+ All Categories
Home > Documents > Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the...

Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the...

Date post: 19-Jan-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
20
1 Review on Conventional and Innovative Fuel Burning Schema for HTGRs Peng Hong Liem, Ismail, Yasunori Ohoka, Takashi Watanabe and Hiroshi Sekimoto Research Laboratory for Nuclear Reactors Tokyo Institute of Technology COE-INES Indonesia Symposium March 2-4, 2005 Bandung, Indonesia 2 Contents Brief introduction on the conventional and innovative fuel burning schema for HTGRs Block Fuel Element Pebble Fuel Element Procedures for solving fuel burning problems under core equilibrium condition Some examples of analysis results Impact of fuel burning schema on HTGR safety
Transcript
Page 1: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

1

Review on Conventional and Innovative Fuel Burning Schema

for HTGRsPeng Hong Liem, Ismail, Yasunori Ohoka, Takashi Watanabe and Hiroshi Sekimoto

Research Laboratory for Nuclear Reactors Tokyo Institute of Technology

COE-INES Indonesia SymposiumMarch 2-4, 2005

Bandung, Indonesia

2

Contents• Brief introduction on the conventional and

innovative fuel burning schema for HTGRs– Block Fuel Element– Pebble Fuel Element

• Procedures for solving fuel burning problems under core equilibrium condition

• Some examples of analysis results• Impact of fuel burning schema on HTGR safety

Page 2: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

2

3

1. Brief introduction on the conventional and innovative fuel

burning schema for HTGRs

4

Block-Type Fuel Element (1/2)

Coated Fuel Particle

Fuel Kernel

Fuel Compact

SiC/PyC Coated Layers (4)

1 mm

26 mm

39 mm

8 mmT 580 mm

End Plug

Fuel RodFuel Assembly

(HTTR: Pin-In-Block)

Graphite Sleeve

Fuel Compact

Dowel

Fuel Rod

Burnable Poison Hole

34 mmD

360 mm

Other Block-type (GA): Multihole(Fuel and Coolant Holes)

Coolant flows between fuel compact and graphite sleeve

Source: JAERI-HTTR

Page 3: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

3

5

Block-Type Fuel Element (2/2)

• Past Experimental/Demonstration Reactors– Dragon (OECD, Winfrith, UK)– Peach Bottom 1 (GA, Peach Bottom, Pa., US)– Fort St. Vrain (GA, Platteville, Co., US)

• Currently Operating Experimental/Research Reactors– High Temperature Test Reactor, HTTR (JAERI, Oarai, Japan)

• On-going Design (Near/Far Future)– Gas-Turbine Modular Helium Reactor, GT-MHR (US/Russia)– Gas-Turbine High-Temperature Reactor, GTHTR-300 (JAERI,

Japan)– Gas-Turbine HTR Cogeneration, GTHTR-300C (JAERI, Japan)– New Generation Nuclear Power Plant, NGNP (Pebble ? Block ?, US-

DOE)– Very High Temperature Reactor VHTR ANTARES (Framatome ANP

Demo, French)

6

HTTR (1/4) Main Data

UO2 (FC 3-10 %)TRISO Fuel

22 GWD/TBurnup (Ave.)

1 Batch (Off-line)Fuel Loading

395/850 (950) ℃Inlet/Outlet Temp

2.5 W/ccPower Density

2.9/2.3 mCore Height/Diam.

-Electric Power

30 MWthThermal Power

Source: JAERI-HTTR

Burning Scheme

Whole core is removed at EOC and replaced by new FE

Page 4: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

4

7

HTTR (2/4) Burnup Control

Core Center

BP (B4C-C)

Effe

ctiv

e M

ultip

licat

ion

Fact

or (k

eff)

Burnup (days)

Keff of core without Burnable Poison

Reactivity compensated by BP

Keff of core with Burnable Poison

Excess reactivity (BOL)4.6 %Δk Excess reactivity (EOL)

2.6 %Δk

Yamashita, K et al., NSE 122 (1996)

8

HTTR (3/4) Radial Power Control

Core Center

¼ Core1-st Layer

6.7 % 7.9 %

9.4 %

9.9 %U-235 Enrichment

Yamashita, K. et al.,NSE 122 (1996)

Page 5: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

5

9

Layer number of fuel blocks

Pow

er D

ensi

ty (W

/cc) U-235

6.7-9.9 %U-235 5.2-7.9 %

U-235 4.3-6.3 %

U-235 3.4-4.8 %

HTTR (4/4) Axial Power Control

Burnup10 days (BOL)

440 days

660 days (EOL)

Yamashita, K. et al.,NSE 122 (1996)

10

GTHTR-300 (Japan)

2 Batch/Off-line (Sandwich Reshuffling)

Fuel Loading

120 GWD/TBurnup

UO2 (LEU)Fuel

587/850℃Inlet/Outlet Temp

5.4 W/ccPower Density

8.4/5.1 mCore Height/Diam.

279 MWElectric Power

600 MWthThermal Power

Source: JAERI-HTTR

Burning Scheme

Page 6: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

6

11

• Gas-Turbine Modular Helium Reactor

3 Batch/Off-lineFuel Loading

640 GWD/tBurnup

Ex Weapon PuTRISO Fuel

491/850℃Inlet/Outlet Temp

6.6 W/ccPower Density

7.9/4.8 mCore Height/Diam.

286 MWElectric Power

600 MWthThermal Power

GT-MHR(US/Russia)

Burning Scheme

Level of Pu-239 burning 90 % (Deep Burn)

12

CANDLE Burning Scheme (1/3)Applied to Block-type HTGRs

• Constant Axial Shape of Neutron Flux, Nuclide Densities and Power Shape During Life of Energy Producing Reactor (Sekimoto, H. et. al., Nucl. Sci. Eng. 139, 2001)

• Features:– No need for burnup reactivity control mechanism– Constant reactor characteristics (simple reactor

operation)– Reactor height is proportional to core lifetime– kinf of fresh fuel < 1 (optimal use of BP); small risk of

criticality accident

Page 7: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

7

13

CANDLE Burning Scheme (2/3)

BurningDirection

(Axial)

Spent Fuel

Discharge

Loading

Fresh Fuel

Loading

Fresh Fuel

14

CANDLE Burning Scheme (3/3)

• Fresh Fuel Region (k<1)– BP is burnt slowly by

neutrons leaked from the burning region

• Burning Region (k>1)– BP is almost completely

burnt– Fissile material is depleted

for producing energy and neutrons

– Fertile material is converted to fissile material

• Spent Fuel Region (k<1)– Fission products are

accumulated– Depleted fuel

BurningDirection

BP Fissile

FP

Flux

BP:Burnable PoisonFP:Fission Products

Steady-State(Equilibrium)

Burning Region

Page 8: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

8

15

Pebble-Type Fuel Element (1/2)

SiC/PyC Coated Layers (4)

Fuel Kernel

1mm

6 cm

Coolant flows between pebbles

16

Pebble-Type Fuel Element (2/2)• Past Exp/Proto Reactors

– Arbeitsgemeinschaft Versuchsreaktor, AVR (BBC/HRB, Hamm-Uentrop, FRG)

– Thorium High-Temperature Reactor, THTR-300 (BBC/HRB, Hamm-Uentrop, FRG)

– High-Temperature Reactor Modul, HTR-M (Siemens/Interatom, Design Only, FRG)

• Currently Operating Res Reactors– HTR-10 (Tsinghua Univ.-INET, China)

• On-going Design Proto/Demo/Commercial Reactors– Pebble Bed Modular Reactor, PBMR (Escom, South Africa)– HTR-PM (INET, Beijing, China)

• Near/Far Future Design– Peu-A-Peu, PAP-80, PAP-20, PAP-20-H (KFA-Julich, FRG)– Advanced Atomic Cogenerator for Industrial Application, Acacia/Incogen

(ECN, Petten, Netherland)– Modular Pebble Bed Reactor, MPBR (MIT, US)– New Generation Nuclear Power Plant, NGNP (Pebble ? Block ?, US-DOE)

Page 9: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

9

17

HTR-M Main Data

76He Gas Flow (kg/s)

6He Pressure (Mpa)

250/700He Temp (℃)

1020Fuel Residence Time (day)

80Fuel Burnup (GWD/t)

MultipassFuel Burning Scheme

UraniumFuel Cycle

TRISOCoated Fuel Particle

8Fissile Enrichment (%)

7HM loading/ball (g)

9.6Core Height (m)

3Core Diameter (m)

3Ave. Pow. Dens. (W/cc)

200Thermal Power (MWth)

Reutler, H. and Lohnert, G.H., Nucl. Technol. 62, 22 (1983), 78, 129 (1984)

Burningscheme

18

OTTO Burning Scheme

• Once-Through-Then-Out (OTTO)

• Features:– No recycling of FE (Simpler

than Multipass )– No burnup measurement

devices and recycle mechanism

– Good axial power density profile for steady-state condition (power density is strongly tilted towards the top)

Spent

Fresh

Depleted CoreRegion

Reactive Core Region

Page 10: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

10

19

Multipass Burning Scheme (1/3)

• HTR-M• Features:

– Better neutron economy– Higher fuel burnup– Low max. power density– Low max. fuel temp.

during depressurization accident

Spent

Fresh

Small BU

20

Multipass (2/3) - Inner Refl.

• PBMR (Nominal) Design• Features:

– Two pebble types (fuel and graphite)

– Central and peripheral loading tubes

– Higher max. power density at the graphite-fuel interfaces

– Better neutron economy (FC 8%) than alternative design

Fresh

Spent

Small BU

Graphite Ball

Graphite Ball

Inner ReflectorRegion

Core Region

H. D. GOUGAR, W. K. TERRY, and A. M. OUGOUAG(INEEL)

Page 11: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

11

21

Multipass (3/3) Out-In

• PBMR alternative design• Features:

– Central and peripheral loading tubes

– Control on the radial distribution of fuel burnup

– Radial power distribution flattening

– Worse neutron economy (FC 10%) than the nominal design

Fresh

Spent

Small BU

High BU

Depleted CoreRegion

Reactive Core Region

H. D. GOUGAR, W. K. TERRY, and A. M. OUGOUAG(INEEL)

22

Peu-a-Peu Burning Scheme (1/3)

• PAP-80, PAP-20, PAP-20H

• Acacia (Incogen)• Features:

– Simplest fuel loading scheme

– Axial power density is similar to OTTO and CANDLE

– Large difference of core pressure drops between BOC and EOC

Reactive Core Region

Fresh

BOL(Critical)Depleted Region

Page 12: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

12

23

Peu-a-Peu Burning Scheme (2/3)Acacia/Incogen

18.0 MWthHeat Cogen

494/800℃Inlet/Outlet Temp

16.5 MWElectric Power

40 MWthThermal Power

Source: NRG-Petten

24

Peu-a-Peu Burning Scheme (3/3)Example: Small-Size HTGR

1.6Fissile Loading (kg/GWD)

250 / 700He Inlet/Outlet Temp. (C)

4.8 / 1.5Max. Pow. Dens. BOL/EOL (W/cc)

871 / 750Max. Fuel Temp. BOL/EOL (C)

28 / 17Neut Leakage BOL/EOL (%)

49.8 / 69.2Ave. and Max. BU (GWD/t)

8.0Uranium Cycle FC(%)

10Core Life Time (year)

1.2 / 6.9Core Height BOL/EOL (m)

3.0Core Diameter (m)

25Power (MWth)

Liem, P.H., Ann. Nucl. Energy 23(3), 1996

Max. Pow. Dens.

Page 13: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

13

25

2. Procedures for solving fuel burning problems under core

equilibrium condition

26

Criticality

Φ=Φ ),(1),( σσ NFNMk

NTN ),,( σλΦ=∂∂

t

Non-Moving FE(Off-line, Batch refueling)

Moving FE, Burning Region(On-line, Cont. refueling)

NTNN ),,( σλΦ+∂∂

−=∂∂

sv

t sEquilibrium Core Conditions

0=∂∂

tN

Batan-EQUIL

PREC, PREC2 (OTTO)Batan-MPASS (Multipass)SRAC-CD (CANDLE)

Problem Statement

EOCBOC ),(),( )()1( ≤≤=+ ttt jj rNrN

jjj all )()1( SS =+

jjj all BOC),(BOC),( )(Fresh

)1(Fresh rNrN =+

j is core cycle, S is reshuffling and refueling matrix. Example:

)(EOC),(BOC),( 1Fresh

)()1( rNrSNrN ++ += jjj

NTN ),,(1 σλΦ=∂∂

svs

vs is pebble flow velocity or burning region velocity

Page 14: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

14

27

Φ=Φ ),(1),( σσ NFNMk

NTN ),,(1 σλΦ=∂∂

svs

SOR-Newton Method

Φ∂Φ∂Φ

−Φ=Φ Φ+

),(),()()1(

NfNfωll

NNgNgNN

∂Φ∂Φ

−=+

),(),()()1(

Nll ω

Good guesses for

Given

)0(N )0(Φ

sv

Sekimoto, H., et. al., J. Nucl. Sci. Tech. 24(10), 1987Obara, T. and Sekimoto, H., J. Nucl.Sci. Tech. 28(10), 1991

PREC Algorithm

0Nf =Φ),(

0Ng =Φ),(

Acceleration parameter similar to SOR method

28

Φ=Φ ),(1),( σσ NFNMk

NTN ),,(1 σλΦ=∂∂

svs

Liem, P.H., Ann. Nucl. Energy 21(5), 1994Liem, P.H., Ann. Nucl. Energy 23(3), 1996

Given sv

)0()0(

)0( ),(1),( Φ=Φ σσ FreshFresh

kNFNM

)()()1(

),,(1 ll

s

l

vsNTN σλΦ=

∂∂ +

),(1),( )1()1()1(

)1()1( +++

++ Φ=Φ lll

ll

kNFNM

Batan-MPASS Algorithm (1/2)

Page 15: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

15

29

Annals of Nuclear Energy 29 (2002) 1345–1364Direct deterministic method for neutronicsanalysis andcomputation of asymptotic burnupdistribution in a recirculating pebble-bed reactorW.K. Terry*, H.D. Gougar, A.M. OugouagIdaho National Engineering and Environmental Laboratory

Asymptotic=Equilibrium

Recirculating=Multipass

Batan-MPASS Algorithm (2/2)Comparison with Other Codes

PREC

PREC2

30

Φ=Φ ),(1),( σσ NFNMk

)()()(

)1(

),,(1 lll

z

l

vzNTN σλΦ=

∂∂ + )()(

)(

)1(

),,(1 lll

z

l

vzNTN σλΦ=

∂∂ +

)0(zvGood guesses for )0(Φ

Ohoka, Y. and Sekimoto, H., Nucl. Eng. Design 229(1), 2004

),(1),( )1()1()1(

)1()1( +++

++ Φ=Φ lll

ll

kNFNM

∫∫Φ

Φ=+

dV

dVzz

l

ll

C )(

)()1(

)1( +lzvCorrect )()1( l

Cl

C zz −+based on

SRAC-CD Algorithm

Page 16: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

16

31

3. Examples of Analysis Results

• Case Study: Small-Size HTGRs (25 MWth)• Burning Schema:

– Multipass– OTTO– Peu A Peu– CANDLE

• Fuel Cycle (Fissile Content 8 %)– Uranium– Thorium

Pebble Fuel Element

Block Fuel Element

32

Burning Schema Comparison for Small-Sized HTGRs

BURNING SCHEME Multipass OTTO Peu-a-Peu CANDLE HTTRFuel Element Type Block Block

Fuel Loading Method - Off-line, Batch

Calculation Code Batan-Peu SRAC-CD NDCSThermal Power (MWth) 30Core Diameter (m) 2.3Fissile Content (%) 3-10Active Core Height (m) 4.5 4.5 6.9 4.0+2.0 2.9

4.5 4.5 4.0 3.0+2.0Core Life Time (year)/ 11.0 9.4 10.0 10.0 1.8Residence Time (year) 16.5 14.0 10.0 10.0Velocity (cm/day)/ 1.8 0.14 1774.0 0.108Fueling Rate (ball/month) 1.2 0.09 703.0 0.080Ave. Burnup (GWD/t) 78.5 67.2 49.8 48.3 22.0

117.0 99.4 71.1 76.4Max. Power Density (W/cc) 0.99 1.53 4.78 3.30 4.50

1.02 2.10 7.33 4.96

8.0

Batan-MPASS

Pebble

On-line, Continuous

25.03.0

Uranium Thorium Just for reference

Page 17: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

17

33

4. Impact of Burning Schema on the HTGR Safety

• Case Study: HTR-M (200 MWth)• Burning Schema

– OTTO– Multipass

• Fuel Cycle (Fissile Content 8 %)– Uranium– Thorium

• Accident Analysis: Depressurization Accident

34

Burning Scheme Impact on Steady-State Power Dist.(Uranium Fuel)

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200

Distance from top (cm)

Temperature (℃)

0

2

4

6

8

10

12

14

Power Density (W/cc)

OTTO

Multipass

HePebble

He Flow

Pow Dens

Top

Ref

l

Bot

tom

Ref

l

Upp

er V

oid

Liem, P.H., Ann. Nucl. Energy 21(5), 1994Liem, P.H., Ann. Nucl. Energy 23(3), 1996

Page 18: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

18

35

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200

Distance from top (cm)

Power Density (W/cc)

Fuel Cycle Impact on Power Distribution

He Flow

Top

Ref

l

Bot

tom

Ref

l

Upp

er V

oid

OTTO

Thorium

Uranium

MultipassThorium

Uranium

Liem, P.H., Ann. Nucl. Energy 21(5), 1994Liem, P.H., Ann. Nucl. Energy 23(3), 1996

36

HTR-M (OTTO)Max. Fuel Temp. During Depressurization Accident

He Flow

Top

Ref

l

Bot

tom

Ref

l

Distance from top of the core

Fuel Limit Temperature

Hiroshe, Y, Liem, P.H., Suetomi, E., Obara, T., Sekimoto, H, Journ. Of Nucl. Sci. Tech. 26 (1989)

Page 19: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

19

37

HTR-M (Multipass) Max. Fuel Temp. During Depressurization Accident

He Flow

Top

Ref

l

Bot

tom

Ref

l

Distance from top of the core

Fuel Limit Temperature

Hiroshe, Y, Liem, P.H., Suetomi, E., Obara, T., Sekimoto, H, Journ. Of Nucl. Sci. Tech. 26 (1989)

38

Keywords to Memorize

• HTGR• Coated Fuel Particle• Block, Pebble-type FE• On-line, Off-line Refueling• Batch, Continuous Refueling• Multipass, OTTO, Peu-A-Peu• CANDLE• Uranium, Thorium, Ex Weapon Pu

Fuel• Fissile Content (enrichment)• Burnable Poison• Fuel Burnup• Max. Power Density• Max. Fuel Temperature• Depressurization Accident

• CANDLE– Large-Size CANDLE

Reactor Design– Radial Optimization– Thermal-Hydraulic

Design– Accident Analyses– Etc.

• Analysis Code Development

Future Works

Page 20: Review on Conventional and Innovative Fuel Burning Schema ......2 3 1. Brief introduction on the conventional and innovative fuel burning schema for HTGRs 4 Block-Type Fuel Element

20

Terima kasih !


Recommended