaining of these parameters for 5concentric zones that have been chosen of equal volumes in current calculations. InFig. 17-28 they are presented for some character pins:

● near central instrumentation tube (as No 77 in Fig.31 ),. near water tube (as No 76 in Fig. 31),. on the border of diffkrent “island” enrichments (as No 75 in Fig. 31),● on the “iskmd” periphery (as No 74 in Fig. 31),● in uranium fiel pin (as No 72 in Fig. 31).

17

Page 22: Results of Parametric Design Studies of MOX Lead Test …

RUSSIANRESEARCHCENTERKURCHATOVINSTITUTEResults of Parametric Design Studies of MOX Lead Test Assembly (Final lleport for FY98)

The following moments while fbel burning have been considered: 12 and 40 MWd/kg.that corresponds approximately to fiel discharged after one and three years of reactorexploitation.

Figures 17 and 18 show correspondingly inter-pin relative burnup and powerdistributions BUPin and qPin, Figures 19-28 show correspondingly inter-pin distribution

of U235, PU239, PU240, PU24 1, PU242 for two irradiation levels: 12 and 40 MWd/kg.

5.5 Spectrum characteristics analysis

Usually, more reliable results of treatment of experimental data on fiel pinburning can be obtained if fbel irradiation takes place in the neutron spectrum close to theasymptotic one. It can be seen in Figures 29-31 that in two internal rows of plutoniumisland “3. 8°/0 in the central part – 2.8% in the island periphery” the spectrum is close tothe one taking place in 100% Plutonium MOX LTA with the enrichment of 3.8Y0. Sofbel fins located in these positions is reasonable to use for plutonium fuel investigation inthe case of “Island” type MOX LTA design.

Relative power distributions are shown in Figures 32 and 33 for the followingmoments while iiel burning 0,12,24 and 40 MWd/kg.

Relative bumup distributions are shown in Fig.34 for the following momentswhile fiel burning 12, 24 and 40 MWd/kg.

Evolution of average assembly neutron absorption and fission cross-sectionswhile fbel burning is presented in Fig.35 for a number of plutonium and uraniumenrichment compositions.

Evolution of multiplication factor Ko and power peaking factor Kk while fhelburning is presented in Fig.36 for a number of plutonium and uranium enrichmentcompositions.

In Figures 37-42 the evolution of U235, PU239, PU240, PU241, PU242 ~d

Am241 content while fuel burning is presented for a number of plutonium and uranium

enrichment compositions.

.

18

Page 23: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTERKURCHATOVINSTITUTEResults of Parametric Design Studies of MOX Lead Test Assembly (RIMIReport for FY98)

CONCLUSION

The parametric studies of MOX LTA design have been executed to choose plutoniumcontent in assembly zones for two options of MOX LTA: “3-zones” and “Island”.

For “3-zones” (100% Plutonium) MOX LTA the fissile plitonium contentcomposition of 4.2°/o/3,00/o/20/0has been chosen.

MOX LTA of the chosen compositions has been studied by using multi-assemblyconfiguration that allows investigating of influence of MOX LTA environment: uraniumassemblies of different irradiation.

Plutonium “Island” with 54 plutonium pins in the center of MOX LTA has beenconsidered in two modifications:

● uniform “island”;● graded “island” with lower plutonium content in one peripheral row of

pins.It is shown that plutonium content in the uniform “island” cannot exceed 2.7?40

because of adopted power peaking limitations and therefore this design seemsunreasonable for practical use.

For graded “island” the plutonium content composition 3 .8Y0/2.8’%0with uraniumenvironment of 3 .7°/0U-235 has been chosen.

Evolution of assembly power and bumup distributions, inter-pin power and isotopicdistributions while fuel irradiating have been analyzed.

In addition to the base uranium environment of 3,7%, a set of calculations has beenexecuted for 4.4°/0.

The most of the studies has, been executed by the code TVS-M that is at the final stageof licensing and it is to be used in the nearest fhture as a base instrument for VVER corecalculations wh~le using both uranium and MOX fiel. So the obtained results must beconsidered as prelimin~ ones and they demand additional analysis and investigations.

19

Page 24: Results of Parametric Design Studies of MOX Lead Test …

RUSSIANRESEARCHCENTERKURCHATOVINSTITUTEResults of Parametric Design Wudies of MOX Lead Test Assembly (Mnal Report for FY98)

REFERENCES

1. Y.A. Styrin. Fuel Assembly and Core Model for Neutronics Calculations ofVVER-1OOO. Draft.

.Moscow, Kurchatov Institute 1998.

2. Y.A. Styri~ I.K.Levina. Design of Lead Test MOX Assemblies for PilotIrradiation in VVER- 1000 and Related Parametric Studies. DraR.

Moscow, Kurchatov Institute 1998.3. S.A. Bichkov, A.P.Lazarenko, V.D.Sidorenko, Y.A. Styrin. Results of

Parametric Design Studies of MOX Lead Test Assembly (Progress Report).Moscow, Kurchatov Institute 1998.

4. V.D.Sidorenko et al. Spectral Code TBC-M for calculationCharacteristics of Cells, Super-cells and Fuel Assemblies of VVER-Type Reactorsth Symposium of the AER.

of5-

20

Page 25: Results of Parametric Design Studies of MOX Lead Test …

..

..

.

.

RUSSIAN RESEARCH CENTER KURC!HATOV INSTITUTE

Reaalts of Parametric Design Studies of MOX Lead Test Assembly (Fkal Report for FY98)

Table 1. Composition of weapons grade plutonium

Pu-238 Pu-239 Pu-240 Pu-241 Pu-2420.0 93.0 6.0 1.0 0.0

,,

21

..

Page 26: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Resultsof ParametricDesignStudiesof MOXLeadTestAssembly(MnalReportfor FY98)

Table 2. Main Core Parameters

1 Thermal Power I 3000 1thermal

Electrical Power 1000Number of Coolant LOODS 4Number of Fuel Assemblies 163Core Equivalent Diameter m 3.164Core Fuel Height m 3.53Core Volume m= 27.8Core Power Density W/cm’ 108Control / Shut off Rod Banks 10Position of Regulating Rod Bank %0 90Core Coolant Flow Rate mslhr I 84000 IPressure at Core Inlet MPa 15.7Core Inlet Temperature ‘c 287

Page 27: Results of Parametric Design Studies of MOX Lead Test …

RUSSIANRESEARCHCENTER KURCHATOV INSTITUTE

Results of Parametric Desiga Studies of MOX Lead Test Assembly (Final Report for FY98)

Table 3. Fuel Assembly Design Parameters

Parameter Units Value

Shape of Fuel Assembly Hexagonal

Distance Across Assembly (between flats) cm 23.4Distance Between Fuel Assembly Centres cm 23.6Fuel Pin Lattice Pitch cm 1.275Number of Fuel Pins in Fuel Assembly 312Number of Guide Tubes for Control Rods / 18Burnabie Absorber PinsInner Diameter of Guide Thimbles cm 1.1Thickness of Guide Thimbles cm 0.1Material of Guide Thimbles Zirconium Alloy*Central Instrumentation Tube Inner cm 1.1DiameterThickness of Central Instrumentation Tube cm 0.1Material of Central Guide Tube Z]rconium Alloy*

Number of Spacer Grids in Fuel Assembly 13

Material of Spacer Grids Zirconium A11oY*Spacer Grid Weight (each) Kg 0.55Compositions Weight percent:*

Zr Nb Hf98.97 1.0 0.03

23

-1

Page 28: Results of Parametric Design Studies of MOX Lead Test …

.

.

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly(FinaJReportfor FY98)

Table 4. Uranium Fuel Pin Design Parameters

Parameter Units ValueAdvanced Core Design

Inner Clad Diameter cm 0.772Clad Thickness cm 0.069

Clad Material Zirconium Alloy*Clad Density glee 6.5153Fuel Pellet Diameter cm 0.755Central Hole Diameter cm 0.15Fuel Pellet Material L.E. U02Height of Fuel Column cm 353 (cold)

355 (hot)Mass of U02 in Fuel Pin @ 1.575

Compositions Weight percent:

*

Zr Nb Hf98.97 1.0 0.03

24

Page 29: Results of Parametric Design Studies of MOX Lead Test …

RUSSIANRESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX had Test Assembly (FhIal Report for FY98)

Table 5. MOX fuel Pin Design Parameters

.

(-

(

(

.

m

(.1

1

1

.k uel Densmy I glee I lU.3

Parameter Units Value

Inner Clad Diameter cm 0.772

Clad Thickness cm 0.069

Ciad Material Zirconium Alloy*Clad Density glee 6.5153Fuel Pellet Diameter cm 0.755Central Hole Diameter cm 0.15U-235 content in MOX fuel 0/0 0.2Fuel Pellet Material PU02-U02Height of Fuel Column cm 353 (cold)

355 (hot)m..-}n-—-:L- , .m.e

Compositions Weight percent:

*

Zr Nb Hf98.97 1.0 0.03

.

25

Page 30: Results of Parametric Design Studies of MOX Lead Test …

.

RUSSIANRESEARCH CENTER KURCHATOV INSTITUTE

Resultsof Parametric Design Studies of MOXL&adTestAssembly(FinalReportfor FY98)

“Table 6. Discrete Burnable Poison Pin Design Parameters

Parameter I UnitsI

Value

Ciad Inner Diameter I cm I 0.772 IClad Thickness cm 0.069

Clad Material Zirconium Alloy*

Clad Density glee 6.5153Absorber Diameter cm 0.758Absorber Density glee 2.945Absorber Composition I I Boron g /cc I

0.065

B1O Wt”!o 0.4046Bll 1.8028Al 88.5951Fe 0.1850Ni 1.8496Cr 5.3133Zr 1.8496Compositions Weight percent:*

Zr Nb Hf98.97 1.0 0.03

.

.

26

Page 31: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCWCENTER KURCHATOVINSTITUTE “

Results of Parametric Design Studies of MOX Wad Test Assembly (Final Report for FY98)

Table 7. Keff in Zero Power States

20, I 30, I 40, 1Irradiation

Point +,MTmod=Tfuel

GWdlt I G1 II/t I GWdftTmod=Tfoel I Tmod=Tfuel I Tmod=TfhelTmod=Tfuel

=Tcon =Tcon I =Tcon I =Tcon=280’

0

Cb (nat.B) +

PuruContent %J

3.713.3 no BPR

u:3.713.3 with BPR

1-

vl0

Pu:4.413.012.4

Pu:4.4f3.on.o

wm*0

Pu:4.413.212.0

Pu:4.2/3.012.0

PU-Island:L8/2.8/U-3.7

0mv)0.4

27

Page 32: Results of Parametric Design Studies of MOX Lead Test …

,. .

RIJSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98)

Table 8. Parameters Evolution in the Process of Fuel Irradiation. Reference Uranium Assemblage. No BPR

IrradiationPoint +

Burnup,GWd/t

Parameters$ 00

mo*Og 0mw 00

war-ut0“

Keff

m0Oem0“

-$mIn0?0“

Ko

Kkmax-CS

r-*m*00.0

-J

j3eff

28

Page 33: Results of Parametric Design Studies of MOX Lead Test …

i I I I 1Oa? 1116”0 LSZCO (w) Wzo”l s68t’owo

8S 9!ZZS0 8LiW0 (w 8SZOT 996$OW0

9s 09s<0 Zo!xo (W) C8ZO”1 Ooosowo

W 06%’0 8Z9C0 (w) 01$0”1 9SOSOW0

Zc ZZ9G0 t7SL6”0 (W) 6tXO”1 Susowo

I 0s I 9SLC0I

188f%I

8Z C686’O LOO(H (!w) Sovo”l Wzsoro

I 9Z ‘1 ISOOT I Omn I I(w) ZWO”l tmsoo”o

I Pz I ILIOT I 8PZO”I I I(W) S8tO”I 88CSOW0

I Zz I ZKOT I 6SS0”1 I (W) 8ZSO+ 89PSOW0

I Oz ! tsim ! z9toT!

I

81 L6SO”I sssov (w’) SC90”I L$’9SOO”0

91 ztJL.ov Li790V (9P) L690”I WLSOO”O

I PI I 0680”1 I ZILOV I (9P)C9LO”II 6S8S00”0

ZI *011”1 08LO”I (W) W8(H Z86SOO”0

01 6611”1 W80”1 (9P) L060”I 811900”0

8 twrI 1060”1 (w) &860v &LZ90W0

.

Page 34: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCI1 C!ENrlIR KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98)

Table 10. Parameters Evolution in the Process of Fuel Irradiation. M(3X LTA 4.4/3.0/2.4

30

Page 35: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTEResults of Parametric Design Studies of MOX had Test Assembly (Final Report for FY98)

Table 11. Parameters Evolution in the Process of Fuel Irradiation. MOX LTA 4.4/3.0/2.0

Irradiation Burnup,Point + GWd/t

.

31

Page 36: Results of Parametric Design Studies of MOX Lead Test …

Wwoo”o

-=-l-=-90Z)0601”1

90Z) uot”l PL990W0

16W0 I S6#7C0.

90Z) 1901”1 IOLtOWO

OCLVOO”OLI’WO I 6096”0●

90Z) 6101”1 09Lt700”0S$’96-0 I SZL6”0

90Z) t660”I9LL60 I 9178(ro z6Lt70&oOc

90Z)$960”1 LZWOWO8Z

:90Z) ZS60”1 W31woo”o9Z 6t700T I L600”I

06UY1 I 8ZZOV :90Z)968(H nwoo”o

:3(IZ)LS80”1Zz

:90Z)S180VOz 178PO”I I PO’S(YI c66$70(ro

:90Z)89LW181 8S90”1 I 6P90V Stiosocro

:tJOZ)81LOV96LO”I I O080V ZOISOO’O

0960”1 I LS601 S91SOW0

(w) L8LO”I LCZSOO”OZI

81SS00”0

Ott’soo”o

81SS000

SWsowo

86LSOO”0

zL6so(ro

$&

&

Page 37: Results of Parametric Design Studies of MOX Lead Test …

Ov S016”0 Z816’O (CSZ)S960”1 9s9t700-o

8s IZZGO 88Z6”0 (90Z)W’60T Z89POW0

9C mwo 86C6”0 (90Z)f$60”I OILVOWO

m 89P6”0 11S6”0 (90Z)6160T 6CLPOO”0

Zc 96!W0 LZ960 (90Z)Z0601 C9LVOO”0

Oc 8ZL6”0 8t7L6”o (90Z)Z8SO”I SOmowo

8Z ‘ C98C0 ZL86”0 (90Z) 6s80’1 LiWOO”O

9Z zoom 1000”1 (90Z) CS80”1 PL8vo(ro

Pz WI(H WIO”I (90Z) S080V ~16tOW0

~<Zz 06Z01 ILZO”I (90Z) OLLO”t Ls6tioo”o

S-

:> Oz Omlv fxto”I (90Z)KLO”l SOosowo#

81 S6SOT 09SO”T (90Z)C690”I 9s0s00”0

91 SSLOT VILOV (W) SZLOT SIISOLYO

kI IZ60”E t’L80”I (W) 69LOV LLISOO”O

ZI *601”1 IPOI”I (W’)918(YI 8t7ZSOO”0

OK SLZI”I LIZI”I (W) S980:1 6ZCSOW0

8 S9PE”I CotI”l (W) 0t60V Iz#%oo’o

9 P991”I f,091”I (W) SS60”1 6ZSSOO0

P U81”I 0Z81”I (w) L660”I 9s9sol%

z 180ZV z90rI (w) 0s01”1 018SOW0

o 00CZ”J 19fTI (9P) WOI”K S86SO(Y0

h g 3me

g+* $!

sk

~ .=#

sme a

L E&

~&w c %

.

.

.

Page 38: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design studies of MOX Lead Test Assembly (Final Report for FY98)

Table 14. Parameters Evolution in the Process of Fuel Irradiation. MOX LTA 3.8/2.8/U-3.7

.,

Page 39: Results of Parametric Design Studies of MOX Lead Test …
Page 40: Results of Parametric Design Studies of MOX Lead Test …

1’

.

.

.

._

RUSSIANRESEARCHCENTERKURCHATOVINSTITUTEResalts of Parametric Design Studies of MOX Lead Test Assembly (FiRal Report for FY98)

Figure 2. Ca/cu/ational Model for Reference Uranium Assembly Surrounded byUranium Assemblies. 60° Sector

26,71,25,

71,71,25,71,71,71,25,

71,71,71,7135,71,71,71,71,71,25,

29,71,71,71,71,71,25,71,71,71,71,71,71,7195,

71,71,71G9,71,71,71,71,25,71&,71,71,71,71,71,71,71,25,

71,71,71,71,71,71,71,71,71,71,25,27,71,71,71,71~9,7$,71,71,71,71G6,

71,71,71~9,71,71,71,71,71,71,71J5,64,71,71,71,71,71,71,71,71,71,71,71J5,64,64,

71,7129,71,71,7149,71,71,71,7135,64$0,50,71,71,71,71,71,71,71,71,71,71,71,25,64SO$O#0,

29,71,71,71,7129,71 ,71,71,71,71 J25,64+50,50,50,50,71,71,71~9,71,71,71,71,71,71,71~,64$0$0$0,50$9,

7l,7l,7l,7l,7l,7l,7l,7l,7l,7l,7lJ5,64$O,5OSO$O,5O,5O,71,71,71,71,71,71,71,71,71,71,71,25,64$0,50 5029450#0$0,

7l,7l,7l,7l,7l,7l,7l,7l,7l,7l,7l,25,64AO$O~O#Q,5O,5O,5O~O,7l,7l,7l,7l,7l,7l,7l,7l,7l,7l,7lJ5,a3o,5o3o,5oso,5oJ9$o3o,

26,25,25,25~5,25,25~5~5,25,25~6,64,64$O,5O,5OJ9$O,5O$O$O~7,

25- side water cell26- corner water cell27- central tube cell

29 – guidetube ceil/ burnableabsorbers50 – uranium 3.7% U-235 fuel rods64- uranium 3.3°A U-235 fuel rods71- uranium 3.7% U-235 fuel rods

36

Page 41: Results of Parametric Design Studies of MOX Lead Test …

F$jpwe3. Simpi!illedDa&@br3 Zones MOXLTA

@ Low Plutonium-Content MOX Rods High Plutonium-Content MOX Rods

() Itn ermediate Plutonium-Content MOX Rods Central tube

@ Control Rods /Burnable Absorbers

RRC III. Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98) ~T

Page 42: Results of Parametric Design Studies of MOX Lead Test …

.

.

RUSSIAN RESEARCH CENTER KURCHATOV LNSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98)

Figure 4. Calculation/Model for 3-Zones (~00 % Plutonium) MOX LTA Surroundedby Uranium Assemblies. 600 Sector

26,7195,

71,7145,71,71,7145,

71,71,71,7145,71,71,71,71,7125,

29,71,71,71,71,7145,71,71,71,71,71,71,71$25,

71,71,71J9,71,71,71,71J5,7129,71,71,71,71,71,71,71,25,

71,71,71,71,71,71,71,71,71,7145,27,71,71,71,71~9,71,71,71,71,71~6,

71,71,7Q29,71,73,71,71,71,71,71J5,64,71,71,71,71,71,71,71,71,71,71,71~5,64,64,

71,71J9,71,71,71,29,71,71,71,71~5,64, ,71,71,71,71,71,71,71,71,71,71,71J5,64,

29,71,71,71,71J9,71,71,71,71,71J5,64,71,71,71J9,71,71,71,71,71,71,71J25,64,

71,71,71,71,71,71,71,71,71,71,71~5,64,71,71,71,71,71,71,71,71,71,71,71,25,64,

$0,50,30$099,

30,50$030,50,29$0,50750,

71,71,71,71,71,71,71,71,71,71,71~5,64, 450,50,50$0$030,71,71,71,71,71,71,71,71,71,71,71 J5,64, 30,5030,50393030,

26~5~5~5,25,25&5J5J5,25$5J6,64,64,,50,29$0,50$0$0$7,

25- side water ceil26- cornerwater ceii27- central tube cell

29- @de tube cell/ burnable absorbers50 – high plutonium-content fuel rods

- intermediate plutonium-content fuel rods64 – low plutonium-content fuel rods71- uranium 3.7V0 U-235 fuel rods

38

Page 43: Results of Parametric Design Studies of MOX Lead Test …

Figure5. iWnpl#’kWh#jpafor YMuuH” IJpe MOXLTA

MOX Rods

Central tube● Enriched Uranium Rods

@ High Plutonium-Content

RRC KI. Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for

Control Rods /Burnable Absorbers

FY9?3) 39

Page 44: Results of Parametric Design Studies of MOX Lead Test …

RUSSIANRESEARCH CENTER KURCHATOV INSTITUTE

Results of Parametric Design Studies of MOX Lead Test Assembly QWd Report for FY98)

Figure 6. Ca/cukkiona! Model for ‘Wand-1” MOXLTA Surrounded by UraniumAssemblies. 600 Sector

26,7135,

71,7135,71,71,7135,

71,71,71,71J5,71,71,71,71,7145,

29,71,71,71,71,7125,71,71,71,71,71,71,71 J5,

71,71,71,29,71,71,71,7125,7139,71,71,71,71,72,71,7135,

71,71,71,71,71,71,71,71,71,7135,27,71,71,71,71#9,71,71,71,71,71Q6,

71,71,71,29,71,71,71,71,71,71,7125,64,71,71,71,71,71,71,71,71,71,71,71 $5,64,64,

71,71~9,71,71,71~9,71,71,71,71~5,64,71,71,71,71,71,71,71,71 ,71,71,7125,64,

29,71,71,71,71~9,71,71,71,71,71J25,64,71,71,71~9,71,71,71;71,71,71,7135,64, 38,

71,71,71,71,71,71,71,71,71,71,71~5,64, so,71,71,71,71,71,71,71,71,71,71,71,25,64, ,28, ,50,50,

71,71,71,71,71,71,71,71,71,71,71#5,64, $0$0$0,71,71,71,71,71,71,71,71,71,71,71~5,64, ,5028$0$0,

26~5~5,25,25,25J5,25J5,25,25J6,64,64, ,28,50,50$0$0~7,

25 – side water cell

26- corner water cell27- central tribe cell

28,29- @tide tube ceI1/ burnable absorbers50 -plutonium fuel rods

– uranium 3.7°/0 U-235 fuel rods64- uranium 3.3V0 U-235 fuel rods

71 – uranium 3.7% II-235 fuel rod9

40

Page 45: Results of Parametric Design Studies of MOX Lead Test …

Figure7. SMnpliledDe@ptJoraIWwd-2”ljyMMOXLTA

Enrich

High 1

Interm

LedUranium Rods

o.,..;r..$j$+; Central tube....

‘lutonium-Content MOX Rods

ediate Plutonium-Content MOX RodsControl Rods / Burn able Absorbers

RRC KI. Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98) 41

Page 46: Results of Parametric Design Studies of MOX Lead Test …

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTEResults of Parametric DesignStudiesof MOXJ_eadTestAssembly(FinaJReportfor FY98)

[email protected] 8. Ca!culatlonal Model for “is/and-2” MOX LTA Surrounded by UraniumAssemblies. 60 OSecfor

26,7135,

71,71,25,71,71,71,25,

71,71,71,7145,71,71,71,71,7125,

29,71,71,71,71,7125,71,71,71,71,71,71,7125,

71,71,7139,71,71,71,71J5,71,29,71,73,71,71,71,71,7135,

71,71,71,71,71,71,71,71,71,7125,27,71,71,71,71J9,71,71,71,71,71a6,

71,71,71Q9,71,71,71,71,71,71,71,25,71,71,71,71,71,71,71,71,71,71,71J5,

71,71J9,71,71,71~9,71,71,71,71~5,71,71,71,71,71,71,71,71,71,71,7195,

29,71,71,71,71$9,71,71,71,71,71$5,71,71,71,29,71,71,71;71,71,71,71~5, 28,

71,71,71,71,71,71,71,71,71,71,71,25, ,64,71,71,71,71,71,71,71,71,71,71,71,25, ,28, ,64,64,

71,71,71,71,71,71,71,71,71,71,71,25 ,64$0$0,71,71,71,71,71,71,71,71,71,71,7135, ,64,28$030,

26~,25,25,25,25,25$5,25,25~5~6, ,28,64,64$O$OJ27,

25- side water cell26- corner water cell27- central tube cell

28,29- guide tube cell / burnable absorbers50 -high plutonium fuel rods- uranium 3.7°/0 U-235 fueI rods64- low plutonium fuel rods

71- manium 3.7?40 U-235 fuel rods

.

,,

42

Page 47: Results of Parametric Design Studies of MOX Lead Test …

.

.

.“

RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE

llesults of Parametric Desigu Studies of MOX Lead Test Assembly (Final Report for N98)

Figure 9. Pins Numeration in CS Model

1,2,3,

4, 5, 6,7,8, 9, 10,

11,12,13,14,15,16,17,18,19,20,21,

22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,

37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,

56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77, 78,

79,80 ,81,82,83,84,85,86,87,88,89,90, 91,92,93,94,95,96,97,98, 99 ,100,101,102,103,104,105,

106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,l2l,l22,l23,l24,l25,l26,l27,l28,l29,l3O,l3l,l32,l33,l34,l35,l36,

137 ,138,l39,l4O,l4l,l42,l43,l44,l45,l46,l47,l48J49,l5O,l5l,l52~53,l54,l55,l56,l57,l58,l59,l6O,l6l,l62,l63,l64,l65,l66,l67,l68,l69,l7O,l7l,

172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,l9l,l92,l93,l94,l95,l96,l97,l98,l99,2OO$Ol~O2~O3,~4~O5$O6JO7~O8~O9,2lO,

2ll,2l2Jl3,2l4,2l5Jl6,2l7,2l8Jl9,22O~2l,222J23J24J25,226,227328,229$3O$3l,232J33,234235,236J37,238,239J4O,Wl,242243J44,245,246,247J48J49J5OP5l,252J53,

254~55,256,257,258,259~6O,26l~62$63,264~65~66,%7~68J69,27O~7l ,272J73~74~75J?76,

257- side water cell

254 – corner water cell276- ceutral tube ceil

137- guide tube cell / burnable absorbers223 -plutotium fuel rods

71- uranium 3.7”A U-235 fuel rods

43

Page 48: Results of Parametric Design Studies of MOX Lead Test …

t 1’ +

0-

u-)C.7

0C9

mN

0N

m

0T

In

0

Page 49: Results of Parametric Design Studies of MOX Lead Test …

o$0

od’

VJm

om

Inm

oH

w+

ol-l

In

o

SD-W

a

Page 50: Results of Parametric Design Studies of MOX Lead Test …

R&we12.ParmiietrkStudiesofdWudb2JpeMOXLTA(?73.7%)

&

RRC KI. Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98)

Kk against “island periphery” enrichment for different “island center” enrichments Xpu

1.4

1.35

1.3

1.25

1.2

1.15

1.12.0 3.0 4.0

!IT.1”..,J . .. A.. L...... I1 . . . . . . .. I.-.=+,.4’ fissiie Plutonium, %’0

1O@hnum“islandperiphery”fiisilePlutoniumenriciunent

3 3.5

Xeenter, %

4

Kk against “island center” fissile P1utonium enrichment

1.35

Q’ 1.25

E

*Island-2

1.15 Island-l

1.052 2.5 3 3.5 4

1!I~~d wntir~! P1utoNum elllichllleUtY 0/0 46

Page 51: Results of Parametric Design Studies of MOX Lead Test …

r

3,2

$ 3.0

~- 2.8

s 2.6

w 2.4

2.2

R&w%?13. ParametricStudiesofddamh TypeMOXLTA(U4*496)

RRC KL Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for N98)

Kk against “island periphery” enrichment for different “island center”enrichments Xpu

1.28

1.26

L24

1.22

1.20

# 1.18

1.16

1.14

1.12

1.10

1.0s

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

“Islaud periphery” enrichment of fis sile Plutcmiuw ‘A

Optitnum “island Periphely” f~sile Plutonium enrichment

against “island center” fkile Plutonium etichment

3 3.2 3.4 3.6 3.8 4“Island center” Plutonium enriclnnent, %

Kk against “island center” tisstle PlutoniuIu enrichment

1.301.25

~ 1.201.151.101.05

2 2.5 3 3.5 4 47

Page 52: Results of Parametric Design Studies of MOX Lead Test …

o

ngwe 14. Sbnplilj?edDe@@jior‘%MTemwUWznd-2”TypeMOXLTA

Enriched Ur

High Piuton

Intermediate

‘anium Rods

o,4$<,.,qy. Central tube

ium-Content MOX Rods

:Plutonium-Content MOX Rods @ Control Rods /BumableAbsorbers

RRC KI. Results of Parametric Design Studies of MOX Lead Test Assembly (Final Report for FY98)

Page 53: Results of Parametric Design Studies of MOX Lead Test …

.

Fig. 15. Kk against “Island” periphery enrichment fordifferent “Island” size. “Island central enrichment - 4.(IYo.

1.40

1.35

1.30d

1.25

1.20

1.15

0

Uranium enrichment - 3.7Y’o.

2 4

Plutonium enrichment in “Island” periphery(%)

+ h-rows

+ &ows

6

Fig. 16 Kk against “Island” periphery enrichment for different“Island” size. “Island central enrichment - 4.0%. Uranium enrichment

-4.4%.

1.281.261.241.22

& 1.20M 1.18

1.161.141.121.10

+ (j-rows

+ A-rows

o 12345

Plutonium enrichment in “Island” periphery (!!XO)

49

Page 54: Results of Parametric Design Studies of MOX Lead Test …

Uo

—..__. -..__. — ——..—

BUpin

-.—-

BUpin

BUpin

00 Y“?’‘ma--”- w

u

Id

&

U

t.)

VI

nkJ!

{

Page 55: Results of Parametric Design Studies of MOX Lead Test …

Cell74

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

1 2 3 4“5

Zone number

.

Cell76

1.45

1.35

1.25

g 1.15

m 1.05

0.95

0.85

0.75

1 2 3 4 5

Zone number

1.4

1

0.8

.

Fig. 18.

Cell72

1 3 5

Zone number

CeU 75

1.45

1.35

1.25

1.15

1.05

0.95

0.85

0.75

1 2 3 4 5

Zone number

1.45

1.35

1.25

1.15

1.05

0.95

0.85

0.75

1 2 3 4 5

Zone number

Cell 77

+ BU=OMWd/kg

+ BIJ=12MWd/kg

+ BU=24MW&lcg

+ Bu=40 MWd/kg

Inter-pin relative power distribution

51

Page 56: Results of Parametric Design Studies of MOX Lead Test …

% ‘< 7 .OE-04

~- 6.OE-04~ 5-oE-04

~ 4.OE-04‘~ 3.OE-04~ 2.OE-04~ 1.OE-04

~ O.OE+OOu

U235 Bu= 12 MWd/kg

Zone number

+ Cell 72

+ cell 74

+ cell 75

+ Cell 76

+ cell 77

1 2 3 4 5

.

Fig. 19. Inter-pin isotopic distribution

U235 BU= 40 MWd/kg

‘~ 2.5E-04

-S 2.OE-04%:. 1.5E-04g

“: 1.OE-04L

1 2 3 4 5

Zone number

+ Cell 72

+ Ceu 74

4- Cell 75

*Cell 76

+ Cell 77

.

Fig. 20. Inter-pin isotopic distribution

52

Page 57: Results of Parametric Design Studies of MOX Lead Test …

Pu239 Bu= 12 MWd/kg

w’

“1.

7.OE-04

6.OE-04

5.OE-04

4.OE-04

3.OE-04

2.OE-04

1.OE-04

O.OE+OO

=ziiiil+ Cell 74

+ Cell 75

+Cell 76

+ Cell 77 ~

12345

Zone number

Fig. 21. Inter-pin isotopic distribution

Pu239 BU= 40 MWd/kg

3 .5E-04

3.OE-04

2.5E-04

2.0E-04

1.5E-04

1.OE-04

=?

“b

1 2 3 4 5

Zone number

Fig. 22. Inter-pin isotopic distribution

53

Page 58: Results of Parametric Design Studies of MOX Lead Test …

Pu240 Bu= 12 MWd/kg

1

2.OE-04

1.5E-04

1.OE-04

5.OE-05

O.OE+OOw

12345

Zone number

+ cell 72

+ cell 74

* cell 75

+ cell 76

++ Cell .77

Fig. 23. Inter-pin isotopic distribution

Pu240 BU= 40 MWd/kg

2.5E-04

2.OE-04

1.5E-04

1.OE-04

5.OE-05

O.OE+OO

1 2 3 4 5

Zone number

Fig. 24. Inter-pin isotopic distribution

.

54

Page 59: Results of Parametric Design Studies of MOX Lead Test …

.

.

.

Pu241 Bu=12MWd/kg

‘~ 8.OE-05~ 7.OE-05

‘b 6.OE-05~“ 5.OE-05~ 4.OE-05

“g 3 .OE-05~ 2.OE-05: 1.OE-05,? o.oE+oou

1 2 3

Zone number

4 5

Fig. 25. Inter-pin isotopic distribution

+ cell 72

-D- cell 74

+-- cell 75

++ cell 76

++ cell 77

1.4E-04

1.2E-04

1.OE-04

8.OE-05

6.OE-05

4.OE-05

2.OE-05

O.OE+OO

1 2 345

Zone number

Pu241 BU= 40 MWd/kg

~+- cell 72

-9- cell 74

+ cell 75

+ cell 76

+ cell 77

Fig. 26, Inter-pin isotopic distribution

55

Page 60: Results of Parametric Design Studies of MOX Lead Test …

1.

v 8.OE-06“i;- 6.OE-06

8 O.OE+OO

Pu242 Bu= 12 MWd/kg

1 2 3 4 5

Zone number

Fig. 27. Inter-pin isotopic distribution

~

+ cell 72

+ cell 74

+ cell 75

+ Cell 76 ~

-

Pu242 BU= 40 MWd/kg

‘~ 6.OE-05<

- 5.OE-05=?‘/ 4.oE-05

~ 3.OE-05.-sg 2.OE-05

g 1.OE-05a

~ O.OE+OO

1 2345

Zone number

+ cell 72

-9- cell 74

+ Cell 75+ cell 76

+ cell 77

.

Fig. 28. Inter-pin isotopic distribution

56

Page 61: Results of Parametric Design Studies of MOX Lead Test …

H:19ERv AM11DATAW38 rN38 . .

aNlam5u m /2$2

Ko F1

Z*I ?h2*

6.80E+01 1.43E+01 3,60E+131 I,1OE+O1

1,2=+00 3.03E+W 0,00E400 3.OIE+U1

I ,.24E+C-3 ,,@,EW,l ,.262?+00 3.O,E+O,I CI.00E+OO 3.O,E+OII

I 7.IOW’21 1.16EW1 J.90EW 1.763!+01 4.80E+01 l,69E401

I

320E+01 1.J2Ew1 2.90E+01 L12E+01

1.22W20 ‘6.03E+01 1.233!+00 3.03EW 1.23E+O0 3.03E+01 1.23EU42 3.03Et01 0.013E+00 3,01E+01

I I7.ZOEW L63E+C11 6.WIE+Q1 1.74E+01 4.90E+01 1.75E+01 3,90F.+Q1 1.69E401 3 WEM1 1.!23?+01 X20Ei.21 1 12E+iu

I1.242M0 3.03Eu31 1.23E+wI 3.03E+01 1.22EW3 3.03EW 1.23E+W 3.03E+01 1.23E+M 3.03E+01 0,00W0O 3.OtEW I

I [ I7.30E+01 1,1OE+O1 610E+O1 j,60Em1 MIOE+!21 1.71E+01 4,00E+01 1.13E+01 3.102?+01 1.69E+oI 2.30EW 1.53S+01 1.30E+01 1.823?+01

O.WE+W 2,99EMI 1,24E+24 1.03E+211 1,23E+00 I I 1303EW 1.23E+00 3,03E+.31 L23Et00 3.03Et01 1.2JE+W 3.03EU11 0.00E+W 3,01w21

I I I I7.40E+01 MJE+O1 6.ZOE+O1 1.SJE+Q1 3.30S+01 1.J6EW1 4.103?+01 1.6EE+01 Y.20E+01 1.72E+01 2.40Ew1 1.69E+01 1.70E+01 1.ME+O1 1.1OE+O1 L126w1

I [ I 11.25E+W 3,03iM11 1.23E+W 3.03EtQ1 1.2SE+W 3,03E+01 L3.4E+@l 2.03E+i11 1.23E+W 3,03E+Q1 1.23!MQ 3.03EW1 l, E3E+00 3,03E+01 0.WE+C4 3.01!?+01

I I I7.30E401 1.33E+01 6,30ERW 1.33E+oI 1,20EW

I I I I

1.34EW1 4,20E+01 I,1OE+O1 3,30EM1 l.&O1 Z,30E401 l. TEE+Q1 1.80EW 1,69E+01 1 203s+01 1.33E+121 7.00E+0i3 2.lEE+O1

1.23E+00 3,03E+01 l,2!EWM 3,03E+W I I Il,?.JE+OO 3.03E+.31 0,00E+OO L99Et01 1,24E+C4 303E+01 1,23EW0 3,03E+01 1.23E40CI 3,03E+01 1.23E+Wl 3.03E+01 0.00EKIO 3,016!+01

I T I I7.20E+21 1.i2E+01 6.40E+01 L07E+01 J,30E401 1.J4E+411 4,30E+03 1,JJEu21

I I I I

3.40E+Ol 1.J8E+01 2.60E+QI 1.71E+01 1.90Eu31 1 7JE+01 1.30EMI 1.69E+01 8.CQE+W I, SIEW1 4,W6HW 1.llEtO1

1.25EIO0 3,03E++31 0.00EwO 2,99E+01 I II,25E+o0 3,03E+01 1.25E+W 3.03Em1 1.24EW0 303E+OI 1.23E+00 3.03E+01 1.Z2E+O0 3.03E+01 1.23E+C4 3.03E+01 1.2$E+W 3.03E+01 0.00E+OO 3.0133+01

Fig. 29. Spectrum parameters distribution in MOX assembly ( Pu 3.8. Sector 60°)

57

Page 62: Results of Parametric Design Studies of MOX Lead Test …

.C1rJw&# F11F2

K. F1

1.1 ZS2

I 0.00E*O 276EU31 I

Li2i-zb6.80EW1 J.99E+O0 3,60E+i21 J.31E+O0

I 6.90Et01 6.42E+C+ S70E+01 6.13EH10 4,60EW1 S.3JE+W

1.2JE+C42 2.78E+01 1.26WO0 2.77E+01 0.00E+W Z.7YE+01

I 7.00EuM 6.7?.)?+00 $20E+01 6.ME+G+3 4.70Ew 6.19E+.20 3.70E+01 5.39E+00

1.Z4E+O0 Z78EW1 L23Et00 2.72E+01 1.26Et00 2,78E+W 0.OCE+W 2.75E+OI

I I I I7.1OE+W 6,90E+00 UOE+O1 6.60EW0 4.80E+OI 6,60E+00 3.80EW11 6.22.E+XI 2,90EW1 J,41E+OQ

I.?AE+W ?L79E+W 1,24Ew2 2.72E+01 l, ZJE+W 2.76Eu)1 1.7..5)?+00 2.=E+.21 0.00Eu4 2,7SE+01

I I I I7.20EuU 6.98E4W 6.00EuI1 6,97E+00 4.90Et01 6.64E+30 3.9QE+121 6.67.Ei@ 3.WE+O1 6.24EW0 Z20E+U1 $42E+Q0

1,2AE+00 2.792HQ1 1,24E+00 Z79E+01 1,14E+W I2.72EWI L2SE+IM 2.78Ew1 1.26E+M 2.72E+0i 0.00E+OO 17JE+01

Fig. 30. Spectrum parameters distribution in “Island” type MOX assembly ( Pu 3.8_3.8_U 3.7. Sector 60°)

58

,

Page 63: Results of Parametric Design Studies of MOX Lead Test …

HU~V.M1DATAbV38.28_ti7_,.

c1Ntmb F11F2

K. F1

ml 282

E21~ 680E+01 5,98E+O0 3.60E+OI 3.30E+M

I !27E~0 272E+d 0.00Ewo z76E+0d

I 6.90EKu 6,41E+OD X70E+01 6,12i?+00 4,60E+01 J,24E+00

1.2JE+O0 2,79E+Q1 I 26E+CI0 2,78E+421 0,00EUnl 2,76E+01

I 7.00E+O1 6,69Et00 s.80E+01 6,32E+O0 4.70EM 1 6 18Et00 3,10E+01 3,38E+W

1.24Ei00 2.?9Et01 1.23E+O13 2,79E+01 1.26Eu20 2.78Et01 0.00EHIO 2,76E+C11

I [7.tOEU!l 6,86E+Q0 s.90Et$JI 6.71F.+QO 4.80E+01 6,S8E+00 3,80E+01 6.ZIEW 2,908+01 5.#0E+C4

1.24E+w 2.79E+01 1.34E+00 1.79E+W L23E+00 279Ew1 1,26W4N 1.72E,+01 O.WE+W 2.76S+01

I I7.20E+01 6.22E+c!0 6.00E+O1 6,90Eti0 .3.90E+01

I I I I

6.80E+00 3.92E+01 6.J9E+20 3.@lE+O1 6,22E+W Z,20EHN $41E4C+

1.24E+.2Q 2.79E+0t 1.24E+00 2.79E+01 1.24E+w l19E+01 1.23E+w L79E+01 1.2.5E+00 2,72EM1 0.wE+oL7 2.lm+O1

I I I1.30Eu21 6.7.4E+w 6.1OE+O1 6.99EW4 3.00Ei.21 6,92E#0 4,00Et0t 6.79E+0U 3,20E+01 6.60Ei00 2,30E+01 6,33E* 1.60E401 3.41Ew0

I [ I0.WEU30 Z.17E+01 1.23E+00 Z.80EKM I,24E-3LI z73E+01 1.24EUI0 7..l3EW1 1.2JE+00 L13E+Ol 1.2.5E+W z7$E+01 O.COEU”I 2.76E+01

Fig. 31. Spectrum parameters distribution in “Island” type MOX assembly ( Pu 3,8_2.8_U 3.7. Sector 600)

59

Page 64: Results of Parametric Design Studies of MOX Lead Test …

.

pu38_28_u370Cument Bumup 24 MWtdkg

power Distribution

761.1

77 651.091 1.097

78 66 550 1.091 1.1

Pu38_28_u370CurrentBump 40 MWtdikgPow= Distribution

76

1.078

77 65

1.086 1.08?

78 66 550 1.0S6 1.078

75

1.108

64

0

541.105

45

1.108

751.061

64

0

541.067

45

1.061

740.951

63

0.954

530.953

440.948

36

0.951

74

0.942

630.949

53

0.95

44

0.947

360.942

73

0

62

0.991

52

0.99

43

0.988

35

0.989

28

0

73

0

62

1.014

52

1.016

43

1.016

35

1.013

280

72

0.986

61

0.989

51

0.991

42

0

34

0.99

27

0.988

21

0.986

72

0.994

61

0.999

51

1.003

42

0

34

1.002

27

0.999

21

0.994

710.973

600.974

500.977

410.988

330.988

260.977

200.974

150.973

710.984

600.986

500.989

410.995

330.995

260.989

200.986

150.984

700.981

590.976

490.976

400.978

320.98

250.978

190.976

140.976

100.981

700.987

59

0.985

49

0.985

40

0.987

320.988

250.987

190.985

14

0.985

100.987

691.003

580.993

480.99

390.989

310.989

240.989

180.989

130.99

90.993

61.003

690.998

580.993

480.991

390.991

310.991

240.991

180.991

130.991

90.993

60.998

Fig. 33. Power distribution evolution in “Island” type MOX assembly (Pu3.8_2.8_U3.7 Sector 60°)

681.034

571.024

47

1.019

381.016

301.015

231.015

171.015

121.016

81.019

5

1.024

31.034

681.011

571.006

471.004

38

1.003

30

1.002

231.002

171.002

121.003

8

1.004

5

1.006

31.011

61

Page 65: Results of Parametric Design Studies of MOX Lead Test …

pu38_212_u37e

on-rmtwmp12Mwwi3

-P Di5frihtion (Mwtd@)

16

13.067

77 63

1238 12914

78 66 S5

0 12.38 [3.067

plo8.2i_u370

Cmrm3 Bump 24 b2wt6k3

BmIUP Dislriim @5WW3a3

?6

26.134

77 6222411 25.906

78 66 55

0 23,411 24.134

FU38.28-U370

-BumIP4036W26@

Bunnlp Oiitim @4wo@2

75

14.0s

64

0

5413.663

4s14,05

7527.477

640

54

26.955

45

27.477

75

44,589

76 64

43,342 0

77 65 5442.616 43,112 44.107

78 46 33 45

0 42.616 43,342 44.589

74

13.065

62

12,696

53

125S6

4412,362

36

13.065

14

24,718

63

24,309

53

24,123

4423.832

36

24.718

74

39,568

63

39.246

33

39.06

44

38.71

36

39.S6S

73

0

6’2

10.978

52

10.W1

43

10.232

35

10.932

230

73

0

62

22643

52

2Z495

42

22423

35

22362

23

0

73

0

62

38.752

52

3S.612

43

38.515

35

38.64

2s0

1211..575

61

11.498

5111.461

42

0

3411.446

2711.4s3

2111.575

7223.358

61Z3.m

5123.264

420

34

23.237

27

23.27

21

73358

7239.248

61

39.244

51

39.263

42

0

34

39.23

27

39.238

2139248

71

11.498

6011.465

50

11.468

4111.67

3311,067

2611.463

2011.463

1511.498

7123.135

60

23.106

5023,138

4123.X26

3323s01

?.623.138

2023.101

15

23.135

7138.834

60W,832

so33.912

4139A23

3339.416

2638.899

20

3s.823

1538.824

70

11,493

59

11.5%

49

11.566

40

11.588

32

11.614

23

11.587

19

11.564

14

I 1593

10

11.643

70

23.457

59

23.291

49

23,248

40

23.29s

32

23.348

25

23.295

19

23.244

14

2S239

30

23.457

70

39.24.5

59

39.024

49

3s979

40

39.061

32

39.124

23

39.036

193S974

14

39.021

1039.245

69

12.113

58

11.935

48

11.863

39

11,s4

31

11.84

24

11.84

18

11.34

13

11.862

911.934

6

12113

6P

24.2

58

23.384

48

23.758

39

22.72

31

23.722

24

23.722

1822.n9

13

23.756

9

2SSW

624.2

69

40.256

38

39.826

48

39,633

3939.605

31

39,61

24

39.609

18

39.602

13

39.651

9

39.822

640336

68

12854

57

12.603

47

12501

38

12431

30

12.43

23

12.42s

17

1243

121245

8

123

3

12603

3

12834

68

23.456

57

25.032

47

24.s32

38

24,763

30

24.727

73

24.718

1724.727

12

24.763

8

3A.831

5

33.032

3

23.456

68

41.878

57

41.334

47

41,0s9

38

40.968

3040.919

23

4&907

17

40.918

12

40.967

8

41.688

5

41.333

3

41.878

Fig. 34. Burnup distributionevolutionin “Islend”@e MOXassembly (Fu3.8 2.8 U3.7 Sector 603

62

Page 66: Results of Parametric Design Studies of MOX Lead Test …

2.50E-02

2.40E-02

2.30E-02

2.20E-02

2.1 OE-O2

2.00E-02

o 20 40 60

BUrIIUp MWd/kg

+ pU38_28_u370

+ pU38_38_u370

+ pU38~u380

+ u37_u370

‘E

A’

1.1OE-O2

1.05E-02

1.00E-02

9.50E-03

9.00E-03

8.50E-03

8.00E-03

7.50E-03

7.00E-03

6.50E-03

6.00E-03

o 20 40 60

Burnup MWd/kg

L+pU38_28_u370

+pU38_38_u370

+pU38~u380

*u37_u370

Fig. 35. Assembly parameters evolution for different enrichment compositions

63


Recommended