+ All Categories
Home > Documents > Rheological Design of Sustainable Block Copolymers › sites › macosko.dl.umn...Rheological Design...

Rheological Design of Sustainable Block Copolymers › sites › macosko.dl.umn...Rheological Design...

Date post: 09-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
38
Rheological Design of Sustainable Block Copolymers Alex Mannion Advisors: Frank Bates, Chris Macosko Final Oral Examination Augsut 4 th , 2016
Transcript
  • Rheological Design of Sustainable Block Copolymers

    Alex MannionAdvisors: Frank Bates, Chris Macosko

    Final Oral ExaminationAugsut 4th, 2016

  • 2

    Safety moment: proper hand washing

    jst.umn.edu

  • 3

    Rheological design

    Paint

    Food

    CosmeticsBiological systems

  • “The rheological behavior of block copolymers is perhaps the least understood of all categories of

    complex fluids…” – Professor Ron Larson, Dept. of

    Chemical Engineering, U. of Michigan1

    4

    Block copolymers

    AB diblock copolymer

    AB diblock copolymer ABA triblock copolymer

    ABABA… multiblock copolymer

    Morphology

    Architecture

    1. “Structure and Rheology of Complex Fluids,” Oxford University Press, Ronald G. Larson, 1999.

    Dalsin, S. J.; Bottlebrush Polymers: Synthesis, Rheology, and Self-Assembly, 2016

  • 5

    Sustainability

    Ellen MacArthuer Foundation, “The New Plastics Economy: Rethinking the Future of Plastics,” 2016

    Past… Future…

  • 6

    Thesis Outline

    Chapter 2 Chapter 4 Chapter 6

    Chapter 3 Chapter 5 Chapter 7

    Chewing Gum Branched Multiblock Copolymers Practical Materials

    o

    o

    oo

    o

    oo

    o

    +oo

    +

  • Goal:• Replace conventional chewing gum ingredients

    with new materials to simplify formulation• Maintains the same sensory profile

    7

    Next generation chewing gum

    What is chewing gum’s rheological fingerprint?

    Morgret, L., Science-Based Design of High Performance Bubblegum, 2005

  • 8

    Gum materials

    Important deformation regimes1

    • shear strains: 10-1000%• shear rates: 10-100 s-1

    • shear stresses: >104 Pa

    1. Anderson et al., J. Oral Rehabil., 2002; Steffe J., Rheological Methods in Food Processing Engineering, 1992

    Chewing gums Bubble gums Sample preparation

    Mouth chewing

    Ralph DeLong, UMN, Dentistry

  • S (Pa-sn) n GR (Pa) (s)30100 0.228 24300 0.0440

    9

    Linear viscoelasticity (LVE): oscillatory shear

    S: stiffness n: strength of gel network

    Critical gel equations1

    Fitting parameters

    Rouse model equations

    S (Pa-sn) n30100 0.228

    1. Chambon et al., J. Rheol, 1987

  • 10

    Start up of steady uniaxial extension

    L0L

    Constant Hencky strain rate:

    Uniaxial extension:

    Transient extensional viscosity:

    Large strains at break ( > 4.0) correlate with desirable sensory feelLarger stresses at break for bubble gums stabilizes bubble blowing

    Chewing gums Bubble gums

  • 11

    Block copolymer blends for chewing gum applications

    What is chewing gum’s rheological fingerprint?

    Fragile critical gel fluid with high extensibility

    Goal: Next generation chewing gum

    Block copolymers

    • Microphase separate tunable solids• Precise control over molecular architecture

    Glass

    Rubber

    ABA triblock AB diblock

    +

    High extensibility Softener, “critical gel” behavior

    Why use block copolymers?

  • Mn (kg/mol) wPLAAB 7.4 0.41ABA 95.1 0.36

    12

    Mn (kg/mol) wPLAAB 7.4 0.41ABA

    A = poly(D,L-lactide)B = poly(cis-1,4-isoprene)

    ABA triblock/AB diblock blends: extension

    Lee, S. Structure and Dynamics of Block Copolymer Based Soft Materials, 2011

  • 13

    Three component system

    Investigated effects of• Polymer composition• Molecular weight

    AA B

    BA

    BA

    Poly(D,L-lactide) (L)Glassy, Tg ≈ 50 °C

    Poly(ε-decalactone) (D)Rubbery, Tg ≈ -50 °C

    dimethanolbenzene

    Sn(Oct)2toluene110 °C, 4 h

    ε-decalactone

    Sn(Oct)2130 °C, 12 h

    D,L-lactide

    Benzyl alcohol

    Synthesis

    Advantages:• High conversion, well-controlled• Scalable• Renewable/FDA approved materials

  • Synthesized polymers

    Sample Mn*

    [kg mol-1]fPLA Đ#

    DL-S1 5.6 0.15 1.11

    DL-S2 8.0 0.33 1.13

    DL-S3 9.0 0.41 1.18

    DL-M1 32 0.09 1.05

    DL-M2 38 0.21 1.06

    DL-M3 46 0.32 1.06

    LDL-1 102 0.05 1.07

    LDL-2 112 0.11 1.09

    LDL-3 133 0.23 1.06

    Targeted a range of PLA weight fractions for three sets of polymers:

    *calculated from end-group analysis of 1H-NMR #determined from room-temperature size-exclusion chromatography (SEC) †determined from differential scanning calorimetry (DSC)

    LL D

    Three polymer species

    D L

    D L

    Produced 24 blends80% diblock20% triblock

    15

  • 15

    Effect of triblock composition

    (DL-S2)

    (LDL-1, LDL-2, or LDL-3)

    +

    LL DD L

    Vary PLA weight fraction

    80 wt.% 20 wt.%

  • 16

    Effect of diblock molecular weight

    LL D

    20 wt.%

    +

    80 wt.%

    :

    Vary diblock ratio (2:0, 1:1, or 0:2)

    D LD L

    Small angle X-ray scattering

    Exact morphology does not matter!

    (DL-S2) (DL-M2)

  • 17

    Blends for chewing and bubble gums

    Best blends: Key rheological parameters:

    LL D

    D L

    Polymer LDL-2

    …with short DL diblocks

    Future work• Increase strain at break with multiblock architecture

  • 18

    Thesis Outline

    Chapter 2 Chapter 4 Chapter 6

    Chapter 3 Chapter 5 Chapter 7

    Chewing Gum Branched Multiblock Copolymers Practical Materials

    o

    o

    oo

    o

    oo

    o

    +oo

    +

  • 19

    Blown film extrusion

    Shear viscosity low at high rates

    Extensional viscosity high at high rates

    Goals:• Stable bubble• Controlled thickness• Fast through-put

    Rheological targets:

  • 20

    One commercial success story: poly(lactide) (PLA)

    lactic acid lactide polylactidesugar

    - H2O catalyst

    • ~$1 per lb• Mechanically similar to

    polystyrene• Compost 100% in ~45 days

    Natureworks.com

    ApplicationsProperties

  • 21

    Deficiencies of commercial PLA

    Poor mechanical propertiesPoor melt strength

    TD

    MD

    Extensional rheology

    Blown film extrusion

    Tensile testingMachine direction (MD)

    Transverse direction (TD)

  • 22

    Toughening PLA with multiblock architecture

    Poly(D,L-lactide)Tg ≈ 50 °C

    Elastomeric blockTg

  • 23

    Tuning processability with long chain branching

    Long chain branching can lead to strain hardening1

    Long chain branch

    Short branch

    1. Meissner et al., J. Appl. Polym. Science, 1972

    1) Polymer composition2) Block lengths (~Mc) 3) Accessible TODT

    Versatile and robust platform:

    Linear multiblock(DL)n

    Star diblockDL-4

    o

    oo

    o

    Branched multiblock(DL-4)n

    o

    o

    o

    o

    o

    o

    Linear triblockLDL

    Strategy

    couple

    xx

    couple

    xx

  • 24

    Synthesis and characterization

    dimethanolbenzene

    Sn(Oct)2toluene110 °C, 4 h

    toluenepyridine25 °C, 2 h

    ε-decalactone

    Sn(Oct)2130 °C, 12 h

    Sample MW[kg/mol]$

    fPLA* І

    LDL linear triblock 18.4 -- 0.72 1.14

    DL-4 star diblock 39.7 -- 0.73 1.10

    (DL)n linear multiblock 159 5.6 0.72 1.92

    (DL-4)n branched multiblock 151 2.3 0.73 2.00

    *calculated from 1H-NMR end group analysis $determined with SEC in room temp THF with a MALS detector †determined with SEC in room temp THF with a RI detector

    sebacoyl chloride

    D,L-lactide

    pentaerythritol

    Linear BranchedSize exclusion chromatography (SEC)Synthesis

    = number of subunits in final multiblock

  • 25

    Estimating branching from SEC with multi-angle light scattering (MALS)

    Contraction factor:

    Hyperbranched

    Linear chain: g = 14-arm star: g = 0.63

    “Comb-like”

    High molecular weight species resemble a comb polymer

    SEC-MALS

  • 26

    Key advantages of branched multiblock

    Strain hardening due to branching

    (DL)n linear multiblock (DL-4)n branched multiblock

    Multiblocks have increased toughness

    Tensile testingExtensional rheology

  • 27

    Key limitation: gelation

    couple

    … leads to a gel

    Too much coupling agent… Gel point equation: Af + Bg

    2 3 4 5

    2 ∞ 3.0 2.0 1.73 4.0 2.0 1.6 1.4

    4 3.0 1.8 1.5 1.4

    5 2.7 1.7 1.4 1.3

    fEgE

    Values of at gel point:

  • 28

    New approach: A2 + B2/B3

    +

    A2PLA diol,

    19 kg mol-1

    Approach

    oo B2

    B3

    Theory

    SEC

    Coupling Branching

    Amount of B3

  • 29

    Estimating branching from SEC with multi-angle light scattering (MALS)

    SEC-MALS

    High molecular weight species becoming increasingly branched

  • 30

    Extensional behavior

    bPLA-95 bPLA-90 bPLA-80 bPLA-50

    Extensional rheology

    Temperature: 120 °C

    Amount of B3

  • o

    o

    B3

    Easily adoptable to triblock copolymers

    31

    Outlook

    +A2

    o

    oB2

    Approach

    With A2 + B2/B3 reaction, can easily tune:

    • Coupling extent ()

    • Amount of branching• Viscosity Applicable to reactive

    extrusion

  • 32

    Thesis Outline

    Chapter 2 Chapter 4 Chapter 6

    Chapter 3 Chapter 5 Chapter 7

    Chewing Gum Branched Multiblock Copolymers Practical Materials

    o

    o

    oo

    o

    oo

    o

    +oo

    +

  • CollaboratorsBranched Multiblock Polymers• Dr. David Giles• Dr. Debbie Schneiderman• Matt Irwin• Maxwell Nagarajan

    Pressure Sensitive Adhesives• Dr. Tessie Panthani• McKenzie Coughlin• Joel Updyke

    Blown Film Extrusion• Dr. Mike Manno• Tuoqi Li• Liangliang Gu• Jacob Wright• Joseph Schaefer

    33

    Acknowledgements

    CollaboratorsChewing Gum• Prof. Marc Hillmyer• Prof. Sangwoo Lee• Prof. Randy Ewoldt• Dr. Luca Martinetti• Dr. Mark Martello• Dr. Debbie Schneiderman• David Giacomin• Renxuan Xie• Willy Voje• Tao Yang• Les Morgret• Rafael Bras• Niku Tseng

    FundingL.E. and D.H. Scriven Fellowship

    Facilities• Minnesota Characterization Facility• Polymer Characterization Facility• Hillmyer Group

  • 34

    Acknowledgements, part 2

    Bates Group MacoskoGroup

  • 35

    Acknowledgements, part 3

    Maxwell Nagarajan

    (MIT)

    Sangwoo Lee (RPI)

    Frank Bates Chris Macosko

    Mentors Army of undergraduate researchers

    Team Foam

    Willy Voje(U. Washington)

    Marc Hillmyer

    Joel Updyke

    McKenzie Coughlin

    Jacob Wright

    Joseph Schaefer

  • 36

    Acknowledgements, part 4

    Fellow graduate students

    Mannion Clan

    Matt IrwinTessie Panthani Debbie Schneiderman

    Jeff TingSid Chanpuriya

    Meghan Peter Brian a.k.a. “Dad”

    Elizabeth a.k.a. “Mother”

  • 37

    Acknowledgements, part 5

  • 38

    Thesis Outline

    Chapter 2 Chapter 4 Chapter 6

    Chapter 3 Chapter 5 Chapter 7

    Chewing Gum Branched Multiblock Copolymers Practical Materials

    o

    o

    oo

    o

    oo

    o

    +oo

    +

    Rheological Design of Sustainable Block CopolymersSafety moment: proper hand washingRheological designBlock copolymersSustainabilityThesis OutlineNext generation chewing gumGum materialsLinear viscoelasticity (LVE): oscillatory shearStart up of steady uniaxial extensionBlock copolymer blends for chewing gum applicationsABA triblock/AB diblock blends: extensionThree component systemSynthesized polymersEffect of triblock compositionEffect of diblock molecular weightBlends for chewing and bubble gumsThesis OutlineBlown film extrusionOne commercial success story: poly(lactide) (PLA)Deficiencies of commercial PLAToughening PLA with multiblock architectureTuning processability with long chain branchingSynthesis and characterizationEstimating branching from SEC with multi-angle light scattering (MALS)Key advantages of branched multiblockKey limitation: gelationNew approach: A2 + B2/B3Estimating branching from SEC with multi-angle light scattering (MALS)Extensional behaviorOutlookThesis OutlineAcknowledgementsAcknowledgements, part 2Acknowledgements, part 3Acknowledgements, part 4Acknowledgements, part 5Thesis Outline


Recommended