+ All Categories
Home > Documents > Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe....

Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe....

Date post: 02-Oct-2020
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
60
Reversed Cherenkov Radiation in LeftHanded Metamaterial 8.07 Lecture, Nov 21, 2012 Prof. Min Chen 1
Transcript
Page 1: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Reversed  Cherenkov  Radiation  in  Left‐Handed  Meta‐material

8.07  Lecture,  Nov  21,  2012 Prof.   Min  Chen

1

Page 2: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

8.07  is  not  just  an  abstract  theory;  it  is  a  tool 

which  can  be  applied  to  change  the  world  around  you.

Example:  Left‐Handed  Meta‐material

Page 3: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

1. Introduction What are Metamaterials?

Engineered (at the atomic level) materials that have unique properties not found in nature due to the arrangement and design of their constituents.

NOTE: THE PROPERTIES ARE THAT OF THE ENTIRE

X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X

XX

  A natural material with A metamaterial with artificiallyits atoms structured “atoms”

ARRANGEMENT AND NOTTHE CONSTITUENTS

THEMSELVES

“Meta”  =  above,  superior,beyond

Image by MIT OpenCourseWare.

Page 4: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

1. Introduction Overview of materials

FIG. 3. The material parameter space.

Electrical Plasma

Negative Index Materials

Evanescent waves

Magnetic Plasma(Not naturally

occurring at optical wavelengths)

(Metals at optical wavelengths)

S

1

S

k

k

k

H

E

H k

E

ε<0µ>0

ε<0µ<0

ε>0µ<0

ε/ε0

µ/µ0ε>0µ>0

Evanescent waves

Common Transparent Dielectrics

Image by MIT OpenCourseWare.

Page 5: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

              

k = 2 π / λ Wave number

c/n = ω/k = (ω/k0)/n

e i (k · r – ωt)

sinϑt/sinϑi = n

What is LH material?Refraction of RH and LH material

Page 6: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

   LH e Refraction

This image has been removed due to copyright restrictions.

Page 7: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

           Application example 2 of LH material Superprism

Blue to red

Conventional prism Superprism made ofphotonic crystal

10

x 500

~50∆λ = 1%

Schematic illustration of superprism phenomena. The wavelength dispersion in a superprism made of PhCs is approximately 500 times stronger than in a prism made of conventional crystals.

~

Image by MIT OpenCourseWare.

Page 8: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

          

Application example 3 of LH materialFlat Lens

Page 9: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

       Electron lens, prism and splitter

This image has been removed due to copyright restrictions.

Page 10: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

8.078.07   lecturlecturee   onon   nanaturturaall   magnemagnettizizeded   mamatteerial:rial: frfromom   mmmicrmicroo toto   MMmacrmacroo toto   JJ

curl B = curl B = μμ0 0 JJ bb

8.07 lecture on natural magnetized material:from mmicro to Mmacro to J

curl B = μ0 J b

Page 11: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Polarize  Atoms  to  make  dipoles: W ave speed = c/n’ = √ ( εr μr)

(εeff   ‐ εo)    E = P

real pn ┴

art of n ′ = ∥

  > 1

Image by MIT OpenCourseWare.

Index of refraction nPolarize Atoms to make dipoles:

(εeff  ‐ εo)  

Page 12: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

     Man made atomic dipoles

(a) (b)

c

d

t

wx

y

zL

l

l

(a) IIIustration of the analogy between a usual LC circuit, consisting of a C and inductance L, and (b) a split-ring resonator (SRR).

Image by MIT OpenCourseWare.

Page 13: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

To  make  artificial  material  with  n  <  0 • Make new atoms using driven-resonance LRC- circuits • C alculate inductance L and capacitance C • Calculate induced complex resonance current Imicro • Calculate mmicro = IA to obtain Mmacro • and B = μo (H + M) • Obtain permeability B/H = μ = μr + i μi • Similarly permittivity D/E = ε = εr + i εi • Pick regions with real negative permittivity and negative

permeability, i.e. εr < 0 and μr < 0; note εi > 0 and μi > 0 • Obtain negative Index of refraction n2 = εr μr, n = - √ ( εr μr)

Page 14: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Maxwell  Eqs.  In  matter

=0 No free charge or current

=0

No free charge or current

=0

=0

Page 15: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

How  to  make  LH  material? Maxwell  Eqs.  In  material  free  of  q,  j

µeff    =  <B>/<H>   

(εeff   ‐ εo)  E = P  =  J/iωreal part of n n′ =− ┴ ∥

 

Left  Handed  Meta‐material: Use  L,  R,  C  devices  smaller  than  wavelengths  to  make  new  ‘molecules’,  with  novel  properties  of  P and  M

15

 

Page 16: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Energy  and  Momentum  flow

Page 17: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Maxwell  Eqs Separate  into  and  components

3× 3  complex  matrix  μ and  ϵ diagonized

μ = diag[μ  ∥     μ  ⊥     μ∥ ] Transverse  B┴ depends  on  only  μ ┴

E || on ϵ || E ||

Charge q v

B┴

Page 18: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Maxwell  Eqs  in  Cylindrical  symmetric  geometry Separate  into  and  components

ks  ×H⊥  = − H ωϵ  ∥E∥ and ks  × E  ∥ = ωμ

q v k  ⊥H⊥

E μ⊥  , ϵ∥              are negative

E∥, H⊥, and ks form a left-handed triad

Page 19: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Poynting  &  wave  vector in  and  components

H Poynting vector S

ks

Poynting vector E S = E  ∥ ×H  ⊥* = |Es|2 2ωμ⊥ks

opposite to the wave vect or ks for a negative μ⊥, representin g a backward propagating wav e

Page 20: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Negative  index  of  refraction The Helmholtz wave equation gives, imaginary

nks

c where the real refractive index ε, µ or n

n ||

0 0 real

For passive media The imaginary μ  and ϵ and n > 0, eik x (i n

e _r –n_i) ωx/cThus - sign for n. = 

Page 21: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

(-1+ i a) (-1 + ib) ~ 1 - i (a + b)

Taking square root

---> ~ - {1 -i (a+b)/2} = { -1+i (a+b)/2} imaginary

ε, µ or n

n ||

0 0 real

For passive media The imaginary μ  and ϵ and n > 0, Thus - sign for n.

Page 22: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Cherenkov  Radiation

Generated by objects moving faster than the wave speed in the medium, v > c/n = ω/k = (ω/k0)/n

Examples: • Sonic boom generated by a supersonic jet • Wakes from a speedy boat • Blue light when comic rays going through

closed eyes

Page 23: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Cherenkov  Radiation  for  n=2  and   vp =ω/k  =  c/2

∆t/∆t´ = (1- n v/c) = 1-v/vp

1 1

v/v0 p

Page 24: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Cherenkov  Radiation

RHM LHM

with n>1 with n<-1

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968). Cerenkov Radiation in Materials with Negative Permittivity and Permeability

J. Lu, T. Grzegorczyk, Y. Zhang, J. Pacheco Jr., B.-I. Wu, J. A. Kong, and M. Chen Optics Express 11, 723-734 (2003)

RHM LHM

Page 25: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Forward  Cherenkov  Radiation  in  RH  material

θ

v

Cos θ = c/ nv with n >1 Wave front ┴ V of Energy flow & wave vector k 25

Page 26: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Reversed  Cherenkov  Radiation  in  LHM

θ

Cos θ =  c/  nv  with  n  < ‐1 26

Page 27: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Reversed  Cherenkov  Radiation  in  LHM

Two  puzzling  issues: Apparent  Violation  of

Energy‐momentum  conservation Causality

Page 28: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Momentum  &  energy  conservation? S Sk

z Photon Photon k

p i p f pi p f RHM g

g LHM Photon Photon

Pi=mVi Pf=mVf

pf = pi - g g =D×B=ε ×r µ r E H En i -En =Poynting vector*n2f = En ? 28

Page 29: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Energy  Density  and  Flux Poynting’s theor

em in materia  l:

    ݐ

= ‐

(1/2{ ϵ E }

0 μ H ) +

ݐ

2 0 2

E  P – H   M 

To  get 

ሺ ሻ

time averaged EM energy density

<W> =1/2{

E 2 +

de

ns

µሻ

H2} Complex EM energy ity W =1/4{ ሺ ሻ E·E

∗ +

ሺµሻ H·H

∗}

Page 30: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Momentum  and  Poynting vectors in  a  dispersive  medium

In  isotropic  LHM,  average  momentum  density

N

<G> is along the k direction and opposite to the Poynting vector.

T. Musha, Proceedings of the IEEE 60, 12 (1972). 30

Page 31: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

LH‐Photon momentum  anti‐parallel  to  energy  flow 

S

z Photon

k pi LH γ e p f

31

g g

LHγ-e head-on collisionTail collisions lose enReverse Doppler effe

s gain energy ergy ct

Photon Photon

LHM S p

Page 32: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

k

t3t0 t3 t0

t1 t2

Causality: Cherenkov  radiation Energy  flow, Wave  vector,  Phase  front, Wake  front,  for charge  at  t3

RHM forward LHM backward

with n>1 with n<-1

Wake front Wave vector 32

Page 33: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Forward  Cherenkov  Radiation  in  RH  material  obeys  causality

Cos θ = c/ nv with n =2, v=0.99c Wake front || Wave front ┴ V of Energy flow & 33 wave vector k

Page 34: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

34θ =  acos[c/  nv]=115o Φ = 172.6o

Reversed  Cherenkov Radiation in  Left‐handed  medium  also

Page 35: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

New  ‘molecules’  for  

Configuration of the TM-LHM for experiment. In the top view, the dark (light) gray trips represent the copper printed on the top (bottom) of the substrate 35

Page 36: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Split  Resonant  rings  SRR External  B0   or  H0   penetrates  metal  rings  to  induce  I I  produces  Hi =  FJ  to  enhance  or  oppose  H0,   dipolar.   Resonant λ0 >> d Small  gaps  between  the  rings ‐>  large  C ‐>  lower ω0  

Low  loss,  and  high  quality At ω > ω0  ,  real  µeff =  <B>/(<H>  * µ0)  =  H0  /  Hext < ‐1   Used  with  the  negative  ϵr  of  split  orthogonal  wires  to  produce  negative  refractive  index.

Page 37: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

     

wires Provide isotropic negative permittivity in xz plane

split-ring

L, C

Resonators providing a negative permeability in y direction. TM: B is in φ v

New ‘molecules’ for

Configuration of the TM-LHM for experiment. In the top view, the dark (light) gray strips represent the copper printed on the top (bottom)

37

of the substrate

φ

Page 38: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Magnetic response H0: incident magnetic field J: induced current per unit length Fields inside and outside of the loop:

F =

M = FJ Tota

fraction of area inside loop

l flux is constant J

Page 39: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Magnetic  response

Scale the molecular dimensions by 1/1000, ω increase by ~900 39

Page 40: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Electrical  responseCompute use

J  =      ۾∂

L, C to relate E and J of the wires and

(εeff∂

  

t

‐ εo)  E  =  P  =  J/iω 

εeff   = εd  (  1 ‐ 2 )   

real εeff   <  0 

2

for ω < ωp 

εd  :  permittivity  of  substrate 

40

Page 41: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Unique  design  clean  signals

The constitutive parameter tensors

ϵ = diag[ϵ ϵ ϵ ] = diag[ϵ ϵd ϵ ]

µ = diag[µ ∥

∥ µ ٣ ∥

٣ µ ] = diag[µ eff

µeff µ ] eff

real part of n: n′

=−

0 0

┴ ∥

Page 42: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

 

The transmission properties of a TM wave normally incident onto a 7-cell slab-like sample. The periodicity along y-axis is h = 1.64 mm.

Transmission experiment

Page 43: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

 

(a) The refractive index of the TM-LHM calculated from the measured results. The periodicity along the y axis is h =1:64 mm. (b) The normalized far-field pattern of the prism experiment at 8.5 and 12 GHz, respectively.

Refraction experiment

Page 44: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

?

(a) Experimental setup to demonstrate reversed Cherenkov radiation. A slot waveguide is used to model a fast charged particle. The prism-like metamaterial is used to filter the Reversed Cherenkov wave.

(b) Sum of the radiation power in each angle in the negative refraction band and positive refraction band. 44

Page 45: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

ApplicApplicaationtion   ofof   RCRCRR   1:1:   THzTHz   raraddiiaattiioonn   soursourcesces

fillingfilling   thethe   gagapp   bebetwtweeneen  

opticopticaall   andand   electrelectroonicnic   dedevicesvices

Application of RCR 1: THz radiation sources

filling the gap between 

optical and electronic devices

Page 46: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

1. Introduction

FIG. 2. The power of solid state devices and optical sources vs. frequencies.

Page 47: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

2y 0

2x 02z 0

2.  Theoretical  analysis

We describe a new method to generate intense terahertz (THz) surface wave (SW) and reversed Cherenkov radiation (RCR) using a sheet beam bunch traveling parallel to and over a half space f i l l ed wi th double-negat ive metamaterial (DNM).

SW: Surface Wave FIG. 6. The schematic of a sheet beam bunch exponentially moving with speed in vacuum parallel to and decays in the x over a half space filled with DNM, showing the direction. resultant radiation patterns of the RCR and SW.

We describe a new method togenerate intense terahertz (THz)surface wave (SW) and reversedCherenkov radiation (RCR) usinga sheet beam bunch travelingparallel to and over a half spacef i l led wi th double-negat ivemetamaterial (DNM).

SW:Surface Waveexponentiallydecays in the xdirection.

Page 48: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

2.  Theoretical  analysis

(a) (b) FIG. 7. (a) A sketch view of the unit cell structure formed by fixing a metal SRR

and thin wire on two faces of a dielectric substrate. (b) A perspective view of an isotropic DNM formed by periodic unit cells.

Page 49: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

3.  Numerical  results

FIG. 8. (a) The relative permittivity and permeability as functions of frequency .

Page 50: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

3. Numerical results

(a) (b) FIG. 9. (a) The relative permittivity and permeability as functions of frequency for

three values of the DNM loss. (b) The RCR energy and the time-averaged Poynting vector at x d / 2 as functions of the DNM loss, respectively.

Page 51: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

3. Numerical results

(a) (b) FIG. 10. The effects of the charged particle number N (a) and the transverse

dimension 2y 0 (b) on the amplitude of the SW in region 1 and on the RCR energy in region 2, respectively.

Page 52: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

ApplicApplicaationtion   ofof   RCRCRR   22

TheThe   onlyonly   knownknown   EMEM   prprocessocess   ccapableapable   ofof   dedettectingecting   ininvisiblevisible   cloakcloakss  

Page 53: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Invisible  Cloaks  made  of  LH  light  guides

This image has been removed due to copyright restrictions.

Page 54: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Application: Detect invisibility cloak

using Cherenkov radiation

This image has been removed due to copyright restrictions. Pleasesee Figure 1 on http://prl.aps.org/pdf/PRL/v103/i24/e243901.

Baile Zhang, Bae-Ian Wu, Phys. Rev . Lett. 103, 2009 54

Page 55: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

during the radiation from a charged particle going through a spherical invisibility cloak. The dotted line

This image has been removed due to copyright restrictions. Please see Figure 2 on http://prl.aps.org/pdf/PRL/v103/i24/e243901. represents the trajectory

of the particle. The small arrow indicates the exact position of the particle’s center along its trajectory. The inner radius and outer radius of the cloak are 1 and 2 μm, respectively. The net charge corresponds to 1000 electrons. V=0.9c.

55

Page 56: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Detect  a  perfect  invisible  cloak

This image has been removed due to copyright restrictions. Pleasesee Figure 3 on http://prl.aps.org/pdf/PRL/v103/i24/e243901.

Page 57: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Conclusion  on  Reversed  Cherenkov  Radiation  in  LHM:

Energy‐momentum  conservation Causality New  molecules  for  TM  waves Experimental  verification Future  improvements New  window  of  Applications

Page 58: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

Reversed  Cherenkov  radiation  New  window  of  Applications

Particle  ID:  photons  opposite  to  charged  particles  so  interference  is  minimized. LHM  can  be  isotropic,  anisotropic,  bi‐anisotropic‐‐flexible CR  without  threshold  using  utilizing  anisotropic  LHM, As  observed  in  metallic  grating  and  photonic  crystals Strong  velocity  sensitivity  and  good  radiation  directionality Measuring  intensity,  detecting  labeled  biomolecules Detecting  invisible  cloaks New  radiation  sources

Page 59: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

End  of  the  lecture.

Page 60: Reversed Cherenkov Radiation in Left Handed Meta material · 2020. 7. 9. · Reverse Doppler effe. s gain energy ergy ct . Photon Photon p S LHM. k t0 t3 t0 t3 ... penetrates metal

MIT OpenCourseWarehttp://ocw.mit.edu

8.07 Electromagnetism IIFall 2012 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


Recommended