+ All Categories
Home > Documents > REVISED RESPONSE TO REQUEST FOR ADDITIONAL …the volumes used in the containment model, the...

REVISED RESPONSE TO REQUEST FOR ADDITIONAL …the volumes used in the containment model, the...

Date post: 23-Apr-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
760
Non-Proprietary 06.02.01.01.A-3_Rev.2 - 1 / 8 KEPCO/KHNP REVISED RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION APR1400 Design Certification Korea Electric Power Corporation / Korea Hydro & Nuclear Power Co., LTD Docket No. 52-046 RAI No.: 296-8342 SRP Section: 06.02.01.01.A – PWR Dry Containments, Including Subatmospheric Containments Application Section: 6.2.1.1 Containment Structure Date of RAI Issue: 11/05/2015 Question No. 06.02.01.01.A-3 In order to resolve the differences between the applicant’s calculations as reported in the DCD and the staff’s confirmatory calculations, the applicant is also requested to provide an electronic copy of the GOTHIC deck[s] for the APR1400 containment peak pressure and temperature calculations, along with any applicable reports. The reports can be made available through the APR1400 electronic reading room (ERR). Response – (Rev.2) Documents related to the APR1400 GOTHIC decks, listed in the Table1, were submitted via the ERR. Revised GOTHIC decks for the containment peak pressure and temperature calculations will be submitted as a CD media attached to this response. Table 1. Description of GOTHIC Decks NO. DOCUMENT TITLE SOURCE IDENTIFICATION NO. REV. NO. FILE NAME 1 CONTAINMENT P/T SHORT-TERM ANALYSIS APR1400 DC 1-310-N380-003 05 1-310-N380-003.pdf 2 CONTAINMENT P/T LONG-TERM ANALYSIS APR1400 DC 1-310-N380-004 05 1-310-N380-004.pdf 3 GOTHIC THERMAL HYDRAULIC ANALYSIS PACKAGE USER MANUAL Ver. 8.0(QA) NAI NAI 8907-02 20 GOTHIC User Manual.pdf 4 GOTHIC THERMAL HYDRAULIC ANALYSIS PACKAGE TECHNICAL MANUAL Ver. 8.0(QA) NAI NAI 8907-06 19 GOTHIC Technical Manual.pdf
Transcript
  • Non-Proprietary

    06.02.01.01.A-3_Rev.2 - 1 / 8 KEPCO/KHNP

    REVISED RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION

    APR1400 Design Certification Korea Electric Power Corporation / Korea Hydro & Nuclear Power Co., LTD

    Docket No. 52-046

    RAI No.: 296-8342

    SRP Section: 06.02.01.01.A – PWR Dry Containments, Including Subatmospheric Containments

    Application Section: 6.2.1.1 Containment Structure

    Date of RAI Issue: 11/05/2015

    Question No. 06.02.01.01.A-3

    In order to resolve the differences between the applicant’s calculations as reported in the DCD and the staff’s confirmatory calculations, the applicant is also requested to provide an electronic copy of the GOTHIC deck[s] for the APR1400 containment peak pressure and temperature calculations, along with any applicable reports. The reports can be made available through the APR1400 electronic reading room (ERR).

    Response – (Rev.2)

    Documents related to the APR1400 GOTHIC decks, listed in the Table1, were submitted via the ERR. Revised GOTHIC decks for the containment peak pressure and temperature calculations will be submitted as a CD media attached to this response.

    Table 1. Description of GOTHIC Decks

    NO. DOCUMENT TITLE SOURCE IDENTIFICATION NO. REV. NO. FILE NAME

    1 CONTAINMENT P/T SHORT-TERM ANALYSIS

    APR1400 DC 1-310-N380-003 05 1-310-N380-003.pdf

    2 CONTAINMENT P/T LONG-TERM ANALYSIS

    APR1400 DC 1-310-N380-004 05 1-310-N380-004.pdf

    3

    GOTHIC THERMAL HYDRAULIC ANALYSIS PACKAGE USER MANUAL Ver. 8.0(QA)

    NAI NAI 8907-02 20 GOTHIC User Manual.pdf

    4

    GOTHIC THERMAL HYDRAULIC ANALYSIS PACKAGE TECHNICAL MANUAL Ver. 8.0(QA)

    NAI NAI 8907-06 19 GOTHIC Technical Manual.pdf

  • Non-Proprietary

    06.02.01.01.A-3_Rev.2 - 2 / 8 KEPCO/KHNP

    Based on the results of several public teleconferences held to resolve the NRC issues regarding GOTHIC containment model (July 28 2016, September 22 2016, October 25 2016, and November 9 2016), KHNP performed the sensitivity analyses to estimate the influences of GOTHIC condensation options (Tagami/Uchida vs. Direct/DLM) and junctions’ inertial length on the analysis results.

    The following paragraphs discuss detailed descriptions of each case performed in the two sensitivity analyses.

    1. Modification of GOTHIC Condensing Option and Junctions’ Inertial Length Comparison of Condensation Options in GOTHIC KHNP performed an analysis to estimate the effects on the containment peak pressure and temperature from using two different GOTHIC condensation options (Direct/DLM and Tagami/Uchida). Table 2 provides the description of two cases, each of which selected Direct/DLM or Tagami as the surface option of the heat structure, with the peak pressure and temperature for the DBA LOCA (Double ended discharge log slot break with Max. SI).

    The containment maximum pressure and temperature from the case that uses the Tagami/Uchida option are higher than that of the Direct/DLM option by 0.3 psi and 0.4 oF, respectively. This seems to be a result of the difference between the two intrinsic models that calculate the condensing rate near the wall. Specifically, the Tagami/Uchida option is based on the conservative empirical formula, whereas the Direct/DLM calculates the condensation rate and sensible heat transfer rate directly on the structure’s surface using heat/mass transfer analogies. Generally the Direct/DLM gives less conservative pressure and temperature results compared to that of the Tagami.

    Table 2. Effects of DLM and Tagami Condensation Option on Containment P/T

    It should be noted that the Tagami option produces higher containment peak pressure and temperature, however they are also well bounded by the containment design pressure (74.7 psia) and design temperature (290 oF).

    Sensitivity Analysis on the Inertial length The NRC requested an analysis of sensitivity to the containment peak pressure and temperature using various inertial lengths. KHNP performed a sensitivity analysis for the inertial length of each junction to verify the impact of the inertial length on the results.

    TS

  • Non-Proprietary

    06.02.01.01.A-3_Rev.2 - 3 / 8 KEPCO/KHNP

    In the APR1400 containment model, a total of 17 flow paths are included and a nominal value of 1.0 foot is used for the inertial length of each flow path since most of the flow paths connecting to the containment volume are used as the flow boundary input for the M/E release. Therefore, the inertial length of each flow path is deemed not to significantly impact the analysis results.

    As shown in Figure 1, flow paths connecting to the containment volume consist of junction J1 for spray, junction J2 to IRWST, J12 for SIT Nitrogen gas release and four (4) junctions for M/E release (J3, J5, J13, and J15). The other junctions are used for the M/E release during the LOCA decay heat phase, thus have no impact on the peak containment pressure and temperature.

    Figure 1. APR1400 Containment Model

    To estimate the individual influence on the peak pressure and temperature results from the variance of the inertial length of each flow path, a total of 17 cases (Case 1 ~ Case 17) are prepared and each of which has an inertial length set to the same value as the containment height (166 feet) with the others that are set to the default value of 1.0. Two cases are additionally added to represent the reference case (Case 0) that has all of the inertial length set to 1.0. and the case (Case 18) that has 166 feet as the inertial length of all its flow paths. Table 3 presents the description of each case for the sensitivity analysis with the peak pressure and temperature results.

    TS

  • Non-Proprietary

    06.02.01.01.A-3_Rev.2 - 4 / 8 KEPCO/KHNP

    Table 3. Description of Each Case for Sensitivity Analysis

    As seen in the Table 3, the maximum containment pressure of the case (Case 18) which uses the value of 166 feet for the inertial length of all the flow paths yields higher peak pressure than that of the case (Case 0) which uses the value of 1 foot as the inertial length of all flow paths. The pressure variance is estimated to 0.34 psi. It is noted that the biggest influence on contributing peak pressure increase comes from the inertial length of the flow path (J15) for the M/E release during the blowdown phase.

    By applying the inertial length of all flow paths to 166 feet, which is the longest height among the volumes used in the containment model, the containment maximum pressure and temperature are estimated to 66.14 psia and 274.64 oF, respectively. However the maximum pressure remains below the containment design pressure of 74.7 psia with a sufficient pressure margin of 14.2 percent (decreased by 0.6 percent). The containment temperature of the case (Case 18) is greater than that of the case (Case 0) by 0.48 oF, however which is also less than the containment design temperature.

    Conclusion Based on the sensitivity analyses, it is noted that the case that uses the GOTHIC Tagami/Uchida condensing option with maximum inertial length (166 ft) for each flow path, except for the junction (J2), results in the highest containment peak pressure, which is greater

    TS

  • Non-Proprietary

    06.02.01.01.A-3_Rev.2 - 5 / 8 KEPCO/KHNP

    than the case that uses GOTHIC Direct/DLM with minimum inertial length (1.0 ft) by approximately 0.6 psi.

    Therefore, based on these results, KHNP has revised the GOTHIC containment model in accordance with the NRC suggestions regarding the heat transfer correlation and junction’s inertial length as follows:

    • Use of the Tagami/Uchida condensing options (Tagami/Uchida and Uchida wall heat transfer correlations are used for LOCA and MSLB, respectively.)

    • Use of higher value for inertial length (A combination of junctions’ inertial length that yields most conservative containment pressure and temperature results is chosen.)

    2. Additional GOTHIC Model Revisions Beside the modification of GOTHIC model for the wall condensation and junctions’ inertial length, the revised GOTHIC containment model includes additional model revisions as listed below:

    • Break Flow Model

    • Water Trap Model

    • Energy Release Model (Decay heat phase)

    • CAP Analysis Model

    • Others

    The model revisions are discussed in the paragraphs below.

    Break Flow Model In the previous GOTHIC model, the break liquid after phase split was assumed to release as droplets during the entire LOCA blowdown. The droplet model yields additional evaporation of droplets in the containment atmosphere, finally increasing the containment pressure. However, the droplets’ evaporation may be completed earlier prior to reaching the end of blowdown (EOB) in such a condition that the containment atmosphere is superheated relative to the containment saturation condition.

    In the revised GOTHIC model, the break liquid discharge as drops is limited to the condition that the droplet remains superheated liquid relative to the containment atmosphere, even in blowdown phase.

    This model revision doesn’t impact on the maximum containment pressure and temperature results since it’s demonstrated that the containment atmosphere remains saturation condition during the entire blowdown phase of all LOCA events.

    Water Trap Model

    TS

  • Non-Proprietary

    06.02.01.01.A-3_Rev.2 - 6 / 8 KEPCO/KHNP

    TS

  • Non-Proprietary

    06.02.01.01.A-3_Rev.2 - 7 / 8 KEPCO/KHNP

    The description of the GOTHIC water trap model is presented in the Section A.2.3.1 in Appendix A of the TeR, APR1400-Z-A-NR-14007-P, Rev.1, “LOCA Mass and Energy Release Methodology” in greater detail.

    Energy Release Model during Decay heat phase

    The description of the long-term energy release model is presented in the Section A.2.4.1 in Appendix A of the TeR in greater detail.

    CAP Analysis Model for NPSHa The containment accident pressure (CAP) analysis model, which is used in evaluating the net positive suction head available (NPSHa), is developed based on the GOTHIC containment model calculating the maximum containment pressure and temperature for the design basis accident.

    A GOTHIC cooler component is newly added to model the HVAC fan cooler system with some modification of the GOTHIC variables including control variables and forcing functions.

    The model revision doesn’t impact on the maximum containment pressure and temperature calculation since the modification is accomplished only for the GOTHIC model regarding the CAP analysis.

    TS

  • Non-Proprietary

    06.02.01.01.A-3_Rev.2 - 8 / 8 KEPCO/KHNP

    Others

    • Decay energy curve

    The GOTHIC containment model additionally takes into account the decay heat contribution from actinides other than U-239 and Np-239 based on the decay energy associated with the ANSI/ANS 5.1-1979 with 2σ uncertainties for full reactor power.

    An error in calculating additional decay energy from actinides other than U-239 and Np-239 was found in the previous GOTHIC model and will be addressed in the revised GOTHIC model. The model revision doesn’t influence on the maximum containment pressure and temperature since the GOTHIC decay energy model is used only for the mass and energy release calculation during the decay heat phase. The detailed description is provided in Section A.2.4.1 of the Appendix A of the TeR

    • GOTHIC heater components for SGs secondary side’s metal and coolant energies

    In the previous model, two GOTHIC heater components are used for metal and coolant energies release in both SGs’ secondary side, respectively. In the revised GOTHIC model, four heater components are used to represent each of the metal and coolant energies release of the affected SG and unaffected SG individually.

    The model revision doesn’t influence on the maximum containment pressure and temperature since the SG’s stored energy release model is used only for the mass and energy release calculation during the decay heat phase. The detailed description is provided in Section A.2.4.1 of the Appendix A of the TeR

    Impact on DCD

    DCD Section 6.2.1 will be revised as shown in Attachment 1.

    Impact on PRA

    There is no impact on the PRA.

    Impact on Technical Specifications

    There is no impact on the Technical Specifications.

    Impact on Technical/Topical/Environmental Report

    The Technical report “LOCA Mass and Energy Release Methodology” (APR1400-Z-A-NR-14007-P) will be revised as shown in Attachment 2.

  • APR1400 DCD TIER 2

    6.2-3

    The final analytical results are summarized in Table 6.2.1-2 and Figures 6.2.1-1 through 6.2.1-19. The calculations account for uncertainties and tolerances regarding the containment volume and its heat removal capability biased to maximize the peak pressure and temperature conditions. For conservatism, a loss of offsite power (LOOP) is assumed for the LOCA events whereas offsite power is considered available in secondary system piping breaks. The results demonstrate that the containment free volume and heat removal systems are adequate to maintain containment conditions below the design limits; assuming a worst single failure condition in addition to one train of the heat removal system out of service.

    The containment is designed and constructed to withstand a broad spectrum of seismic event as described in Sections 3.2 and 3.8. The maximum calculated post-accident pressure and temperature are 3.592 kg/cm2G (51.09 psig) and 167.45 °C (333.41 °F) respectively as documented in Table 6.2.1-2.

    6.2.1.1.1.2 Mass and Energy Release

    Tables 6.2.1-4 through 6.2.1-18 provide the mass and energy (M&E) release data for the postulated design accidents listed in Table 6.2.1-1. Subsections 6.2.1.3 and 6.2.1.4 describe the computer codes and assumptions used in the development of these M&E release tables.

    6.2.1.1.1.3 Capability for Energy Removal from the Containment

    Following a postulated break, the bulk of the energy released to the containment is removed from the containment atmosphere and transferred into the IRWST via the CS system spray droplets. During the entire accident, the IRWST serves as a water source for the CS system. Each train of the CS system rejects IRWST water energy to the component cooling water system (CCWS) through the CS heat exchanger (CSHX). The CCWS energy is transferred to the ultimate heat sink through the essential service water system (ESWS).

    For the containment peak pressure and temperature analysis, the CS system is assumed affected by the most restrictive single active failure, resulting in minimum heat removal capability. This minimum heat removal capacity is demonstrated capable of reducing the

    Rev. 0

    3.60 51.21 171.55 340.78

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (1/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-5

    Located at the bottom of the containment, at El. 81 ft., the IRWST is a reinforced concrete structure with a stainless steel inside liner. The IRWST provides continuous subcooled water for the SI and CS to cool the containment in the event of abnormal events such as a LOCA or secondary system piping rupture. Section 6.8 describes the in-containment water storage system (IWSS).

    6.2.1.1.2.1 Protection against External Pressure Loads

    Inadvertent operation of the CS system, containment purge, and containment fan cooler systems could potentially result in a significant containment external pressure loading. The APR1400 containment is designed to withstand an external pressure loading of 0.28 kg/cm2G (4.0 psig) relative to ambient pressure. An evaluation and associated analyses demonstrate that the containment structure integrity is maintained under maximum external pressure-loading conditions; see Subsection 6.2.1.1.3.5.

    6.2.1.1.2.2 Potential Water Traps Inside Containment

    The evaluation of the IRWST upstream effect is a review of the flow paths leading to the IRWST to identify flow paths that could result in blocking the return water that could challenge the IRWST minimum water level. The evaluation also includes identifying holdup volumes, such as recessed areas and enclosed rooms where trapped water volumes do not return to the IRWST. All of the hold-up volumes were taken into account in the minimum water level evaluation of the IRWST.

    Holdup volumes are divided into two groups: Hold-up water on the way to the IRWST and the inactive pool volume. Detail holdup volume capacities are listed in Table 6.8-2 and the schematic of potential water traps in containment is shown in Figure 6.2.1-20. The groups are defined as follows:

    a. Hold-up volume on the way to the IRWST

    In a LOCA, the IRWST water returns from the containment spray nozzles and broken pipe. The water on the way to the IRWST decreases the initial IRWST water level. The following are the source of hold-up water on the way to the IRWST:

    Rev. 0

    kg/cm2G

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (2/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-8

    phase for a large break LOCA. This subsection provides an overview of the GOTHIC computer code and the calculation methods and models used in the containment response analysis.

    GOTHIC Computer Code Overview

    GOTHIC (Reference 2) is a general-purpose thermal-hydraulic computer code often used in the design, licensing, safety and analysis of nuclear power plant containments. The code was developed by Numerical Applications (NAI), a Division of Zachry Nuclear Engineering Inc. with support from the Electric Power Research Institute (EPRI). The GOTHIC computer code is maintained under a 10 CFR Part 50 Appendix B, quality assurance program. The use of GOTHIC for the licensing analysis of the containment response to high-energy line breaks is well known in the nuclear industry and has been subsequently approved by the NRC for several plant applications.

    APR1400 Containment Model

    The principal sub-models in the containment response analysis include containment nodalization, break fluid modeling for M&E release, heat structure modeling of passive heat sinks and active heat removal system modeling. The following sections describe the model characteristics and conservatism of the assumed initial conditions. The methodology for containment response analysis is described in detail in Reference 3.

    a. Containment nodalization

    The APR1400 containment building is modeled in GOTHIC using two lumped-parameter volumes: the containment atmosphere region and the IRWST region, with a flow path connecting the two volumes. This modeling approach is based on building design representing physical separation of the IRWST from the containment atmosphere region. The calculated containment free volume is conservatively minimized to maximize calculated peak pressure and temperature (Reference 3).

    b. Break flow

    Rev. 0

    The containment building is divided into three lumped-parameter volumes, containment atmosphere, IRWST, and water trap spaces in containment, consistent with the actual geometry of the APR1400 containment.

    The water trap includes the volumes such as the reactor cavity and holdup volume (HVT) that may be filled with water due to containment internal flooding at an accident.

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (3/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-10

    heat structure’s conduction calculation mesh spacing is set sufficiently small to ensure accurate calculation of the thermal gradient through the structure.

    Following a LOCA and a secondary system pipe rupture, the GOTHIC model surfaces in contact with the containment atmosphere are subject to condensation heat. The irect heat transfer ption with a iffusion ayer odel (DLM) heat transfer coefficient is used to calculate the condensation heat transfer. The use of the Direct/DLM option for condensation heat transfer has been accepted by the NRC for peak containment pressure and temperature analysis (Reference 4).

    The GOTHIC natural convection option is chosen for wall convection heat transfer on containment passive heat sinks. Radiation heat transfer from the containment atmosphere to the containment structures is conservatively excluded since radiation heat transfer has a negligible impact on the containment pressure response calculation.

    Figures 6.2.1-16 through 6.2.1-19 depict the condensing heat transfer coefficients as a function of time for the most severe cold leg, hot leg, and secondary system piping ruptures considered in the analysis.

    d. Containment active heat sinks

    The APR1400 containment active heat sink comprises the CS nozzles and CS heat exchangers. The GOTHIC model consists of a flow path to transport IRWST water through the CS heat exchanger to the containment building’s spray nozzles. The subcooled water is delivered to the containment atmosphere as liquid droplets via a GOTHIC spray nozzle component.

    GOTHIC calculates the heat and mass transfer between droplets and vapor using a mechanistic condensation (or evaporation) model. The droplet size is assumed as a Sauter mean diameter of 1,000 (0.04 in) from nozzle’s design specifications and droplet size sensitivity analyses (Reference 3).

    The APR1400 CS heat exchanger is modeled using a GOTHIC heat exchanger component. The CS heat exchanger model uses a design fixed UA value and a

    Rev. 0

    The heat transfer model with Tagami/Uchida heat transfer coefficients

    Tagaim/Uchida

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (4/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-14

    response analyses. Thus, DEDLSB with maximum SI system capabilities with no EDG single failure is determined as the containment design basis LOCA.

    As listed in Table 6.2.1-2, the DBA LOCA calculated peak pressure is 3.59 kg/cm2G (51.09 psig). This limiting peak pressure bounds all the secondary system piping breaks addressed and listed in Part B of Table 6.2.1-19. The calculated LOCA peak temperature is 134.59 °C (274.27 °F).

    A containment response analysis following a DBA LOCA is also performed to consider the impact from thermal conductivity degradation (TCD) of the fuel pellets. The containment peak pressure of the TCD analysis is 0.3 psi higher than the case without TCD consideration. The TCD case peak pressure remains below the containment design limit, thus ensuring containment integrity at these conditions. A detailed description of the TCD effects on the containment integrity analysis is provided in Reference 5.

    Consistent with the requirements of GDC 15 and 50, it has been demonstrated that the APR1400 containment design pressure provides more than a 10 percent margin (14.8 percent) above the maximum calculated peak pressure. The calculated containment pressure at 24 hours, 1.795 kg/cm2G (25.54 psig), is 42.35 percent of the peak calculated pressure for the limiting LOCA and thus meets the requirements of GDC 38.

    Throughout the LOCA, the containment temperature remains at saturated conditions. Per Reference 3, the DBA LOCA peak saturation temperature of 134.59 °C (274.25 °F), which is higher than the maximum calculated surface temperature of all the containment internal structures including liner plate, is less than the containment design temperature of 143.3 °C (290.0 °F).

    6.2.1.1.3.3 Analysis of Containment Response to Secondary System Piping Ruptures

    This subsection describes the containment response analysis following a postulated main steam line break (MSLB) event. Containment response analyses to various combinations of power level, break size, and break location were performed to determine the limiting MSLB from a containment peak temperature and pressure standpoint. The bases for the selection of break size, power level, and single failure are discussed in Subsection 6.2.1.4 and listed in Table 6.2.1-1.

    Rev. 0

    3.60 51.21134.96 274.93 approximately 0.6

    14.7

    1.336 19.0 37.1

    134.95 274.91

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (5/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-16

    and break sizes are postulated. The MSLB M&E release continues until the operator manually terminates auxiliary feedwater flow to the affected SG. All of the MSLB containment response analyses are executed for 1 million seconds.

    Following a MSLB, the containment temperature and pressure rise rapidly due to the large influx of steam from the break. The break flow drops abruptly at approximately 10 seconds into the accident as the intact SG’s steam release is terminated by MSIV closure. Once the containment high-high pressure setpoint is reached, the CS pump delivers IRWST subcooled water to the spray nozzles with a 90-second time delay. Liquid droplets from the CS nozzles rapidly condense the steam atmosphere and cool the superheated containment to saturation temperature. Therefore, the containment reaches its peak temperature just prior to CS flow initiation and cools to saturated conditions for the remainder of the transient.

    The sequence of events for each analyzed case is shown in Part C of Tables 6.2.1-9 through 6.2.1-18. Containment pressure and temperature transient data are depicted in Figures 6.2.1-6 through 6.2.1-15. The limiting MSLB condensing heat transfer coefficient transient data are shown in Figure 6.2.1-19. The MSLB analysis results are summarized in Part B of Table 6.2.1-19. The MSLB energy inventories and distribution within containment are tabulated in Part B of Table 6.2.1-38.

    Conclusions

    The containment response to MSLB accidents is analyzed to determine peak temperature and pressure. The results indicate that the limiting MSLB for peak temperature corresponds to a double-ended rupture of the main steam line (break area 0.849 m2 (9.134 ft2)) at 102 percent power level concurrent with an MSIV single failure. The calculated maximum containment temperature and pressure for this case are 167.45 °C (333.41 °F) and 3.137 kg/cm2G (44.62 psig) respectively.

    The MSLB containment temperature exceeds the saturation temperature for a period prior to CS actuation, as shown in Figures 6.2.1-6 through 6.2.1-15. However, this superheated condition has an insignificant impact on containment integrity because it lasts less than 2 minutes and the superheated vapor condenses rapidly after coming into contact with the subcooled surface of structures within the containment. Thus, the surface temperature of

    Rev. 0

    171.55 340.783.167 45.04

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (6/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-17

    the containment exposed structures does not exceed the containment saturation temperature following an MSLB.

    The calculated MSLB maximum saturation temperature of 133.59 °C (272.47 °F), used as the reference surface temperature for containment internal structures, is no greater than the containment design temperature of 143.3 °C (290.0 °F).

    6.2.1.1.3.4 Failure Modes and Effects Analysis

    The failure modes and effects analyses (FMEA) of the SI and the CS systems demonstrate that redundancy of equipment permits at least one system’s train to function after either a single active or passive failure.

    The most restrictive failure in the containment heat removal system has been determined as a loss of one EDG or one CS pump. The FMEA of the CS system and SI system are listed in Table 6.3.2-2.

    6.2.1.1.3.5 Inadvertent Operation of the Containment Heat Removal Systems

    Containment systems that may lower the containment pressure to less than the external atmosphere pressure following inadvertent operation include the spray, purge and fan cooler systems. The limiting event for minimum containment pressure design has been determined to be inadvertent actuation of the CS system. In comparison, the pressure reduction effect due to the inadvertent operation of the reactor containment fan cooler (RCFC) units is negligible since its cooling water temperature is higher than the minimum IRWST water temperature assumed in the inadvertent CS actuation.

    Consideration is also given to inadvertent operation of the containment normal purging system (i.e., operation of the exhaust train with the supply train isolated), but the maximum feasible internal vacuum for this case is limited to a few inches of water gauge based on the exhaust fan operating curve.

    The decrease in containment internal pressure from an inadvertent operation of the CS system with the containment purge valves open is negligible. However, a significant containment pressure reduction can occur following CS system actuation in a sealed

    Rev. 0

    133.8272.9

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (7/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-28

    For the conservative analysis, the assumptions about the energy sources are biased to maximize the stored energy.

    For considering the stored energy in the coolant, the initial RCS water volumes are conservatively calculated based on the maximum manufacturing tolerances of the reactor vessel and steam generator tubes. Volume expansion of the loop components from cold to hot operating conditions is also considered for the primary and secondary coolant stored energy. The initial water volume in the pressurizer includes an allowance for level instrumentation error. This makes the maximized pressurizer water volume, which includes the maximized stored energy.

    For considering the stored energy in the primary and secondary walls, the large specific heat and heat conductivity of carbon steel are conservatively assumed for all of the walls in the RCS.

    The core stored energy may be increased slightly by thermal conductivity degradation (TCD). However, the effect of TCD on the M&E release is negligible. The results are described in Reference 5.

    For considering the energy in the safety injection water, the liquid break flow is assumed to be mixed with the water in IRWST. The mixed water is taken and discharged into the direct vessel injection (DVI) by SI pumps, which increases the energy in the safety injection water.

    The initial power level assumed in the analyses consists of the core power and an additional RCP power. The initial core power is assumed to be 102 percent, which includes the instrumentation error. The higher power level is conservative for LOCA containment pressure calculations.

    For the core decay heat curve as a fraction of the initial power level following the accident, a 20 percent conservatism factor is used for the first 1,000 seconds, followed by a 10 percent factor. The normalized decay heat curve is shown in Figure 6.2.1-32.

    Initial conditions in the reactor coolant system are given in Table 6.2.1-20. It shows various stored energies in the RCS and containment at the initial time. A tabulation of

    Rev. 0

    The core stored energy may be increased by the thermal conductivity degradation (TCD). The containment peak pressure with the TCD effect is slightly higher by 0.63 psi than the case without TCD. The TCD effect on the LOCA is negligible. The detailed methodology descriptions and M/E and P/T results of the TCD effect analysis are provided in Section 3 of Reference 3.

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (8/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-36

    The total volume of fluid for two steam lines between the MSIVs and a steam generator is assumed to be the maximum in the analysis. The total volume of fluid between the MSIVs and the turbine stop valves is also assumed to be the maximum in the analysis.

    There are two MFIVs in each feedwater line. The total volume of fluid between the upstream MFIV and each steam generator is assumed to be the maximum. The flashing of this fluid into the affected steam generator and then into the containment is considered in the analysis. These assumed volumes conservatively exceed the actual design values of the APR1400 volumes.

    The sources of energy considered in the MSLB analysis include the stored energy in the (1) affected steam generator’s metal, including the steam generator tube, (2) water in the affected steam generator, (3) feedwater transferred to the affected steam generator before the closure of the MFIV, and (4) steam from the unaffected steam generator before the closure of the MSIV. The energy sources that are considered also include the energy transferred from the primary coolant to the water in the affected steam generator during blowdown.

    6.2.1.4.1 Mass and Energy Release Data

    Mass and energy release data for the MSLB cases listed in Table 6.2.1-1 are given in Tables 6.2.1-9 through 6.2.1-18.

    6.2.1.4.2 Single Failure Analysis

    Non-class 1E electric power is conservatively assumed to be available because it allows the continuation of reactor coolant pump operation, which maximizes the rate of heat transfer to the affected steam generator, which maximizes the rate of an M&E release. With the availability of Non-class 1E electric power, a postulated diesel generator failure is unnecessary.

    There is an MSIV in each main steam line. The MSIVs are designed to close based on a conservative calculation that maximizes the dynamic pressure loading on the valve for all possible flow rates and qualities. Each valve has dual control circuits to provide reasonable assurance of closure even with a single failure in the control system. Each

    Rev. 0

    The core stored energy may be increased by the thermal conductivity degradation (TCD). The containment peak pressure with the TCD effect is slightly higher by 0.33 psi than the case without TCD. The TCD effect on the MSLB is negligible. The detailed methodology descriptions and M/E and P/T results of the TCD effect analysis are provided in Section 3 of Reference 3.

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (9/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-98

    Table 6.2.1-2

    Calculated Values for Containment and Subcompartment Pressure Parameters

    Parameter Design Basis Accident Peak Calculated Value

    Containment Maximum Pressure, kg/cm2 (psig)

    LOCA DEDLSB with Max. SI Flow

    3.59 (51.09)

    Containment Maximum Atmosphere Temperature, oC (oF)

    MSLB 102 % power with an MSIV Single Failure

    167.45 (333.41)

    Containment Maximum Saturated Temperature, oC (oF)

    LOCA DEDLSB with Max. SI Flow

    134.59 (274.25)

    Containment Maximum External Pressure, kg/cm2 (psig)

    Inadvertent Operation of CS System

    0.25 (3.54)

    Peak Subcompartment Differential Pressure kg/cm2 (psid)

    SG Subcompartment Economizer Nozzle Break 0.653 (9.281)

    Pressurizer Subcompartment POSRV Nozzle Break 0.582 (8.284)

    Pressurizer Spray Valve Room Pressurizer Spray Line Break 0.730 (10.388)

    Regenerative Heat Exchanger Room CVCS Letdown Line Break 0.138 (1.964)

    Letdown Heat Exchanger Room CVCS Letdown Line Break 0.070 (0.999)

    Letdown Heat Exchanger Valve Room CVCS Letdown Line Break 0.154 (2.186)

    Rev. 0

    3.60 (51.21)

    171.55 (340.78)

    134.95 (274.91)

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (10/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-99

    Table 6.2.1-3

    Principal Containment Design Parameters

    Parameter Design Value Margin(1)

    Containment

    Internal design pressure, kg/cm2 (psig) 4.22 (60.0) 14.8 %

    External design pressure, kg/cm2 (psig) 0.28 (4.0) 11.4 %

    Containment design temperature, C ( F) 143.3 (290.0) (2) 8.75 (15.75) (3)

    Internal dimension

    Diameter of cylinder, m (ft) 45.72 (150.0) N/A

    Net free volume, m3 (ft3) (4) 8.8576 × 104 (3.128 × 106)

    -1.0 %

    Design leakage rate (% free volume/day)

    First 24 hours 0.1 N/A

    After 1 day 0.05 N/A

    Subcompartment (5)

    Steam generator, kg/cm2 (psid) 0.914 (13.0) 40 %

    Pressurizer, kg/cm2 (psid) 0.844 (12.0) 45 %

    Pressurizer spray valve, kg/cm2 (psid) 1.055 (15.0) 44 %

    Regen. heat exchanger, kg/cm2 (psid) 0.211 (3.0) 53 %

    Letdown heat exchanger, kg/cm2 (psid) 0.141 (2.0) 100 %

    Letdown heat exchanger valve, kg/cm2 (psid) 0.281 (4.0) 83 % (1) Margin between design limit and calculated peak value (2) Containment design temperature (allowable maximum surface temperature of liner plate in containment). (3) Difference between the containment design temperature and maximum saturated temperature in LOCA or

    MSLB accidents (4) The net free volume does not include the IRWST volume. (5) Design differential pressure in subcompartment (%)

    Rev. 0

    14.7 %

    (4) The net free volume does not include the IRWST volume. Additionally, the volume includes all the water trap spaces in containment.

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (11/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-100

    Table 6.2.1-4 (1 of 23)

    Double-Ended Suction Leg Slot Break – Maximum SIS Flow (0.9121 m2 (9.8175 ft2) Total Break Area)

    Part A. Mass and Energy Release Data (Blowdown Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 0.000 0.00 0.00 0.00 0.00 0.027 35,826.69 78,984.75 310.61 559.13 0.054 35,499.95 78,264.39 310.08 558.18 0.103 35,936.95 79,227.82 309.90 557.85 0.152 49,099.29 108,245.97 310.38 558.72 0.202 47,285.37 104,246.94 311.04 559.91 0.252 45,576.63 100,479.79 311.57 560.85 0.298 44,683.04 98,509.75 311.94 561.52 0.351 44,779.94 98,723.38 312.17 561.94 0.400 44,346.29 97,767.34 312.52 562.56 0.603 43,478.91 95,855.09 313.48 564.30 0.800 44,864.47 98,909.74 314.64 566.38 1.000 42,167.46 92,963.82 315.74 568.36 1.202 40,552.76 89,404.00 317.33 571.22 1.401 38,527.59 84,939.24 319.05 574.33 1.607 38,152.42 84,112.13 320.39 576.73 1.800 37,859.70 83,466.78 321.87 579.40 2.001 37,500.04 82,673.88 323.76 582.80 2.204 35,984.54 79,332.74 325.55 586.03 2.407 33,372.26 73,573.62 326.50 587.73 2.601 31,669.84 69,820.41 327.91 590.27 2.812 30,653.27 67,579.23 330.85 595.57 3.008 29,668.44 65,408.05 334.73 602.56 3.208 28,297.64 62,385.94 340.03 612.09 3.408 26,715.66 58,898.26 346.75 624.19

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (12/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-101

    Table 6.2.1-4 (2 of 23)

    Part A. Mass and Energy Release Data (Blowdown Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 3.608 24,966.73 55,042.51 354.00 637.23 3.808 23,497.04 51,802.38 360.32 648.62 4.000 22,127.47 48,782.98 365.48 657.89 4.211 21,436.30 47,259.20 366.85 660.37 4.409 21,008.90 46,316.93 366.71 660.11 4.609 20,598.55 45,412.26 366.16 659.12 4.809 20,267.22 44,681.81 365.67 658.24 5.009 20,051.87 44,207.03 364.92 656.90 5.209 19,841.27 43,742.73 364.35 655.86 5.409 19,815.87 43,686.73 363.56 654.45 5.609 19,693.35 43,416.63 363.47 654.28 5.809 19,144.10 42,205.74 364.81 656.69 6.009 18,734.91 41,303.63 365.84 658.55 6.209 18,566.23 40,931.75 365.82 658.51 6.409 18,595.07 40,995.33 363.92 655.09 6.609 18,479.62 40,740.79 363.55 654.43 6.809 17,933.49 39,536.78 366.91 660.48 7.009 17,132.26 37,770.38 372.47 670.48 7.209 16,620.46 36,642.04 375.29 675.57 7.409 16,372.62 36,095.63 375.88 676.62 7.609 16,206.97 35,730.45 376.05 676.92 7.809 16,191.18 35,695.62 374.41 673.98 8.009 16,125.16 35,550.08 373.73 672.75 8.209 15,915.11 35,086.98 374.73 674.55 8.409 15,680.94 34,570.74 375.85 676.56 8.609 15,427.32 34,011.60 377.17 678.94 8.809 15,141.74 33,381.99 378.82 681.91 9.005 14,809.07 32,648.58 380.75 685.38

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (13/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-102

    Table 6.2.1-4 (3 of 23)

    Part A. Mass and Energy Release Data (Blowdown Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 9.204 14,527.77 32,028.41 382.90 689.26 9.400 14,196.28 31,297.60 385.45 693.86 9.608 13,797.32 30,418.04 387.37 697.31 9.801 13,391.38 29,523.09 391.81 705.30

    10.004 13,129.00 28,944.65 395.88 712.62 10.205 12,765.77 28,143.85 399.12 718.46 10.404 12,429.45 27,402.39 401.76 723.21 10.603 11,985.20 26,422.98 406.03 730.90 10.799 11,582.15 25,534.40 412.05 741.74 11.004 11,140.57 24,560.87 417.73 751.96 11.205 10,637.22 23,451.17 423.35 762.07 11.406 10,190.47 22,466.27 428.61 771.53 11.601 9,728.82 21,448.50 433.53 780.39 11.804 9,042.09 19,934.50 445.87 802.61 12.006 8,756.29 19,304.41 452.29 814.16 12.205 8,377.30 18,468.88 457.85 824.18 12.406 8,013.92 17,667.76 463.75 834.79 12.599 7,657.53 16,882.05 469.08 844.38 12.806 7,397.99 16,309.86 475.41 855.78 13.005 7,153.35 15,770.51 476.56 857.85 13.213 6,944.67 15,310.45 475.99 856.84 13.413 6,730.23 14,837.69 477.18 858.98 13.613 6,534.48 14,406.13 479.25 862.71 13.813 6,358.64 14,018.47 480.50 864.96 14.013 6,188.02 13,642.32 481.42 866.61 14.203 5,966.42 13,153.78 482.94 869.34 14.409 5,852.22 12,902.00 478.07 860.57 14.616 5,895.97 12,998.45 457.84 824.16

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (14/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-103

    Table 6.2.1-4 (4 of 23)

    Part A. Mass and Energy Release Data (Blowdown Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 14.816 5,885.88 12,976.22 441.01 793.86 15.016 5,839.74 12,874.49 431.85 777.37 15.214 5,717.91 12,605.89 425.51 765.97 15.409 5,579.03 12,299.72 419.00 754.25 15.609 5,389.08 11,880.96 415.55 748.04 15.809 5,183.01 11,426.64 413.16 743.74 16.009 4,939.96 10,890.80 411.96 741.57 16.200 4,374.29 9,643.72 443.96 799.17 16.400 4,198.25 9,255.61 443.34 798.06 16.601 4,077.66 8,989.74 441.21 794.23 16.800 3,932.45 8,669.61 438.05 788.53 17.001 3,815.63 8,412.08 433.55 780.43 17.205 3,707.03 8,172.64 424.86 764.79 17.400 3,576.74 7,885.40 419.56 755.24 17.600 3,431.20 7,564.54 416.49 749.73 17.800 3,384.27 7,461.08 407.89 734.25 18.000 3,343.38 7,370.94 401.24 722.27 18.200 3,122.01 6,882.88 401.21 722.22 18.400 3,066.26 6,759.98 391.83 705.34 18.600 2,962.81 6,531.92 382.50 688.54 18.802 2,774.26 6,116.24 381.33 686.43 18.999 2,608.38 5,750.52 378.21 680.83 19.203 2,546.44 5,613.97 383.68 690.67

    Integral Mass and Energy Release at End of Blowdown

    Time (sec)

    Integral Mass Integral Energy

    kg lbm Million kcal Million Btu 19.203 304,940.875 672,283.090 110.483 438.461

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (15/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-104

    Table 6.2.1-4 (5 of 23)

    Part A. Mass and Energy Release Data (Reflood and Post-reflood Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 19.20 0.00 0.00 0.00 0.00 19.30 66.99 147.69 705.17 1,269.37 19.40 89.74 197.84 704.39 1,267.98 21.40 188.20 414.92 706.66 1,272.06 23.40 443.15 976.98 709.46 1,277.10 25.40 653.90 1,441.61 708.54 1,275.45 27.90 854.83 1,884.59 706.02 1,270.91 28.00 861.36 1,898.99 705.91 1,270.71 28.10 503.31 1,109.62 705.80 1,270.51 28.20 506.33 1,116.27 705.69 1,270.32 32.20 495.32 1,091.99 703.65 1,266.65 36.20 482.35 1,063.40 701.74 1,263.20 40.20 469.72 1,035.56 699.87 1,259.84 44.20 457.41 1,008.43 698.06 1,256.59 48.20 445.46 982.07 696.27 1,253.35 52.20 433.85 956.47 694.47 1,250.12 56.20 422.51 931.49 692.72 1,246.97 60.20 411.46 907.12 691.01 1,243.89 63.60 402.29 886.90 689.57 1,241.30 63.70 402.03 886.32 689.52 1,241.21 63.80 692.50 1,526.72 689.49 1,241.15 63.90 691.55 1,524.61 689.45 1,241.08 65.60 673.65 1,485.15 688.93 1,240.14 67.30 658.82 1,452.46 688.38 1,239.16 69.00 646.15 1,424.53 687.82 1,238.14 70.70 635.81 1,401.72 687.22 1,237.07 72.40 626.95 1,382.20 686.79 1,236.29 74.10 619.36 1,365.47 686.15 1,235.13

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (16/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-105

    Table 6.2.1-4 (6 of 23)

    Part A. Mass and Energy Release Data (Reflood and Post-reflood Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 75.80 612.76 1,350.91 685.48 1,233.94 77.50 606.95 1,338.10 684.81 1,232.73 79.20 601.78 1,326.70 684.12 1,231.49 80.90 597.13 1,316.46 683.42 1,230.23 82.90 592.23 1,305.65 681.49 1,226.76 83.00 585.05 1,289.83 668.58 1,203.50 83.10 610.73 1,346.43 679.60 1,223.34 83.20 560.47 1,235.63 669.16 1,204.56 83.30 597.41 1,317.06 668.14 1,202.71 83.40 589.89 1,300.49 668.27 1,202.95 85.40 499.76 1,101.78 670.44 1,206.86 87.40 454.05 1,001.02 671.43 1,208.65 89.40 419.27 924.34 672.14 1,209.92 91.40 389.59 858.91 672.76 1,211.03 93.40 363.41 801.18 673.34 1,212.09 95.40 339.97 749.51 673.92 1,213.12 97.40 318.87 702.99 674.47 1,214.11 99.40 299.77 660.89 675.01 1,215.08

    101.40 282.41 622.62 675.53 1,216.03 103.40 266.57 587.69 676.05 1,216.96 105.40 252.05 555.68 676.56 1,217.87 107.40 238.70 526.25 677.05 1,218.77 109.40 226.39 499.10 677.54 1,219.65 110.10 222.30 490.09 677.71 1,219.95 110.20 221.72 488.82 677.74 1,220.00 110.30 221.15 487.55 677.77 1,220.06 111.30 216.37 477.02 676.39 1,217.57 112.30 116.80 257.51 698.56 1,257.48

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (17/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-106

    Table 6.2.1-4 (7 of 23)

    Part A. ass and Energy Release Data (Reflood and Post-reflood Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 113.30 209.65 462.21 675.49 1,215.95 114.30 130.05 286.71 692.61 1,246.78 115.30 188.18 414.87 677.48 1,219.54 116.30 261.60 576.73 669.01 1,204.29 117.30 256.62 565.75 668.68 1,203.69 118.30 247.62 545.92 668.71 1,203.75 119.30 234.21 516.34 669.12 1,204.48 120.30 224.89 495.80 669.30 1,204.81 121.30 217.46 479.43 669.39 1,204.97 122.30 212.74 469.02 669.32 1,204.85 123.30 213.77 471.29 668.89 1,204.06 124.90 94.67 208.72 690.29 1,242.59 125.00 76.66 169.01 703.26 1,265.94

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (18/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-107

    Table 6.2.1-4 (8 of 23)

    Integral Mass and Energy Release at the End of Reflood and Post-reflood

    Time (sec)

    Integral Mass Integral Energy

    kg lbm Million

    kcal Million Btu 110.20 41,755.23 92,055.00 28.806 114.317 125.00 44,853.70 98,886.00 30.891 122.593

    Part A. ass and Energy Release Data (Spillage)

    Time (sec)

    Integral Mass Integral Energy

    kg Lbm Million kcal Million Btu

    End of Blowdown at 19.203 0.00 0.00 0.000 0.000

    End of Reflood at 110.20 44,613.87 98,357.25 10.694 42.439

    End of Post-reflood at 125.00 56,206.13 123,913.96 12.367 49.079

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (19/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-108

    Table 6.2.1-4 (9 of 23)

    Part A. Mass and Energy (Steam) Release Data (Decay heat Period)

    Time (sec)

    Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 400.0 56.03 123.53 653.58 1176.45 599.9 52.8 116.41 653.25 1175.86 800.0 50.34 110.98 653.02 1175.44 999.0 48.23 106.33 652.84 1175.12

    1503.3 44.15 97.33 652.53 1174.55 1996.8 41.12 90.65 652.32 1174.18 4002.6 33.89 74.72 651.91 1173.43 6001.4 30.28 66.76 651.69 1173.04 8000.6 28.11 61.98 651.56 1172.82 9990.3 26.62 58.68 651.48 1172.66

    15005.7 24.3 53.58 651.33 1172.4 20011.4 22.88 50.45 651.16 1172.09 40036.7 19.95 43.98 650.42 1170.75 59963.5 18.43 40.64 649.67 1169.4 79990.5 17.48 38.53 649.08 1168.34

    100002.0 14.51 31.98 647.91 1166.24 150010.0 12.81 28.25 646.49 1163.68 200018.5 11.71 25.81 645.78 1162.4 400053.2 9.2 20.29 644.5 1160.1 600094.9 7.86 17.32 643.87 1158.97 800141.2 6.98 15.4 643.5 1158.3

    1000000.0 6.38 14.06 643.25 1157.86

    Integral Mass and Energy(Steam) Release at 24hours after postulated accident

    Time (sec)

    Integral Mass Integral Energy

    kg lbm Million kcal Million Btu 85,095 1,892,545 4,172,349 1,233.798 4,896.105

    1,000,000 10,026,920 22,105,576 6,481.549 25,720.864

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (20/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-109

    Table 6.2.1-4 (10 of 23)

    Part A. Mass and Energy (Spillage) Release Data (Decay heat Period)

    Time (sec)

    Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 400.0 177.29 390.85 61.98 111.56 599.9 185.21 408.32 72.56 130.6 800.0 190.95 420.98 77.0 138.6 999.0 195.36 430.69 79.87 143.77

    1503.3 202.54 446.53 85.32 153.57 1996.8 206.56 455.38 89.73 161.51 4002.6 212.4 468.26 102.2 183.95 6001.4 214.62 473.15 109.38 196.89 8000.6 215.72 475.59 113.68 204.62 9990.3 216.58 477.47 116.26 209.27

    15005.7 218.08 480.79 119.07 214.32 20011.4 219.29 483.45 119.55 215.19 40036.7 222.57 490.69 116.79 210.23 59963.5 224.82 495.64 112.91 203.24 79990.5 226.39 499.11 109.68 197.43

    100002.0 230.12 507.33 104.29 187.72 150010.0 233.44 514.66 95.1 171.19 200018.5 235.28 518.7 90.4 162.72 400053.2 238.93 526.76 81.43 146.58 600094.9 240.83 530.93 76.5 137.7 800141.2 242.0 33.52 73.4 132.13

    1000000.0 242.8 535.29 71.26 128.26

    Integral Mass and Energy(Spillage) Release at 24 hours after postulated accident

    Time (sec)

    Integral Mass Integral Energy

    kg lbm Million kcal Million Btu 85,095 18,940,481 41,756,614 2,154.820 8,551.016

    1,000,000 237,863,121 524,398,419 19,724.139 78,271.706

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (21/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-110

    Table 6.2.1-4 (11 of 23)

    Part B. eactor Vessel Pressure vs. Time (Blowdown Period)

    Time (sec)

    Reactor Vessel Pressure

    kg/cm2A psia 0.000 167.36 2,380.40 0.027 159.52 2,268.90 0.054 147.05 2,091.50 0.103 125.06 1,778.70 0.152 126.83 1,804.00 0.202 126.45 1,798.60 0.252 125.82 1,789.60 0.298 125.29 1,782.10 0.351 123.83 1,761.30 0.400 123.02 1,749.70 0.603 120.51 1,714.00 0.800 118.85 1,690.50 1.000 117.11 1,665.70 1.202 114.64 1,630.50 1.401 112.52 1,600.40 1.607 111.04 1,579.30 1.800 109.75 1,561.00 2.001 108.13 1,538.00 2.204 106.14 1,509.70 2.407 104.53 1,486.80 2.601 104.06 1,480.10 2.812 102.49 1,457.80 3.008 100.88 1,434.90 3.208 99.02 1,408.40 3.408 97.55 1,387.50

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (22/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-111

    Table 6.2.1-4 (12 of 23)

    Part B. Reactor Vessel Pressure vs. Time (Blowdown Period)

    Time (sec)

    Reactor Vessel Pressure

    kg/cm2A psia 3.608 95.48 1,358.10 3.808 93.41 1,328.60 4.000 91.91 1,307.30 4.210 90.07 1,281.10 4.409 88.60 1,260.20 4.609 87.41 1,243.20 4.809 86.24 1,226.60 5.009 85.01 1,209.10 6.209 80.24 1,141.30 6.409 79.48 1,130.40 6.609 78.88 1,121.90 6.809 78.27 1,113.30 7.009 77.62 1,104.00 7.209 76.94 1,094.40 7.409 76.32 1,085.50 7.609 75.57 1,074.90 7.809 74.87 1,064.90 8.009 74.23 1,055.80 8.409 72.92 1,037.20 8.809 71.62 1,018.70 9.204 70.32 1,000.20 9.608 69.01 981.57

    10.004 67.70 962.86 10.404 66.32 943.31 10.799 64.73 920.61 11.205 62.25 885.43

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (23/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-112

    Table 6.2.1-4 (13 of 23)

    Part B. Reactor Vessel Pressure vs. Time (Blowdown Period)

    Time (sec)

    Reactor Vessel Pressure

    kg/cm2A psia 11.601 59.92 852.22 12.006 58.14 826.88 12.205 55.99 796.34 12.406 55.20 785.18 12.599 53.98 767.78 12.806 52.89 752.32 13.005 51.83 737.15 13.213 50.66 720.49 13.413 49.62 705.72 13.613 48.60 691.24 14.816 40.78 579.98 15.016 39.48 561.58 15.214 37.97 540.09 15.409 36.72 522.26 15.609 35.32 502.42 15.809 34.01 483.72 16.009 32.71 465.30 16.200 31.56 448.93 16.400 30.45 433.14 16.601 29.23 415.81 16.800 28.03 398.63 17.001 26.77 380.75 17.205 25.49 362.53 17.400 24.24 344.80 17.600 23.00 327.17 17.800 21.78 309.80 18.000 20.54 292.11 18.200 19.37 275.52

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (24/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-113

    Table 6.2.1-4 (14 of 23)

    Part B. Reactor Vessel Pressure vs. Time (Reflood and Post-reflood Period)

    Time (sec)

    Reactor Vessel Pressure

    kg/cm2A psia 18.400 18.22 259.10 18.600 17.10 243.28 18.802 15.99 227.49 18.999 14.94 212.46 19.203 15.92 226.38

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (25/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-114

    Table 6.2.1-4 (15 of 23)

    Part B. Reactor Vessel Pressure vs. Time (Reflood and Post-reflood Period)

    Time (sec)

    Reactor Vessel Pressure

    kg/cm2A psia 19.20 4.080 58.000 19.30 4.120 58.590 19.40 4.180 59.510 21.40 4.530 64.410 23.40 6.230 88.590 25.40 8.150 115.870 27.90 10.220 145.340 28.00 10.290 146.340 28.10 10.360 147.320 28.20 10.410 148.060 32.20 10.140 144.220 36.20 9.860 140.200 40.20 9.590 136.350 44.20 9.330 132.690 48.20 9.080 129.180 52.20 8.850 125.830 56.20 8.620 122.630 60.20 8.410 119.570 63.60 8.230 117.070 63.70 8.230 117.000 63.80 8.220 116.890 63.90 8.210 116.740 65.60 8.030 114.210 67.30 7.880 112.120 69.00 7.760 110.340 70.70 7.650 108.870 72.40 7.570 107.640

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (26/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-115

    Table 6.2.1-4 (16 of 23)

    Part B. Reactor Vessel Pressure vs. Time (Reflood and Post-reflood Period)

    Time (sec)

    Reactor Vessel Pressure

    kg/cm2A psia 74.10 7.490 106.550 75.80 7.420 105.580 77.50 7.360 104.720 79.20 7.310 103.950 80.90 7.260 103.240 82.90 7.210 102.480 83.00 7.210 102.510 83.10 7.160 101.780 83.20 7.190 102.270 83.30 7.150 101.690 83.40 7.130 101.460 85.40 7.000 99.570 87.40 6.810 96.830 89.40 6.610 94.080 91.40 6.440 91.530 93.40 6.270 89.210 95.40 6.120 87.100 97.40 5.990 85.190 99.40 5.870 83.440

    101.40 5.750 81.840 103.40 5.650 80.380 105.40 5.560 79.030 107.40 5.470 77.780 109.40 5.390 76.630 110.10 5.360 76.240 110.20 5.360 76.190 110.30 5.350 76.140

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (27/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-116

    Table 6.2.1-4 (17 of 23)

    Part B. Reactor Vessel Pressure vs. Time (Reflood and Post-reflood period)

    Time (sec)

    Reactor Vessel Pressure

    kg/cm2A psia 111.30 5.180 73.710 112.30 5.330 75.740 113.30 5.040 71.660 114.30 5.240 74.590 115.30 5.000 71.140 116.30 4.820 68.490 117.30 4.760 67.680 118.30 4.710 67.060 119.30 4.680 66.550 120.30 4.650 66.080 121.30 4.610 65.640 122.30 4.590 65.240 123.30 4.560 64.890 124.90 4.640 65.970 125.00 4.750 67.560

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (28/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-117

    Table 6.2.1-4 (18 of 23)

    Part B. Reactor Vessel Pressure vs. Time (Decay heat Period)

    Time (sec)

    Reactor Vessel Pressure

    kg/cm2A psia 200.0 4.272 60.757 400.0 3.975 56.537 599.9 3.855 54.836 800.0 3.774 53.674 999.0 3.711 52.79

    1503.3 3.604 51.266 1996.8 3.537 50.303 4002.6 3.404 48.419 6001.4 3.337 47.46 8000.6 3.298 46.904 9990.3 3.272 46.54

    15005.7 3.228 45.912 20011.4 3.178 45.203 40036.7 2.967 42.204 59963.5 2.768 39.374 79990.5 2.623 37.304

    100002.0 2.356 33.507 150010.0 2.066 29.381 200018.5 1.934 27.505 400053.2 1.718 24.434 600094.9 1.62 23.042 800141.2 1.565 22.257

    1000000.0 1.529 21.749

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (29/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-118

    Table 6.2.1-4 (19 of 23)

    Part C. Safety Injection Flow vs. Time (Blowdown Period)

    Time (sec)

    Safety Injection Tank Flow

    kg/sec lbm/sec 0.000 0.00 0.00 0.027 0.00 0.00

    13.813 0.00 0.00 14.013 0.00 0.00 14.203 1,281.21 2,824.60 14.409 1,690.48 3,726.90 14.616 1,989.35 4,385.80 14.816 2,357.62 5,197.70 15.016 2,555.71 5,634.40 15.214 2,769.58 6,105.90 15.409 2,934.41 6,469.30 15.609 3,097.38 6,828.60 15.809 3,236.55 7,135.40 16.009 3,362.73 7,413.60 16.200 3,451.73 7,609.80 16.400 3,536.73 7,797.20 16.601 3,639.88 8,024.60 16.800 3,738.76 8,242.60 17.001 3,845.63 8,478.20 17.205 3,957.26 8,724.30 17.400 4,061.17 8,953.40 17.600 4,159.33 9,169.80 17.800 4,253.59 9,377.60 18.000 4,351.61 9,593.70 18.200 4,434.98 9,777.50 18.400 4,517.85 9,960.20 18.600 4,594.41 10,129.00 18.802 4,668.35 10,292.00 18.999 4,740.47 10,451.00 19.203 4,496.26 9,912.60

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (30/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-119

    Table 6.2.1-4 (20 of 23)

    Part C. Safety Injection Flow vs. Time (Reflood and Post-reflood Period)

    Time (sec)

    Safety Injection Tank Flow Safety Injection Pump Flow

    kg/sec lbm/sec kg/sec lbm/sec 19.203 3,140.51 6,923.66 328.55 724.33 19.303 3,128.73 6,897.71 328.55 724.33 21.303 2,898.47 6,390.06 328.12 723.38 23.303 2,609.51 5,753.00 325.77 718.20 25.303 2,312.95 5,099.22 323.05 712.21 27.303 2,031.18 4,478.00 320.57 706.73 28.003 1,939.29 4,275.41 319.82 705.09 28.103 1,926.52 4,247.28 319.72 704.87 31.603 1,750.66 3,859.57 319.86 705.18 35.103 1,619.26 3,569.87 320.22 705.97 38.603 1,509.04 3,326.87 320.56 706.72 42.103 1,415.35 3,120.33 320.89 707.45 45.603 1,334.88 2,942.92 321.21 708.15 49.103 1,265.14 2,789.18 321.51 708.82 52.603 1,204.31 2,655.06 321.81 709.47 56.103 1,150.94 2,537.40 322.09 710.09 59.603 1,103.87 2,433.64 322.36 710.68 63.603 1,056.60 2,329.42 322.66 711.34 63.703 1,055.50 2,326.99 322.66 711.35 63.803 478.11 1,054.06 322.67 711.37 63.903 478.29 1,054.45 322.68 711.39 68.403 493.13 1,087.18 323.27 712.68 72.903 496.10 1,093.72 323.63 713.49 77.403 493.39 1,087.74 323.89 714.05 81.903 487.90 1,075.64 324.08 714.48 86.403 497.54 1,096.88 324.53 715.47 90.903 515.58 1,136.65 325.14 716.81 95.403 527.71 1,163.41 325.65 717.93 99.903 534.86 1,179.17 326.05 718.83

    104.403 538.52 1,187.24 326.39 719.57

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (31/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-120

    Table 6.2.1-4 (21of 23)

    Part C. Safety Injection Flow vs. Time (Reflood and Post-reflood Period)

    Time (sec)

    Safety Injection Tank Flow Safety Injection Pump Flow

    kg/sec lbm/sec kg/sec lbm/sec 108.903 539.70 1,189.84 326.67 720.18 110.203 539.68 1,189.80 326.74 720.34 111.903 555.69 1,225.09 327.15 721.24 113.603 545.69 1,203.05 327.04 721.01 115.303 559.32 1,233.09 327.41 721.81 117.003 553.48 1,220.23 327.38 721.75 118.703 477.62 1,052.97 326.05 718.82 120.403 563.38 1,242.05 327.75 722.58 122.103 544.49 1,200.40 327.46 721.93 123.803 567.37 1,250.85 328.01 723.13 125.003 552.37 1,217.77 327.76 722.60 129.503 546.45 1,204.72 327.86 722.82 134.003 506.57 1,116.79 327.31 721.61 138.503 544.21 1,199.79 328.23 723.62 143.003 534.02 1,177.31 328.22 723.61 147.503 520.87 1,148.33 328.16 723.47 152.003 520.46 1,147.43 328.32 723.83 156.503 512.85 1,130.66 328.35 723.89 160.503 504.46 1,112.16 328.34 723.87 183.903 465.15 1,025.47 328.40 724.00 207.303 430.33 948.71 328.44 724.10 230.703 399.46 880.66 328.48 724.18 254.103 371.43 818.87 328.51 724.24 277.503 344.67 759.87 328.52 724.26 300.903 319.54 704.46 328.52 724.27 324.303 296.19 652.99 328.52 724.27 347.703 274.34 604.83 328.52 724.28 367.903 256.51 565.52 328.53 724.28 368.003 256.43 565.33 328.53 724.28 368.103 0.00 0.00 328.53 724.28

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (32/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-121

    Table 6.2.1-4 (22 of 23)

    Part C. Safety Injection Flow vs. Time (Reflood and Post-reflood Period)

    Time (sec)

    Safety Injection Tank Flow Safety Injection Pump Flow

    kg/sec lbm/sec kg/sec lbm/sec 368.203 0.00 0.00 328.53 724.28 398.203 0.00 0.00 328.54 724.32 428.203 0.00 0.00 328.54 724.32 458.203 0.00 0.00 328.54 724.32 488.203 0.00 0.00 328.54 724.32 499.903 0.00 0.00 328.54 724.31 500.003 0.00 0.00 328.54 724.31

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (33/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-122

    Table 6.2.1-4 (23 of 23)

    Part D. Chronology of Events

    Time (sec) Event Values

    0.00 Break occurs -

    4.38 Containment pressure Hi-Hi setpoint 1.547 kg/cm²G (22.0 psig)

    14.01 Start safety injection tank (SIT) injection -

    19.20 End of blowdown -

    19.21 Start SI pump injection -

    First peak containment pressure (Blowdown phase)

    3.126 kg/cm²G (44.47 psig)

    63.70 SIT flow is turned down to low flow by fluidic device in SIT -

    101.91 Peak containment temperature 133.84 C (272.91 F)

    102.51 Peak containment pressure 3.512 kg/cm²G (49.96 psig)

    110.20 End of reflood

    114.38 Start containment spray actuation

    125.0 End of post reflood -

    368.10 Safety injection tank empty -

    57,660.1 Time of depressurization of the containment at 50% of peak pressure

    1.756 kg/cm²G (24.97 psig)

    Rev. 0

    Replace these 23 pages of Table 6.2.1-4 with the following 25 pages of revised Table 6.2.1-4.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (34/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (35/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (36/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (37/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (38/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (39/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (40/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (41/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (42/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (43/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (44/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (45/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (46/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (47/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (48/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (49/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (50/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (51/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (52/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (53/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (54/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (55/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (56/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (57/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (58/366)Non-Proprietary

  • RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (59/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-123

    Table 6.2.1-5 (1 of 25)

    Double-Ended Suction Leg Slot Break – Minimum SIS Flow (0.9121 m2 (9.8175 ft2) Total Break Area)

    Part A. Mass and Energy Release Data (Blowdown Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 0.000 0.00 0.00 0.00 0.00 0.027 35,826.69 78,984.75 310.61 559.13 0.054 35,499.95 78,264.39 310.08 558.18 0.103 35,936.95 79,227.82 309.90 557.85 0.152 49,099.29 108,245.97 310.38 558.72 0.202 47,285.37 104,246.94 311.04 559.91 0.252 45,576.63 100,479.79 311.57 560.85 0.298 44,683.04 98,509.75 311.94 561.52 0.351 44,779.94 98,723.38 312.17 561.94 0.400 44,346.29 97,767.34 312.52 562.56 0.603 43,478.91 95,855.09 313.48 564.30 0.800 44,864.47 98,909.74 314.64 566.38 1.000 42,167.46 92,963.82 315.74 568.36 1.202 40,552.76 89,404.00 317.33 571.22 1.401 38,527.59 84,939.24 319.05 574.33 1.607 38,152.42 84,112.13 320.39 576.73 1.800 37,859.70 83,466.78 321.87 579.40 2.001 37,500.04 82,673.88 323.76 582.80 2.204 35,984.54 79,332.74 325.55 586.03 2.407 33,372.26 73,573.62 326.50 587.73 2.601 31,669.84 69,820.41 327.91 590.27 2.812 30,653.27 67,579.23 330.85 595.57 3.008 29,668.44 65,408.05 334.73 602.56

    Rev. 0

    Replace these 25 pages of Table 6.2.1-5 with the following 25 pages of revised Table 6.2.1-5.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (60/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-124

    Table 6.2.1-5 (2 of 25)

    Part A. Mass and Energy Release Data (Blowdown Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 3.208 28,297.64 62,385.94 340.03 612.09 3.408 26,715.66 58,898.26 346.75 624.19 3.608 24,966.73 55,042.51 354.00 637.23 3.808 23,497.04 51,802.38 360.32 648.62 4.000 22,127.47 48,782.98 365.48 657.89 4.211 21,436.30 47,259.20 366.85 660.37 4.409 21,008.90 46,316.93 366.71 660.11 4.609 20,598.55 45,412.26 366.16 659.12 4.809 20,267.22 44,681.81 365.67 658.24 5.009 20,051.87 44,207.03 364.92 656.90 5.209 19,841.27 43,742.73 364.35 655.86 5.409 19,815.87 43,686.73 363.56 654.45 5.609 19,693.35 43,416.63 363.47 654.28 5.809 19,144.10 42,205.74 364.81 656.69 6.009 18,734.91 41,303.63 365.84 658.55 6.209 18,566.23 40,931.75 365.82 658.51 6.409 18,595.07 40,995.33 363.92 655.09 6.609 18,479.62 40,740.79 363.55 654.43 6.809 17,933.49 39,536.78 366.91 660.48 7.009 17,132.26 37,770.38 372.47 670.48 7.209 16,620.46 36,642.04 375.29 675.57 7.409 16,372.62 36,095.63 375.88 676.62 7.609 16,206.97 35,730.45 376.05 676.92 7.809 16,191.18 35,695.62 374.41 673.98

    Rev. 0

    Replace these 25 pages of Table 6.2.1-5 with the following 25 pages of revised Table 6.2.1-5.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (61/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-125

    Table 6.2.1-5 (3 of 25)

    Part A. Mass and Energy Release Data (Blowdown Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 8.009 16,125.16 35,550.08 373.73 672.75 8.209 15,915.11 35,086.98 374.73 674.55 8.409 15,680.94 34,570.74 375.85 676.56 8.609 15,427.32 34,011.60 377.17 678.94 8.809 15,141.74 33,381.99 378.82 681.91 9.005 14,809.07 32,648.58 380.75 685.38 9.204 14,527.77 32,028.41 382.90 689.26 9.400 14,196.28 31,297.60 385.45 693.86 9.608 13,797.32 30,418.04 387.37 697.31 9.801 13,391.38 29,523.09 391.81 705.30

    10.004 13,129.00 28,944.65 395.88 712.62 10.205 12,765.77 28,143.85 399.12 718.46 10.404 12,429.45 27,402.39 401.76 723.21 10.603 11,985.20 26,422.98 406.03 730.90 10.799 11,582.15 25,534.40 412.05 741.74 11.004 11,140.57 24,560.87 417.73 751.96 11.205 10,637.22 23,451.17 423.35 762.07 11.406 10,190.47 22,466.27 428.61 771.53 11.601 9,728.82 21,448.50 433.53 780.39 11.804 9,042.09 19,934.50 445.87 802.61 12.006 8,756.29 19,304.41 452.29 814.16 12.205 8,377.30 18,468.88 457.85 824.18 12.406 8,013.92 17,667.76 463.75 834.79 12.599 7,657.53 16,882.05 469.08 844.38 12.806 7,397.99 16,309.86 475.41 855.78 13.005 7,153.35 15,770.51 476.56 857.85 13.213 6,944.67 15,310.45 475.99 856.84

    Rev. 0

    Replace these 25 pages of Table 6.2.1-5 with the following 25 pages of revised Table 6.2.1-5.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (62/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-126

    Table 6.2.1-5 (4 of 25)

    Part A. Mass and Energy Release Data (Blowdown Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 13.413 6,730.23 14,837.69 477.18 858.98 13.613 6,534.48 14,406.13 479.25 862.71 13.813 6,358.64 14,018.47 480.50 864.96 14.013 6,188.02 13,642.32 481.42 866.61 14.203 5,966.42 13,153.78 482.94 869.34 14.409 5,852.22 12,902.00 478.07 860.57 14.616 5,895.97 12,998.45 457.84 824.16 14.816 5,885.88 12,976.22 441.01 793.86 15.016 5,839.74 12,874.49 431.85 777.37 15.214 5,717.91 12,605.89 425.51 765.97 15.409 5,579.03 12,299.72 419.00 754.25 15.609 5,389.08 11,880.96 415.55 748.04 15.809 5,183.01 11,426.64 413.16 743.74 16.009 4,939.96 10,890.80 411.96 741.57 16.200 4,374.29 9,643.72 443.96 799.17 16.400 4,198.25 9,255.61 443.34 798.06 16.601 4,077.66 8,989.74 441.21 794.23 16.800 3,932.45 8,669.61 438.05 788.53 17.001 3,815.63 8,412.08 433.55 780.43 17.205 3,707.03 8,172.64 424.86 764.79 17.400 3,576.74 7,885.40 419.56 755.24 17.600 3,431.20 7,564.54 416.49 749.73 17.800 3,384.27 7,461.08 407.89 734.25 18.000 3,343.38 7,370.94 401.24 722.27 18.200 3,122.01 6,882.88 401.21 722.22 18.400 3,066.26 6,759.98 391.83 705.34 18.600 2,962.81 6,531.92 382.50 688.54

    Rev. 0

    Replace these 25 pages of Table 6.2.1-5 with the following 25 pages of revised Table 6.2.1-5.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (63/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-127

    Table 6.2.1-5 (5 of 25)

    Part A. Mass and Energy Release Data (Blowdown Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 18.802 2,774.26 6,116.24 381.33 686.43 18.999 2,608.38 5,750.52 378.21 680.83 19.203 2,546.44 5,613.97 383.68 690.67

    Integral Mass and Energy Release at End of Blowdown

    Time (sec)

    Integral Mass Integral Energy

    kg lbm Million kcal Million Btu 19.203 304,940.875 672,283.090 110.483 438.461

    Rev. 0

    Replace these 25 pages of Table 6.2.1-5 with the following 25 pages of revised Table 6.2.1-5.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (64/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-128

    Table 6.2.1-5 (6 of 25)

    Part A. Mass and Energy Release Data (Reflood and Post-reflood Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 19.20 0.00 0.00 0.00 0.00 19.30 65.68 144.80 705.18 1,269.39 19.40 87.02 191.85 704.39 1,267.97 21.40 170.74 376.42 706.26 1,271.34 23.40 419.58 925.02 709.42 1,277.03 25.40 619.99 1,366.86 708.76 1,275.85 27.40 778.07 1,715.35 707.06 1,272.79 28.70 857.72 1,890.96 705.73 1,270.38 28.80 863.10 1,902.81 705.62 1,270.19 28.90 503.65 1,110.37 705.52 1,270.00 29.00 505.52 1,114.49 705.44 1,269.86 31.60 498.21 1,098.37 704.10 1,267.45 34.20 489.69 1,079.58 702.84 1,265.19 36.80 481.32 1,061.13 701.61 1,262.97 39.40 473.10 1,043.01 700.39 1,260.78 42.00 465.01 1,025.18 699.21 1,258.65 44.60 457.06 1,007.65 698.04 1,256.54 47.20 449.25 990.44 696.87 1,254.44 49.80 441.62 973.60 695.70 1,252.32 52.40 434.10 957.04 694.53 1,250.23 55.00 426.71 940.73 693.39 1,248.18 57.60 419.43 924.69 692.26 1,246.14 60.20 412.26 908.89 691.15 1,244.15 62.80 405.21 893.35 690.05 1,242.17 63.50 403.34 889.22 689.76 1,241.64 63.60 403.08 888.64 689.71 1,241.55

    Rev. 0

    Replace these 25 pages of Table 6.2.1-5 with the following 25 pages of revised Table 6.2.1-5.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (65/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-129

    Table 6.2.1-5 (7 of 25)

    Part A. Mass and Energy Release Data (Reflood and Post-reflood Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 63.70 694.36 1,530.82 689.67 1,241.48 63.80 692.95 1,527.70 689.65 1,241.44 65.80 657.80 1,450.20 689.31 1,240.84 67.80 630.07 1,389.08 688.92 1,240.13 69.80 608.00 1,340.42 688.47 1,239.32 71.80 590.18 1,301.12 687.98 1,238.43 73.80 575.37 1,268.47 687.45 1,237.48 75.80 563.31 1,241.90 686.89 1,236.47 77.80 553.13 1,219.46 686.47 1,235.71 79.80 544.50 1,200.42 685.85 1,234.59 81.80 537.04 1,183.98 685.21 1,233.44 83.80 530.52 1,169.61 684.54 1,232.25 85.80 524.76 1,156.91 683.86 1,231.02 87.80 519.59 1,145.50 683.16 1,229.76 88.90 516.95 1,139.68 672.96 1,211.39 89.00 525.76 1,159.11 680.79 1,225.48 89.10 495.84 1,093.15 669.18 1,204.58 89.20 527.09 1,162.03 668.18 1,202.79 89.30 518.51 1,143.13 668.37 1,203.13 89.50 499.05 1,100.23 668.91 1,204.10 91.50 435.44 959.98 670.65 1,207.24 93.50 397.17 875.61 671.58 1,208.92 95.50 367.63 810.48 672.25 1,210.11 97.50 342.26 754.56 672.83 1,211.17 99.50 319.79 705.03 673.38 1,212.16

    101.50 299.61 660.52 673.92 1,213.12 103.50 281.37 620.31 674.44 1,214.07 105.50 264.82 583.83 674.95 1,214.98

    Rev. 0

    Replace these 25 pages of Table 6.2.1-5 with the following 25 pages of revised Table 6.2.1-5.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (66/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-130

    Table 6.2.1-5 (8 of 25)

    Part A. Mass and Energy Release Data (Reflood and Post-reflood Period)

    Time (sec)

    Break Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 107.50 249.75 550.60 675.45 1,215.87 109.50 235.97 520.22 675.94 1,216.76 111.50 223.33 492.36 676.42 1,217.62 113.50 211.70 466.73 676.89 1,218.48 115.50 200.98 443.09 677.35 1,219.30 117.00 193.47 426.53 677.70 1,219.93 117.10 192.98 425.46 677.72 1,219.97 117.20 192.50 424.39 677.75 1,220.02 118.20 160.97 354.88 682.73 1,228.99 119.20 433.91 956.61 663.25 1,193.93 120.20 94.59 208.53 701.96 1,263.60 121.20 173.41 382.31 677.72 1,219.96 122.20 132.67 292.49 686.52 1,235.80 123.20 515.95 1,137.48 661.26 1,190.33 124.20 506.65 1,116.98 660.92 1,189.72 125.20 394.68 870.13 662.55 1,192.66 126.20 128.13 282.47 683.18 1,229.79 127.50 101.43 223.61 688.12 1,238.68 127.60 76.44 168.52 702.72 1,264.96

    Rev. 0

    Replace these 25 pages of Table 6.2.1-5 with the following 25 pages of revised Table 6.2.1-5.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (67/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-131

    Table 6.2.1-5 (9 of 25)

    Integral Mass and Energy Release at the End of Reflood and Post-reflood

    Time (sec)

    Integral Mass Integral Energy

    kg lbm Million kcal Million Btu 117.10 43,315.58 95,495.00 29.90 118.66 127.60 45,246.51 99,752.00 31.20 123.84

    Part A. Mass and Energy Release Data (Spillage)

    Time (sec)

    Integral Mass Integral Energy

    kg lbm Million kcal Million Btu

    End of Blowdown at 19.203 0.00 0.00 0.000 0.000

    End of Reflood at 117.10 37,408.24 82,471.48 10.018 39.759

    End of Post-reflood at 127.60 44,170.94 97,380.76 10.994 43.632

    Rev. 0

    Replace these 25 pages of Table 6.2.1-5 with the following 25 pages of revised Table 6.2.1-5.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (68/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-132

    Table 6.2.1-5 (10 of 25)

    Part A. Mass and Energy (Steam) Release Data (Decay heat Period)

    Time (sec)

    Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 400.0 55.48 122.32 653.63 1176.53 599.9 52.38 115.47 653.29 1175.92 800.0 50.09 110.44 653.05 1175.49 999.0 48.07 105.97 652.87 1175.16

    1503.6 44.06 97.14 652.54 1174.58 1997.0 41.06 90.52 652.33 1174.2 4002.9 33.87 74.66 651.91 1173.43 6001.3 30.26 66.72 651.68 1173.02 8001.1 28.1 61.95 651.54 1172.77 9990.4 26.6 58.65 651.45 1172.61

    15005.4 24.29 53.55 651.28 1172.3 20011.0 22.87 50.42 651.09 1171.96 40037.0 19.93 43.94 650.3 1170.54 59962.5 18.41 40.6 649.52 1169.14 79990.4 17.46 38.49 648.93 1168.07

    100001.8 14.49 31.94 647.76 1165.97 150010.3 12.8 28.22 646.35 1163.42 200017.9 11.69 25.78 645.64 1162.15 400054.9 9.2 20.27 644.38 1159.88 600095.6 7.85 17.31 643.76 1158.77 800137.2 6.98 15.38 643.39 1158.11

    1000000.0 6.37 14.04 643.15 1157.67

    Integral Mass and Energy Release(Steam) at 24 hours after postulated accident

    Time (sec)

    Integral Mass Integral Energy

    kg lbm Million kcal Million Btu 85,098 1,891,367 4,169,752 1,232.912 4,251.253

    1,000,000 10,017,996 22,085,902 6,474.679 25,693.601

    Rev. 0

    Replace these 25 pages of Table 6.2.1-5 with the following 25 pages of revised Table 6.2.1-5.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (69/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-133

    Table 6.2.1-5 (11 of 25)

    Part A. Mass and Energy (Spillage) Release Data (Decay heat Period)

    Time (sec)

    Mass Flow Rate Break Enthalpy

    kg/sec lbm/sec kcal/kg Btu/lbm 400.0 114.97 253.46 59.55 107.19 599.9 123.26 271.74 70.19 126.35 800.0 129.43 285.34 75.27 135.48 999.0 134.09 295.61 78.45 141.21

    1503.6 141.61 312.19 84.11 151.39 1997.0 145.79 321.42 88.59 159.46 4002.9 152.06 335.24 101.15 182.07 6001.3 154.55 340.72 108.32 194.97 8001.1 155.89 343.69 112.55 202.59 9990.4 156.84 345.77 115.07 207.12

    15005.4 158.47 349.36 117.71 211.87 20011.0 159.7 352.07 118.05 212.5 40037.0 162.88 359.09 114.98 206.96 59962.5 164.95 363.66 110.95 199.7 79990.4 166.37 366.79 107.64 193.76

    100001.8 169.84 374.43 102.19 183.95 150010.3 172.74 380.83 92.98 167.36 200017.9 174.37 384.41 88.27 158.89 400054.9 177.64 391.62 79.29 142.71 600095.6 179.33 395.35 74.35 133.84 800137.2 180.38 397.67 71.26 128.26

    1000000.0 181.1 399.26 69.1 124.38

    Integral Mass and Energy Release (Spillage) at 24 hours and End of Analysis

    Time (sec)

    Integral Mass Integral Energy

    kg lbm Million kcal Million Btu 85,098 13,844,968 30,522,931 1,552.633 6,161.346

    1,000,000 176,652,675 389,452,484 14,266.077 56,612.367

    Rev. 0

    Replace these 25 pages of Table 6.2.1-5 with the following 25 pages of revised Table 6.2.1-5.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (70/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-134

    Table 6.2.1-5 (12 of 25)

    Part B. Reactor Vessel Pressure vs. Time (Blowdown Period)

    Time (sec)

    Reactor Vessel Pressure

    kg/cm2A psia 0.000 167.36 2,380.40 0.027 159.52 2,268.90 0.054 147.05 2,091.50 0.103 125.06 1,778.70 0.152 126.83 1,804.00 0.202 126.45 1,798.60 0.252 125.82 1,789.60 0.298 125.29 1,782.10 0.351 123.83 1,761.30 0.400 123.02 1,749.70 0.603 120.51 1,714.00 0.800 118.85 1,690.50 1.000 117.11 1,665.70 1.202 114.64 1,630.50 1.401 112.52 1,600.40 1.607 111.04 1,579.30 1.800 109.75 1,561.00 2.001 108.13 1,538.00 2.204 106.14 1,509.70 2.407 104.53 1,486.80 2.601 104.06 1,480.10 2.812 102.49 1,457.80 3.008 100.88 1,434.90

    Rev. 0

    Replace these 25 pages of Table 6.2.1-5 with the following 25 pages of revised Table 6.2.1-5.RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2

    RAI 296-8342 - Question 06.02.01.01.A-3_Rev.2 Attachment 1 (71/366)Non-Proprietary

  • APR1400 DCD TIER 2

    6.2-135

    Table 6.2.1-5 (13 of 25)

    Part B. Reactor Vessel Pressure vs. Time (Blowdown Period)

    Time (sec)

    Reactor Vessel Pressure

    kg/cm2A psia 3.208 99.02 1,408.40 3.408 97.55 1,387.50 3.608 95.48 1,358.10 3.808 93.41 1,328.60 4.000 91.91 1,307.30 4.210 90.07 1,281.10 4


Recommended