+ All Categories
Home > Documents > Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5...

Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5...

Date post: 26-Apr-2018
Category:
Upload: lyquynh
View: 260 times
Download: 8 times
Share this document with a friend
12
Chapter 5 Impedance Matching and Tuning Chapter 5 Impedance Matching and Tuning The matching network is ideally lossless and is usually The matching network is ideally lossless, and is usually designed so that the impedance seen looking into the matching network is Z0. Only if Re[ZL] 0, a matching network can always be found. The quarter-wave impedance transformer is for read load. Important factors in selecting matching networks: (1)complexity , (2)bandwidth, (3)implementation, (4)adjustability . 1 Review of Smith Chart z L = Z L / Z 0 z L Z L / Z 0 = r L + jx L 2 5.1 Lumped Element Matching (L-networks) L-type or L-network matching is the simplest matching network. (1) z L = ZL/Z0 is outside the r=1 (1) z L = ZL/Z0 is inside the r=1 (1) z L ZL/Z0 is outside the r 1 circle (rL < 1). (2) Z i i ih B h (1) z L ZL/Z0 is inside the r 1 circle (rL > 1). (2) Z i h ih B h (2) ZL is series with jB, then shunt with jX. (2) ZL is shunt with jB, then series with jX. 3 Analytical Solutions (r L >1) When r L > 1, let Z L = R L + jX L and z L = Z L / Z 0 = r L + jx L 0 1 1 in Z jX Z jB R jX 0 0 ( ) L L L L L R jX B XR XZ R Z 0 2 2 (1 ) L L L L X BX BZ R X R X R X ZR 0 0 2 2 L L L L L L X R X ZR Z B R X in Z 0 0 1 L L L XZ Z X B R BR 4 Note that when r L > 1, the square root in B has real results.
Transcript
Page 1: Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning ... on the Smith

Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning

• The matching network is ideally lossless and is usuallyThe matching network is ideally lossless, and is usually designed so that the impedance seen looking into the matching network is Z0.

• Only if Re[ZL] ≠ 0, a matching network can always be found.• The quarter-wave impedance transformer is for read load.q p• Important factors in selecting matching networks:

(1)complexity, (2)bandwidth, (3)implementation, (4)adjustability.( ) p y, ( ) , ( ) p , ( ) j y

1

Review of Smith Chart

zL = ZL / Z0zL ZL / Z0= rL + jxL

2

5.1 Lumped Element Matching (L-networks)p g ( )L-type or L-network matching is the simplest matching network.

(1) zL = ZL/Z0 is outside the r=1(1) zL = ZL/Z0 is inside the r=1 (1) zL ZL/Z0 is outside the r 1 circle (rL < 1).

(2) Z i i i h B h

(1) zL ZL/Z0 is inside the r 1 circle (rL > 1).

(2) Z i h i h B h (2) ZL is series with jB, then shunt with jX.

(2) ZL is shunt with jB, then series with jX.

3

Analytical Solutions (rL>1)

• When rL > 1, let ZL = RL + jXL and zL = ZL / Z0 = rL + jxL

01

1inZ jX ZjB

R jX

0 0( )L L

L L L

R jXB XR X Z R Z

0

2 2

(1 )L L L

L

X BX BZ R X

RX R X Z R

00

2 2

L L L L

L L

X R X Z RZ

BR X

inZ

0 01 L

L L

X Z ZXB R BR

4• Note that when rL > 1, the square root in B has real results.

Page 2: Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning ... on the Smith

Analytical Solutions (rL<1)

• When rL < 1, let ZL = RL + jXL and zL = ZL / Z0 = rL + jxL

0

1 1 1( )in L L

jBZ R j X X Z

0 0

0

( )( )

L L

L L

BZ X X Z RX X BZ R

0Z

0

0

( ) /L LZ R RB

Z

inZ0

0( )L L L

Z

X X R Z R

• Two analytical solutions are physically realizable.

• One of the two solutions may result in smaller reactive elements and

5

One of the two solutions may result in smaller reactive elements, and may have better matching, bandwidth, or better SWR on the line.

Example 5 1 L-Section Impedance MatchingExample 5.1 L Section Impedance Matching

ZL = 200-j100 Ω, Z0 = 100 Ω, j , ,f = 500 MHz, zL = ZL/Z0 = 2-j1, rL = 2 >1 inside the r = 1 circle.

Exact solutions:

2 2R 2 20

02 2

LL L L L

L L

RX R X R ZZ

BR X

3 12 2

2 2 3 1

2.899 10100 2 200 100 100 200 200 100 6 899 10

L LR X

3 1

0 0

200 100 6.899 10

122.471 LX Z ZX

6

122.47L LB R BR

Example 5 1 L-Section Impedance MatchingExample 5.1 L Section Impedance Matching

Th l iThe two solutions:

(1)3

6

2.899 10 0.9228 pF2 500 10

BC

( ) 6

6

p2 500 10

122.47 38.98 nH2 500 10

XL

62 500 10

1 1(2)6

1 1122.47 2 500 10

2 599 pF

CX

3 6

2.599 pF1 1

6 899 10 2 500 10L

B

7

6.899 10 2 500 1046.14 nH

B

Example 5 1 L-Section Impedance MatchingExample 5.1 L Section Impedance Matching

The two solutions:The two solutions:

8

Page 3: Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning ... on the Smith

Lumped Elements for Microwave Integrated Circuits (MICs)

9

5.2 Single-Stub TuningShunt‐stub tuning Series‐stub tuning

• No lumped element is required. Convenient for MIC fabrication.• Characteristic impedances of the lines and the stub can be different.• Keep the matching stub as close as possible to the load. • Solution procedure for shunt-stub and series-stub tunings.(1) Locate zL (yL) on the Smith Chart.(1) Locate zL (yL) on the Smith Chart.(2) Move along the const-Γ circle with 2d/λ wavelengths to

reach the g = 1 (r = 1) circle.(3) Sh t ith t i ith t t(3) Shunt with a susceptance or series with a reactance to

cancel the imaginary part. 10

Shunt-Stub Tuning Analytical Solution

0 00 tan

( )1 1L L Lin t dno stub

Z jZ t R j X Z tZ ZZ jZ t Y Z X t jR t G jB

0 0 0

220 0

022 2 2

( )( )(1 ) ,

L L L

L L LLin in

in inZ jZ t Y Z X t jR t

R t Z X t Z t XR tG B Y

G jB

022 20 0

2 2 20 0 0

2,( ) ( )

(1 ) ( ) real part

in inL L L L

in L L L

GR X Z t R X Z t

G Y Z R t R X Z t

0 0 0in L L L

00

If , and tan2

LL

XR Z t dZ

0

11 tan , 02 2

LL

X XZd

0

1

2 2

1 tan , 0LL

ZdX X

0

tan , 02 2 LX

Z

11

Shunt-Stub Tuning Analytical Solution0

2 2 20 0 0 0 0

If Z ,

( ) ( )( )L

L L L L L L

R

X Z X Z Z R Z R Z R Xt

0 0 0 0 0

0 0

2 2 2

( ) ( )( )( )

( ) [( ) ]

L L L L L L

L

L

tZ R Z

RX R Z X

00

0

( ) [( ) ]L L L

L

X R Z XZ

R Z

here tant lLet the stub susceptance Bstub (or Bs) = -Bin,

(a) open-stub: and0stubZ jZ t sstubstub jBjBtjYY 0

here tant l

1 1

0 0

1 1tan ( ) tan2 2

o s inl B BY Y

(b) Short-stub: and tjZZstub 0 sstubstub jBjBtjYY 0

1 10 01 1tan ( ) tansl Y Y tan ( ) tan

2 2s inB B

If lo < 0 or ls < 0, λ/2 must be added to have a realistic result. 12

Page 4: Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning ... on the Smith

Example 5.2 Shunt Single-Stub Tuning

Match ZL = 15 + j10 Ω to a 50-Ω line. Use a shunt open-stub.Sol: RL ≠ Z0,Sol: RL ≠ Z0,

2 2 20( ) ( )L

L L LRX R Z X 0

0

0

( ) ( )10 397.5

35

L L L

L

Zt

R Z

d

11 1

10 397.5 1 ( tan ) 0.38735 2

1

dt t

l B

1

0

1 ... tan2

10 397 5 1

o inin

l BBY

d

12 2

1

10 397.5 1 tan 0.04435 2

1o in

dt t

l BB

13

1

0

... tan2

o ininB

Y

Example 5.2 Shunt Single-Stub Tuning (Cont’d)Use a shunt open-stub to match ZL = 15 + j10 Ω line.

Solution 1: Solution 2:

14

5.3 Double-Stub Tuning – Analytical Solution

• In single-stub tuning, the length d is not tunable.

• If this causes difficulty in circuit implementation, use double-stub tuning.

0 tanLY jY bY Y G jB

15

00

0 tanL

L L L

L

jY Y G jBY jY b

5.3 Double-Stub Tuning – Analytical Solution2 2 2 2 2

0 1 0

2

0 4 ( ) (1 )

1Lt Y B t B t Y t

Y

20

0 2 2

102 sin

has an upper limit

LYtG Y

t dG

( )Y G j B B 2 2 2

has an upper limit. Given , one can obtain:

(1 )

LGd

Y t G Y G t 1 1

1 02 0

0 1

( )( ) , tan

( )

L L

L L

L L

Y G j B BG j B B Y tY Y t d

Y jt G jB jB

0 01

2 2 2

(1 )

(1 )

L LL

Y t G Y G tB B

tG t G Y G t

0 1

2 0 2 222

2 0 1

( )Re[ ] , Im[ ]

( )1 0

L L

L

Y jt G jB jBY Y Y B

Y B t B ttG Y G

01 0

10

(1 )

1

L L LG t G Y G tB Y

tB

2 0 10 2 2

2 220 1

( ) 0

4 ( )1 1 1

LL L

L

G Y Gt t

t Y B t B ttG Y

101 2

0

1 0

1 tan , ,2

1s

B B B BY

Y

B B B16

0 10 2 2 2

0

( )1 1(1 )

LLG Y

t Y t

1 0tan2

s

B

1 2, ,B B B

Page 5: Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning ... on the Smith

Example 5.4 Double-Stub Tuning - PerformanceUse double-stub matching scheme to match ZL = 60 – j80Ω at 2.0 GHz to a 50-Ω line.

17

5.4 The Quarter-Wave Transformer• A single-section transformer may suffice for a narrow-band

impedance matching.• Single-section quarter-wave impedance matching λ= λ0 / 4 at the

desired frequency. (See Chap 2)

• Multisection quarter-wave transformer designs can be synthesized to yield optimum matching characteristics over a broad bandwith.

18

yield optimum matching characteristics over a broad bandwith.

2.5 The Quarter-Wave TransformerReview

A quarter-wave transformer is an impedance matching circuit

2tanR jZ l Z 1 11

12

tan tan

Lin

L Ll

R jZ l ZZ ZZ jR l R

Z Z

0

0

inin

in

Z ZZ Z

19

0 1 0If 0 is required, , then in in LZ Z Z Z R

Estimate the Bandwidth of a Single-Section Impedance Transformera Single Section Impedance Transformer

1 0 LZ Z Z

11

1

, tan tan Lin

L

Z jZ tZ Z tZ jZ t

Z jZ t

11 0 2

0 1 0 1 012

10 1 0 1 01 0

( ) ( )( ) ( )

L

in L LL

Lin L L

Z jZ tZ ZZ Z Z Z Z j Z Z Z tZ jZ t

Z jZ tZ Z Z Z Z j Z Z Z tZ Z

1 01

002 2

1 2 4( ) 4

L

LL

Z jZ tZ ZZ Z

Z Z j t Z Z Z ZZ Z t Z Z

2 20 0 00 02 4( ) 4 1L L LL L

L

Z Z j t Z Z Z ZZ Z t Z ZZ Z

22

0

sec

0LZ Z 0

0

0

When , cos2 2

L

L

L

Z ZZ Z

Z Z

0

0

Set a max , or cos2

Lm m m

L

Z ZZ Z

20

Page 6: Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning ... on the Smith

Bandwidth of the Matching Transformer

20

2( / 2 )41 1

m

LZ Z

202 2

0

: 1 sec( )

2

Lm m

m L

m m

Z Zff f f

00 0

0

, ,2 2

2

m mm m

L

ff f ff f

Z Z

0

20

cos1

Lmm

LmZ Z

F ti l b d idth10 or 0.1

0

Fractional bandwidth :2( ) 42m mf ff

f f

4 or 0.25

0 0

01 242 cos Lm

f f

Z Z

2 or 0.5

21

20

2 cos1 Lm

Z Z

Example 5.5Single Section Quarter Wave Transformer BandwidthSingle-Section Quarter-Wave Transformer Bandwidth

ZL = 10 Ω, Z0 = 100 Ω, SWR = 1.2S lSol:

1 0 31.6LZ Z Z

1 0.11m

SWRSWR

max 0 0

min 0 0

11

V V VSWRV V V

01

2

242 cos1

Lm Z Zff Z Z

20 0

1

1

4 0.1 2 31.6 62 cos 2 9%

Lmf Z Z

22

2 cos 2 9%900.99

5.5 Theory of Small Reflections• For applications requiring more bandwidth than that a single quarter-

wave section can provide, multi-section transformers can be used.

(1) Single-Section Transformer

212

121

ZZZZZZ

2

23

2ZZZZZ

L

L

1

12

2121

21

21

ZT

ZZZT

12

1212 1

ZZT

23

5.5 Theory of Small Reflections

(1) Multi-Reflections

2 2 41 12 21 3 12 21 3 2 ...j jT T e T T e

1 12 21 3 12 21 3 2

22 2 41 12 21 3 3 2 3 2(1 ...)j j jT T e e e

2 21 12 21 3 3 2

02 2

nj j n

nj j

T T e e

T T e e

12 21 3 1 31 2 2

3 2 1 31 1

j j

j j

T T e ee e

• If is small, • Γ the reflection from the initial discontinuity between Z1 and Z2 + the

312

1 3je

24

first reflection from the discontinuity between Z2 and ZL

Page 7: Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning ... on the Smith

Multisection Transformer

• N commensurate (equal-length) sections of transmission lines. Let ( q g )the total reflection be Γ.

• Assume that all Z increase or decrease monotonically ZL is real• Assume that all Zn increase or decrease monotonically, ZL is real, and “The theory of small reflections” holds.

• It can be validated that

NL ZZZZZZZZ

23

212

101

0

25

NLN ZZZZZZZZ

...,,,23

212

101

0

Multisection Transformer

2 2

2 4 20 1 2

[ ( ) ( ) (if s mmetr]

.

)

..j j j

j N j NjN jN jN

NNe e e

0 1

0 1 /2

[ ( ) ( ) ... (if symmetry]

cos cos 2 ... , 2

)j jjN jN jN

NjN

e e e e e

N N N evene

0 1 1 /2

2cos cos 2 ... cos ,

j

N

eN N N odd

• We can synthesize any desired response as a function of frequency• We can synthesize any desired response as a function of frequency or θ, by properly choosing the Γn’s and enough number of sections N.

• The most commonly used passband responses are:

(1) Binomial or maximally flat response, and(2) Chebyshev or equal-ripple response. 26

H Fi d h C di R fl i ?How to Find the Corresponding Reflection?

2 4 20 1 2

Theory of Samll Reflection: ( ) ...j j j N

Ne e e 0 1 2( )

Binomial Multi-Section Transformer:

N

2

Binomial Multi-Section Transformer:(1 )j NA e

Chebyshev Multi-Section Transformer:

(sec cos )n mAT

27

5.6 Binomial Multisection Matching Transformer• Maximally flat response: the response is as flat as possible near the design

frequency. Also called Binomial matching transformer.• Let 2(1 ) A d tifi i llj NA • Let

2(1 ) Assumed artificially

2 cos

j N

NN

A e

A

0

0

00 2

2N L

NL

Z ZA AZ Z

0

2 2

0

!(1 ) ,( )! !

LN

j N N j n Nn n

n

NA e A C e CN n n

2 4 20 1 2

( ) ...

(0)

j j j NN

N N

e e e

AC C

N! ("enn factorial“)

Properly

( )2

configure the i

N Nn n nNAC C

mpedances to synthesize the needed

N! ( enn factorial )“Four factorial" is written as "4!”

reflections .n28

Page 8: Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning ... on the Smith

Binomial Multisection Matching Transformer

nnn xxxZZZ 11 1112lnln1

LNN

LNN

Nn

nnnn

ZCZZCACZ

xx

xZZZ

01

1

1

ln1122ln

11,1

2ln,ln2

NNnC

Ln

nNL

nNnnn

ZZ

ZC

ZZCAC

Z2/

1

001 ln

2222ln

n ZZ 0

• Exact results for Z 1 / Z0 for N = 2 thru 6 are given in Table 5 1• Exact results for Zn-1 / Z0 for N = 2 thru 6 are given in Table 5.1.

29

Binomial Transformer Design Table 5.1

30

Example Binomial Transformer Design

ZL/Z0

N=5

Z1 /Z0 Z2 /Z0 Z3 /Z0 Z4 /Z0 Z5 /Z0

1.0 1.0000 1.0000 1.0000 1.0000 1.0000

1.5 1.0128 1.0790 1.2247 1.3902 1.4810

2.0 1.0220 1.1391 1.4142 1.7558 1.9569

3 0 1 0354 1 2300 1 7321 2 4390 2 89743.0 1.0354 1.2300 1.7321 2.4390 2.8974

4.0 1.0452 1.2995 2.0000 3.0781 3.8270

6.0 1.0596 1.4055 2.4495 4.2689 5.6625

8.0 1.0703 1.4870 2.8284 5.3800 7.4745

10.0 1.0789 1.5541 3.1623 6.4346 9.2687

A 5th d bi i l f f Z 6Z• A 5th order binomial transformer for ZL = 6Z0

31• Also note that 4055.1

2689.46,0596.1

6625.56

E ample Binomial Transformer Design Z /Z <1Example Binomial Transformer Design ZL/Z0 <1

ZL/Z0

N=5

Z1 /Z0 Z2 /Z0 Z3 /Z0 Z4 /Z0 Z5 /Z0

6.0000 1.0596 1.4055 2.4495 4.2689 5.6625

0.1667 0.9438 0.7115 0.4082 0.2343 0.1766

• A 5th order binomial transformer for ZL = Z0 / 6

32

Page 9: Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning ... on the Smith

Bandwidth of the Binomial Transformer,cos2 m

NNm A i.e, tolerable max over the passband.m

N/1

m

m A1

21cos

N

mmm

Afff

ff

/1

1

0

0

0 21cos4242)(2

Example 5.6 N = 3, ZL = 2Z0 = 100 Ω, find the BW for Γm = 0.05.Sol: From Table 5.1, the required impedance Zn can be found to be

1 2 354.5 , 70.7 , 91.71 100 502 (0) 0 4167N

Z Z Z

A

11 3

2 (0) 0.41678 100 50

4 1 0.052 cos ( ) 70%

A

f

33

3

02 cos ( ) 70%

2 0.4167f

Binomial Transformer’s Frequency Response

Reflection coefficient magnitude versus frequency for multisectionbinomial matching transformer of Ex. 5.6 with ZL = 2Z0 = 100 Ω and

34

binomial matching transformer of Ex. 5.6 with ZL 2Z0 100 Ω and Γm = 0.05.

Example (2nd Midterm)Design a Butterworth transformer of N = 2 for ZL = 4Z0. Let Γ0, Γ1 and ΓL be

DIYg L 0 0, 1 L

respectively the reflection coefficients at the Z0 – Z1, Z1 – Z2 and Z2 – ZLjunctions, and Γ0 = ΓL. (a) Based on the “theory of small reflection,” find the Γ terms of Γ Γ and θ (b) If Γ = 0 and are required when θ0/ fΓin terms of Γ0, Γ1 and θ. (b) If Γin = 0 and are required when θ= λ / 4, find a and b.

0/ fin

2cos2 104

22

10 ee jjin

202

2cos2 0110

10210

in

4444444

11

02sin4 0

abbababababb

aa

in

359/141141

0434

31)(2

112

412322

aaaabaababaabaa

abab

ba

2751.0,5707.1

4321.08135

99/14,9273.1

271

27112

94

61

3 233 23

rqrrqr

qr

The “exact” solution in Table 5.1 is a = 1.4142 and b =2.8285. The error is from

358435.2/4

4067.12751.05707.191

ab

a the approximation used in the “theory of small reflection.”

5.7 Chebyshev Multisection Matching Transformers

Chebyshev polynomials: Recurrence formula:)()(

1)(

1

0

xxTxT

34)(24

33 xxxT

2)()(2)( 21 nxTxxTxT nnn

12)( 22 xxT 188)( 24

4 xxxT

Tn(x)345

n=1

2

n=1

xpassband

36

p

Page 10: Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning ... on the Smith

5.7 Chebyshev Multisection Matching Transformers(1) mapped to passband

Let x = cosθ, it can be shown that (2) t id th b d

1)(,1 xTx n

nTn cos)(cos 1)(1 T(2) outside the passband

(3) In general, 1)coscos()( 1 xxnxTn

1)coshcosh( 1 xxn

1)(,1 xTx n

1)coshcosh( xxn

Tn(x)345

n( )

1

2

n=1

xpassband

37

passband

Magnitude of Chebyshev Polynomials

|Tn(x)|345

22

n=1

xx

passband

38

passband

Chebyshev Responses

39

Mapping of Passband and Stopband

Define is mapped to passbandthe upper passband edgethe lower passband edge

1cos/cos xx m,1 xm1 x the lower passband edge ,1 xm

1

1

( ) cos [cos (cos / cos )] (sec cos )(sec cos ) sec cos

n m n mT x n TT

1

22

3

(sec cos ) sec cos

(sec cos ) sec (1 cos 2 ) 1

(sec cos ) sec (cos3 3cos ) 3sec cos

m m

m m

TTT

40

3

4 24

(sec cos ) sec (cos3 3cos ) 3sec cos

(sec cos ) sec (cos 4 4cos 2 3) 4sec (1 cos 2 ) 1m m m

m m m

TT

Page 11: Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning ... on the Smith

Design of Chebyshev Transformer

jN NNN ]22[2)(

LmN

L

njN

ZZZZ

TAAT

ZZZZ

nNNNe

)(sec1)(sec)0(

...]2cos...2coscos[2)(

00

10

mmNm

LmNL

ATAZZTZZ

)sec(cos)(sec 00

L

L

mm

L

L

mL

LmN

f

ZZZZ

NZZZZ

ZZZZ

AT 1cosh1coshsec,11)(sec

0

01

0

0

0

0

41m

ff 420

Table 5.2 Chebyshev Transformer Design

42

Example 5.6Design a Chebyshev transformer of N=3 for ZL = 2Z0 = 100 Ωwith Γm = 0.05.

3j Sol: 30 1

33

( ) 2 [ cos3 cos ]

(sec cos )

j

jm

eAe T

3sec (cos3 3cos ) 3 sec cos

0.05m m

m

A AA

1 01 1sec cosh cosh

m

Lm

Z ZN Z Z

0

11 20cosh cosh 1.4083 3

m LN Z Z

30 0 3

3 3

2 sec 0.0698mA

4312 3A 3

1 2(sec sec ) 0.1037m m

Example 5.6Design a Chebyshev transformer of N=3

50.5711 0

01

ZZ

81.70111

112

0

ZZ

20.87111

223

1

ZZ

%10142

1

7.44

2

om

m

ff

0mf

44

Page 12: Review of Smith Chart Chapter 5 Impedance Matching and ...thschang/notes/MWPA5.pdf · Chapter 5 Impedance Matching and TuningChapter 5 Impedance Matching and Tuning ... on the Smith

Example: “Chebyshev轉換器特性之深入探討電腦模與實驗量p測”清大物理 碩士論文 張靜宜

0chebyshev4-section

measured

-20

ion(

dB)

simulation

-40Ref

lect

i

10 11 12-60Load/

Transformer

ModeFrequency(GHz)

Ch b h 四階轉換器電腦模擬與實驗結果之比較

terminationMode

converter

45

Chebyshev四階轉換器電腦模擬與實驗結果之比較

gx XÇw Éy VtÑA H Ñ

46


Recommended