+ All Categories
Home > Documents > Review of Dioxins and Furan From Incineration CSR

Review of Dioxins and Furan From Incineration CSR

Date post: 06-Nov-2015
Category:
Upload: julius
View: 26 times
Download: 7 times
Share this document with a friend
Description:
Review of Dioxins and Furan From Incineration CSR
Popular Tags:
216
Review of Dioxins and Furans from Incineration In Support of a Canadawide Standard Review A Report Prepared for The Dioxins and Furans Incineration Review Group through a contract associated with CCME Project #3902007 & A.J. Chandler Associates Ltd. Environmental Management Consultants 12 Urbandale Avenue • Willowdale • Ontario • Canada • M2M 2H1 Telephone 416-250-6570 • Facsimile 416-733-2588 • e-mail: [email protected] December 15, 2006 © Canadian Council of Ministers of the Environment Inc. 2007 PN 1395
Transcript
  • ReviewofDioxinsandFuransfromIncinerationInSupportofaCanadawideStandardReview

    AReportPreparedfor

    TheDioxinsandFuransIncinerationReviewGroup

    throughacontractassociatedwith

    CCMEProject#3902007

    &

    A.J. Chandler Associates Ltd.

    Environmental Management Consultants

    12 Urbandale Avenue Willowdale Ontario Canada M2M 2H1 Telephone 416-250-6570 Facsimile 416-733-2588 e-mail: [email protected]

    December 15, 2006

    Canadian Council of Ministers of the Environment Inc. 2007

    PN 1395

  • iTableofContents

    Acronyms,Abbreviations,andMeasurementUnits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

    EXECUTIVESUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

    1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 ScopeofReport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 ReportStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    2.0 PCDD/FFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.1 CombustionControlPrinciples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    3.0 INCINERATIONPROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.2 MunicipalSolidWasteIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    3.2.1 AvailableMSWCombustionAlternatives . . . . . . . . . . . . . . . . . . . . . . . . . 163.2.1.1 MassBurningSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    EUROPEANTYPESYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17MODULARINCINERATIONSYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . 20OTHERMASSBURNVARIANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    3.2.1.2 RefuseDerivedFuelSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23SEMISUSPENSIONBURNINGSYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . 23STOKERFIREDSYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24OTHERRDFVARIANTSFLUIDISEDBED . . . . . . . . . . . . . . . . . . . . . . 24

    3.3 HazardousWasteIncinerationEquipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.3.1 RotaryKilns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.3.2 LiquidInjectionIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.3.3 FluidizedBedIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.3.4 FixedHearthIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    3.4 SewageSludgeIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.4.1 MultihearthIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    3.5 BiomedicalWasteIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.5.1 RetortFurnaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.5.2 InLineFurnaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    3.6 OtherSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.7 ProcessSummaryandPCDD/FGenerationPotential . . . . . . . . . . . . . . . . . . . . . 38

    4.0 AIREMISSIONCONTROLSTRATEGIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.1 PostCombustionControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.2 PCDD/FControlAlternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    4.2.1 ActivatedCarbonBedFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

  • ii

    4.2.2 PACInjectionSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454.2.3 CatalyticDestruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.2.4 OtherRemovalTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    5.0 PCDD/FSAMPLINGMETHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505.2 RegulatoryMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    5.2.1 SampleCollectionAlternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525.2.2 SampleExtractionandCleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565.2.3 IdentificationandQuantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585.3.4 MinimumDetectionLimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605.3.5 MeasurementUncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    5.4 LongTermSampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675.4.1 AMESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675.4.2 DMS(DioxinMonitoringSystem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    5.5 AlternativeAnalysisProcedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685.5.1 SurrogateProcedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685.5.2 Immunoassays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    6.0 REPORTINGMEASUREMENTRESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706.2 ExpressionofPCDD/FasToxicEquivalents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716.3 TreatmentofLowValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746.4 ConversionProceduresforSamplingConditions . . . . . . . . . . . . . . . . . . . . . . . . . 756.5 ReportingProceduresforthisReport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    7.0 PCDD/FEMISSIONREGULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777.2 Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807.4 Australia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817.5 NewZealand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827.6 EuropeanUnion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837.7 UnitedStates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857.8 SummaryofEmissionStandards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    8.0 EMISSIONDATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918.2 BackgroundofHistoricalIncineratorInstallationsinCanada . . . . . . . . . . . . . . . 93

    8.2.1 CanadaWideStandardsBasic2000Inventory . . . 948.2.3 CCME2005Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    8.3 UpdatingtheIncineratorsInventoryto2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998.3.1 MSWIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1018.3.2 MedicalWasteIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

  • iii

    8.3.3 HazardousWasteIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088.3.4 SewageSludgeIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128.3.5 IncineratorsOperatedbyFederalEntitiesoronFederalLands . . . . . . 1158.3.6 OtherIncineratorsinRemoteLocations . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    8.4 PCDD/FEmissionsinExhaustGasStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248.4.1 MSWIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1258.4.2 MedicalWasteIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1278.4.3 HazardousWasteIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298.4.4 SewageSludgeIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318.4.5 IncineratorsOperatedbyFederalEntities . . . . . . . . . . . . . . . . . . . . . . . . 1338.4.6 IncineratorsOperatedinRemoteLocationsonFederalLandsor

    elsewhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1348.5 PCDD/FEmissionsinSolidandLiquidStreams . . . . . . . . . . . . . . . . . . . . . 137

    8.5.1 MSWIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1378.5.2 MedicalWasteIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1388.5.3 HazardousWasteIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1408.5.4 SewageSludgeIncinerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1428.5.5 IncineratorsOperatedbyFederalEntitiesoronFederalLands . . . . . . 144

    8.6 SummaryofEstimatedPCDD/FEmissionsfromIncinerators . . . . . . . . . . . . . 148

    9.0 ALTERNATIVEEQUIVALENCYFACTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519.1 DataforAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1529.2 AffectofApplyingDifferentTreatmentsforLowConcentrationData . . . . . . 1599.3 AffectofApplyingWHO98TEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    10.0 FINDINGSandCONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

    11.0 RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16511.1 NumericalStandard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16511.2 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16511.3 AnnualThroughputCalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16611.4 SiteDisposalCapacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16611.5 ImplementationMeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

    11.5.1 BatchEquipmentCertification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16711.5.2 ContinuousMonitoringofBatchSystems . . . . . . . . . . . . . . . . . . . . . . . . 16811.5.3 OperatorTraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16911.5.4 IncineratorsEquippedwithHeatRecoverySystems . . . . . . . . . . . . . . . 169

    11.6 ExistingIncineratorInstallations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17011.7 PCDD/FIncineratorInventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

  • iv

    APPENDIXA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172TheRelationshipbetweenAnalyticalResultsandMeasurementUncertainty . . . . . . . 172

    AnalyticalLaboratoryResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172UncertaintyinStackMeasurementResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

  • vListofTables

    Table3.1 SummaryofIncineratorTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Table4.1 ComparisonofOperatingFeaturesofVariousAPCAlternatives . . . . . . . . . . . . 43Table5.1 ComparisonofRegulatorySamplingMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Table5.2 LimitsofCongenerQuantificationbasedupona5.5m3samplevolume . . . . . . 62Table5.3 SummaryInternalVariabilityDatafromValidationTestsforCEN . . . . . . . . . . 65Table7.1 JapaneseEmissionStandardsforIncinerators[ngTEQDFP/Nm3] . . . . . . . . . . . . . 81Table7.2 USEPANSPSforNonHazardousWasteIncineratorSystems . . . . . . . . . . . . . . 87Table7.3 SummaryofPCDD/FEmissionStandardsforIncineratorsintheUnitedStates

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88Table7.4 InternationalIncineratorPCDD/FEmissionRegulations . . . . . . . . . . . . . . . . . . . 90Table8.1 SummaryofCWS2000IncineratorInventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Table8.2 SummaryofIncineratorslistedinNPRIData . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Table8.3 SummaryofMunicipalSolidWasteIncineratorsinCanada . . . . . . . . . . . . . . . 102Table8.4 SummaryofMedicalWasteIncineratorsinCanada . . . . . . . . . . . . . . . . . . . . . . 105Table8.5 SummaryofHazardousWasteIncineratorsinCanada . . . . . . . . . . . . . . . . . . . 109Table8.6 SummaryofSewageSludgeIncineratorsinCanada . . . . . . . . . . . . . . . . . . . . . . 114Table8.7 SummaryofCanadianIncineratorslocatedatFederalFacilities . . . . . . . . . . . . 116Table8.8 SummaryofCanadianIncineratorslocatedinRemoteAreasonFederalLand

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Table8.9 TypicalResidentialWasteComposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Table8.10 SummaryofMiscellaneousSmallWasteIncineratorsinCanada . . . . . . . . . . . 123Table8.11 SummaryofAirEmissionsfromLargeMSWIncineratorsinCanada . . . . . . . 126Table8.12 SummaryofAirEmissionsfromMedicalWasteIncineratorsinCanada . . . . 128Table8.13 SummaryofAirEmissionsfromHazardousWasteIncineratorsinCanada . . 130Table8.14 SummaryofPCDD/FEmissionsfromSewageSludgeIncineratorsinCanada

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Table8.15 EstimateofPCDD/FEmissionsfromIncineratorslocatedatFederal

    Establishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Table8.16 PCDD/FEmissionsfromIncineratorslocatedinRemoteAreasoronFederal

    Lands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Table8.17 PCDD/FinResiduesfromLargeScaleMunicipalSolidWasteIncinerators . . 139Table8.18 PCDD/FinResiduesfromMedicalWasteIncineratorsinCanada . . . . . . . . . . 141Table8.19 PCDD/FinResiduesfromHazardousWasteIncineratorsinCanada . . . . . . . 143Table8.20 PCDD/FinResiduesfromSewageSludgeIncineratorsinCanada . . . . . . . . . . 145Table8.21 PCDD/FinResiduesEmissionsfromIncineratorslocatedatFederal

    Establishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146Table8.22 PCDD/FinResiduesfromIncineratorslocatedinRemoteAreasoronFederal

    Lands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147Table8.23 SummaryofInstalledCanadianIncinerators2005/2006 . . . . . . . . . . . . . . . . . . . 150Table8.24 SummaryofPCDD/FEmissionstoAirfromOperatingIncinerators2005/2006

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

  • vi

    Table8.25 SummaryofPCDD/FinResiduesfromOperatingIncinerators2005/2006 . . . 150Table8.26 SummaryofPCDD/FEmissionsfromOpeatingCanadianIncinerators2005/2006

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150Table9.1 RawAnalyticalData[pg]fromStackTestingProgramsVariousFacilities . . . 153Table9.2 StackTestingDataCongenerConcentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154Table9.3 LOQValuesDerivedfromTestDataandITEF . . . . . . . . . . . . . . . . . . . . . . . . . . 155Table9.4 LOQValuesDerivedfromTestData&WHO98TEF . . . . . . . . . . . . . . . . . . . . . 156Table9.5 StackTestingDataTotalEmissionasToxicEquivalentsVariousMethods . . . 157Table9.6 PercentageIncreaseProducedbyUsingWHO98TEF . . . . . . . . . . . . . . . . . . . . 158TableA1 ExpandedUncertaintyRangeofAcceptableConcentrations* . . . . . . . . . . . . . . 176TableA2 SummaryInternalVariabilityDatafromValidationTestsforCEN . . . . . . . . . 186

    ListofFigures

    Figure1.1 SchematicDiagramsofPCDD,PCDFandPCBs . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Figure3.1 GeneralizedSchematicofanIncinerationSystem . . . . . . . . . . . . . . . . . . . . . . . . . 12Figure3.2 SchematicofFixedHearth,TwoStageIncinerator(fromUSEPA) . . . . . . . . . . . 21Figure3.3 SchematicofRotaryKilnIncinerator(fromUSEPA) . . . . . . . . . . . . . . . . . . . . . . 23Figure3.4 SchematicofLiquidWasteIncinerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Figure3.5 SchematicofFluidizedBedIncinerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Figure3.6 TypicalMultiHearthIncineratorfromUSEPAAP42 . . . . . . . . . . . . . . . . . . . . . 32Figure3.7 RetortIncineratorfromAP40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Figure3.8 TypicalInLineFurnacefromAP40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Figure4.1 ComparisonofAirPollutionControlSystemOptions . . . . . . . . . . . . . . . . . . . . . 42FigureA1 DiagrammaticIllustrationoftheEffectofMeasurementUncertaintyandthe

    Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

  • vii

    Acronyms,Abbreviations,andMeasurementUnits

    Thefollowingdefinitions,acronyms,andmeasurementunitsareprovidedtoclarifythediscussionthatfollows.

    AcronymsACR activatedcharreactorAMESA adsorptionmethodforsamplingPCDD/FAPC airpollutioncontrolsystemASME AmericanSocietyofMechanicalEngineersCB chlorobenzenesCCME CanadianCouncilofMinistersoftheEnvironmentCEN ComitEuropendeNormalisation(EuropeanCommitteefor

    Standardization)CEMS continuousemissionsmonitoringsystem(s)CFR CodifiedFederalRegulations(UnitedStatesofAmerica)CWS CanadaWideStandardsDIN DeutschesInstitutfrNormung(GermanInstituteforStandardization)DMS dioxinmonitoringsystemDRE DestructionRemovalEfficiencyECT evaporativecoolingtowerEN EuropeanNormals(StandardsissuedbyCEN)EPA(U.S.) U.S.EnvironmentalProtectionAgencyESP electrostaticprecipitatorEU EuropeanUnionGC/MS gaschromatography/massspectrometryHAP hazardousairpollutantHRSG heatrecoverysteamgeneratorITEQbasis 2,3,7,8tetrachlorinateddibenzopdioxintoxicequivalentbasedonthe

    1989InternationaltoxicequivalencyfactorsLDR landdisposalrestrictions(USRegulations)LOD levelofdetectionLOQ levelofquantificationLWAK lightweightaggregatekilnMACT maximumachievablecontroltechnologyMHF multihearthfurnaceMOE MinistryoftheEnvironment(Ontario)MRR MaterialResourceRecoverymetalrecoveryoperationinCornwall,ONMSW municipalsolidwasteMTEC maximumtheoreticalemissionconcentrationNITEP NationalIncineratorTestingandEvaluationProgramNESHAP NationalEmissionStandardsforHazardousAirPollutantsNPRI NationalPollutantReleaseInventory

  • viii

    OPG OntarioPowerGenerationPAC powderedactivatedcarbonPAH polycyclicaromatichydrocarbonsPCBTotal CEPADefinitionissumoftritodecaisomersofpolychlorinated

    byphenylsPCDD/F polychlorinateddibenzopdioxinsandpolychlorinateddibenzofuransPIC productsofincompletecombustionPM particulatematterPOHC principalorganichazardouscomponentRCRA ResourceConservationandRecoveryAct(USRegulations)RDF refusederivedfuelRSI RcupreSolinc.BennettSoilRemediationfacilityinSt.Ambroise,PQSCR selectivecatalyticreactorSVOC semivolatileorganiccompoundTEF toxicityequivalencefactorTEQ toxicequivalentquantityTCLP toxiccharacteristicsleachingprocedureTSMP ToxicSubstancesManagementPolicyUCL UpperConfidenceLimit(definitionofupperboundoftestresults)U.S.EPA UnitedStatesEnvironmentalProtectionAgencyWHO WorldHealthOrganizationWHO98TEQ 2,3,7,8tetrachlorinateddibenzopdioxintoxicequivalentthatincludes

    coplanarPCBtoxicequivalencyfactors

    DEFINITIONSAPPLIEDTOCHARACTERISEINCINERATORS

    Batch incineratorsthatareloadedwithwastebeforethewasteisignitedandthedoorremainscloseduntiltheashhascooledinsidethefurnace

    Commercial meansthosethatchargeatippingfeefordisposingofwasteContinuous incineratorsthatareloadedperiodicallyduringoperationandashis

    removedduringtheburningphase(typicallyoperateforperiodsfromweekstomonths)

    SemiContinuous incineratorsthatareloadedperiodicallyduringoperationbutashisonlyremovedafteracooldownphase(typicallyoperateforperiodsofdays)

  • ix

    AbbreviationsandMeasurementUnits

    Btu =BritishThermalUnit(measureofenergy)oC =degreesCelsius(degreesFahrenheit=(oC*9/5+32)dscf =drystandardcubicfeet(at14.7poundspersquareinch,68oF)dscm =drystandardcubicmeters(at14.7poundspersquareinch,68oF)g =gram(454gramsperpound)g/a =gramsperannumgr =grains(7,000grainsperpound)MJ =megajoules(energyinput,1MJ=947.82Btu=0.27778kW.h)kg =kilogram(0.454kilogramsperpound)kg/a =kilogramsperannumkW =kilowatt(measureofenergy)m3 =cubicmeter(35.3cubicfeetpercubicmeter)mg =milligrams(103grams)Mg =megagram(1.1tons)Mg/d =megagramsperdayMg/a =megagramsperannumng =nanogram(109grams)Nm3 =normalcubicmetre(at0oC,101.3kPa)ppmv =partspermillionbyvolumeRm3 =dryReferencecubicmetre(at25oC,101.3kPaand11%O2)

    totalmassbasis =totalmassoftetrathroughocta(dioxins/chlorinateddibenzopdioxinsandfurans)dibenzofurans

    MetricPrefixes TheSIPrefixesusedtoformnamesandsymbolsofdecimalmultiplesandsubmultiplesofSIunitsare:

    Prefix Symbol Magnitude Factor

    exa E 1000000000000000000 1018

    peta P 1000000000000000 1015

    tera T 1000000000000 1012

    giga G 1000000000 109

    mega M 1000000 106

    kilo k 1000 103

    milli m 0.001 103micro 0.000001 106nano n 0.000000001 109pico p 0.000000000001 1012femto f 0.000000000000001 1015atto a 0.000000000000000001 1018

  • EXECUTIVESUMMARY

    AspartofthereviewstipulatedintheCWSPCDD/Fstandard,thisreportexaminesthewasteincinerationsectorandtheprogressthatsectorhasmadeinreducingthereleaseofPCDD/Ftotheenvironment.TheCWSPCDD/Fstandarddefinesincinerationintermsoftheequipmentasfollows:

    Waste incinerator: a device, mechanism or structure constructed primarily to thermally treat(e.g., combust or pyrolyze) a waste for the purpose of reducing its volume, destroying ahazardous chemical present in the waste, or destroying pathogens present in the waste.

    Thisimpliesthatthestandardappliestoanythermalprocess,eventhoughthedefinitionlistscombustionandpyrolysisasexamplesofthermaltreatment.Thisinnowayrestrictsapplicationofthestandardtoanyalternativemethodofheatingandtreatingwastetoreduceitsvolumeorbreakingdowncompoundswithinthewaste.Assuch,thePCDD/FWasteIncinerationCWSwouldapplytoanyformsofthermaltreatmentsystems.

    Thisreportprovidesanoverviewofthefurnacesthatcanbeusedforwasteincinerationandmethodstheirdesignersusetoensuregoodcombustionandlowemissions.AirpollutioncontrolequipmentisemployedatlargerfacilitiestofurthercontrolthereleaseofPCDD/Fandthereportsummarizesthetypesofairpollutioncontrolsystemsthatcanbeused.MonitoringtheperformanceofsystemsrequiresthatsamplesbecollectedandanalysedtodeterminethequantityofPCDD/Fbeingreleasedatanytime.Areviewoftheacceptedmonitoringproceduresandtheirlimitationsisincluded.HowtheseresultsarereportedandtheregulationsthatthedefinethelimitsonemissionsinvariousjurisdictionsarereviewedtoprovideacomparisonfortheCWSstandard.TheoriginalCWSstandardwasdevelopedbaseduponareviewofemissionsfromtheincineratorsoperatinginthelate1990s.Comparingestimatedemissionsin2005withthosedevelopedfortheoriginalinventoryprovidesanimportantmeasureofprogressmadeinreducingemissions.AsthescientificcommunitysunderstandingofhowPCDD/Freactintheenvironmenthasgrownthemeasureofthetoxicityofthesecompoundshaschanged.AreviewofsomeoftheemissiondatafromCanadianincineratorswasconductedtoconfirmtheanticipatedeffectofchangingthetoxicequivalencyfactorsusedtoquantifyPCDD/Femissions.Duringthereviewtherewereanumberoffindingsandtheauthordevelopedsomeconclusionsfromthestudy.TheseconclusionswereusedtodevelopaseriesofrecommendationsthatshouldallowtheindustrytomovetowardstheultimateobjectiveofthevirtualeliminationofPCDD/Femissionsfromthesector.

    PCDD/FFormation

    PCDD/Freleasesfromcombustionprocessesaregenerallyconsideredtobeunintentional.Thatis,theprocessisnotdesignedtocreatethesecompoundsandtheirpresenceisindicativeofeithertheirlackofdestructioninthecombustionprocess,ortheirformationbysomemechanismsoperatinginthefurnace.

    TheformationofPCDD/Fastracebyproductsofcombustionprocesseshasbeenstudied

  • xi

    extensivelybecauseitisahighlycomplexphenomenainvolvingmultiplegasandsolidphasereactions.TwomaintheoriesregardingthemechanismofformationofPCDD/Fduringcombustionprocesseshavebeendeveloped.

    Thedenovosynthesistheoryisconsideredthemajormechanism.ThistheorysuggeststhatPCDD/Fisformedinthepresenceofflyashcontainingchemicallyunrelatedunburntaromaticsandmetalcatalysts.Thereactionsoccurinthepresenceofoxygenandcatalystsattemperaturesintherangebetween250OCand450OC.Formanyincinerators,thistemperaturerangeisonlyfoundinthepostfurnaceregion,typicallythewasteheatboilerorinelectrostaticprecipitators(ESP).Denovosynthesisexperimentssuggestthatmorefuranthandioxincongenersareformed.

    ThePrecursorTheorysuggestssimplythatthevariouschemicallyrelatedchlorinatedaromaticsundergocondensationreactionsonflyashsurfacesinthepresenceofmetalcatalysts.Thus,twoprecursormoleculesarecoupledtoformadioxinorfuranstructure.Theoptimaltemperaturerangeforsuchformationisthesameasthatobservedfordenovosynthesis(i.e.,250to450EC).Therefore,formationofPCDD/Ffromprecursorsmustalsooccurinthepostcombustionzonesofthermalprocesses.ThistemperaturerangeisoftenconsideredthewindowofopportunityforcatalyticformationofPCDD/Fonsurfacesofflyashparticles.Thetwotheoriesarenotnecessarilymutuallyexclusive.TheformationofPCDD/Finthermalprocessesisundoubtedlytheresultofacomplexsetofcompetingchemicalreactions.

    RegardlessofwhichtheoryortheoriesbestexplainshowPCDD/Fareformed,certainoperatingconditionsincreasethepotentialforPCDD/Fformationincluding:

    1. incompletecombustionofafuel2. anoxidizingatmosphere3. presenceofachlorinesource4. flyashsurfaces(carbonsource)5. flyashwithdegeneratedgraphiticstructures6. presenceofcatalyticmetals(especiallycopper,butiron,manganeseand

    zincarealsoindicatedaspotentialcatalystsforPCDD/Fformation)7. temperature/timehistoryofatleast1secondatlessthan600OC(optimal

    temperaturerangeliesbetween250and450OC)Thus,goodcombustion,whichreducestheconcentrationofproductsofincompletecombustion,boththegaseousandsolidforms,mustbethefoundationofanymeasurestoreducePCDD/Femissionsfromincinerators.Secondly,limitingthetimethegasesareinthegenerationtemperaturewindowwillfurtherhelpreduceemissions.

    SomesuggestthatcontrollingtheamountofchlorineinthesystemmightinfluencethegenerationofPCDD/F,howeverconsistentanalysisoftheavailabledataindicatesthatchanging

  • xii

    theamountofchlorinehasnodiscernibleimpactonPCDD/Femissions.

    CombustionControl

    Combustioncontrolmustcompensatefor:

    thenaturalvariabilityinfuelquality;and, thecontrollingfactorsthatgoverntherateofchemicalreactions.

    HomogeneityofthewastestreamismuchbetterinsewagesludgeandliquidhazardouswastesystemsthanMSW,medicalwasteorevensolidhazardouswastes.Eachcomponentofawastestreamhasitsinherentenergycontentandthismustbematchedwithsufficientoxygentoensurepropercombustion.Incineratoroperatorsunderstandtheneedtokeeptheoperationatasteadyleveltoachievethebestperformanceandtypicallymixthecomponentsasthefirststep.Fromthere,combustioncontrolsystemscompensatefortheremainingfuelvariability.

    Intwostagestarvedairandkilnsystemsalargequantityoffuelinthefurnacewillreducethevariability.InconventionalmassburnMSWincineratorstherateofheatreleaseissensedandthesupplyofcombustionairisadjustedtocompensateforhighorlowheatreleaserates.Alternatively,thefuelfeedratecanbeadjustedtocompensateforthevariability.Throughthesestepsitispossibletoestablishanappropriaterangefortheconcentrationofoxygeninanysystem.OperationinthiszoneminimizesthereleaseofCOandthusalsominimizestraceorganicreleases.

    Goodcombustionconditionsleadingtoreducedorganicemissionsarethosethat:

    ensurecompletemixingofthefuelandtheair; maintainhightemperaturesinthepresenceofsufficientoxygen;and, preventtheformationofquenchzonesorlowtemperaturepathwaysthatwould

    allowpartiallyreactedsolidsorgasestoexitfromthecombustionchamber.

    Thesedesignconditionsmustbecombinedwithgoodoperatingconditionstoensurethattheperformanceismaintainedandorganicconstituentsarereducedtothebasicelements.

    WhilemuchoftheresearchemphasishasbeenfocussedondefiningtheconditionsconducivetominimisingemissionsofPCDD/Fthroughthestack,theseconditionsalsohaveimplicationsforsolidresiduestreamsgeneratedbycombustionequipment.Obviously,ashfromthegrateofsolidfuelcombustiondevicewillbeexposedtotemperaturesinexcessofthatconducivetoformation,indeedtemperaturesintherangewhereanyPCDD/Fwillbedestroyed.RapidquenchingofashdischargedfromthegratesshouldminimisethepotentialforanyPCDD/Finthatwastestream.Ontheotherhand,residuesfromheatrecoverysystems,whichoperateinthecriticaltemperaturezonemaybeexpectedtohavesomePCDD/Fpresent,buttheamountwilllikelyvarywiththetemperatureregimewheretheashwascollected,andthetimetheash

  • xiii

    wasinthegasstreamatthesetemperatures.ThissuggeststhatthePCDD/Fformationprocessesrelatedtodenovosynthesisorprecursorsmaybeinhibitedifthegassesleavingthesystemarerapidlyquenchedtobelowtheoptimaltemperatureranges.

    IncineratorSystemsandAirPollutionControlEquipment

    WastestreamsbeingincineratedinCanadainclude:municipalsolidwaste[MSW];medicalwastes;hazardouswastes;andsewagesludge.Thewastestreamsdifferincharacterandparticularlyintheirenergyvalue.Designershavedevelopeddifferenttypesoffurnacestohandlethedifferentwastestreamsbutsincetherearealsosimilaritiessomefurnacescanbeusedforsimilarstreams,providedthedesigntakesintoconsiderationthecalorificvaluesofthewastestreamandprovidessufficientairtothefurnacetoensuregoodcombustion.ThusMSWandmedicalwastecanbeburnedinthesameincinerator,albeitatdifferentratessotheenergyinputtothefurnaceismaintained.ThegeneralclassesofincineratorsusedinCanadaare:

    twostagemassburnincineratorsthathandleupto100Mg/dofMSWandcanhandlemedicalwasteatafeedrateapproximately50%thatofMSW;

    Europeanmassburnincineratorsthatgenerallyarelargerthanthe2stagesystemsandoperatewithairorfuelfeedcontrolstominimisecombustionupsets;

    liquidinjectionfurnacesthatstandaloneforthedisposalofhazardouswasteorareusedafterrotarykilnshandlingsolidhazardouswastesasaafterburner;

    multihearthfurnacesforsewagesludgedisposalwhicharebeingreplacedbymoreeffectivefluidisedbedsystemsthatarecapableofhandlingvariationsinthemoisturecontentofthesludge;

    newerbatchfedtwostagecombustionsystemsthatcanhavecapacitiesassmallat23kg/hrandrangeupto1Mg/day;and,

    olderdesignssuchasmultiplechamberincineratorsusedinresearchfacilitiesandhospitals.

    Allincineratorshaveazonewherethewasteisignitedandmixedwithairtopromotecombustion.Mostincineratorsprovideadditionalairtocompletethecombustionprocess.Afterthewastehasbeenoxidizedinthefurnace,residues,generallyreferredtoasbottomash,mustberemovedfromthefurnace.Theenergyavailableinthehotgasstreamgeneratedbycombustionmayberecoveredinaheatrecoverysteamgenerator[HRSG]orboilertherebycreatingsteamthatcanbeusedtoproduceelectricityorhotwaterforprocessorspaceheating.

    WhileanHRSGinstalledinthesystemwillreducethegastemperatures,ifthereisnoheatrecoveryequipment,butthereisanairpollutioncontrolsystem,arapidquenchsystemwillbeusedtoreducegastemperaturestotherangethatisappropriatefortheAPCsystemtotreat.Suchquenchinglimitsthepotentialfordenovosynthesisbecausethegastemperaturemovesrapidlythroughthecriticaltemperaturerange.FurnacesequippedwithneitheranHRSGoranAPCsystemtypicallyreleasehightemperaturegasesdirectlytotheatmosphere.

  • xiv

    Ifanairpollutioncontrolsystemisinstalledtotreatthegasesleavingtheincineratoritisgenerallysizedforthevolumeofgasesproducedatthelowertemperature.Airpollutioncontrolequipmenttypicallyinvolvesinjectingreagentstocontrolacidgasreleases,sorbentstotrapmercuryandPCDD/Fandhighefficiencyparticulatemattercontroldevicestominimisethereleaseofdusttotheatmosphere.Solidresidues,flyash,depositedinHRSGunits,orcollectedinairpollutioncontrolsystemsareremovedfordisposal,generallyathazardouswastedisposalfacilities.ThequantityofPCDD/Fpresentintheflyashstreamscanvarydependinguponthetemperaturehistoryandwheretheflyashisremovedfromthesystem.

    TypicalAPCsystemsusedinCanadainclude:

    wetsprayhumidifiers/dryscrubbers/fabricfilterswithorwithoutpowderedactivatedcarbonadditiontothegasstreamusedinlargeMSWandcommercialmedicalwasteincineratorsaswellassomehazardouswasteincinerators;

    wetscrubbersusedaloneinsewagesludgeincineratorinstallations,orincombinationwithpowderedactivatedcarbonandfabricfiltersinonehazardouswastefacility;

    onehazardouswasteincineratoremploysanelectrostaticprecipitatorratherthanafabricfilterforparticulatecontrol;

    onefacilityhasanactivatedcharbedfilterinstalledafteraquenchsystemandanotheronewillbeinstalledin2006;and,

    onefacilityhasinstalledaselectivecatalyticreactorthatincludesprovisionstodestroyPCDD/Freachingthecatalystdownstreamofawetsprayhumifier/dryscrubber/PACinjection/fabricfiltersystem.

    Detailsofthevarioustypesofincineratorsandairpollutioncontrolsystemsandtheirperformancecharacteristicsarepresentedinthereport.

    PCDD/FSamplingMethods

    MeasurementsofPCDD/FconcentrationsintheexhaustgasstreamsofcombustionsytemswererequiredtodeveloptheunderstandingoftheformationmechanismsandproveAirPollutionControlsystemperformance.SomeoftheearlyCanadiansamplingstudiesusedtechniquesthathavenowevolvedtoberecognizedasoneofthestandardmethodsforsamplingandanalysisofPCDD/Finstacks.TheEnvironmentCanadaproceduresareverysimilartothoseusedbytheUSEPA.SimilardevelopmentshavetakenplaceinEuropewherethreedifferentsamplingsystemshavebeendevelopedandapplied.Sincethemid1990smuchoftheemphasisinthisfieldhasbeenonimprovingmethodstoensurethatthequalityofthereportedresults,andtomeettheincreasingdemandsposedbylowerandloweremissionconcentrations.

    ThemethodscurrentlyincorporatedinNorthAmericanandEuropeanregulationsandpermits

  • xv

    aresimilar.Gasbeingexhaustedissampledbyextractingaportionoftheflowstreamisokinetically;filteringtheextracttoconcentratethespeciesofinterest;and,recoveringtheconcentratedsamplefromthesamplingsystemsothelaboratoryanalysiscanbecompletedusingHRGC/HRMStechniquesarethebasicstepsinallmethods.Beingsimilar,theyshouldproducesimilarresultsifthemethodsareemployedbytrainedsamplersandchemistswhotakecarewiththeirtasks.

    Eveniftestersprovidereliablemeasurementresults,themethodshavelimitations.ItisdifficulttoquantifythemassofPCDD/Fpresentinsamplescollectedfromsystemsoperatingasverylowemissionrates,unlesslongsamplingtimesareemployed.Convertingthatquantitytoanemissionconcentrationmeasuringthesamplevolumeandthestackgasflow.Whenallthemeasurementsarecombinedsomeuncertaintyisinherentinthereportedresults.Thus,duetolimitsinthelevelofPCDD/Fthatcanbequantifiedandthevariationsinthesemeasurements,theEuropeanstandardincorporatesaproceduretodefinethelevelofquantificationforeachPCDD/Fcongenerandliststheuncertaintythatwasdeterminedforresultsfromalargecomparativetestingprograms.

    InCanadatheapproachtodealingwithsampleswithlowconcentrationshasbeentoreferdirectlytothelaboratoryreports.Whenthelaboratoryliststheresultsasbeingbelowthedetectionlimit,thedetectionlimitvalueissubstitutedintothecalculationprocedurewhendeterminetheTEQvalueforthetest.TheresultingTEQvalueisthencomparedtoavalueof32pgITEQ/m3@11%O2,thevaluestatedbyEnvironmentCanadaasbeingthelevelofquantification,orthestackconcentrationlevelthatEnvironmentCanadasuggestscanbereliablymeasured.IftheresultinglevelislessthanthisEnvironmentCanadaLOQ,PCDD/Fareinterpretedashavingbeenvirtuallyeliminated.WhenreportingtoNPRI,sourceswithresultsbelow32pgITEQ/m3@11%O2canreportzeroemissions.

    TheEuropeanapproachrequiresthattheconcentrationofeachcongenerbedeterminedandthesedatabeincorporatedintothecalculationoftheITEQvalueofthesample.IftheconcentrationofanycongenerislessthantheLOQderivedfromapplyingtheequationLOQi=0.5[pg/m3]/ITEFi,theITEQvaluefortheemissionconcentrationmustbereportedintwowaysusingthequantificationleveltosubstituteforvaluesbelowthatlevelandusingzerotosubstitutefortheconcentrationoftheparticularcongener.

    Theimplicationsofthisapproacharethat,laboratoriesmightbeabletoreportlowervaluesandsomedo.Conversely,theLOQcalculatedfromthedatacanalsobeabovethepermissibleLOQ.Ifthisisthecase,andtheoverallITEQexceedstheapplicablestandard,thelaboratorymightberequiredtodomorecleanupofthesample,oranalysethesampleonanothercolumntoconfirmtheresults.Iftheproblemstillexists,theotheralternativeistoextendthesamplingtimetherebyincreasingthevolumeandthecongenerquantity.

    Thevariabilityinsamplingresultswasexaminedintwostudies.InEuropetheresultsreflectthosefromcomparisonsamplingwithdifferentmethodsandusingdifferenttestingteams.The

  • xvi

    resultssuggestthattheexternalvariability,andhencetheuncertaintyofthemeasurementsofPCDD/F,was50pgITEQ/m3atameanmeasuredconcentrationof35pgITEQ/m3.Theresultssuggestthatnoconclusionsondifferencesinemissionscouldbemadeiftheresultsarelessthan85pgITEQ/m3becausethedataiswithintherangeoftheuncertainty.NorthAmericandatawasexaminedinastudyconductedfortheAmericanSocietyofMechanicalEngineers.Thisstudycomparedtheresultsofdualtraintestingatvariousvenues.Baseduponthedataavailableandanupper95%confidenceintervalthestudyfoundthat,at32pgITEQ/m3

    theuncertaintyis18.6pgITEQ/m3.Theuncertaintyrisesto49.5pgITEQ/m3atanaverageconcentrationof80pgITEQ/m3.Theauthorofthestudyrecommendsthatmoredataattheextremesoftherangeisrequiredtoimprovethemodelused.TheNorthAmericanstudysuggestthatatthecurrentCWSlimitforincinerators,80pgITEQ/Rm3,theuncertaintyinthemeasuredvaluewouldextendfromlessthantheLOQtoapproximately130pgITEQ/Rm3.

    WhilethereisconsiderablediscussionontheapplicationofthestandardPCDD/Fsamplingmethods,costsandtimelinessofdataavailabilityhavepromptedthedevelopmentofalternativeapproachesfordeterminingPCDD/Fconcentrations.TherearetwosimilarlongtermsamplingmethodsemployedinEurope.Theseessentiallycollectsamplesover30dayperiodsandthesamplesareanalysedbythesamemethodsusedforstacksamplingtrains.Theseapproachesofferalongersamplingperiodaveragewhichiscomfortingtopeoplewhoareconcernedthatnotallstacksamplingisconductedundertypicaloperatingconditions.Theyarealsolessexpensiveduetothereductioninmanpowerneededtocollectthesample.Havingnotbeenincorporatedintolegislationatpresent,thesemethodshaveseenonlylimitedapplication.

    Anothermethodthatpromisesfastercheaperresultsisabioassayapproach.BioassayproceduresuseadioxinspecificantibodyfordioxinsanddioxinsimilarcompoundstodetectandquantifyasampledirectlyasanITEQsumvalue.Bioassaysareextremelysensitive(0.001pgrange),andcanbeusedforsampleswithaminorPCDD/Fcontent,typicallyfeedandfoodsamples.Indeed,inJapan,bioassaywasadoptedasoneofmeasurementmethodintheLawConcerningSpecialMeasuresagainstDioxins(DioxinsLaw).Onepresumesthatshouldthebioassaysuggestasamplehasfailedtomeetthelimits,therewouldbeaneedtoverifythisconclusionbycompletingthedetailedtesting.

    PCDD/FRegulatoryStandards

    Thereare210isomersofPCDD/Fand209isomersofPCBthatcouldbeidentifiedintheanalyticalprocedures.Trackingthesesubstancesforthepurposesof:settinglimits;identifyingcontroltechniques;or,evendeterminingthemechanismsbywhichtheyareformed,wouldbeextremelyonerous.WhenscientistsidentifiedthatparticularisomerswereresponsiblefortheeffectsnotedduringexposuretoPCDD/Ftheyreasonedthat,ifthedegreeofeffectcausedbydifferentisomerscouldbemeasured,itcouldbepossibletoexpresstheamountofPCDD/Fpresentbasedupontheanticipatedeffectofthemixture.Thus,theconceptofassessingPCDD/Femissionsonthebasisoftoxicitywasadopted.Thisapproachhasbecomeknownas

  • xvii

    theTEQortoxicequivalencemethod,baseduponapplyingtoxicequivalencyfactors[TEFs]thatrelatethetoxicityofeachisomertothatofthemosttoxicdioxincongener,namely2,3,7,8tetrachlorodibenzopdioxin(2,3,7,8TCDD).Twoschemeshavebeenusedoverthepast1520years.Thefirstschemewasbaseduponthe1989InternationalToxicEquivalencyFactors[ITEQ].ThesecondschemeevolvedfromincreasedknowledgeabouttheeffectsofthesechemicalsandincorporatesvaluesforthecoplanarPCBcompounds.Areviewoftheaffectoftheapplicationofthetwodifferentapproachessuggeststhatthelatestscheme,theWHO98TEFapproach,wouldaddabout15%tothetotalPCDD/Femissions.Todatenojurisdictionhasadoptedthisapproachtoexpressingemissionstandards.

    Inreviewingemissionregulationsfromvariousjurisdictionsitisevidentthatnotallconcentrationsareexpressedinthesamemanner.Differentjurisdictionshaveattemptedtostandardizesuchreadingsbydefininghowtheresultsshouldbeexpressed.Whiletemperatureandpressureaffectgasvolumes,andarespecifiedinmoststandards,concentrationcanalsobeinfluencedbytheamountofairpresentinthegasstream.Ifmoreairisadded,theconcentrationisreduced,butthemassflowrateofthepollutantofinterestdoesnotchange.

    Theregulatorystandardsfordifferentjurisdictionsareshowninthetableonthenextpage.TheEmissionLimitunitsareexpressedas[pgITEQ/Rm3@11%O2],wherethereferenceconditionsare25OCand101.3kPa.

  • xviii

    SummaryofInternationalEmissionRegulationsforPCDD/FfromIncinerators

    COUNTRY Incinerator Type EmissionLimit

    Comments

    European Union All 92 diluent corrections note applied when < 11% O2Australian &New Zealand

    All 92

    Japan(based uponsize and age)

    >4 Mg/hr 92 existing facilities have limit of 920

    2 - 4 Mg/hr 920 existing facilities have limit of 4600

    225 Mg/d c/w ESP = 25 w/o ESP = 21new all sizes = 9 ng total/Rm3 @ 11%O2small units 225existing Class I c/w ESP = 50 w/o ESP = 25existing Class II = 88 ng total/Rm3 @ 11%O2

    Medical(existing)

    1,61010,500

    Existing urban total = 88 ng total/Rm3 @ 11%O2 Existing rural total = 560 ng total/Rm3 @ 11%O2

    Medical(new)

    182

    1,610

    725 kg/day batch (17.5 ng total/Rm3 @ 11%O2)

    HazWaste 14278

    without dry APCD system or waste heat boilerwith dry APCD or waste heat boiler

    Commercial &Industrial Waste

    287 >32 Mg/day capacity

    Other SolidWaste

  • xix

    TheCanadianIncineratorPCDD/FInventory

    AspartoftheoriginalCanadaWideStandards[CWS]PCDD/Fcommitteesworkaninventoryofoperatingfacilitieswasassembledin2000.Theincineratorsoperatingatthattime,andtheestimatedemissionsfromthesefacilitiesaresummarizedinthetablebelow.

    Baseduponthetotalnumberofincineratorsinthelist,54%wereusedformedicalwastedisposal.Themedicalwasteincineratorswereestimatedtoaccountfor72%oftheannualPCDD/Femissions.Theotherlargecategorywerethefacilitiesonfederallandswhichmadeupathirdofalltheincineratorslisted,howeverthesewereestimatedtoaccountofonly20%oftheannualemissions.Onlyafewofthemedicalwasteincineratorshadbeentestedatthetimetheinventorywaspreparedandnodatawasavailableforthefederalfacilities.Thus,emissionshadtobeestimatedbaseduponboththeestimatedtonnageprocessedbytheseincineratorsandemissionfactorsfromtheliterature.Theemissionfactorselectedforthesesourceswas4.67mgITEQ/Mgwasteburned.

    Table1 SummaryofIncineratorsusedin2000EvaluationofPCDD/FEmissions

    IncineratorClassification

    Number of Incinerators by Province Totals

    AB BC MB NB NF NT NS NU ON PE QC SK YK

    Municipal 1 1 2 1 2 1 3 11

    Medical 37 3 6 46 1 7 1 101

    Hazardous 1 4 2 7

    Sewage Sludge 5 2 7

    Federal Entities 11 7 6 2 6 4 5 16 2 3 62

    Remote

    TOTALS 13 8 43 5 8 10 6 0 73 2 9 10 1 188

    IncineratorClassification

    Estimated PCDD/F Emissions to Air [mg I-TEQ/yr] by Province Totals

    AB BC MB NB NF NT NS NU ON PE QC SK YK

    Municipal 1.4 6.6 117 13 2034 85 36 2293

    Medical 9269 2.3 1501 9165 133 603 389 21,062

    Hazardous 141 2.5 35 178.5

    Sewage Sludge 82 29 111

    Federal Entities 791 524 311 54 653 278 235 2709 124 87 5766

    Remote

    TOTALS 933 531 9580 56 770 1779 248 0 13,993 218 224 690 389 29,411

  • xx

    ToupdatethePCDD/Femissioninventoryforincinerationfacilitiesforthisstudy,itwasnecessarytoestablishwhichfacilitieswereoperating,howmuchwastetheyburnannually,selectanappropriateemissionfactorforeachfacility,andprovideanestimateofthetotalemissionstocomparetothe2000numbers.The2005estimatesareshowninthetablebelow.

    Table2 SummaryofIncineratorsandPCDD/FEmissions2005

    IncineratorClassification

    NumberIdentified

    WasteQuantity

    Releases of PCDD/F[mg I-TEQ/year]

    [Mg/year] Air Residues TotalLarge Municipal 7 762,793 60 4,139 4,198

    Medical 42 8,082 3,142 81 3,222

    Hazardous 9 204,418 257 610 867

    Sewage Sludge 6 172,525 46 1,501 1,547

    Federal Entities 30 1,087 159 9 168

    Remote and Federal Lands 22 3,320 34 14 47

    Totals 116 1,152,225 3,697 6,353 10,051

    In2000,theonlyemissionsconsideredwerethosetotheatmosphere.Addedtotheinventoryfor2005isaestimateofthePCDD/Freleasedinresidues.Thenumberofoperatingincineratorsin2005,116,issignificantlyfewerthanthoselistedinthe2000inventory,188.Theactualnumberofincineratorslistedinthereportis119.Thelatternumberincludesthreehazardouswasteincineratorswhicheitherdidnotoperateasaseparatesystemin2005orforwhichnodefinitivedatacouldbegathered.TheBelledunefacilitywasnotoperatingin2005,butiscommissionedandcanoperate.ThecarbottomfurnaceatMRRcanonlybeoperatedinconjunctionwiththeotherfurnaceonsiteandemissionswereassumedtobecombined.Lastly,nothroughputdataisavailableontheSteacyfacility.The2006reviewidentifiedincineratorsthathavebeenaddedtotheinventorysince2000orweremissedfromthatinventory.Theseincludethreehazardouswasteincineratorsthatwerenotincludedin2000and22incineratorsatnewresourcedevelopmentsites.

    Theclosureofolderfacilities,combinedwithadjustmentsintheestimatingprocedures,producesarevisedestimateforannualPCDD/Femissionstotheairthatisjust16%ofthe2000number,lessthan4gmITEQperyear.Thebiggestreductionsoccurredinthemedicalwastecategorywherethe2005estimateis15%oftheearliernumber.GiventhePCDD/Femissionfactorusedforearlierestimatesofthesewagesludgeincineratoremissions,theclosureoftheTorontofacilityreducedairemissionsforthiscategorybyover50%.SimilarreductionsareevidentinthelargeMSWincineratorcategory.Asignificantnumberofincineratorsoperatedbyfederalentitieshavebeenclosedleavingjust30incineratorsinthiscategoryandtheiremissionsareestimatedtohavebeenreducedtolessthan3%ofthepreviousnumber.Hazardouswasteincineratorsoperatinginthecountryhaveincreasedfrom7to12inthelisting,althoughmostoftheadditionalunitsarenotnew,justonesthatwereoverlookedinthepreviousinventory.Emissionstotheatmosphereforthiscategoryhaverisenbyover40%toanestimated0.26g/year.

  • xxi

    TheadditionofanestimateforthePCDD/Finresiduestreamsaddsapproximately6.4g/yeartothetotalPCDD/FreleasesfromincineratorsinCanada.Thisnumberdoesnotincludethecontributionofresiduesstreamsfromthehazardouswastesectorbecausedisposalvolumesfortheseunitswerenotavailable,notwasthereanyinformationontheamountofresiduetheyproduced.Alltheresidueemissionsareestimatedonthebasisofdefaultfactorsandwouldbenefitfromconfirmationbysitespecifictesting.

    Thetotalemissionsfromincineratorsin2005,includingtheportionassignedtotheresiduestreams,isestimatedtobeapproximatelyonethirdofthatidentifiedfortheairemissionsonlyinthe2000inventory.

    FindingsandConclusions

    Duringthecourseofthestudy,22incineratorswereidentifiedashavingbeeninstalledatremoteminingandexplorationcampstoaddresstheneedforsafewastedisposalinareaswherelandfillingisnotapracticalwastemanagementoption.Theseunits,someservicingrelativelylargecamps,disposeofconsiderableamountsofwasteonadailybasis.AnothergroupofnewincineratorsinstallationswereidentifiedatvariousindustrialandcommercialinterestsinAlberta,butitwasnotascertainedwhetherthistrendhasoccurredinotherprovinces.Mostofthesenewunitsarebatchtypeincineratorsdesignedwithaprimaryandsecondarychamberthelatterbeingequippedwithatemperaturecontrolledsecondaryburner.NoneareequippedwithHRSGsandfewhavebeeninstalledwithAPCequipment.RegardlessofthelackofAPCequipmentontheseunits,limitedtestdatasuggeststhattheiremissionscouldmeettheCWSstandard.Goodcombustioncontrolintheseunitscoupledwithanafterburnerthatensuresthatminimalquantitiesofproductsofincompletecombustionarereleased,andstacktemperatureswellinexcessofthedenovosynthesiswindowexplainthisperformance.

    Commercialwasteincinerators,thoseburningMSWandmedicalwaste,havebeenupgradedtomeettheCWS.MostofthisoccurredshortlyaftertheStandardwasadopted,andconsistentmonitoringdatashowsmostofthesefacilitiestoberecordingemissionconcentrationsthatarebelowthe32pgITEQ/Rm3@11%O2levelofquantificationstandarddefinedbyEnvironmentCanadaassatisfactorilyprovingvirtualeliminationforthatsource.LargecommercialhazardouswasteincineratorsdidnotmeettheCWSstandardasearlyastheMSWincinerators.Threeofthe6majorhazardouswasteincineratorslistedinaSeptember2004reporthadtestdatabelowtheCWStarget.ThisreviewhasshownthatthereisuncertaintyinthereportedPCDD/Fvaluesbutevenassumingtheworstcase,thecommercialMSWandmedicalwasteincineratorsarestillbelowtheCWSstandard.Ifthereporteddatawereassumedtobesubjecttoapositivebias,thehazardouswasteincineratorperformancemightbesatisfactorytomeettheCWS.

    ThesamplingandanalysismethodsusedinCanadaarecomparabletothoseusedinEurope.ThelattermethodswererecentlyupdatedbytheEuropeanNormalisationCommissionandcanbeassumedtoreflectthebestavailabletechniquesforensuringrepresentativeemission

  • xxii

    concentrationsarereported.TheEuropeansamplingmethodsprovideanalternativewayofdeterminingthelevelofquantificationinasamplebaseduponreviewingthecongenerdataprovidedbytheanalyticallaboratory.WiththisapproachthecontributionofspecificcongenersisincludedoromitteddependinguponthequantitydeterminedintheanalysisandthecalculationoftheITEQvaluesisdeterminedontwodifferentdistributions.Thisclearlyshowsthepotentialimpactofusingdetectionlimit/quantificationlimitvaluesintheequivalencycalculationandovercomessomeoftheinconsistencieswiththewaytheresultsarepresented.

    Similarregulatorystandardsareappliedtoincineratorsinmostjurisdictions.Thesestandardsareappliedregardlessofthewastetheincineratorisburning,orthesizeoftheincinerator,withtheexceptionofsomelowlevelcutoffs.FurtherexceptionstothisfindingwerefoundintheUnitedStatesofAmericawheredifferenttypesofincineratorsaresubjecttodifferentstandard,andinJapanwhereaslidingscaleofallowableemissionsbaseduponsizeisapplied.IntheUnitedStates,thestandardsweresetonthebasisoftheMACTprotocolwherethebest12%oftheexistingpopulationwereusedtosetthestandard.InJapan,thereappearstobearecognitionofthecosteffectivenessofaddingmoresophisticatedcontrolstolargerfacilities.

    CanadasCWSPCDD/Fstandardsarethemoststringentinanynationallegislation.

    ItdoesnotappearthatanycountryhasmovedtowardsadoptionoftheWHO98TEFfactorsintheirnationallegislation;however,giventheuncertaintyinPCDD/Fmeasurements,andthelimitedimpactthattherevisedTEFswouldhaveonthetotalWHO98TEQvalueformostoperatingfacilities,itsimplementationshouldhavelittlerepercussiononoperatingfacilities.

    LargefacilitiesinCanadaarerequiredtoroutinelymonitorthestackemissionsofPCDD/FaccordingtotheCWS.Suchmonitoringappearstoberequiredannually,apracticethatisinlinewiththerequirementsoftheUSEPA,butlessfrequentthanthetwiceyearlytestingrequiredintheEuropeanUnion.Provinceshavetheoptiontoallowtestingfrequencytobechangedafteraconsiderableperiodofreportedconcentrationsbelowthe32pgITEQ/Rm3LOQleveldefinedbyEnvironmentCanada.TheCWSrequiresthatthisvaluebedeterminedusingdetectionlevelvaluesforcongenersthatarenotquantifiedduringtheanalyticalprocedure.TheCWSwouldappeartoimplythatsmallfacilitiesarethoseburninglessthan26Mgperyear.TheseunitsarerequiredtomakedeterminedeffortstoachievetheCWStargets,and,ifpossible,theyaretoprovethattheyindeedtomeetthesestandardsbyasingleroundoftesting.

    Thisstudyhasidentifiedthatamajorlimitationinthedataavailablefrommanyofthenoncommercialfacilitiesisthelackofconsistencyindefininghowmuchwasteischargedtothefurnace.Thisleadsmanyfacilitiestofallintoasituationwheretheytrytorationalizetheirstatusasasmallfacilityonthebasisofthatthefacilitiesareusedinfrequently,eventhoughtheincineratorsratedcapacitywouldsuggestthatthefacilitycouldburnconsiderablymorethan26Mg/yror500kg/weekor70kg/day.

    Typically,smallbatchincinerators,designatedbytheirhourlyburncapacity,willaccept

  • xxiii

    between70and210kgofwasteperbatch,operatefor23hoursoneachbatch,andcanbecycledanywherefrom3to6timesperday.Thissuggeststhatthesesystemscouldprocess26Mg/yrifthesmallestunitwasrunoncedailythroughouttheyearbutthesameunitcouldprocessupto156Mg/yrifrunatthemaximumfrequency.Consideringthesmallestunitisratedat50lbor22kg/hrburnrate,itisclearthatmanyoftheseincineratorshavethepotentialtoexceedthesmallincineratordesignationintheCWS.

    Ifthisrationaleisaccepted,mostincineratorsinthecountrythushavethecapacitytoexceedthesmallincineratordesignation.ThatmeansthattheCWSsuggeststhattheymustallbetestedannually.Giventhecapacityofthetestingindustry,theremotelocationsofmanyofthesefacilities,andthecostofcompletingsuchtesting,itisunlikelythatsuchtestingwillbecompleted.Thus,thereisaneedtoreconsidertherequirementsunderCWSwithrespecttothesizeoftheincinerators.

    Recommendations

    TheimplementationoftheCanadawideStandardsforPCDD/Ffromincineratorshasbeeneffectiveinreducingemissionsfromlargefacilities,andhasforcedtheclosureofmanysmallerfacilitiesthatcouldnotbeviablyupgradedtomeetthestandards.Furthermore,thisstudyhasshownthattheCWSPCDD/Femissionstandardsetstheworldsmoststringentemissiontargettherefore:

    ItisrecommendedthatnofurtheradjustmenttotheCWSPCDD/Fnumericalemissionstandardsisnecessary.

    Toclearlyenunciatetherequirementsdefinedbythestandard,giventhedefinitionofwasteincineration:

    ItisrecommendedthatanysystemthatthermallytreatswastesforthepurposeofdisposalbesubjecttotheCanadawideStandardsforPCDD/F.

    Whilenewthermaldestructiontechnologiesarebeingdevelopedandemployedinvariouscountries,theirapplicationinCanadawillrequirethattheymeettheCWSforPCDD/F.Toavoidanydebatesabouttheapplicabilityofnewtechnologiestomeetthesestandards:

    Itisrecommendedthatanynewthermaldestructiontechnologyonlybeapprovediftheproponentcandemonstratethatthesystemwillmeettheemissionstandard,eitherthroughtheapplicationofasuitableairpollutioncontrolsystem,orbysubmittingvalidatedtestdatafromafullscalefacilityoperatinginanotherjurisdiction.Fullscalefacilitiesaretypicallydeemedtobeincommercialoperation,thatistheyarenotlargescalepilotfacilities,orevenproofofconceptdemonstrationunits.

  • xxiv

    ThisstudyhasidentifiedagroupofexistingandnewincineratorsforwhichthemonitoringrequirementsoftheexistingCWSstandardarenotviable.Assuchthereareanumberofstepsthatcouldbetakentoaddressthesesystems.

    Thereisevidencethatmostsmallincineratoroperatorsdonotroutinelyrecordwasteloadstotheirfurnacesandthusthetotalwasteprocessedinayearispoorlydefined.Sincesomestepsshouldbetakentoestimatetheannualemissionsfromsuchfacilities:

    Itisrecommendedthatwastethroughputusedforannualemissioncalculationsforanysmallbatchincineratorshouldbebaseduponthedesignratedcapacityofthespecificincinerator.

    Furthermore,itisrecommendedthatthenumberofbatchesassumedtobechargedtotheunitbebasedupon24dividedbytwicethemanufacturerscycletimefortheunitinhours.

    Inanyoftheaboverecommendationsthedocumentidentifiedthatwhendefiningcapacityforanyinstallationisshouldbeinthebasisofallincineratorsinstalledonasite:

    Itisrecommendedthat,forthepurposesofdefiningthestepsthatanoperatormusttaketoensurethatthefacilitymeetsalltherequirementsoftheCWSforPCDD/F,thetotalinstalledincinerationcapacityonagivenpropertybeused.

    ThiswillresultinnewinstallationscomprisedofnumeroussmallincineratorsnotbeingabletoavoidtheprovisionsoftheCWSbyclaimingtheunitswerebelowthe26Mg/yearthreshold.

    Largeincinerators,whoprovideaservicebaseduponatippingfee,shouldbeusingtheirannualtestdataandtheannualwastethroughputtocalculateannualPCDD/Femissions.However,thereiscurrentlylimitedinformationavailablefrommostfacilitieswithrespecttoPCDD/Finsolidresiduesthataretransferredfordisposalso:

    ItisrecommendedthatPCDD/Finsolidresiduesshouldbeincludedintheannualemissionestimatesfromallincinerators.Proceduresandsuitabledefaultfactorsshouldbedevelopedtoaidinthesesubmissions.

    Whilelargefacilitiesareroutinelytestedinmostjurisdictions,thesameisnotthecaseforsmallerincinerators.Indeed,eventhoughthedeterminedeffortsclauseoftheCWSsuggeststhataonetimeproofofeffectivenessshouldbecompletedforthesmallerfacilities,thishasnotbeenaccomplished.Suchtestingwouldimposealargefinancialburdenonsmallfacilities.However,thelimitedtestdatapresentedfornewequipmentshowsthatmoderntwostagesystemsarecapableofmeetingtheCWS.Toencouragetheuseofgoodincinerationpracticesthatwillassisttheoperatorinmeetingthestandards:

  • xxv

    ItisrecommendedthatjurisdictionsexploreopportunitiestoemployuptodateincinerationequipmenttoreplaceexistingsystemsthatwouldotherwiseneedtobeupgradedwithcomplexairpollutioncontrolsystemstomeettheCWS.

    Furthermore,itisrecommendedthatjurisdictionsallowsuchequipmenttobeoperatedwithouttheannualtestingrequirementsprovidedtheoperatortakesappropriatemeasurestoensuregoodoperationandprovidesadequaterecordsofsuchoperation.

    Coupledwiththeserecommendationsareaseriesofimplementationrecommendations.

    CurrentlyavailabledatasuggeststhatnewincineratorsarecapabletomeetingtheCWSstandardswhenoperatedaccordingtothemanufacturersinstructions.

    ItisrecommendedthatanymanufacturersellingabatchincineratorinCanadaobtainthirdpartycertificationthattheunitmeetstheCWSforPCDD/Fwhenburningthetypeofwasteintendedforaspecificinstallation.

    Tofacilitatesuchcertification

    Itisrecommendedthatamultistakeholdercommitteeconsistingofregulators,manufacturers,andtestingcompaniesbeconvenedtocommencethedevelopmentofacertificationprocedureforbatchincinerationequipment.

    Suchsystemsshouldbeequippedwithcertainmonitoringequipmenttoensureproperoperationismaintained.Asawayofimplementingsuchmeasures:

    Itisrecommendedthatequipmentthatachievescertificationcanonlybesoldwithamonitoringpackagecapableofrecordingpertinentoperatingparametersthatensurethesystemisbeingusedinthemanneritwasintendedtobeused.

    Furthermore,itisrecommendedthatallinstallationsusingacertifiedincineratorshallinstallweighscalestorecordthechargeweightofeachloadchargedtotheincinerator.

    Themonitoringpackageshouldbeconnectedtoacomputerwhichwillcontinuouslylogdatafromtemperatureprobes,differentialpressuremetersandauxiliaryfuelflow.Thedatafromthissystemwillbemadeavailabletoenvironmentalinspectorswhowillbeabletochecktheperformanceofthesystem.Thus:

    Itisrecommendedthatthecomputermonitoringequipmentbeintegratedwithalltheoperatingcontrolsofthefacilityinamannerthatwouldfacilitateremoteaccesstothedatatoenablethemanufacturertoassisttheoperatorwithtroubleshootingtheoperationoftheunit.

  • xxvi

    Furthermore,itisrecommendedthatarrangementsbemadesotheappropriateregulatoryorjurisdictionalauthoritycanaccessthedataremotelyforthepurposesofmonitoringtheoperation.

    Theoperatorsofsuchequipmentmustunderstandtheirrolesinensuringappropriateperformanceandthusitisrecommendedthat:

    Operatorsbetrained,eitherthroughanappropriatesitespecifictrainingprogramsorthroughacertificationprogramprovidedbyaqualifiedbody,ontheoperationoftheunit.

    Operatorsbeinstructedtodistinguishbetweenbroadcategoriesofwaste,saypackagingversusfoodwaste,andbegivenclearinstructionsonhowmuchofeachcomponentitissuitabletochargethefurnacewithoneachload.

    Theprovisionsforequipmentcertificationthatavoidtheneedforannualtesting,andthesuggestionthatcertainsystemsdonotneedAPCsystemstomeettheCWSonlyappliestosystemsthatventdirectlytotheatmosphereattemperaturesinexcessof600OC.Systemsequippedwithheatrecoveryboilershavethepotentialtohavehigheremissionsduetothegasesspendingtimeinthedenovosynthesistemperaturewindow.

    ItisrecommendedthatanyownercontemplatingtheinstallationofaboileronawasteincineratorberequiredtoinstallanAPCsystemtoremovePCDD/Ffromtheexhaustgasstream.

    Newer,simplersystemshavebecomeavailableandcanbeusedtolimitemissionswhilenotundulyincreasingthecomplexityofthesystem.

    ExistingincineratorsshouldberequiredtoprovethattheyaremeetingtheCWSforPCDD/F.Tothatendseveralrecommendationsaddressthesmallsystemstilloperatinginthecountry.Manyoftheseincineratorshaveproducedlittledatatoenabletheiremissionstobeestimated.Indeed,annualwastethroughputdatawasnotavailableformostofthesesystems.Therefore:

    Itisrecommendedthatallfacilitiesinstallscalesandstartrecordingtheamountofwastechargedtotheirincineratoralongwiththedateandtimeofthestartandcompletionofeachoperatingcycle.

    Electronicrecordsshouldbecollectedtofacilitateanalysisofannualthroughput.

    Sincemostofthesesystemsaresmall,batchincinerators,forwhichthecostofannualtestingmaybeprohibitive,ifitisdeemedappropriatetoallownewbatchinstallationswithoutPCDD/Ftestingrequirements,existingsmallbatchincineratorsshouldmeetsimilarrequirements.Thus:

  • xxvii

    Itisrecommendedthatthesefacilitiesberequiredtoinstalltemperature,pressureandauxiliaryfuelflowmonitoringequipmenttoconfirmtheincineratorisoperatedappropriately.

    Furthermore,itisrecommendedthatallrecords,monitoringdataandreportsrequiredshallbemaintainedatthesiteforaminimumperiodofatleasttwo(2)yearsfromthedateoftheircreationinahardcopyformatandasanelectronicrecordandshallbemadeavailableforinspectionbyregulatorystaff.

    WhilethePCDD/Finventorywasupdatedforthisstudy,keepingituptodaterequiressomeinformationfromtheoperatingfacilities.Toimprovetheinventory:

    Itisrecommendedthatallfacilitiesberequiredtofile,withtheappropriateregulatoryauthority,theirannualwastethroughputdata,bytheendofMarchinthefollowingyearstartinginMarch2008.Thisfilingshouldincludedetailsonthequantityanddispositionofresiduesdischargedfromthefacility.

    Asnotedearlier,arecommendationwasincludedtoencouragethedevelopmentofmoredataonresiduequalityandvolumessotheinventorycanbeupdatedtoincludethecontributionoftheresidues.Lastly,whenthethroughputandresiduedatabecomeavailable:

    ItisrecommendedthatthePCDD/Finventorydevelopedaspartofthisstudybeupdatedin2008bytheincorporationofwastethroughputandresiduegenerationdataalongwiththeresultsoftheresiduetestingprograms.

    Basedupontheresultsofthisupdate:

    ItisrecommendedthatsuitabledefaultfactorsforairemissionsandPCDD/Finresiduesbedevelopedtoaidinpreparingtheannualemissionestimatesfromallincinerators.

  • 1 CEPA,1999.CanadianEnvironmentalProtectionAct,1999.1999,c.33[AssentedtoSeptember14,1999]Availableathttp://laws.justice.gc.ca/en/C15.31/

    A.J.Chandler&AssociatesLtd.

    1.0 INTRODUCTION

    UndertheCanadianEnvironmentalProtectionAct1,thefederalToxicSubstancesManagementPolicy(TSMP)andtheCCMEPolicyfortheManagementofToxicSubstances,dioxinsandfurans[PCDD/F]weredesignatedasTract1substancesandscheduledforvirtualeliminationfromtheCanadianenvironment.ToachievethisgoaltheincidentalreleaseofPCDD/Finemissionsfromvariouscombustionsystemswastargettedforaction.DuringthedevelopmentoftheCanadaWideStandardforPCDD/F,thatculminatedintheadoptionbytheMinistersin2001,anumberofsourcecategorieswereconsideredforspecificrecommendations.Amongthesourceswasincinerationforwhichspecificairemissionstandardswereadopted.

    UndertheadoptedCWSstandard,allneworexpandedincinerationfacilitieswererequiredtomeetanumerictargetandconfirmthatthishadbeenachievedthroughonetimetestingfollowingstartup.Existinglargeincinerationfacilitieswererequiredtomeetnumericstandardsby2006,andtoprovetheymetthestandardbyundertakinganannualtestingprogram.Existingsmallincinerators,definedasthoseincineratinglessthan

  • 22 JacquesWhitford,2005.DioxinsandFuransCanadaWideStandardsEmissionInventoryUpdateandReviewofTechnicalPollutionPreventionOptions.AreporttotheCanadianCouncilofMinistersoftheEnvironment.

    3 USEPA,2005.TheInventoryofSourcesandEnvironmentalReleasesofDioxinLikeCompoundsintheUnitedStates:TheYear2000Update(ExternalReviewDraft,March2005;EPA/600/p03/002A)http://www.epa.gov/ncea/pdfs/dioxin/2kupdate/

    A.J.Chandler&AssociatesLtd.

    ApreliminaryreviewoftheprogressmadeontheCanadaWideStandardforPCDD/FwasconductedforCCMEin20052.Thatreportmadeanumberofrecommendationsthatwereincorporatedintothescopeofthisstudy.Thestudyteamnotedthattheyhadnotbeenabletocorrelatethe2000PCDD/Finventoryestimateswithdataavailableinthe2004NPRIlistings.Theysuggestedthattherewasaneedtomakethelinkbetweenthetwolistsmoretransparentandatthesametimeevaluatethequalityoftheinventorydata.Furthermore,thestudyteamsuggestedthattheirexaminationoftheliteratureindicatedthatemissionswerenotreportedinaconsistentmannersoitwasdifficulttocompareliteraturedatatoavailableemissioninformation.

    Toprovidethebackgroundfortheemissionestimatesderivedinthisreport,incineratortechnologiesandairpollutioncontrolequipmentcapabilitiesarereviewed.Asanextensionofthetechnologydescriptions,typicaltestdatafromvariousfacilitiesarereviewedanddiscussedwithrespecttothecurrentunderstandingoftheformationofPCDD/Fincombustionprocesses.Suchdatacanbeinterpolatedtoprovidebetterestimatesofemissionsfromincineratorsinstalledinthelastfiveyears.Moreover,toimprovethetransparencyoftheemissionestimatesderivedinthereport,adiscussionofallaspectsofemissioninventorydevelopmentisprovidedandtheinventoryisbaseduponrecommendationsforcalculatingtheappropriatefactors.

    1.2 Nomenclature

    Aspointedoutinthe2005review,partoftheproblemmanypeoplehavewhenreviewingdataonPCDD/Femissionsisthatthedataarenotexpressedinaconventionalconcentrationmanner.ThisisbecausethetermPCDD/Freferstomanyorganicspecies.

    Thepolychlorinateddibenzopdioxins[PCDD],thepolychlorinateddibenzofurans[PCDF]andthepolychlorinatedbiphenyls[PCB],thethreeorganicspeciesofparticularinterestinthisreport,aresimilarinnature.Theirgeneralmolecularstructureconsistsoftworingsofsixcarbonatoms(benzenerings,asshowninFigure11)boundbyoxygenatom(s)(shownasOinthefigure)withchlorineorhydrogenatomsattachedinthenumberedpositions.Thereare75differentconfigurationsforthechlorineatomsassociatedwithPCDDs,eachofwhichisknownasanisomerorcongener.Theyarefoundin8groups,definedashomologuesorcongenergroupsintheUSEPA3.Homologuesaredividedbaseduponthenumberofchlorineatomspresentontherings(1,2,3,4,5,6,7or8).Similarly,thereare135PCDFcongenersalsodividedinto8homologues.

  • 3A.J.Chandler&AssociatesLtd.

    Figure1.1 SchematicDiagramsofPCDD,PCDFandPCBs

  • 44 Ahlborg,VG;Becking,GC;Birnbaum,LS;etal.(1994)ToxicequivalencyfactorsfordioxinlikePCBs.Chemosphere28(6):10491067.

    5 USEPA,(1989a)Interimproceduresforestimatingrisksassociatedwithexposurestomixturesofchlorinateddibenzopdioxinsanddibenzofurans(CDDsandCDFs)and1989update.Washington,DC:RiskAssessmentForum.EPA/625/389/016.

    6 Kutz,FW,Barnes,DG,Bottimore,DP,Greim,H,Bretthauser,EW.1990.Theinternationaltoxicityequivalencyfactor(ITEF)methodofriskassessmentforcomplexmixturesofdioxinsandrelatedcompounds.Chemosphere,20,751757.

    A.J.Chandler&AssociatesLtd.

    Polychlorinatedbiphenyls[PCBs]aremorecomplicatedthanPCDD/Fs.Thereare209PCBcongeners,ofwhichonly13werethoughttobesimilartodioxins:thosewithfourormorelateralchlorineatomswithoneornosubstitutionintheorthoposition4.Thesecompoundsaresometimesreferredtoascoplanar,meaningthatthetwobenzeneringsareonthesameplanegivingthemoleculeaflatstructure.

    Forallthesechemicals,thephysical/chemicalpropertiesofeachisomervariesaccordingtothedegreeandpositionofchlorinesubstitution.

    Ascanbeappreciatedtryingtodocument,letalonetrackandsetlimitsfor210PCDD/Fisomersand13specificPCBcongenerswouldbeexceedinglydifficult.Indeed,duringtheNITEPPEIstudiesconductedforEnvironmentCanada,theresultsforthePCDD/Fsweremerelyreportedasthehomologuevalues,withthesumofthehomologuesbeingthedatathatwaspublishedforPCDD/Femissions.PCBswerereportedasthesumofallPCBhomologuesmeasuredduringthattesting.Itwasnotuntilafterthatstudy,conductedin1984,thattheconceptofassessingPCDD/Femissionsonthebasisoftoxicitywasadopted5.ThisapproachhasbecomeknownastheTEQortoxicequivalencemethod,baseduponapplyingtoxicequivalencyfactors[TEFs]thatrelatethetoxicityofeachisomertothatofthemosttoxicdioxincongener,namely2,3,7,8tetrachlorodibenzopdioxin(2,3,7,8TCDD).ThisconceptwasinitiallyappliedforPCDD/Fcongeners,andonlymorerecentlyhasitbeenextendedtoincludePCBs.ThemostcommonTEFvaluesusedthroughoutthe1990sweretheInternationalfactors(ITEF)6.ThesumofthePCDD/FemissionsexpressedinthismanneraredesignatedintheliteratureasITEQvalues.Forthemostpart,allconcentrationsreferredtointhisreportareexpressedinthismanner,asdesignatedbytheinclusionofITEQinthedefinitionofmass,ie.pgITEQ/g.

    Otherconventionsrelatedtodescribingemissions,namelytheinclusionofdiluentfactorsanddifferenttemperaturesstandards,ortheusealternativetoxicequivalencyschemesareintroducedintheappropriatesectionsofthisreport.

  • 5A.J.Chandler&AssociatesLtd.

    1.3 ReportStructure

    Thisreportisorganizedintothefollowingchapters:

    Chapter2PCDD/FFormationprovidesabriefoutlineofthecurrentunderstandingoftheformationofPCDD/Fasameansofexplainingwhythemainwayofcontrollingtheirreleaseisgenerallytoapplygoodcombustionpractices.

    Chapter3IncinerationProcessessummarizesthetypesofincineratorsystemsusedinCanadaandhoweachattemptstoaddresstherequirementforprovidinggoodcombustioncontrol.

    Chapter4AirEmissionControlStrategiesprovidesadiscussionofairpollutioncontrol(APC)systemswithanemphasisonthemethodsusedtocontrolthereleaseofPCDD/Fpresentinthegasesleavingthecombustionportionofthefacility.

    Chapter5PCDD/FSamplingMethodsreviewsthesamplingmethodsusedbydifferentjurisdictionstodeterminetheamountofPCDD/Fbeingemittedintheexhaustgasstream.

    Chapter6ReportingMeasurementResultsdiscusseshowdifferentjurisdictionsexpressPCDD/Fmeasurementresultsandidentifiesconversionprocedurestoallowcomparisonofresults.

    Chapter7PCDD/FEmissionRegulationsprovidesasummaryofthePCDD/FemissionslimitsthatareinplaceinAustralia,EuropeanUnion,Japan,NewZealand,andtheUnitedStates.

    Chapter8EmissionDataprovidesasummaryoftheavailableemissiondataforincineratorsoperatinginCanadainfourmaincategories(largeMSWincinerators,medicalwasteincinerators,hazardouswasteincinerators,andsewagesludgecategories)andalsoprovideslimiteddataonsmallbatchincinerators.

    Chapter9AlternativeEquivalencyFactorsprovidesadiscussionofalternativestotheITEQequivalencyfactorsandexaminestheeffectofusinganalternativeequivalencyfactoronCanadianincineratoremissionmeasurementresults.

    Chapter10FindingsandConclusionsprovidesasummaryofthemainfindingsandconclusionsofthisreport.

    Chapter11Recommendationsprovidesrecommendationsbasedonthefindingsandconclusionsofthisreport.

  • 7 Chandler,A.J.,2002.TechnicalPollutionPreventionOptionsforIncineratorsAReportPreparedforTheCanadianCouncilofMinistersoftheEnvironmentInc.byA.J.Chandler&AssociatesLtd.WillowdaleON.September2002

    A.J.Chandler&AssociatesLtd.

    2.0 PCDD/FFORMATIONPCDD/Freleasesfromcombustionprocessesisgenerallyconsideredtobeunintentional.Thatis,theprocessisnotdesignedtocreatethesecompoundsandtheirpresenceisindicativeofeithertheirlackofdestructioninthecombustionprocess,ortheirformationbysomemechanismsoperatinginthefurnace.Thischapterprovidesabriefoutlineofthecurrentunderstandingoftheirformationasameansofexplainingwhythemainwayofcontrollingtheirreleaseisgenerallytoapplygoodcombustionpractices.AdetaileddiscussionofPCDD/FformationisincludedinaCCMEcommissionedreportonwastemanagementpollutionpreventionalternatives7.Thatdocumentprovidesthefollowingsummaryoftheissuessurroundingformationandcontrol:

    TheformationofPCDD/Fastracebyproductsofcombustionprocesseshasbeenstudiedextensivelysincethemid1980swithmuchoftheresearchbeingconductedonmunicipalsolidwasteincinerators.Thisstudyhasdeterminedthatformationisahighlycomplexphenomenainvolvingmultiplegasandsolidphasereactionsbetweenminutequantitiesofreactants.TwomaintheoriesregardingthemechanismofformationofPCDD/Fduringcombustionprocesseshavebeendeveloped.Thesetheoriesshouldnotberegardedasbeingmutuallyexclusivefromoneanothersincetheymayactincombinationduringthecombustionofanycarbonaceousmaterial.

    ThedenovosynthesistheoryisconsideredthemajormechanismbywhichPCDD/Fareformedinthermalindustrialprocesses.ThistheorysuggeststhatPCDD/Fisformedinthepresenceofflyashcontainingchemicallyunrelatedunburntaromaticsandmetalcatalysts.Gasphasechlorineisbelievedtoformmetalchloridesonthesurfaceoftheflyash.Themetalchloridessubsequentlyreactwiththecarbonstructuresontheflyash.Thisisfollowedbymetalcatalyzedoxidation/gasificationoftheflyashsurface,whichreleasesvariouschlorinatedorganiccompoundsincludingPCDD/F,chlorophenols,chlorobenzenes,andaliphatics.Thesereactionsmustoccurinthepresenceofoxygenandcatalystsformedfromtransitionorheavymetals.Moreover,researchersfoundthattemperaturesintherangebetween250OCand450OCweremostlikelytoresultinhigherPCDD/Fgeneration.Formanyincinerators,thistemperaturerangeisonlyfoundinthepostfurnaceregion,typicallythewasteheatboilerorinelectrostaticprecipitators(ESP).Denovosynthesisexperimentssuggestthatmorefuranthandioxincongenersareformed(ie.,PCDF:PCDD>1.0)alongwithotherchlorinatedorganiccompounds(eg.,PCBs,chlorobenzenes,chlorophenols,chlorinatedpolycyclicaromatics).

    ResearchershaveconcludedthatthebasicsetofconditionsrequiredfordenovosynthesisofPCDD/Fareasolidmatrixcontainingcarbonstructures,organicorinorganicchlorine,copperorironions,anoxidizingatmosphere,andanoptimaltemperaturerangeof250to

  • 7A.J.Chandler&AssociatesLtd.

    450OC.

    ThePrecursorTheorysuggestssimplythatthevariouschemicallyrelatedchlorinatedaromaticsundergocondensationreactionsonflyashsurfacesinthepresenceofmetalcatalysts.Thus,twoprecursormoleculesarecoupledtoformadioxinorfuranstructure.Inthistheory,theprecursorcompoundsmusthaveastructuralresemblancetodioxinandfuranmolecules.Theoptimaltemperaturerangefordioxinandfuranformationoverwhichtheprecursortheoryoperatesisthesameasthatobservedfordenovosynthesis(i.e.,250to450EC).Therefore,formationofPCDD/Ffromprecursorsmustalsooccurinthepostcombustionzonesofthermalprocesses.ThistemperaturerangeisoftenconsideredthewindowofopportunityforcatalyticformationofPCDD/Fonsurfacesofflyashparticles.

    Boththedenovoandprecursortheorieshavebeenvalidatedinlaboratorystudies;however,therelevanceofeachtheorytoactualcombustionscenariosinthefieldhasnotbeenwellestablished.Themaindifferencebetweenthesetwotheoriesrelatestothecarbonsource.Itislikelythatfurtherresearchmayblurthedistinctionbetweenthesetwotheories,suchthatthecarbonsourceinPCDD/Fformationisderivedbothfromcondensationofgasphaseorganicsandvolatilizationofflyashderivedorganics,withtherelativeattributiondependentonfacilityandprocessspecificvariables.Thus,thetwotheoriesarenotnecessarilymutuallyexclusive.TheformationofPCDD/Finthermalprocessesisundoubtedlytheresultofacomplexsetofcompetingchemicalreactions.

    RegardlessofwhichtheoryortheoriesbestexplainshowPCDD/Fareformedduringthermalprocesses,certainconditionsthatactincombinationtoincreasethepotentialforPCDD/Fformationhavebeenwellcharacterizedinthescientificliterature,particularlythosestudiesconductedwithmunicipalsolidwasteincinerators.Theseconditionsinclude:

    incompletecombustionofafuel anoxidizingatmosphere presenceofachlorinesource flyashsurfaces(carbonsource) flyashwithdegeneratedgraphiticstructures(moreorderedcarbonatom

    arrangementsarelesspronetodecompositionreactions) presenceofcatalyticmetals(especiallycopper,butiron,manganeseand

    zincarealsoindicatedaspotentialcatalystsforPCDD/Fformation) temperature/timehistoryofatleast1secondatlessthan600OC(optimal

    temperaturerangeliesbetween250and450OC)

    Fromthisitfollowsthatgoodcombustion,whichreducestheconcentrationofproductsofincompletecombustion,boththegaseousandsolidforms,mustbethefoundationofanymeasurestoreducePCDD/Femissionsfromincinerators.Theotherattributesrelate

  • 8A.J.Chandler&AssociatesLtd.

    totheconditionsandsubstancesfoundintheincineratorand,aftergoodcombustioncontrolhasbeenemployed,littlecanbedonetochangethesesituations.

    Onthebasisofthislist,somehavesuggestedthatcontrollingtheamountofchlorineinthesystemmightinfluencethegenerationofPCDD/F.ConsistentanalysisoftheavailabledataindicatesthatchangingtheamountofchlorineinwastestreamsdoesnothaveadiscernibleimpactonPCDD/Femissionsfromwasteincinerators.Therefore,itisunlikelythatinterventionstoreducetheamountofchlorineinwastewillproduceanyappreciableeffectonPCDD/Femissions.

    FromtheforegoingitcanbeseenthatgoodcombustionisnecessarytoensurelowPCDD/Femissions.Forengineersandscientiststhephrasegoodcombustionhassomemeaning,butwhataretheimplicationsforregulatorsormembersofthepublictryingtograpplewiththepotentialperformanceofnewincinerators?Moreover,withmanyinfrastructureprojectsbecomingapublic/privatepartnership,howdopoliticiansandfinanciersjudgethesuitabilityofaparticulardesignfortheirspecificrequirements?

    2.1 CombustionControlPrinciples

    Combustioncontrolmustcompensatefor:

    thenaturalvariabilityinfuelquality;and, thecontrollingfactorsthatgoverntherateofchemicalreactions.

    SewagesludgeandliquidhazardouswastesaremorehomogeneousthanMSWandmedicalwastestream,therebyiteasiertocontrolcombustioninincineratorsusedfortheirdisposal.However,variabilityinthefuelstillmustbeaddressed.Incineratoroperatorsunderstandtheneedtokeeptheoperationatasteadyleveltoachievethebestperformance.Eachcomponentofawastestreamhasitsinherentenergycontentandthismustbematchedwithsufficientoxygentoensurepropercombustion.Becausethemixofcomponentscanchange,somemeansmustbeprovidedtoallowthesystemtohandlethisvariability.Ensuringthatthewasteiswellmixedbeforeitischargedtothefurnaceisthefirststep.Theremainingvariabilityinthefuelmustthenbehandledbyawelldesignedfurnace.

    Typicallycombustioncontrolsystemscompensateforthefuelvariability.TwostagestarvedairsystemsandkilnsystemsgenerallyrelyuponmaintainingalargequantityoffuelinthekilntodampoutthevariabilityinthewastequalitywhereasconventionalmassburnMSWincineratorsmustrespondtotheheatreleasebyadjustingtheairflow.Bysensingtherateofheatreleaseinthefurnaceandadjustingthesupplyofcombustionairthecontrolscompensateforespeciallyhighorlowheatreleaserates.Alternatively,somedesignersadjustthefuelfeedratestocompensateforthecalorificvaluevariability.

    Theimportanceofthecontrolstepscannotbeoveremphasizedbecausethethermaldestruction

  • 98 Miller,J.A.andG.A.Fisk,1987.CombustionChemistry.C&ENAug.31,1987;pp2248.

    A.J.Chandler&AssociatesLtd.

    oforganicsisnotasimpleprocess.Manyintermediatestepsareinvolvedintheoxidationoflongchainhydrocarbonmaterialstotheproductsofcompletecombustionnamelycarbondioxide(CO2)andwater.Generally,itisagreedthatthereactionoccurringinthefuelbedisoneofgasification,withthewastebeingexposedtoairwhilebeingheated.Theamountofairaddedunderthebedofmaterialandthedegreeofagitationofthebedcontrolstherateofgasgeneration.Thegasesthatleavethebedarerichincarbonmonoxideandhydrogenandcontainmanyunburnedhydrocarbons.Whenprovidedwithadditionalairthesegaseswillburnreadily.Thisadditionalairisnormallyreferredtoasoverfireairandissuppliedabovethebed.Thedegreetowhichthecombustionprocessiscompletedisafunctionofhowwelltheairandthegasesaremixed.Theamountofcarbondioxidegenerateddefinestheextentofcombustioncompletionandisgenerallyreferredtoasthelevelofcombustionefficiency.CompletecombustionwillresultinthegenerationofCO2andwatervapouronlybutthisisrarelythecaseassometracesoforganicmaterialscanusuallybefoundinincineratorexhauststreams.

    Carbonmonoxide(CO)isthemostrefractory,ordifficulttooxidize,speciesintheoxidativechainfromhydrocarbontocarbondioxideandwater.TheoxidationofCOtoCO2isaccomplishedmuchfasterinthepresenceofhydrogen.MillerandFisk8suggestthedominantreactioninthechainis:

    CO+OH>CO2+H

    Theconcentrationofhydroxylradicalsisthusveryimportantinthereaction.However,thereactionbetweenhydroxylradicalsandhydrocarbonsisfasterthanthatbetweenCOandOHanditisnecessarytoconsumeallthehydrocarbonsinthesystembeforethesystemcanmaximizetheconversionofCOtoCO2.ThushighlevelsofCOaregenerallycorrelatedwithhigherlevelsofresidualhydrocarbonsillustratingtheratelimitingstepsinthereaction.

    Ifexcessiveairispresentinthefurnace,thecombustiontemperatureandtheconcentrationofhydroxylradicalsarereduced.Inturn,theorganicsreactwiththeOHradicalsandtheCOoxidationdoesnotoccur.Conversely,insufficientaircanleadtopocketsoffuelrichgasthatlacksufficientoxygentooxidizetheCO.Itispossibletoestablishanappropriaterangefortheconcentrationofoxygeninanysystem.OperationinthiszoneminimizesthereleaseofCOandthusalsominimizestraceorganicreleases.Theestablishmentofthisrangeismostimportantbecause,oncedeterminedforasystem,itcanbeusedtoensurethatthesystemisoperatingatitsmostefficientlevel.

    Goodcombustionconditionsleadingtoreducedorganicemissionsarethosethat:

    ensurecompletemixingofthefuelandtheair; maintainhightemperaturesinthepresenceofsufficientoxygen;and,

  • 10

    9 McKay,Gordon,2002.Dioxincharacterisation,formationandminimisationduringmunicipalsolidwaste(MSW)incineration:review.ChemicalEngineeringJournal86(2002)343368.Availableat:http://www.seas.columbia.edu/earth/wtert/sofos/mckay_dioxinformation_2002.pdf.

    10 NITEP,1986.TheNationalIncineratorTesting&EvaluationProgram,(NITEP),AirPollutionControlTechnology.EnvironmentCanada,ReportEPS3/UP/2,September.

    11 Chandler,A.J.,2003.BackgroundStudyontheIncinerationofHazardousWaste.FinalDraftofAReporttoENVIRONMENTCANADAtocompleteContractNumberK223720006.PreparedbyA.J.Chandler&AssociatesLtd.Toronto.March

    A.J.Chandler&AssociatesLtd.

    preventtheformationofquenchzonesorlowtemperaturepathwaysthatwouldallowpartiallyreactedsolidsorgasestoexitfromthecombustionchamber.

    Thesedesignconditionsmustbecombinedwithgoodoperatingconditionstoensurethattheperformanceismaintainedandorganicconstituentsarereducedtothebasicelements.AsnotedbyMcKay9itisparticularlyimportanttopreventthegenerationofsootinthesystem,becausesootconsistsofcarbon,andasdiscussedintheprevioussection,carbonintheflyashoftheincineratorwillleadtoPCDD/Fformation.

    Whilecombustioncontrolisgenerallydesignedtoaddressthedestructionoforganiccompounds,adjustingcombustionconditionscanalsoinfluencethedownstreampartitioningofinorganicmaterialsintheincinerator.Highertemperaturesinthefurnaceinfluencethenatureofthecompoundsformedinthefurnaceandwhetherthesecompoundsarevolatilizedortransportedinsolidphasewiththeexhaustgases.Highertemperaturesandmorecompletecombustionresultintracemetalsbeingfoundfurtherdownthesystem,particularlyintheAPCresiduestream.SuchconditionswerenotedduringtheNITEPMSWsystemtestingatPEIinthemid80s10.Ofcourse,sincetracemetalemissionsmustbealsobecontrolled,theairpollutioncontrolsystems,discussedlaterinthisreport,mustfulfillvariousroles.Whilenofurtherdiscussionoftherelationshipsbetweencombustionandtracemetalsemissionsiscontainedinthisreport,thereaderisreferredtootherdocumentsforadetaileddiscussiononthosecontaminants11.

    TheconditionsthatleadtoareductioninorganicemissionsalsocancauseanincreaseinthegenerationofNOx.TheformationofNOxisattributedtotwomechanisms:theoxidationofthefuelnitrogentoNOx;andthecombinationofnitrogenandoxygenincombustionairathightemperatures,thethermalNOxportion.TheconversionoffuelnitrogentoNOxisdependentuponthelocaloxygenavailabilitytovolatilespecies,theamountoffuelboundnitrogenandthechemicalstructure.ThethermalNOxreactionisstronglytemperaturedependentbecauseitisformedbythecombinationofradicalsofthetwospecies.Ithasbeenshownthattheconversionoffuelnitrogencanrangefrom5%to50%controlledlargelybytheextentofmixingandthecontentofoxygen.

    Partofthepreviousdiscussionindicatedthatifdenovosynthesisistooccurseveralconditionsmustbesatisfied,nottheleastofwhichishavingthegasandparticulateparticipatinginthe

  • 11

    12 Hagenmaier,H.,M.Kraft,H.Brunner,andR.Haag,CatalyticEffectsofFlyAshfromWasteIncineratorFacilitiesontheFormationandDecompositionofPolychlorinatedDibenzopdioxinsandPolychlorinatedDibenzofurans,EnvironmentalScienceandTechnology21,pp.10801084,1987

    A.J.Chandler&AssociatesLtd.

    reactionspendsufficienttimeinthetemperaturerangeconducivetosuchsynthesis.Typicallyheatrecoverysteamgenerators[HRSG],orboilers,areusedatMSWincineratorfacilitiestoconverttheenergyinthewastetousefulformsofenergyfordistrictheatingorelectricityproduction.Temperaturesinsuchdevicesareintheappropriaterangetoencouragethesynthesisreactions.Thusonewouldexpectthat,giventhesamecombustionefficiencyinanMSWincineratorsandasewagesludgeincinerator,thePCDD/FemissionsfromtheMSWincineratormightbehighergiventhatHRSGdevicesaremorelikelytobeusedinMSWfacilitiesthanonsewagesludgeincinerators.Similarly,boilersarenottypicallyinstalledinhazardouswasteincineratorsorbiomedicalwasteincinerators.

    WhilemuchoftheresearchemphasishasbeenfocussedondefiningtheconditionsconducivetominimisingemissionsofPCDD/Fthroughthestack,themechanismsdiscussedabovealsohaveimplicationsforsolidresiduestreamsgeneratedbycombustionequipment.Obviously,ashfromthegrateofsolidfuelcombustiondevicewillbeexposedtotemperaturesinexcessofthatconducivetoformation,indeedtemperaturesintherangewhereanyPCDD/Fwillbedestroyed.RapidquenchingofashdischargedfromthegratesshouldminimisethepotentialforanyPCDD/Finthatwastestream.Ontheotherhand,residuesfromheatrecoverysystems,whichoperateinthecriticaltemperaturezonemaybeexpectedtohavesomePCDD/Fpresent,buttheamountwilllikelyvarywiththetemperatureregimewheretheashwascollected,andthetimetheashwasinthegasstreamatthesetemperatures.ThissuggeststhatthePCDD/Fformationprocessesrelatedtodenovosynthesisorprecursorsmaybeinhibitedifthegassesleavingthesystemarerapidlyquenchedtobelowtheoptimaltemperatureranges.Ofcourse,thecorollaryisalsotrue.IfPCDD/FmaterialsareexposedtoelevatedtemperaturesintheabsenceofoxygenthePCDD/Fwillbedestroyed.BaseduponhisresearchHagenmaier12

    developedtheheatsoaktechnologyinGermany.ByheatingtheflyashinanatmospherewithlittleornooxygenPCDD/Faredestroyed.ThisapproachisnowbeingsuccessfullyusedforPCDD/PCDFdecontaminationofflyashandotherresiduesmainlyinEuropeandJapan.

  • A.J.Chandler&AssociatesLtd.

    3.0 INCINERATIONPROCESSES

    3.1 Introduction

    ThepreviouschapteridentifiesincineratoroperatingcharacteristicsthatareanticipatedtogiverisetoinadvertentproductionofPCDD/F.TounderstandhowthesefactorsmightrelatetoPCDDD/FemissionsthischaptersummarizesthetypesofincineratorsystemsusedinCanadaandhoweachattemptstoaddresstherequirementofprovidinggoodcombustioncontrol.WiththelikelihoodthatsomePCDD/Fmaybereleasedevenfromthebestoperatingincinerators,airpollutioncontrolsystemscanbeemployedasthelastoptiontominimizethereleaseofPCDD/Ftotheatmosphere.Theavailableairpollutioncontrolsystemsarediscussedinthenextchapter.

    Figure3.1isageneralizedschematicofanincinerationsystem.Notallcomponentsshowninthediagramareinstal


Recommended