+ All Categories
Home > Documents > Review ... · 412 S. M. Manolikakes et al. Regioselective Functionalization of Pyridines N FG N FG...

Review ... · 412 S. M. Manolikakes et al. Regioselective Functionalization of Pyridines N FG N FG...

Date post: 30-May-2019
Category:
Upload: dangthuy
View: 216 times
Download: 0 times
Share this document with a friend
12
Review Regioselective Functionalization of Pyridines using a Directed Metalation or a Halogen/Metal Exchange Sophia M. Manolikakes, Nadja M. Barl, Christoph S¨ amann, and Paul Knochel Department Chemie, Ludwig-Maximilians-Universit¨ at M¨ unchen, Butenandtstr. 5 – 13, 81377 unchen, Germany Reprint requests to Prof. Dr. Paul Knochel. Fax: +49-(0)89-2180-77680. E-mail: [email protected] Z. Naturforsch. 2013, 68b, 411 – 422 / DOI: 10.5560/ZNB.2013-3061 Received February 19, 2013 Dedicated to Professor Heinrich N¨ oth on the occasion of his 85 th birthday This review describes the various ways of functionalizing the pyridine scaffold using either directed metalation or halogen/metal exchange. Deprotonation can be accomplished with different lithium amides or alkyllithium reagents at low temperature. Milder conditions and higher functional group tolerance can be achieved by using ate-bases with different metals (Cd, Mg, Zn) or TMP (2,2,6,6- tetramethylpiperidyl) metal reagents (metal = Mg, Zn, Zr). With alkyllithium reagents it is also pos- sible, by carefully adjusting the reaction conditions, to perform bromine/lithium exchange reactions. Organomagnesium reagents, like iPrMgX (X = Br, Cl·LiCl), may be used for exchanging more sen- sitive iodinated or brominated pyridines. Key words: Pyridines, C-H Activation, Halogen/Metal Exchange Table of Contents 1. Introduction 2. The Directed Metalation of Substituted Pyridines 2.1 The Directed Lithiation of Pyridines 2.2 The Directed Metalation Using TMP ate- and Metal-Bases (Metal = Cd, Mg, Zn, Zr) 3. Regioselective Functionalization of Pyridines via a Halogen/Metal Exchange 4. Summary and Conclusion Introduction Pyridines are an important class of N-heterocycles and many polysubstituted pyridines display important biological activity. Thus, pyridine derivatives such as heterotaxin (1)[1] or the more complex dimeric pyri- dine (+)-complanadine A (2)[2] have been the tar- gets of total syntheses (Fig. 1). Although transition metal-catalyzed [2 + 2 + 2]-cyclotrimerizations have often been used to build up complex pyridines [3 6], N Et Bu HO heterotaxin (1) N N HN N H Me (+)-complanadine A (2) H H Me Fig. 1. Biologically active pyridine derivatives. methodologies involving main-group metal intermedi- ates have been proven to be especially useful and of general application. Especially the directed metalation plays an important role in the regioselective introduc- tion of substituents on the pyridine scaffold [7 12]. Also, the performance of regioselective bromine- or iodine/magnesium exchange reactions [13 15] has become an essential tool for practical applica- tions. In this short review, we summarize recent meth- ods allowing the preparation of functionalized pyridyl © 2013 Verlag der Zeitschrift f¨ ur Naturforschung, T ¨ ubingen · http://znaturforsch.com
Transcript

Review

Regioselective Functionalization of Pyridines using a Directed Metalationor a Halogen/Metal Exchange

Sophia M. Manolikakes, Nadja M. Barl, Christoph Samann, and Paul Knochel

Department Chemie, Ludwig-Maximilians-Universitat Munchen, Butenandtstr. 5 – 13, 81377Munchen, Germany

Reprint requests to Prof. Dr. Paul Knochel. Fax: +49-(0)89-2180-77680.E-mail: [email protected]

Z. Naturforsch. 2013, 68b, 411 – 422 / DOI: 10.5560/ZNB.2013-3061Received February 19, 2013

Dedicated to Professor Heinrich Noth on the occasion of his 85th birthday

This review describes the various ways of functionalizing the pyridine scaffold using either directedmetalation or halogen/metal exchange. Deprotonation can be accomplished with different lithiumamides or alkyllithium reagents at low temperature. Milder conditions and higher functional grouptolerance can be achieved by using ate-bases with different metals (Cd, Mg, Zn) or TMP (2,2,6,6-tetramethylpiperidyl) metal reagents (metal = Mg, Zn, Zr). With alkyllithium reagents it is also pos-sible, by carefully adjusting the reaction conditions, to perform bromine/lithium exchange reactions.Organomagnesium reagents, like iPrMgX (X = Br, Cl·LiCl), may be used for exchanging more sen-sitive iodinated or brominated pyridines.

Key words: Pyridines, C-H Activation, Halogen/Metal Exchange

Table of Contents

1. Introduction2. The Directed Metalation of Substituted Pyridines2.1 The Directed Lithiation of Pyridines2.2 The Directed Metalation Using TMP ate- andMetal-Bases (Metal = Cd, Mg, Zn, Zr)3. Regioselective Functionalization of Pyridines viaa Halogen/Metal Exchange4. Summary and Conclusion

Introduction

Pyridines are an important class of N-heterocyclesand many polysubstituted pyridines display importantbiological activity. Thus, pyridine derivatives such asheterotaxin (1) [1] or the more complex dimeric pyri-dine (+)-complanadine A (2) [2] have been the tar-gets of total syntheses (Fig. 1). Although transitionmetal-catalyzed [2 + 2 + 2]-cyclotrimerizations haveoften been used to build up complex pyridines [3 – 6],

N Et

Bu

HO

heterotaxin (1)

N

N

HNNH

Me

(+)-complanadine A (2)

H

H Me

Fig. 1. Biologically active pyridine derivatives.

methodologies involving main-group metal intermedi-ates have been proven to be especially useful and ofgeneral application. Especially the directed metalationplays an important role in the regioselective introduc-tion of substituents on the pyridine scaffold [7 – 12].

Also, the performance of regioselective bromine-or iodine/magnesium exchange reactions [13 – 15]has become an essential tool for practical applica-tions. In this short review, we summarize recent meth-ods allowing the preparation of functionalized pyridyl

© 2013 Verlag der Zeitschrift fur Naturforschung, Tubingen · http://znaturforsch.com

412 S. M. Manolikakes et al. · Regioselective Functionalization of Pyridines

N

FG

N

FG

MetN

FG

Br

directedmetalationpathway A

Br/Mg-exchange

pathway B

4 53

Scheme 1.

organometallics of type 3, obtained either by a di-rected metalation of functionalized pyridines of type4 (Scheme 1, pathway A) or bromine/magnesiumexchange starting from bromopyridines of type 5(Scheme 1, pathway B; FG = functional group).

The Directed Metalation of Substituted Pyridines

The directed lithiation of pyridines

Substituted pyridines react with a variety of metal-lic bases leading to metalated intermediates. Sincethese N-heterocycles are electron-deficient, the result-ing metalated species may add to still non-metalatedsubstrate leading to dimerization or to oligomeric side-products. These side-reactions occur especially withpyridines bearing electron-withdrawing substituents orwhen ionic bases such as lithium base are used for per-forming the directed metalation [7 – 12]. Nevertheless,using a proper set of reaction conditions and the ap-propriate lithium base allows to perform a wide rangeof selective metalations. The nature of the substituentsattached to the pyridine scaffold deeply influences theregioselectivity and the rate of the metalation. Thus,whereas the direct lithiation of pyridine with a 1 : 1mixture of BuLi and tBuOK (Schlosser base) in THF-hexanes at −100 ◦C leads to a mixture of regioiso-meric lithiated pyridines [16, 17], the metalation ofvarious dichloropyridines 6–9 with LDA (lithium di-isopropylamide) leads regioselectively to various lithi-ated pyridines which can be iodolyzed or carbonylatedaffording the desired products 10–13 in good yields(Scheme 2) [18].

The use of mixed aggregates of nBuLi withaminoalkoxides such as lithium 2-dimethylamino-ethanolate (LiDMAE) [19, 20] allows highly regiose-lective lithiations. The use of a chiral lithium alkox-ide allows the performance of a regio- and enantio-selective metalation (Scheme 3) [21].

Lithium 2,2,6,6-tetramethylpiperidide (TMPLi) isa powerful base [22 – 25], and the deprotonationof pyridine carboxylic acids such as 14 proceeds

N

Cl

Cl N

Cl

Cl

I1) LDATHF-hexanes78 °C, 2 h

78 °C, 2 h

78 °C, 2 h

78 °C, 2 h

2) I2

2) I2

2) I2

2) CO2

N

Cl Cl

N

Cl ClI

1) LDATHF-hexanes

1) LDATHF-hexanes

1) LDATHF-hexanes

NCl Cl NCl Cl

I

N Cl

Cl

N Cl

ClCO2H

6

7

8

9

10: 81 %

11: 72 %

12: 64 %

13: 88 %Scheme 2.

N Cl

1) nBuLi • Li

NMe

Ohexanes, −78 °C

2 THF, then PhCHO)−78 °C

NClPh

OH

*

63 %; 58 % ee

Scheme 3.

smoothly leading to the lithiated intermediate 15which, after iodolysis, furnishes the expected product16 in 80% yield (Scheme 4) [26].

The use of lithium amides such as LDA can leadto reversible lithiations in the case of electron-richpyridines such as 3-methoxypyridine 17. The use ofa sterically hindered aryllithium like mesityllithium 18on the other hand leads to an irreversible deprotona-tion leading to a regioselective lithiation with the for-mation of the 2-lithiated pyridine 19. After treatment

S. M. Manolikakes et al. · Regioselective Functionalization of Pyridines 413

N

CO2HBr TMPLi (2 equiv.)

THF, −50 °C, 0.5 hN

CO2LiBr

Li

N

CO2HBr

I

I2

14 15 16: 80 %

Scheme 4.

N

Br

N

Br

N

Br

322212 : 78 %

1) LDA, THF−95 °C

2) ZnCl2

ZnClI NO2

Pd(PPh3)4 (cat.)THF, reflux

NO2

Scheme 6.

with DMF, the expected aldehyde 20 is obtained in85% yield (Scheme 5) [27].

Multiple functionalization can be achieved by com-bining the lithiation step with a subsequent transmeta-lation. Thus, the reaction of the 3-bromopyridine (21)with LDA at −95 ◦C leads to a regioselective lithia-tion in position 4. After transmetalation with ZnCl2,the corresponding zinc reagent 22 is obtained. Negishicross-coupling of 22 with aryl halides such as 4-nitrophenyl iodide produces the 4-arylated pyridine23 in 78% yield. The remaining bromide in pyridine23 can be used for the performance of a subsequentSuzuki cross-coupling reaction (Scheme 6) [28, 29].

The directed metalation using TMP ate- andmetal-bases (metal = Cd, Mg, Zn, Zr)

The reactivity of lithium bases can be stronglytuned by forming ate-bases with various met-als [30 – 32]. Thus, the use of the lithium zincate baseTMPZntBu2Li allows to metalate pyridine in position2 under mild conditions (25 ◦C). After iodolysis, 2-iodopyridine is obtained in 76% yield [33]. The useof the related lithium cadmiate base TMP3CdLi al-lows a smooth metalation of 3-cyanopyridine (24). Af-ter iodolysis, the iodopyridine 25 is obtained in 61%yield (Scheme 7) [34, 35].

Compared to lithium bases, the mild reaction con-ditions used with ate-bases make them a versatile toolin C-H activation. Moreover, in many cases the use ofan excess of ate-base can be avoided. Thus, 0.3 equiv-alents of the magnesium-ate base (TMP)Bu3MgLi2

N

MeO MesLi (18)−23 °C, 3 h

THF N

MeO

Li N

MeO

OHC

DMF

17 19 20: 85 %

Scheme 5.

is sufficient for the metalation of 4-chloropyridine26. Remarkably, this metalation can be performed at−10 ◦C. After iodolysis, the 3-iodopyridine 27 is ob-tained in 73% yield (Scheme 7) [36].

Metal amides using less electropositive metals thanlithium are of great interest, since the organometallicsproduced after metalation bear a much more cova-lent carbon-metal bond allowing a higher tolerancetowards more sensitive functional groups. This func-tional group compatibility is essential, since polyfunc-tional pyridines are common building blocks in phar-maceutical and material sciences. Therefore, the useof magnesium amides derived from sterically hinderedbases such as 2,2,6,6-tetramethylpiperidine (TMP-H)proves to be of great synthetic utility. Moreover, theaddition of one equivalent of lithium chloride leadsto a higher solubility of such bases in THF, allow-ing the performance of fast and highly chemoselective

N

CN

N

CN

24 25: 61 %

1) TMP3CdLi (0.5 equiv.)25 °C, 2 h

2) I2

2) I2

I

N

Cl 1) Bu3(TMP)MgLi2(0.3 equiv.)

THF, −10 °C, 2 h N

ClI

26 27: 73 %

Scheme 7.

414 S. M. Manolikakes et al. · Regioselective Functionalization of Pyridines

NH

iPrMgCl·LiCl

25 °C, 12 h>95 %

N Mg

THF

Cl

ClLi

THF

THF

28: TMPMgCl∙LiCl (ca. 1.2 M in THF)

N

BrBr

N

BrBr

MgCl N

BrBr

CHO

31: 85 %

DMF

29 30

28(1.1 equiv.)−25 °C, 0.5 h

Scheme 8.

metalations. Thus, TMPMgCl·LiCl (28) is readily pre-pared by treating TMP-H with iPrMgCl·LiCl [13 – 15]in THF leading to a ca. 1.2 M solution. The X-raystructure of 28 has been determined by Mulvey [37]and shows clearly the role of the chloride anions forbridging the magnesium and lithium atoms. This baseproves to be kinetically highly active and smoothlydeprotonates a wide range of pyridines. Thus, 3,5-dibromopyridine (29) reacts with TMPMgCl·LiCl (28,1.1 equiv.) at −25 ◦C within 0.5 h to give the 2-magnesiated pyridine 30. After addition of DMF, thecorresponding aldehyde 31 is obtained in 85% yield(Scheme 8) [38].

Remarkably, the use of TMPMgCl·LiCl (28) allowsto reach unusual regioselectivities. Thus, the magnesi-ation of 2,6-dichloropyridine (7) proceeds with 97 : 3regioselectivity in position 4 and provides the magne-sium reagent 32 under mild conditions (−15 ◦C, 1.5 h).After transmetalation to copper with CuCN·2LiCl(1.2 equiv.) and addition of N-lithiomorpholine (33),an oxidative coupling can be accomplished by additionof chloranil leading to the aminopyridine 34 in 50%yield (Scheme 9) [39].

The pyridine ring can be further activated towardsmetalation by adding a strong Lewis acid such asBF3·OEt2. It turns out that the sterically hindered baseTMPMgCl·LiCl (28) reacts reversibly with BF3·OEt2at temperatures below −20 ◦C leading to the frus-trated Lewis pair [40] TMPMgCl·BF3. This adductdecomposes only at temperatures above −10 ◦C [41].Through a coordination of the BF3 group at the N-heterocyclic nitrogen the acidity of the pyridyl hydro-gens increases, and the deprotonation of even electron-rich pyridines such as 2-methoxypyridine (35) pro-ceeds readily. Interestingly, the addition of BF3·OEt2

34: 50 %7 32: 97: 3

NCl Cl NCl Cl

MgCl.LiCl

NCl Cl

N

O

1) CuCl∙2LiCl2) Morph-Li (33)3) chloranil

28, −15 °C1.5 h

Scheme 9.

may also dramatically change the direction of the de-protonation [42]. Thus, in the absence of this Lewisacid, the metalation of 35 with the aluminum base(tBu(R)N)3Al·3LiCl (36; R = tBu(iPr)CH) [42] pro-ceeds in position 3 leading to the ketone 37 in 68%yield after a copper-catalyzed acylation. On the otherhand, in the presence of BF3·OEt2 (1.1 equiv.), thecoordination of TMPMgCl·LiCl (28) at the oxygen-center of the methoxy group is hampered because ofsteric and inductive effects (Scheme 10).

The TMP-base is therefore metalating position 6of the pyridine ring which is more readily accessi-ble and clearly the most acidic position. After iodol-ysis, the 6-iodopyridine 38 is obtained in 75% yield(Scheme 10). This behavior is general and other sub-stituted pyridines react in a similar way. Thus, whenTMPMgCl·LiCl (28) is used without Lewis acid, 2-phenylpyridine (39) is magnesiated at the phenyl ring.In the presence of BF3·OEt2, however, a smooth met-alation occurs at position 6 of the pyridine ring. Afteriodolysis, the two regioisomeric iodides 40 and 41 areobtained in 83 – 85% yield. Also, the disubstituted 4-cyanopyridine 42 is magnesiated with TMPMgCl·LiClin position 2 providing the 2-allylated pyridine 43in 65% yield after copper-catalyzed allylation. In thepresence of BF3·OEt2, a complete switch of regio-

S. M. Manolikakes et al. · Regioselective Functionalization of Pyridines 415

38: 75 %

N

COPh

OMe

1) (tBu(R)N)3Al·3AlCl

(36) 25 °C, 2 h

2) CuCN∙2LiClPhOCl

N OMe N OMeI

1) BF3·OEt2, −30 °C

2) TMPMgCl·LiCl (28)

2) TMPMgCl·LiCl (28)

2) TMPMgCl·LiCl (28)

0 °C, 60 h3) I2

2) I2 3) I2

3537: 68 %

N

I

N Ph

39 41: 83 %

N PhI

1) BF3·OEt2, −30 °C

1) BF3·OEt2, −30 °C

0 °C, 30 h

40: 85 %

55 °C, 30 h

N

Br

CN

N

43: 65 %

−78 °C, 1 h

2) 5 % CuCN∙2LiCl

Br

CN

Br

N

Br

CN

−78 °C, 1 h

Br

4244: 63 %

2) TMPMgCl·LiCl (28)

2) TMPMgCl·LiCl (28)

3) 5 % CuCN∙2LiCl

Scheme 10.

N

NMe2 1) BF3·OEt2, THF2) TMPMgCl·LiCl (28 )

0 °C, 1 h3) ZnCl24) Pd(0) (cat.); ArI

N

NMe2

OMe6454 : 81 %

N

NMe

N

NMe

1) BF3·OEt2, THF2) TMPMgCl·LiCl (28 )

0 °C, 2.5 h3) 5 % CuCN·2LiCl

Br(S)-n icotine: 8474 : 92 %

Scheme 11.

selectivity is observed, and after a copper(I)-catalyzedallylation, the 3,4,5-substituted pyridine 44 is obtainedin 63% yield (Scheme 10). Nitrogen substituents arealso well tolerated in such metalation reactions. Thus,4-dimethylaminopyridine (DMAP, 45) is convenientlymetalated with the system BF3·OEt2-TMPMgCl·LiCl(28) leading to the 2-arylated pyridine 46 in 81% yieldafter Pd-catalyzed cross-coupling [43]. Similarly, themetalation of (S)-nicotine (47) proceeds selectivelyin position 6 providing the 3,6-disubstituted pyridine48 in 92% yield after a copper-catalyzed allylation(Scheme 11).

The reaction of 5-bromo-2-chloropyridine (49) withTMPMgCl·LiCl (28) allows a regioselective magne-siation in position 6. A subsequent addition of to-syl cyanide (TosCN) leads to the cyanopyridine 50 in68% yield. The reaction of 50 with a second equiva-lent of TMPMgCl·LiCl (28) for 10 min at −78 ◦C af-fords an intermediate magnesium derivative which, af-ter quenching with MeSO2SMe, leads to the thioether51 in 81% yield. The last ring position is best meta-lated by using TMP2Zn·2MgCl2·2LiCl (52) which isbest prepared by reacting TMPMgCl·LiCl with ZnCl2(0.5 equiv.) [44 – 47]. Thus, with the base 52 the zin-

416 S. M. Manolikakes et al. · Regioselective Functionalization of Pyridines

N

Br

Cl−40 °C, 3 h

2) TosCN N

Br

ClNC−78 °C, 10 min

2) MeSO2SMe N

Br

ClNC

SMe

TMP2Zn·2MgCl2·2LiCl (52)−20 °C, 4 h

N

Br

ClNC

SMeZn

2

N

Br

ClNC

SMe

Ph

O

49 50: 68 % 51: 81 %

5354: 61 %

PhCOClCuCN·2LiCl

1) TMPMgCl·LiCl (28)1) TMPMgCl·LiCl (28)

Scheme 12.

56 : 50 %N

MeO

HO N

H

1) MeLi (1 equiv.)2) BF3·OEt2 (2.2 equiv.)

0 °C, 15 min3) TMPMgCl·LiCl (28 )0 °C, 40 min

4) Pd(0) (cat.)

I CO2Et

N

MeO

HO N

H

CO2Et

55

Scheme 13.

cation of 51 is achieved within 4 h at −20 ◦C leadingto the zinc reagent 53. Copper(I)-mediated acylation of53 with PhCOCl provides the ketone 54 in 61% yield(Scheme 12) [43].

The use of BF3·OEt2 also allows the functionaliza-tion of complex pyridines or quinolines such as quinine(55). A regioselective metalation occurs at position 3furnishing the arylated quinine 56 in 50% overall yieldafter a Pd-catalyzed cross-coupling (Scheme 13) [43].

Besides TMP-Mg or -Zn bases, the use ofTMP4Zr·4MgCl2·6LiCl (57) is especially atom-economical, since 4 zirconations can be per-formed with base 57 affording tetraorganozir-conium derivatives of type 58 [48]. Thus, thereaction of 3-bromopyridine, 4-cyanopyridine and3-carbethoxypyridine regioselectively provides thetetrapyridylzirconium derivatives 58a–c in 95%yield. These zirconium derivatives react smoothlywith allylic bromides or aryl halides in the presenceof the appropriate copper or palladium catalysts(Scheme 14) [48].

Metalation of pyridines bearing hydrogens withmoderate acidity can be achieved by using magne-sium bis-amides. Whereas TMP2Mg·2LiCl is not sta-ble at room temperature over a longer time [49, 50],the mixed bis-amidic magnesium base 59 is per-fectly stable at 25 ◦C for several days (>20 days).The magnesiation of the pyridine 60 with the magne-sium amide 59 furnishes, after a Pd(0)-catalyzed cross-coupling, the phenylated pyridine 61 in 68% yield(Scheme 15) [51].

The lateral metalation of picolines and lutidinesis of great synthetic interest. A highly regioselectivezincation of various lutidines can be achieved undermild conditions using TMPZnCl·LiCl (62) [52 – 56].Thus, 2,3-dimethylpyridine (63) is regioselectivelydeprotonated in THF : NEP (10 : 1); (NEP = N-ethylpyrrolidone) leading to the benzylated pyri-dine 64 after Pd-catalyzed arylation. Also, 3,4-dimethylpyridine (65) provides, after a fast zincationwith 62 and Pd-catalyzed arylation, the 4-benzylatedproduct 66 in 92% yield (Scheme 16). Whereas the

S. M. Manolikakes et al. · Regioselective Functionalization of Pyridines 417

TMP Zr·4MgCl·6LiCl

N

CN

N

CN

Zr458b: 95 %

−40 °C,15 min

57

N

CO2Et

BF3.OEt2

N

CO2Et

Zr4

58c: 95 %

N

Br

−10 °C, 45 minN

Br

Zr4

58a: 95 %

4

Scheme 14.

NLiMgCl2

0 °C, 1 hN Mg·2LiCl

22

59: 95 %; c = 0.85 M in THF

N

CO2tBu

1) 59 (1.1 equiv.)−40 °C, 12 h

2) ZnCl25 % Pd(dba)2

10 % P(o-furyl)3

PhI

N

CO2tBuPh

60 61: 68 %

Scheme 15.

direct zincation of 2,4-dimethylpyridine (67) usingTMPZnCl·LiCl (62) produces a mixture of regioiso-mers, the addition of BF3·OEt2 considerably improvesthe regioselectivity of the metalation and leads only tothe 4-benzylated pyridine 68 in 82% yield after Pd-catalyzed cross coupling (Scheme 16) [56].

Regioselective Functionalization of Pyridines viaa Halogen/Metal Exchange

The presence of a bromo or an iodo substituent at-tached to the pyridine ring allows the performance ofhalogen/metal exchange reactions. The use of alkyl-lithium reagents leads to fast exchange reactions. How-ever, the reaction conditions used are of special im-portance, since lithiation of the pyridine ring may

2) TMPZnCl·LiCl (62)

1) TMPZnCl·LiCl (62)

1) TMPZnCl·LiCl (62)

THF:NMP,25 °C, 15 min

3)

2)

2)

N Me

Me

Br NMe2

2 % Pd(OAc), 4 % SPhos50 °C, 2 h

2 % Pd(OAc), 4 % SPhos50 °C, 2 h

2 % Pd(OAc), 4 % SPhos50 °C, 2 h

N

Me NMe2

63 64: 85 %

THF, 25 °C, 15 minN

Me

Br OMe

N

Me

65 66: 92 %

Me

OMe

N Me

Me 1) BF3·OEt2, 0 °C, THF

−78 °C, 1 h

Br CO2Et

N Me

CO2Et

67 68: 82 %

Scheme 16.

be a competitive process. Thus, the addition of 1equivalent of tBuLi to a solution of 3-bromopyridine(21) (THF, −78 ◦C, 5 min), followed by the addi-tion of Me3SiCl, furnishes the 4-silylated pyridine69, indicating a lithiation at position 4. By invert-ing the addition order (i. e. adding a solution of 21to tBuLi), now the desired Br/Li-exchange occurs

418 S. M. Manolikakes et al. · Regioselective Functionalization of Pyridines

N

SiMe3

N

Br1) t BuLi, –78 °C

(1 equiv.)

2) TMSCl, –78 °C

1) inverse addition

1) t BuLi, –78 °C

2) TMSCl, –78 °C

5 min (1 equiv.)1) BuLi, –78 °C

t BuLi, –78 °C(1 equiv.)

2) TMSCl, –78 °C

2) TMSCl, –78 °C

Br/Li-exchange

N

Br

ortho-lithiation

70: 92 % 69: 70 %21

NCl NCl

Br

NCl

Br0.5 h (1.2 equiv.)

72: 90 % 71: 92 %49

SiMe3

SiMe3

SiMe3

Scheme 17.

within 5 min (at −78 ◦C) affording the 3-silylatedpyridine 70 in 92% yield after silylation. Interest-ingly, the nature of the lithium reagent can alsochange the course of the reaction. Thus, when di-halopyridine 49 is treated with tBuLi, the lithiumreagent plays the role of a base rather than an ex-change reagent, leading selectively to the trisubstitutedproduct 71 in 92% yield after addition of Me3SiCl(Scheme 17) [57]. In contrast, nBuLi selectively ex-changes the bromine of 49 furnishing, after additionof Me3SiCl, 2-chloro-5-(trimethylsilyl)pyridine (72) in90% yield (Scheme 17).

Due to these complications and in order to avoidthe use of low temperatures, homoleptic zincates havebeen used for such exchange reactions. tBu4ZnLi2has been shown to be highly selective for the perfor-mance of iodine or bromine exchanges [58, 59]. Ad-ditionally, the use of tBu4ZnLi2·TMEDA allows tocarry out the metalations at room temperature. Theuse of 0.3 equivalents of the reagent may be sufficientfor the exchange. Thus, the treatment of 6-bromo-2-methoxypyridine (73) with tBu4ZnLi2·TMEDA pro-vides the desired 2,6-functionalized products in satis-factory yields after reaction with various electrophiles(Scheme 18) [60].

In many cases, the use of magnesium reagents al-lows to achieve iodine/magnesium exchanges in goodyields. Thus, the highly functionalized iodopyridine 74undergoes smoothly the exchange at −40 ◦C within0.5 h using iPrMgBr. After a copper-catalyzed acyla-tion with PhCOCl, the desired ketone 75 is obtained in84% yield (Scheme 19) [61, 62].

Also the iodopyridine 76, bearing a boronic es-ter, undergoes readily a I/Mg-exchange reaction using

NMeO Br

1) Bu4ZnLi2·TMEDA

toluene, 20 °C, 1 h

2) E+N EMeO

73 40−80 %

(0.3 equiv.)

Scheme 18.

N

I

CO2Et

Cl

iPrMgBr

−40 °C, 0.5 hN

MgBr

CO2Et

Cl

CuCN·2LiCl

PhCOClN

CO2Et

Cl

O Ph

74 75: 84 %

Scheme 19.

2) 5 % CuCN·2LiCl

76 77: 83 %

N

B I

O

O

N

B

O

O

1) i PrMgCl·LiCl−78 °C

Br

Scheme 20.

iPrMgCl·LiCl. Thus, after copper-catalyzed allylation,the allylated boronic ester 77 is obtained in 83% yield(Scheme 20) [63].

iPrMgCl·LiCl can also be applied to performBr/Mg-exchange under mild conditions. Thus,the dibromopyridine 78 undergoes a quantitativeBr/Mg-exchange using iPrMgCl·LiCl at −30 ◦Cwithin 2 h leading to the magnesium reagent79, which can be trapped with numerous elec-trophiles. For example, its reaction with propi-onaldehyde provides the corresponding alcohol 80

S. M. Manolikakes et al. · Regioselective Functionalization of Pyridines 419

78 80: 87 %

iPrMCl·LiCl−30 °C, 2 h

N OTs

BrBr

N OTs

MgClBr

N OTs

BrEt

OH

EtCHO

79

81 83: 75 %

N OTs

Br

82N OTs

ClMg

O COCl

CuCN·2LiCl

N OTs

OiPrMCl·LiCl−30 °C, 7 h

Scheme 21.

84: Ar =p-ClC6H4

86 : X = Cl: 63 %87 : X = H: 45 %

1) iPrMgCl·LiCl, THF−78 °C, 0.5 h

N I

OSO2Ar

85 : 67 %

I

Me 2) BrF2CCF2Br−78 °C to 25 °C

N I

OSO2ArBr

Me

1) iPrMgCl·LiCl, THF−78 °C, 0.5 h

2) RSSO2Ph−78 °C to 25 °C

N S

OSO2ArBr

Me

X

87: Ar =p-ClC6H4

89: 85 %

iPrMgCl·LiCl, THF−78 °C to 25 °C

N SPh

OSO2Ar

88

Br

Me N SPhMe N SPhMe

OO

Scheme 22.

in 87% yield. Similarly, the pyridyl bromide 81is converted at −30 ◦C within 7 h to the magne-siated pyridine 82. A copper-catalyzed allylationfurnishes the polyfunctional ketone 83 in 75%yield (Scheme 21) [64].

These exchange reactions can also be extended toquinolines and allow their multiple regioselective func-tionalization including a total synthesis of the bio-logically active molecule talnetant in less than sixsteps starting with a commercially available quinolinederivative [65]. Also, the regioselective I/Mg-exchangeof diiodopyridines such as 84 can be realized undermild conditions. Using iPrMgCl·LiCl at −78 ◦C fol-

lowed by quenching with (BrF2C)2 gives selectivelythe bromopyridine 85 in 67% overall yield. Subse-quent I/Mg-exchange with iPrMgCl·LiCl at −78 ◦Cprovides, after reaction with RSSO2Ph (R = Ph, 4-ClC6H4), the thioethers 86 and 87 in 45% – 63%yield. Interestingly, the 4-chlorophenylsulfonate canbe used as a leaving group in the absence of anyadded electrophile. Thus, the treatment of 87 withiPrMgCl·LiCl at −78 ◦C and heating of the reactionmixture to 25 ◦C for 1 h produces an intermediate pyri-dyne 88 which, after trapping with an excess of fu-ran, produces the bicyclic product 89 in 85% yield(Scheme 22) [66].

420 S. M. Manolikakes et al. · Regioselective Functionalization of Pyridines

90 92: 88 %

iPrMgCl·LiCl, THF−55 °C, 1 h

91 >27:1

N

BrBr

CF3

N

MgXBr

CF3

N

Br

CF3

CO2Et

I CO2Et

4 % Pd(PPh3)425 °C, 1 h

93

N

BrBr

Me3Si

MgBr·LiCliPr iPr

iPr

Me2NO2

−25 °C, 2 h 94

N

MgBrBr

Me3Si

95: 60 %

N

Br

Me3Si

CN

ZnCl2

I CO2Et

4 % Pd(PPh3)425 °C, 2 h

ZnCl2

>99 :1

Scheme 23.

The homogeneous nature of the Br/Mg-exchangeallows to tune the reaction by changing various pa-rameters, and impressive regioselectivities can beachieved for the functionalization of various 3,5-dibromopyridines [67]. Thus, the reaction of the di-bromopyridine 90 with iPrMgCl·LiCl at −55 ◦C iscomplete within 1 h leading to the pyridylmagne-sium reagent 91 with a regioselectivity better than27 : 1. A transmetalation with ZnCl2 followed by a Pd-catalyzed cross-coupling with ethyl 4-iodobenzoateproduces the bis-arylated pyridine 92 in 88% yield(Scheme 23). This remarkable regioselectivity is a con-sequence of the difference of electronegativity of thesubstituents at positions 2 and 6 of the pyridinering. The aryl ring at position 2 leads to an induc-tive effect stabilizing eventually the resulting Grignardreagent formed after the exchange reaction. The op-posite regioselectivity can be reached by having anelectron-donating substituent such as a trimethylsi-lyl group at position 2 (pyridine 93). This electron-donating substituent disfavors the resulting Grignardreaction by an α-effect and hampers the Br/Mg-exchange owing to steric hindrance. This steric hin-drance is further increased by using a bulky arylmag-nesium reagent such as mesitylmagnesium bromide.After 2 h of reaction time at −25 ◦C, the exchangeis complete and the resulting Grignard reagent 94is obtained. Transmetalation with ZnCl2 followed byPd-catalyzed cross-coupling with 4-iodobenzonitrile

produces the pyridine 95 in 60% isolated yield(Scheme 23) [67].

Summary and Conclusion

This review summarizes the organometallic ap-proaches to functionalize the pyridine scaffold by ei-ther directed metalation or by halogen/metal exchange.In both cases, lithium species play a major role.Amide bases like LDA or TMPLi as well as organo-lithium reagents such as tBuLi or MesLi can be usedfor selective C-H activation. Interestingly, alkyllithiumspecies either deprotonate the pyridine scaffold or al-low a bromine exchange, depending on the reactionconditions. The use of lithium organometallics, how-ever, requires in most cases low temperatures (−78 ◦C)and only a limited number of functionalities can be tol-erated. This drawback can be overcome by switchingto less electropositive metals. For directed metalations,ate-bases with metals such as cadmium, magnesium orzinc, as well as TMP metal bases (metal = Mg, Zn, Zr)allow less stringent conditions and a higher functionalgroup tolerance. The TMP derived bases are compat-ible with Lewis acids like BF3·OEt2 at low tempera-ture, allowing to functionalize even electron-rich andcomplex systems like quinine, (S)-nicotine or DMAP.For the halogen/metal exchange, the formation of ho-moleptic zincates or organomagnesium reagents, likeiPrMgX (X = Br, Cl·LiCl) makes it possible to work

S. M. Manolikakes et al. · Regioselective Functionalization of Pyridines 421

under mild conditions with high functional group toler-ance, allowing in certain cases to distinguish betweentwo bromine or iodine atoms attached to the pyridinering.

This review emphasizes the important role oforganometallic chemistry in the synthesis and funtion-alization of pyridines, which is of major concerns dueto the biological activity of this class of substances.

[1] M. K. Dush, A. L. McIver, M. A. Parr, D. D. Young,J. Fisher, D. R. Newman, P. L. Sannes, M. L. Hauck,A. Deiters, N. Nascone-Yoder, Chem. Biol. 2011, 18,252.

[2] C. Yuan, C. Chang, A. Axelrod, D. Siegel, J. Am.Chem. Soc. 2010, 132, 5924.

[3] D. L. J. Broere, E. Ruijter, Synthesis 2012, 44, 2639.[4] J. A. Varela, C. Saa, Chem. Rev. 2003, 103, 3789.[5] G. Hilt, C. Hengst, W. Hess, Eur. J. Org. Chem. 2008,

2293.[6] T. Bunlaksananusorn, P. Knochel, J. Org. Chem. 2004,

69, 4595.[7] A. Turck, N. Ple, F. Mongin, G. Queginer, Tetrahedron

2001, 57, 4489.[8] H. Ila, O. Baron, A. J. Wagner, P. Knochel, Chem. Com-

mun. 2006, 583.[9] P. C. Gros, Y. Fort, Eur. J. Org. Chem. 2009, 4199.

[10] E. Nagaradja, F. Chevallier, T. Roisnel, V. Jovikov,F. Mongin, Tetrahedron 2012, 68, 3063.

[11] K. Snegaroff, T. T. Nguyen, N. Marquise, Y. S. Habuko,P. J. Harford, T. Roisnel, V. E. Matulis, O. A. Ivash-kevich, F. Chevallier, A. E. H. Wheatley, P. C. Gros,F. Mongin, Chem. Eur. J. 2011, 17, 13284.

[12] T. T. Nguyen, N. Marquise, F. Chevallier, F. Mongin,Chem. Eur. J. 2011, 17, 10405.

[13] L. Boymond, M. Rottlander, G. Cahiez, P. Knochel,Angew. Chem. Int. Ed. 1998, 57, 1701.

[14] M. Rottlander, L. Boymond, L. Berillon, A. Lepretre,G. Varchi, S. Avolio, H. Laaziri, G. Queginer, A. Ricci,G. Cahiez, P. Knochel, Chem. Eur. J. 2000, 6, 767.

[15] A. Krasovsky, P. Knochel, Angew. Chem. Int. Ed. 2004,43, 3333.

[16] J. Verbeek, A. V. E. George, R. L. P. de Jang, L. Brands-ma, J. Chem. Soc., Chem. Commun. 1984, 257.

[17] J. Verbeek, L. Brandsma, J. Org. Chem. 1984, 49, 3857.[18] E. Marzi, A. Bigi, M. Schlosser, Eur. J. Org. Chem.

2001, 1371.[19] P. C. Gros, Y. Fort, G. Queginer, P. Caubere, Tetrahe-

dron Lett. 1995, 36, 4791.[20] P. Gros, Y. Fort, P. Caubere, J. Chem. Soc., Perkin

Trans. 1 1997, 3071.[21] H. K. Khartabil, P. C. Gros, Y. Fort, M. F. Ruiz-Lopez,

J. Am. Chem. Soc. 2010, 132, 2410.[22] R. A. Olofson, C. M. Dougherty, J. Am. Chem. Soc.

1973, 95, 582.[23] E. J. Corey, A. Gross, Tetrahedron Lett. 1984, 25, 495.

[24] N. Ple, A. Turck, P. Martin, S. Barbey, G. Queginer,Tetrahedron Lett. 1993, 34, 1605.

[25] M. Iwao, T. Kuraishi, Tetrahedron Lett. 1983, 24, 2649.[26] J. Lazaar, A.-S. Rebstock, F. Mongin, A. Godard,

F. Trecourt, F. Marsais, G. Queginer, Tetrahedron2002, 58, 6723.

[27] D. L. Comins, D. H. La Munyon, Tetrahedron Lett.1988, 29, 773.

[28] G. Karig, J. A. Spencer, T. Gallagher, Org. Lett. 2001,3, 835.

[29] G. W. Gribble, M. G. Saulnier, Tetrahedron Lett. 1980,21, 4137.

[30] R. E. Mulvey, Organometallics 2006, 25, 1060.[31] R. E. Mulvey, F. Mongin, M. Uchiyama, Y. Kondo,

Angew. Chem. Int. Ed. 2007, 46, 3802.[32] R. E. Mulvey, Acc. Chem. Res. 2009, 42, 743.[33] Y. Kondo, M. Shilai, M. Uchiyama, T. Sakamoto, J.

Am. Chem. Soc. 1999, 121, 3539.[34] G. Bentabed-Ababsa, S. C. S. Ely, S. Hesse, E. Nassar,

F. Chevallier, T. T. Nguyen, A. Derdour, F. Mongin, J.Org. Chem. 2010, 75, 839.

[35] K. Snegaroff, J.-M. L’Helgoual’ch, G. G. Bentabed-Ababsa, T. T. Nguyen, F. Chevallier, M. Yonehara,M. Uchiyama, A. Derdour, F. Mongin, Chem. Eur. J.2009, 15, 10280.

[36] H. Awad, F. Mongin, F. Trecourt, G. Queginer, F. Mar-sais, Tetrahedron Lett. 2004, 45, 7873.

[37] P. Garcia-Alvarez, D. V. Graham, E. Hevia, A. R. Ken-nedy, J. Klett, R. E. Mulvey, C. T. O’Hara, S. Weather-stone, Angew. Chem. Int. Ed. 2008, 47, 8079.

[38] A. Krasovskiy, V. Krasovskaya, P. Knochel, Angew.Chem. Int. Ed. 2006, 45, 2958.

[39] M. Kienle, S. R. Dubbaka, V. Del Amo, P. Knochel,Synthesis 2007, 1272.

[40] D. W. Stefan, G. Erker, Angew. Chem. Int. Ed. 2010, 49,46.

[41] M. Jaric, B. A. Haag, A. Unsinn, K. Karaghiosoff,P. Knochel, Angew. Chem. Int. Ed. 2010, 49, 5451.

[42] S. H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed.2009, 48, 1501.

[43] M. Jaric, B. A. Haag, S. Manolikakes, P. Knochel, Org.Lett. 2011, 13, 2306.

[44] S. H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed.2007, 46, 7685.

[45] Z. Dong, G. C. Clososki, S. H. Wunderlich, A. Unsinn,J. Li, P. Knochel, Chem. Eur. J. 2009, 15, 457.

422 S. M. Manolikakes et al. · Regioselective Functionalization of Pyridines

[46] S. H. Wunderlich, P. Knochel, Chem. Commun. 2008,6387.

[47] S. H. Wunderlich, P. Knochel, Org. Lett. 2008, 10,4705.

[48] M. Jeganmohan, P. Knochel, Angew. Chem. Int. Ed.2010, 49, 8520.

[49] G. C. Clososki, C. J. Rohbogner, P. Knochel, Angew.Chem. Int. Ed. 2007, 46, 7681.

[50] C. J. Rohbogner, A. J. Wagner, G. C. Clososki, P. Kno-chel, Org. Synth. 2009, 86, 374.

[51] C. J. Rohbogner, S. H. Wunderlich, G. C. Clososki,P. Knochel, Eur. J. Org. Chem. 2009, 1781.

[52] M. Mosrin, P. Knochel, Org. Lett. 2009, 11, 1837.[53] M. Mosrin, G. Monzon, T. Bresser, P. Knochel, Chem.

Commun. 2009, 5615.[54] C. J. Rohbogner, S. Wirth, P. Knochel, Org. Lett. 2010,

12, 1984.[55] T. Bresser, M. Mosrin, G. Monzon, P. Knochel, J. Org.

Chem. 2010, 75, 4686.[56] S. Duez, A. K. Steib, S. M. Manolikakes, P. Knochel,

Angew. Chem. Int. Ed. 2011, 50, 7686.[57] P. Pierrat, P. Gros, Y. Fort, Synlett 2004, 2319.

[58] M. Uchiyama, T. Furuyama, M. Kobayashi, Y. Mat-sumoto, K. Tanaka, J. Am. Chem. Soc. 2006, 128, 8404.

[59] T. Furuyama, M. Yonehara, S. Arimoto, M. Kobayashi,Y. Matsumoto, M. Uchiyama, Chem. Eur. J. 2008, 14,10348.

[60] N. T. T. Chan, M. Meyer, S. Komagawa, F. Chevallier,Y. Fort, M. Uchiyama, F. Mongin, P. C. Gros, Chem.Eur. J. 2010, 16, 12425.

[61] L. Berillon, A. Lepretre, A. Turck, N. Ple, G. Queginer,G. Cahiez, P. Knochel, Synlett 1998, 1359.

[62] M. Abarbri, J. Thibonnet, L. Berillon, F. Dehmel,M. Rottlander, P. Knochel, J. Org. Chem. 2000, 65,4618.

[63] O. Baron, P. Knochel, Angew. Chem. Int. Ed. 2005, 44,3133.

[64] H. Ren, P. Knochel, Chem. Commun. 2006, 726.[65] N. Boudet, J. R. Lachs, P. Knochel, Org. Lett. 2007, 9,

5525.[66] W. Lin, L. Chen, P. Knochel, Tetrahedron 2007, 63,

2787.[67] C. Samann, B. A. Haag, P. Knochel, Chem. Eur. J.

2012, 18, 16145.


Recommended