+ All Categories
Home > Documents > Rheology A short Introduction Dirk van den Ende What is Rheology ?

Rheology A short Introduction Dirk van den Ende What is Rheology ?

Date post: 06-Jan-2017
Category:
Upload: hatuong
View: 225 times
Download: 1 times
Share this document with a friend
29
1 UNIVERSITEIT TWENTE. Physics of Complex Fluids 1/57 Rheology A short Introduction Dirk van den Ende Dept. Science and Technology University of Twente · What is Rheology · A bit of continuum mechanics · Rheometry / μRheology · Structure Rheology UNIVERSITEIT TWENTE. Physics of Complex Fluids 2/57 What is Rheology ? Rheology is the study of the flow of matter in response to an applied force. It applies to substances which have a complex microstructure, such as muds, sludges, suspensions, polymers and other glass formers (e.g., silicates), as well as many foods and additives, bodily fluids (e.g., blood) or other materials which belong to the class of soft matter.
Transcript
Page 1: Rheology A short Introduction Dirk van den Ende What is Rheology ?

1

UNIVERSITEIT TWENTE. Physics of Complex Fluids

1/57

Rheology A short Introduction

Dirk van den Ende

Dept. Science and Technology University of Twente

·  What is Rheology ·  A bit of continuum mechanics ·  Rheometry / µRheology ·  Structure Rheology

UNIVERSITEIT TWENTE. Physics of Complex Fluids

2/57

What is Rheology ?

Rheology is the study of the flow of matter in response to an applied force. It applies to substances which have a complex microstructure, such as muds, sludges, suspensions, polymers and other glass formers (e.g., silicates), as well as many foods and additives, bodily fluids (e.g., blood) or other materials which belong to the class of soft matter.

Page 2: Rheology A short Introduction Dirk van den Ende What is Rheology ?

2

UNIVERSITEIT TWENTE. Physics of Complex Fluids

3/57

•  Quality control A simple practical test will do mostly.

•  Design and control of processes •  Production of materials •  Transport (e.g. pumping) The process should be better understood, more detailed testing is imperative.

•  Search for new materials and/or new applications To tune the properties of the material, one needs understanding of the underlying microscopic processes.

Rheology comes into play during...

UNIVERSITEIT TWENTE. Physics of Complex Fluids

4/57

Interesting fluids (from a Rheological perspective)

plastics dairy products, (low-fat) polymer melts margarine, yoghurt, paint cream, salad dressings, bitumen tomato ketchup, emulsions dough, cosmetics, soap

These materials contain rather tall units, like long polymers or particles of (sub-) micron

size, which can interact with each other

We call them: COMPLEX FLUIDS

Page 3: Rheology A short Introduction Dirk van den Ende What is Rheology ?

3

UNIVERSITEIT TWENTE. Physics of Complex Fluids

5/57

Solid: shape preserved Liquid: adapts it shape

Solid, Liquid and in between…

Time scale: •  short times: solid like •  on the long run: liquid like

Silly putty: Bounces on the table but eventually it adapts its shape.

t > t char

t < t char

UNIVERSITEIT TWENTE. Physics of Complex Fluids

6/57

Characteristic time of the material tells you what is short and what is long: Water 10 -12 sec Dough products 1 sec – 100 sec Polymer liquids 1 – 5 min Glacier 10 year Glass 500 year Bronze 2000 year

Spider web:

1 2 3

Page 4: Rheology A short Introduction Dirk van den Ende What is Rheology ?

4

UNIVERSITEIT TWENTE. Physics of Complex Fluids

7/57

Continuum mechanics tells us how to describe stress and strain.

Stress state is described by 9 components, giving the stress tensor:

UNIVERSITEIT TWENTE. Physics of Complex Fluids

8/57

x

z

y Tyy

Tyx

Txx

Txz

-Tzy

Tzz

Some components of the stress tensor

Page 5: Rheology A short Introduction Dirk van den Ende What is Rheology ?

5

UNIVERSITEIT TWENTE. Physics of Complex Fluids

9/57

Basic forms of deformation:

Pure strain: Txx

-Txx

Pure shear: Tyx

T-yx

C.W. Macosko: Rheology; 1994

UNIVERSITEIT TWENTE. Physics of Complex Fluids

10/57

x

y

v = γ y ex .

Vo

h

τyx = F/A

γ = Vo /h = dvx/dy .

Simple shear flow

Page 6: Rheology A short Introduction Dirk van den Ende What is Rheology ?

6

UNIVERSITEIT TWENTE. Physics of Complex Fluids

11/57

x

y

v = γ y ex .

. V[2] = ½ γ (y ex - x ey)

V[1] = ½ γ (y ex + x ey) .

2

1

v = v[1] + v[2]

1 extension 2 rotation

UNIVERSITEIT TWENTE. Physics of Complex Fluids

12/57

Stress tensor in simple shear flow:

Newtonian liquids: η is constant Ψ1 and Ψ2 are zero

Steady state:

Page 7: Rheology A short Introduction Dirk van den Ende What is Rheology ?

7

UNIVERSITEIT TWENTE. Physics of Complex Fluids

13/57

Uniaxial elongation

ez

er

vz = ε z vr = -½ ε r

..

However, it is impossible to create a steady extensional flow.

UNIVERSITEIT TWENTE. Physics of Complex Fluids

14/57

stress: τ, σ [Pa] shear: γ [-] shear rate: γ [1/s] strain: ε [-] strain rate: ε [1/s] shear modulus: G [Pa] viscosity: η [Pa s]

. .

About names, symbols and units

Page 8: Rheology A short Introduction Dirk van den Ende What is Rheology ?

8

UNIVERSITEIT TWENTE. Physics of Complex Fluids

15/57

Flow curves of non-Newtonian liquids

shear thinning polymer melts

UNIVERSITEIT TWENTE. Physics of Complex Fluids

16/57 R.B. Bird et al.: Dynamics of polymeric liquids, 1987

shear thinning viscosity curve

polymer solutions

shear rate [1/s]

η [P

a s]

Page 9: Rheology A short Introduction Dirk van den Ende What is Rheology ?

9

UNIVERSITEIT TWENTE. Physics of Complex Fluids

17/57 Wolters et al. 1996

γ/γ#

η/η o

plastic behavior

UNIVERSITEIT TWENTE. Physics of Complex Fluids

18/57 van der Vorst et al., 1997

shear rate [1/s]

η [P

a s]

plastic behavior

Page 10: Rheology A short Introduction Dirk van den Ende What is Rheology ?

10

UNIVERSITEIT TWENTE. Physics of Complex Fluids

19/57

0. 001 0. 01 0. 1 1 10 10 0 10 000. 01

0. 1

1

10

10 0

0. 001 0. 01 0. 1 1 10 10 0 10 000. 01

0. 1

1

10

10 0

0. 001 0. 01 0. 1 1 10 10 0 10 000. 01

0. 1

1

10

10 0

Flow behavior

Newtonian

= o '

Shear thinning

= (c' n) ' (power law)

Plastic

= o +o '

green: shear stress red: viscosity

UNIVERSITEIT TWENTE. Physics of Complex Fluids

20/57

Normal stesses in a PMMA solution

ω

non-Newtonian phenomena

Page 11: Rheology A short Introduction Dirk van den Ende What is Rheology ?

11

UNIVERSITEIT TWENTE. Physics of Complex Fluids

21/57

Normal stresses

Due to the rotating lower disk, a shear flow exists between the disks. In case of visco-elastic fluids, this gives rise to normal stress differences.

Ω

UNIVERSITEIT TWENTE. Physics of Complex Fluids

22/57

Dough for bread baking, shows rod climbing during its preparation.

Rod climbing due to normal stresses

Newtonian visco-elastic

Page 12: Rheology A short Introduction Dirk van den Ende What is Rheology ?

12

UNIVERSITEIT TWENTE. Physics of Complex Fluids

23/57

Another visco-elastic effect: the tubeless siphon

UNIVERSITEIT TWENTE. Physics of Complex Fluids

24/57

Geometries for nearly simple shear flow

Rheometry

·  Cone-plate Shear rate constant Little sample needed

·  Plate-plate Shear rate not constant Little sample needed

·  Couette geometry Shear rate nearly constant More sample needed Higher sensitivity

Page 13: Rheology A short Introduction Dirk van den Ende What is Rheology ?

13

UNIVERSITEIT TWENTE. Physics of Complex Fluids

25/57

shear rate: γ' (r) = Ω r/h torque: M = 2 r2 τ(r) dr Can be used for normal force measurements

plate-plate geometry

h

torque and normal force sensor

Ω

UNIVERSITEIT TWENTE. Physics of Complex Fluids

26/57

cone-plate geometry

torque and normal force sensor

shear rate: γ' (r) = Ω/θ torque: M = 2/3 R3 τ Can be used for normal force measurements

Ω

θ

R

Page 14: Rheology A short Introduction Dirk van den Ende What is Rheology ?

14

UNIVERSITEIT TWENTE. Physics of Complex Fluids

27/57 end effects cause trouble !!

Couette geometry

torque sensor

Ω

L Ro

Ri shear rate: γ' (r) ≈ ½Ω(Ro+Ri)/(Ro-Ri) torque: M = 2r2 Lτ(r)

UNIVERSITEIT TWENTE. Physics of Complex Fluids

28/57

0.90 0.95 1.000.0

5.0

10.0

15.0

20.0

25.0

30.0

n = 1.00

n = 0.50

n = 0.20

n = 0.10

n = 0.05

Shear rate in Couette for a power law fluid with index n

'/

r/Ru

•  n

•  0.00

•  -0.50

•  -0.80

•  -0.90

•  -0.95

Ri/Ru = 0.9

= (c' n) '

Page 15: Rheology A short Introduction Dirk van den Ende What is Rheology ?

15

UNIVERSITEIT TWENTE. Physics of Complex Fluids

29/57

"controled shear rate" : shear rate is applied resulting stress is measured.

"controled stress" : torque (shear stress) is applied resulting shear rate is measured. Useful in case of yield measurements.

0 20 40 60 80 100

schuifspanning [Pa]

0

50

100

150

200

afschuifsnelheid [1/s]

0

1

2

3

4

viscositeit [Pa s]

UNIVERSITEIT TWENTE. Physics of Complex Fluids

30/57

Linear Visco-elasticity

Page 16: Rheology A short Introduction Dirk van den Ende What is Rheology ?

16

UNIVERSITEIT TWENTE. Physics of Complex Fluids

31/57

Ideal elastic Hookean behavior F = G (A/h) u τ = Gγ

Elasticity and viscosity

y

x h

u, v

γ = u/h, γ = v/h .

τ =F/A

Ideal viscous Newtonian behavior F = η (A/h) v τ = ηγ .

UNIVERSITEIT TWENTE. Physics of Complex Fluids

32/57

Visco-elastic measurements: reveal important time scales.

u,v

γ = u/h, γ = v/h .

If you aply γ = γo cos (ωt) you measure τ = τo cos (ωt+φ)

τ

But how?

Page 17: Rheology A short Introduction Dirk van den Ende What is Rheology ?

17

UNIVERSITEIT TWENTE. Physics of Complex Fluids

33/57

Emulsion droplet

slow

fast

0 1 2 3 4 5

frequentie      [mHz]

0.0

0.5

1.0

1.5

2.0

G    [kPa] v    [Pa  s]

 

G

UNIVERSITEIT TWENTE. Physics of Complex Fluids

34/57

Stress is a functional of the shear history. For small shear this functional is linear:

Or equivalently for small stresses: shear is a linear functional of the stress history:

Retardation function

Relaxation function

Page 18: Rheology A short Introduction Dirk van den Ende What is Rheology ?

18

UNIVERSITEIT TWENTE. Physics of Complex Fluids

35/57

G(t): relaxation function

G(t)

[Pa]

t [s]

Viscoelastic solid: G()>0

Viscoelastic liquid: G() = 0

relaxation times

UNIVERSITEIT TWENTE. Physics of Complex Fluids

36/57

How to measure the relaxation function G(t)?

1: step response:

t [s]

τ [P

a] γ

(γ is a step)

Page 19: Rheology A short Introduction Dirk van den Ende What is Rheology ?

19

UNIVERSITEIT TWENTE. Physics of Complex Fluids

37/57

2: harmonic driving:

storage modulus

loss modulus

UNIVERSITEIT TWENTE. Physics of Complex Fluids

38/57

harmonic shear experiment

Page 20: Rheology A short Introduction Dirk van den Ende What is Rheology ?

20

UNIVERSITEIT TWENTE. Physics of Complex Fluids

39/57

G(t)

[Pa]

t [s]

ω [rad/s]

G’,

G’’

[Pa]

G’

G’’

UNIVERSITEIT TWENTE. Physics of Complex Fluids

40/57

How to measure the retardation function J(t)?

step response: (τ is a step)

-1 0 1 2 3 4 5 6 7 8

t [s]

0.00

0.20

0.40

0.60

0.80

1.00

1.20

γ’→0

γ’≠0 solid like

liquid like

τ0

γ(t)

creep measurement

t [s]

Page 21: Rheology A short Introduction Dirk van den Ende What is Rheology ?

21

UNIVERSITEIT TWENTE. Physics of Complex Fluids

41/57

Relation between G(t) and J(t)

Laplace transform

- = G’+jG’’ = J’-jJ’’

UNIVERSITEIT TWENTE. Physics of Complex Fluids

42/57

Generalized Stokes Einstein Relation and particle tracking micro-rheology

10|-­‐2 10|-­‐1 10|0 10|1

10|0

10|1

(t-­‐tw)/tc

<Δr2>/<Δr2>0

10 |-­‐1 10 |0 10 |1 10 |2

10 |-­‐1

10 |0

ωtc

G'/G'∞,  G''/G'∞

?

Page 22: Rheology A short Introduction Dirk van den Ende What is Rheology ?

22

UNIVERSITEIT TWENTE. Physics of Complex Fluids

43/57

Stokes Einstein relation

links a transport coefficient (η) to an equilibrium property (D)

UNIVERSITEIT TWENTE. Physics of Complex Fluids

44/57

5 m

rn(t)

rn(t+s)

particle tracking µ-rheology

< >: ensemble averaging and/or time averaging

: fluoresent tracer observed by CSLM

rn = (xn,yn)

Bursac et al; Nature materials 2005

Stokes Einstein Relation (Newtonian fluid):

Generalized Stokes Einstein Relation:

Page 23: Rheology A short Introduction Dirk van den Ende What is Rheology ?

23

UNIVERSITEIT TWENTE. Physics of Complex Fluids

45/57

Retardation function of a Newtonian fluid

generalization

prove via Laplace transforms; T.G. Mason, 2000

UNIVERSITEIT TWENTE. Physics of Complex Fluids

46/57

concentrated emulsion

Page 24: Rheology A short Introduction Dirk van den Ende What is Rheology ?

24

UNIVERSITEIT TWENTE. Physics of Complex Fluids

47/57 10|-­‐2 10|-­‐1 10|0 10|1

10|0

10|1

(t-­‐tw)/tc

<Δr2>/<Δr2>0

Dense suspension of polyNipam microgel particles

3 <Δx2(t)> /a2

(t-tw)/tc

UNIVERSITEIT TWENTE. Physics of Complex Fluids

48/57 10 |-­‐1 10 |0 10 |1 10 |2

10 |-­‐1

10 |0

ωtc

G'/G'∞,  G''/G'∞

the resulting G’and G’’

Page 25: Rheology A short Introduction Dirk van den Ende What is Rheology ?

25

UNIVERSITEIT TWENTE. Physics of Complex Fluids

49/57

Two critical assumptions: - GSER is valid - Complex fluid around probe can be

considered as a continuum

If valid: - You measure from equilibrium properties a non-equilibrium transport property - There exist several approaches to calculate J*() from J(t)

UNIVERSITEIT TWENTE. Physics of Complex Fluids

50/57

Microscopic view on the stress tensor

We consider a polymer solution

end to end vector

Page 26: Rheology A short Introduction Dirk van den Ende What is Rheology ?

26

UNIVERSITEIT TWENTE. Physics of Complex Fluids

51/57

polymer as a freely jointed chain

ui = ri-ri-1

r0

rN

N segments with length b Q

O

UNIVERSITEIT TWENTE. Physics of Complex Fluids

52/57

spring constant of the entropic spring:

equipartition of energy:

Gaussian probability distribution:

Page 27: Rheology A short Introduction Dirk van den Ende What is Rheology ?

27

UNIVERSITEIT TWENTE. Physics of Complex Fluids

53/57

Consider the vectors Q near imaginairy interface:

x,y z

the number of vectors with value Q punching through the interface: n(Q)Qzd3Q. so, dTzβ= n(Q)QzFβ d3Q

UNIVERSITEIT TWENTE. Physics of Complex Fluids

54/57

Polymer contribution to the stress tensor:

Hence, the rheologist should study the probability distribution p(Q,γ’)

Page 28: Rheology A short Introduction Dirk van den Ende What is Rheology ?

28

UNIVERSITEIT TWENTE. Physics of Complex Fluids

55/57

Probability distribution p(Q,γ’)

At rest this probability is fully symmetric, so T contains only diagonal components.

rest small γ’ large γ’

UNIVERSITEIT TWENTE. Physics of Complex Fluids

56/57

Under small shear rate the distribution streches along the velocity direction, leading to a linear increase of the shear stress

rest small γ’ large γ’

Page 29: Rheology A short Introduction Dirk van den Ende What is Rheology ?

29

UNIVERSITEIT TWENTE. Physics of Complex Fluids

57/57

Under large shear rate the streched distribution rotates towards the velocity direction, leading to shear thinning and a normal stress difference.

rest small γ’ large γ’


Recommended