+ All Categories
Home > Documents > Results of QTC and HPK scenarios

Results of QTC and HPK scenarios

Date post: 19-Jan-2016
Category:
Upload: indra
View: 28 times
Download: 0 times
Share this document with a friend
Description:
Results of QTC and HPK scenarios. IEKP – University of Karlsruhe Alexander Furgeri [email protected]. QTC in Karlsruhe. QTC status prequalification W1TID for Louvain Scenarios of U dep for inner Barrel sensors. Status QTC. Prequalification W1TID. Diodes 2-5 and 10-13 - PowerPoint PPT Presentation
18
1.6.2003 Sensor meeting A. Furgeri 1 Results of QTC and HPK Results of QTC and HPK scenarios scenarios IEKP – University of Karlsruhe Alexander Furgeri [email protected]
Transcript
Page 1: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 1

Results of QTC and HPK Results of QTC and HPK scenariosscenarios

IEKP – University of Karlsruhe

Alexander Furgeri

[email protected]

Page 2: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 2

QTC in KarlsruheQTC in Karlsruhe

• QTC status

• prequalification W1TID for Louvain

• Scenarios of Udep for inner Barrel sensors

Page 3: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 3

Status QTCStatus QTC

Set (meas./tot.) OK IV Bad Strips Opt. defect PQC % rejects

14 W5A 15/15 9 32 (many pinholes)

1 (D) OK 40

15 W3 2/44 2 0 0 0To high resistivity

100 ?

0 ?

16 W6A 16/16 12 1 0 3 OK 25

17 W6B 13/13 121 destructed

0 0 OK 08

18 W6A 15/16 12 1 11 etched strips

OK 19

19 W6B 3/10 2 1 0 0 Not done 10

22 W3 2/55 1 0 0 1 (D)Not doneUdep=176V

4

Page 4: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 4

Prequalification W1TIDPrequalification W1TID• Diodes 2-5 and 10-13 not measurable• breakdown for diodes between 460V and 530V• depletion voltage for diodes 50V (for all !)• depletion voltage for minis 80V (~1.3*Udep of diodes)• Depletion voltage for sensor 105V (picture of HPK seems to be right)• Same picture for W3

Page 5: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 5

Experimental data for donor Experimental data for donor removal in Hamburg modelremoval in Hamburg model

0,0 0,5 1,0 1,5 2,0 2,5 3,00

50

100

150

200

250

300

350

400

Fit parameters:g

c=1.49e-2 /cm

rc=0.65

c=10.9e-2/N0g

a=1.81e-2 /cm

ta=19 min

gY=5.16e-2 /cm

tY=1260 min

320µm minisensors: r

c=0.65

rc=0.8

rc=0.5

Ful

l dep

letio

n vo

ltage

in V

Fluence in 1014 n1MeV

/cm2

HPK with high fluence

rC=NC,0/Neff,0

Describes complet or partial donor removal

rC <1 !

Page 6: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 6

Reverse annealingReverse annealing

1 10 100 1000 10000 100000 1000000 1E7200

400

600

800

1000

1200

De

ple

tion

ssp

an

nu

ng

[V]

annealing Zeit [min]

fit • Time constant ~20% higher as ROSE• deepest niveau of depl. voltage as predicted

Page 7: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 7

Batches with high resistivityBatches with high resistivity

• HPK delivers sensors with high resistivity– higher depletion voltage in the end of CMS expected– Forseen fluence in the inner part of the tracker is

1.6e14 n(1MeV)/cm², distributed in• 1. year 10%• 2. year 33%• 3. year 67%• 4.-10. year 100%

– In reality depending from the location in the tracker• Radial location (high effect)• Z-location (low effect, except of W2 and W3)

Page 8: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 8

Calculation of the scenarioCalculation of the scenario

• Local Distribution of fluence in the Tracker– Tracker-TDR

– comparison with E. Migliore (same source ?!)

• Fluences for different geometries• Per year:

1. Irradiation (at once)

2. Beneficial annealing (20 degree, 14 days)

3. Reverse annealing (20 degree, 14 days)

• Scenario for 10 years• time without beam and annealing not shown

Page 9: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 9

Differences Differences A. FurgeriA. Furgeri E. Migliore E. Migliore

• A. Furgeri– 14 days per year @ 20 degree

• 5 Times higher time constant for beneficial annealing

– Donor removal (rC) from experimental data in Karlsruhe (better for low resistivities, less uncertainties)

– Fluences together as hadrons (main part)

– Factor 1.3 for sensors, confirm with exp. Data

– Factor of 1.5 for fluences

• E. Migliore– 28 days per year @ 10

degree• 26 times reduced time

constant for reverse annealing

– Complete donor removal for hadron fluences (worse for low resistivity, but not confirm with exp. data)

– Neutron & proton fluences separated

– No factor of 1.3 (diodes instead of sensors)

– No factor for uncertainties

Page 10: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 10

Fluence distribution in the Fluence distribution in the trackertracker

Low variation in fluence formost geometries.

geometry Fluence [10e14-1MeV]

IB1 – 1. Layer IB1 – 2. Layer 1.6 1.1

IB2 0.6

W1TID 1.6

W1 1.6

W2 0.9 - 1.1

W3 0.5 - 1.1

W4 0.5 - 0.8

eqcc

ceqc geNN eq )1()( 0Stable damage:

Important part for high fluences

Page 11: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 11

Nominal fluencesNominal fluences

0 1 2 3 4 5 6 7 8 9 10 110

100

200

300

400

500

600

=1.6e14W1(TID)IB1 - 1. Layer

1.25 kOhmcm 3.25 kOhmcm 5 kOhmcm

depl

etio

n vo

ltage

[V]

years [y]

Sensors depletion voltageOverdepletion possible with 500V !

Page 12: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 12

Comparison of scenarios @ Comparison of scenarios @ 10°C and 20°C10°C and 20°C

0 1 2 3 4 5 6 7 8 9 10 110

100

200

300

400

500

600

=2.4e14W1(TID)IB1 - 1. Layer

1.25 kOhmcm 3.25 kOhmcm 5 kOhmcm

de

ple

tion

vo

ltag

e [V

]

years [y]

0 1 2 3 4 5 6 7 8 9 10 110

100

200

300

400

500

600

=2.4e14W1(TID)IB1 - 1. Layer

1.25 kOhmcm 3.25 kOhmcm 5 kOhmcm

de

ple

tion

vo

ltag

e [V

]

years [y]

+10°C, 28 days per year +20°C, 14 days per year

Sensor depl. Voltage !

More reverseAnnealing !

Page 13: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 13

Different donor removalDifferent donor removal

0 1 2 3 4 5 6 7 8 9 10 110

100

200

300

400

500

600

=2.4e14W1(TID)IB1 - 1. Layer

1.25 kOhmcm 3.25 kOhmcm 5 kOhmcm

de

ple

tion

vo

ltag

e [V

]

years [y]

0 1 2 3 4 5 6 7 8 9 10 110

100

200

300

400

500

600

=2.4e14W1(TID)IB1 - 1. Layer

1.25 kOhmcm 3.25 kOhmcm 5 kOhmcm

de

ple

tion

vo

ltag

e [V

]years [y]

Donor removal of 65%, due to exp. data from p-irradiation

Complete donor removalNot confirm with KA-data

Page 14: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 14

Worst case scenariosWorst case scenarios

0 1 2 3 4 5 6 7 8 9 10 110

100

200

300

400

500

600

=2.4e14W1(TID)IB1 - 1. Layer

1.25 kOhmcm 3.25 kOhmcm 5 kOhmcm

de

ple

tion

vo

ltag

e [V

]

years [y]

0 1 2 3 4 5 6 7 8 9 10 110

100

200

300

400

500

600

=1.65e14W2W3IB1 - 2. Layer

1.25 kOhmcm 3.25 kOhmcm 5 kOhmcm

de

ple

tion

vo

ltag

e [V

]

years [y]

Worst case = highest fluence * 1.5 , 14 days per year @ 20°C(uncertainties in fluence, see Mika Huhtinen “Radiation Environment in Experimantal (CMS) Area”,10.4.2000)Thickness = 320μm

Page 15: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 15

Worst case scenarios with Worst case scenarios with virtual thicknessvirtual thickness

Worst case = highest fluence * 1.5, 14 days per year @ 20°C Thickness = 290μm, due to n++-thickness of 30µm)

effect of 100V !

0 1 2 3 4 5 6 7 8 9 10 110

100

200

300

400

500

600

=2.4e14W1(TID)IB1 - 1. Layer

1.25 kOhmcm 3.25 kOhmcm 5 kOhmcm

de

ple

tion

vo

ltag

e [V

]

years [y]

0 1 2 3 4 5 6 7 8 9 10 110

100

200

300

400

500

600

=2.4e14W1(TID)IB1 - 1. Layer

1.25 kOhmcm 3.25 kOhmcm 5 kOhmcm

de

ple

tion

vo

ltag

e [V

]

years [y]

Page 16: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 16

DiscrepancesDiscrepancesIQC and ScenariosIQC and Scenarios

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

100

200

300

400

500

600

=2.4e14W1(TID)IB1

3kOhmcm 3.5kOhmcm 1.25kOhmcm 4.5kOhmcm 5kOhmcm

depl

etio

n vo

ltage

[V]

annealing [d]

0 1 2 3 4 5 6 7 8 9 10 110

100

200

300

400

500

600

=2.4e14W1(TID)IB1 - 1. Layer

1.25 kOhmcm 3.25 kOhmcm 5 kOhmcm

de

ple

tion

vo

ltag

e [V

]

years [y]

Result after IQC No reverse annealing!

Page 17: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 17

Summary of uncertaintiesSummary of uncertainties• Effects of uncertainties ?

– Donor removal complete ? • Less expected for uncharges particles

– Temperature during shutdown and repair periods ?• Avoid reverse annealing ! Try to keep temperature

below 20°C !

• Effects of unpredictables ?– Time of shutdown and repair periods ?

• Open (warm up) the Tracker as late as possible !

– Fluences in different running periods ?

Page 18: Results of QTC and HPK scenarios

1.6.2003 Sensor meeting A. Furgeri 18

ConclusionsConclusions

1. Worst case for IB1,W1 and W1TID needs ~700V bias voltage, but expected to be better

2. Separation of sensors with different resistivities possible for IB1, for W1 and W1TID senseless


Recommended