+ All Categories
Home > Documents > Rheology of granular flows: Role of the interstitial fluid

Rheology of granular flows: Role of the interstitial fluid

Date post: 01-Nov-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
84
Rheology of granular flows: Role of the interstitial fluid Olivier Pouliquen, IUSTI, CNRS, Aix-Marseille University Marseille, France Colorado 2003, USGS
Transcript
Page 1: Rheology of granular flows: Role of the interstitial fluid

Rheology of granular flows:

Role of the interstitial fluid

Olivier Pouliquen,

IUSTI, CNRS, Aix-Marseille University

Marseille, France

Colorado 2003, USGS

Page 2: Rheology of granular flows: Role of the interstitial fluid

Motivations : debris flows, landslides, avalanches, silo

Not Fault!!!

Low level of pressure: 10-100 kPa in natural events0.1-1 kPa in the experiments

=> Rigid and non breakable particles

Page 3: Rheology of granular flows: Role of the interstitial fluid

Particles of different sizes + liquid (non newtonian) + complex topography+ unsteady flows …

In this talk :

1) rheology of dry granularflows ?…

2) What happen whencoupling with the interstitialfluid matters …?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Page 4: Rheology of granular flows: Role of the interstitial fluid

Dry granular material:Collection of grains

No cohesionNo brownian motionNo fluid interaction

… Only contact interactions

But not so easy…

Page 5: Rheology of granular flows: Role of the interstitial fluid

Dry granular flowsDifferent flow regimes

Solid

Liquid

Gas

Page 6: Rheology of granular flows: Role of the interstitial fluid

Dry granular flowsDifferent flow regimes

Solid

Liquid

Gas

Page 7: Rheology of granular flows: Role of the interstitial fluid

Quasi-static deformations :Soil mechanics and plasticity

Focus on initial deformation

What happens :

! at large deformations ?

! for fast deformations ?

«!solid!»

Page 8: Rheology of granular flows: Role of the interstitial fluid

Dry granular flowsDifferent flow regimes

Solid

Liquid

Gas

Page 9: Rheology of granular flows: Role of the interstitial fluid

Kinetic theory for rapidgranular gases

! constitutive equations couplingDensity, velocity and granular temperature

Binary collisions+inelastic collisions

a) b)

But if not enough energy is injected: ! finite duration contact, ! multiple contact,

«!gas!»

Page 10: Rheology of granular flows: Role of the interstitial fluid

Dry granular flowsDifferent flow regimes

Solid

Liquid

Gas

Page 11: Rheology of granular flows: Role of the interstitial fluid
Page 12: Rheology of granular flows: Role of the interstitial fluid

Different flow configurations studiedboth experimentally and numerically

GDR Midi, Eur. Phys. J 04

Page 13: Rheology of granular flows: Role of the interstitial fluid

Lois et al 2005Da Cruz et al, PRE 05GdR Midi, Eur. Phys. J 04

plane shear under controlled normal stress

P

U

h

P

One imposes P and

Shear stress "?Volume fraction #?

A single dimensionless number (inertial number)

(Savage 84, Ancey et al 99)

Page 14: Rheology of granular flows: Role of the interstitial fluid

Inertial number

* ratio between 2 times :

: time scale of the mean shear

: microscopic time for rearrangement

Page 15: Rheology of granular flows: Role of the interstitial fluid

«!quasi-static!» « liquid » «!gas!»

!

I =˙ " dP /#

10

Page 16: Rheology of granular flows: Role of the interstitial fluid

Da Cruz et al, PRE 05GdR Midi Eur. Phys. J 04

P

U

h

P

One imposes P and

Shear stress "?Volume fraction #?

Page 17: Rheology of granular flows: Role of the interstitial fluid

!

I =˙ " d

P /#

!

" /P

P

!

" = µ I( )P

!

" = " I( )

!

"

Page 18: Rheology of granular flows: Role of the interstitial fluid

remark: No velocity weakening

Dacruz et al PRE 05

Peyneau & Roux PRE 08

Page 19: Rheology of granular flows: Role of the interstitial fluid

Data from

Inclined plane exp. (Pouliquen 99)Inclined plane simulations (Baran et al 2006)Annular shear cell exp. (Sayed, Savage JFM, 84)

For spheres

Forterre, Pouliquen ARFM 08

Page 20: Rheology of granular flows: Role of the interstitial fluid

!

I =˙ " d

P /#

!

" = µ(I)P

!

µ(I) = µs+

µ2"µ

s

I0I +1

An empirical friction law:

Page 21: Rheology of granular flows: Role of the interstitial fluid

And shear at constant volume fraction ??

$

f1

#

#

Bagnold Proc. R. Soc 54Lois et al PRE 07Lemaitre PRE 05Da Cruz et al PRE 05

Constant pressure

µ

I

#

f2

Page 22: Rheology of granular flows: Role of the interstitial fluid

allows to describe (not perfectly) velocity profileson inclined plane,

Let’s go further…

Page 23: Rheology of granular flows: Role of the interstitial fluid

Predicted velocity and volume fraction profiles

Gdr Midi et al, 2004,Da cruz et al 2002,Silbert et al 2001

Rheology µ(I) predicts - V % h1.5- (h-z)1.5

and &=cte

-Pb with thin flows and close to free surfaceGdr Midi et al, 2004,Da cruz et al 2002,Rajchenbach 2003

Page 24: Rheology of granular flows: Role of the interstitial fluid

allows to describe (not perfectly) velocity profileson inclined plane, on pile,…

Let’s go further…

Page 25: Rheology of granular flows: Role of the interstitial fluid

3D generalisation: a visco-plastic model (Jop et al Nature 06)

assumptions : 1) P isotropic

2) and are colinear

Effectiveviscosity

(Savage 83, Goddard 86, Schaeffer 87,…)

Page 26: Rheology of granular flows: Role of the interstitial fluid

3D generalisation of the friction law :granular flows as a viscoplastic fluid

(Jop et al Nature 06)

Pressure dependent viscosity

assumptions: 1) P isotropic2) and are co-linear

(Savage 83, Goddard 86, Schaeffer 87,…)

Page 27: Rheology of granular flows: Role of the interstitial fluid

flows on a heap : a full 3D problem

L = 1.5 m

W

Q

(P. Jop et al Nature 06)

y/d

V(y,z)

z/d

Page 28: Rheology of granular flows: Role of the interstitial fluid

0

1

2

3

4

5

6

7

-0,2 0 0,2 0,4 0,6 0,8 1 1,2

0

1

2

3

4

5

6

7

-0,2 0 0,2 0,4 0,6 0,8 1 1,2

-10

0

10

20

30

40

500 0,2 0,4 0,6 0,8 1

-10

0

10

20

30

40

500 0,2 0,4 0,6 0,8 1

Flow between rough lateral walls:

y/W y/W

h/d

!

Vsurf

gd

Jop et al , Nature 2006

Page 29: Rheology of granular flows: Role of the interstitial fluid

Jop et al, Phys. Fluids 2007 Initiation of the flow?

Page 30: Rheology of granular flows: Role of the interstitial fluid

Long wave instability in granular flows

(Y. Forterre, JFM 06 )

Page 31: Rheology of granular flows: Role of the interstitial fluid

Experimental Setup : forcing of the instability

Forterre and Pouliquen JFM 02

Loudspeakers

Power supply Function generator

Nozzle

Slides projector

Stabilized

alimentationf, AGBF

!

h

x

y

z

Photodiodes

Page 32: Rheology of granular flows: Role of the interstitial fluid

Dispersion relation

Forterre, JFM 06

Instability threshold

Page 33: Rheology of granular flows: Role of the interstitial fluid

Granular slumping(Lacaze and Kerswell 08)

Lajeunesse et al Phys. Fluids 2004,2005Lube et al JFM 2004,Larrieu et al JFM 2006,Staron & Hinch JFM 2005,Lacaze et al Phys. Fluids 2008…

Lajeunesse et al 05

Page 34: Rheology of granular flows: Role of the interstitial fluid

Lacaze and Kerswell(preprint 08)

Page 35: Rheology of granular flows: Role of the interstitial fluid

Relative Success of the visco-plastic description.

A starting point to adress other configurations…(simulating the pressure dependent visco-plastic rheology is non trivial…)

But there are problems when approaching the solid…

Page 36: Rheology of granular flows: Role of the interstitial fluid

Limits of the viscoplastic approach:

1) Quasistatic flows (shear band, finite size effect….)A need for non local approach…

2) Transient flows when preparation plays a crucial role

Page 37: Rheology of granular flows: Role of the interstitial fluid

Exponential tailNot predicted..

Velocity profile

Page 38: Rheology of granular flows: Role of the interstitial fluid

Shear bands in quasi-static flow

(Forterre & Pouliquen ARFM 08, Jop PRE 08)

Howell et al PRL 99Mueth et al Nature 00Bocquet et al PRE 02…

Not captured by the viscoplastic approach

1.0

0.8

0.6

0.4

0.2

0.0121086420

V/Vw

y/d

Page 39: Rheology of granular flows: Role of the interstitial fluid

Limit of a local rheology ?

Not captured by the viscoplastic approach

Flow threshold

Finite size effects

hysteresis

Page 40: Rheology of granular flows: Role of the interstitial fluid

to go further?

Role of the fluctuations ?

Role of the correlations ?

Link with plasticity of other amorphous and glassy systems

Aranson and Tsimring PRE,01,

Louge Phys. Fluids 03,

Josserand et al 06

Mills et al 08

Jenkins and Chevoir 01,

Pouliquen et al 01, Ertas and Halsey 03,

Lemaitre 02Bazant 07Nott 08Behringer 08…

Jenkins Phys. Fluids 06,…

Radjai and Roux PRL 02

5 10 15 20 25 30

5

10

15

20

25

30

Pouliquen PRL 04

Page 41: Rheology of granular flows: Role of the interstitial fluid

!!

F

Evidence for non local effects:Microrheology experiments

0

20

40

60

80

100

0 100 200 300 400 500 600

Deflection angle

(mRad)

time (s)

'=0

'!0

M. Van Hecke 2008

Pouliquen, Forterre, Nott

Page 42: Rheology of granular flows: Role of the interstitial fluid
Page 43: Rheology of granular flows: Role of the interstitial fluid

Pouliquen & Forterre, Phil. Trans, 2009

Self activated process

Page 44: Rheology of granular flows: Role of the interstitial fluid

Limits of the viscoplastic approach:

1) Quasistatic flows (shear band, finite size effect….)A need for non local approach…

2) Transient flows when preparation plays a crucial role

Page 45: Rheology of granular flows: Role of the interstitial fluid

Daerr & Douady 99

Influence of the initialVolume fraction on the Collapse of a pile.

Page 46: Rheology of granular flows: Role of the interstitial fluid

#

(

#c

CouplingFriction- dilatancy

"

(

"c

Quasi-static case : critical statetheory

Page 47: Rheology of granular flows: Role of the interstitial fluid

Reynolds Dilatancy

Page 48: Rheology of granular flows: Role of the interstitial fluid

(Radjai and Roux 98)

P

(

dX

dY

#

(

#c

assumption: critical volume fraction

!

" #c

Dilatancy angle

Simple critical state theory

Page 49: Rheology of granular flows: Role of the interstitial fluid

critical state theory :

dilatancy but no shear rate dependence

Visco plastic theory :

shear rate dependence but no dilatancy

Shear rate dependent critical state theory

Page 50: Rheology of granular flows: Role of the interstitial fluid

Shear rate dependent critical state theory :

!

I =˙ " dP /#

Page 51: Rheology of granular flows: Role of the interstitial fluid

3D generalisation :. . .

.

.

.

Page 52: Rheology of granular flows: Role of the interstitial fluid

Initiation of flow on an inclined plane:

)

different

z

Application to a dry flow:

Page 53: Rheology of granular flows: Role of the interstitial fluid

Initiallydense

Initially loose

z

z

z

z

Comparison with DEM simulations with N. Taberlet…

Page 54: Rheology of granular flows: Role of the interstitial fluid
Page 55: Rheology of granular flows: Role of the interstitial fluid

Changing time scales…by putting the granular material in water

(Cassar et al, Phys. Fluids 06)

Laser

P.C

DV

recorder

!P

d=112 µm

glass beads

Page 56: Rheology of granular flows: Role of the interstitial fluid

Dry

Immersed

Page 57: Rheology of granular flows: Role of the interstitial fluid

A naive idea :

fluid only plays a role by changing the time scale of rearrangements

I = ( tmicro" = P µ(I) with

viscous :

dry :

Page 58: Rheology of granular flows: Role of the interstitial fluid

µ=tg)

Idry Ivisc

Cassar et al. Phys. Fluids 05

Page 59: Rheology of granular flows: Role of the interstitial fluid

Submarine flows on heap

Doppler et al, JFM 07

Flow rate

Velocity profile

Page 60: Rheology of granular flows: Role of the interstitial fluid

And dilatancy ???

And Pore pressure ??

Cf In Faults Rice JGR 75, Rudnicki JGR 84, …

Page 61: Rheology of granular flows: Role of the interstitial fluid

Large scale experiments in the USGS facility

Iverson et al , (2000) Science

How to explain the variety of landslides observed in nature ?

Page 62: Rheology of granular flows: Role of the interstitial fluid

Dense preparation Courtesy of Dick Iverson

Page 63: Rheology of granular flows: Role of the interstitial fluid

Loose preparation Courtesy of Dick Iverson

Page 64: Rheology of granular flows: Role of the interstitial fluid

Pore Pressure feedback argument(Iverson Rev. Geo. 97, JGR 05)

&!

! Fluid expelled! Pfluid !! Peff "

! Friction "! Less frictionbetween grains

Loose case Dense case

&"

! Fluid sucked! Pfluid "

! Peff !

! Friction !

! higher frictionbetween grains

In faults: rice JGR 75, Rudnicki JGR 84, …

Page 65: Rheology of granular flows: Role of the interstitial fluid

A simple experiment:

Loose sampleDense sample

Page 66: Rheology of granular flows: Role of the interstitial fluid

Experimental setup(Pailha et al 08)

1m

20cm

7cm

Glass beads : 160µm Liquid: mixture of water and Ucon oil:*=9.8 10-3 kg/m.s

*=96 10-3 kg/m.s

Page 67: Rheology of granular flows: Role of the interstitial fluid

Experimental procedure

Compaction by taps0.60

0.59

0.58

0.57

0.56

0.55

!

20151050

# tap

Result of sedimentation

Page 68: Rheology of granular flows: Role of the interstitial fluid

Velocity of theFree surface

Pressure underThe avalanche

+=25ºh=5mm*=96 10-3 Pa.s

0.6

0.5

0.4

0.3

0.2

0.1

Su

rfa

ce

ve

locity (

mm

/s)

-4

-2

0

2

4

Pore

pre

ssure

(P

a)

5004003002001000Time (s)

Typicalresults

,&i=0.562

,&i=0.568

,&i=0.592&i=0.588&i=0.584

&i=0.578&i=0.571

(Pailha et al Pof 08)

Page 69: Rheology of granular flows: Role of the interstitial fluid

Velocity of theFree surface

Pressure underThe avalanche

+=25ºh=5mm*=96 10-3 Pa.s

0.6

0.5

0.4

0.3

0.2

0.1

Su

rfa

ce

ve

locity (

mm

/s)

-4

-2

0

2

4

Pore

pre

ssure

(P

a)

5004003002001000Time (s)

Typicalresults

,&i=0.562

,&i=0.568

,&i=0.592&i=0.588&i=0.584

&i=0.578&i=0.571

(Pailha et al Pof 08)

Dense

&i>&c

Loose &i<&c

Page 70: Rheology of granular flows: Role of the interstitial fluid

Triggering time

in the dense case

Page 71: Rheology of granular flows: Role of the interstitial fluid

Triggering time

60

50

40

30

20

10

Tim

e (

s)

0.6050.6000.5950.5900.5850.580

Phi

+ =25°

+ =26.4°

+ = 28°

+ = 30°

h=3.7 mmh=6.1 mm

*=9.8 10-3 kg/m.s

Page 72: Rheology of granular flows: Role of the interstitial fluid

Deformation

For

12

10

8

6

4

2

0

Su

rfa

ce

ve

locity (

mm

.s-1

)

403020100Time (s)

initial preparation erased

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Surf

ace

vel

oci

ty (

mm

.s-1

)

0.80.60.40.20.0Deformation

!i=0.588

!i=0.584

!i=0.582

Page 73: Rheology of granular flows: Role of the interstitial fluid

Two phase flow model

Rheology of thegranular phase

Granular matter

2Dilatancy

Soil mechanics

3

Coupling with the liquid:Two phase equations

Fluids mechanics

1

Page 74: Rheology of granular flows: Role of the interstitial fluid

Depth averaged approach (Pitman and Le 05) :

submarine avalanches :

)

z

h

Page 75: Rheology of granular flows: Role of the interstitial fluid

Submarine granular avalanches:

Relative weight Viscous drag due to the Vertical displacement

(Cassar et al 05,Doppler et al 07 )

Shear rate critical state theory

Particle-fluidcoupling

Page 76: Rheology of granular flows: Role of the interstitial fluid

Calibration of the model looking at the steady state

0.55

0.50

0.45

0.40

!start

0.590.580.570.56

"

!

µ Iv( )

!

"eq Iv( )

!

K

A single freeParameterK2

0.62

0.60

0.58

0.56

0.54

0.52

0.50

!

4x10-3

3210

I

0.58

0.56

0.54

0.52

0.50

0.48

0.46

0.44

µ

2.5x10-3

2.01.51.00.50.0I

Page 77: Rheology of granular flows: Role of the interstitial fluid

Predictions :Velocity Pressure

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

u (

mm

.s-1

)

4003002001000

t (s)

-4

-2

0

2

4

Po

re p

ressu

re (

Pa

)

5004003002001000t (s)

-4

-2

0

2

4

Po

re p

ressu

re (

Pa

)

5004003002001000t (s)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

u (

mm

.s-1

)

4003002001000

t (s)

Page 78: Rheology of granular flows: Role of the interstitial fluid

Different hDifferent viscosities

Scaling of the triggering time

t/t0

Page 79: Rheology of granular flows: Role of the interstitial fluid

Pore Pressure Maximum acceleration

Page 80: Rheology of granular flows: Role of the interstitial fluid

Conclusions for submarineavalanches

A simple critical state approach+ a viscoplastic rheology+ two phase flow equations

!Semi quantitative predictions in the complexdynamics of the flow initiation of submarine avalanches

Beyond the depth averaged approach ?Question of the numerical implementation of such models?

Page 81: Rheology of granular flows: Role of the interstitial fluid

Index matchingmethod

Mickael Pailhaunpublished

Page 82: Rheology of granular flows: Role of the interstitial fluid

Conclusions for constitutive modeling of granular flows

Visco-plastic approach gives the order zero of viscousbehavior of granular flows

It can serve as a base for further developments:-irregular particles?-cohesive particles?-polydispersed materials?-breakable particles?(dilatancy, underwater granular flows, cohesive flows…)

-link with the microscopic physics? -how to capture non local effects (role of fluctuations, link with glassy systems,….) ?

Page 83: Rheology of granular flows: Role of the interstitial fluid

Towards more complex granular media:

Polydispersed : Felix et Thomas PRE 04 Rognon et al 06…

Cohesive granular matter:

granular matter with fluid interactions

Rognon et al 08Halsey et al 06Richefeu et al 06 …

Page 84: Rheology of granular flows: Role of the interstitial fluid

Merci à

Mickael Pailha Pierre Jop, Cyril Cassar Yoël Forterre Pascale Aussillous Maxime Nicolas Prabhu Nott Jeff Morris Neil Balmforth Bruno Andreotti Olivier Dauchot…


Recommended