+ All Categories
Home > Documents > Richard Cleve DC 3524 [email protected] Course web site at:

Richard Cleve DC 3524 [email protected] Course web site at:

Date post: 24-Jan-2016
Category:
Upload: jun
View: 44 times
Download: 0 times
Share this document with a friend
Description:
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681. Richard Cleve DC 3524 [email protected] Course web site at: http://www.cs.uwaterloo.ca/~cleve/courses/cs467. Lecture 17 (2005). Contents. Communication complexity - PowerPoint PPT Presentation
Popular Tags:
26
1 Introduction to Introduction to Quantum Information Processing Quantum Information Processing CS 467 / CS 667 CS 467 / CS 667 Phys 467 / Phys 767 Phys 467 / Phys 767 C&O 481 / C&O 681 C&O 481 / C&O 681 Richard Cleve DC 3524 [email protected] Course web site at: http://www.cs.uwaterloo.ca/~cleve/cou rses/cs467 Lecture 17 (2005)
Transcript
Page 1: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

1

Introduction to Introduction to Quantum Information ProcessingQuantum Information Processing

CS 467 / CS 667CS 467 / CS 667Phys 467 / Phys 767Phys 467 / Phys 767C&O 481 / C&O 681C&O 481 / C&O 681

Richard Cleve DC [email protected]

Course web site at: http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Lecture 17 (2005)

Page 2: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

2

ContentsContents

• Communication complexity– Lower bound for the inner product problem

• Simultaneous message passing and fingerprinting

• Hidden matching problem

• Nonlocality revisited

Page 3: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

3

• Communication complexity– Lower bound for the inner product problem

• Simultaneous message passing and fingerprinting

• Hidden matching problem

• Nonlocality revisited

Page 4: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

4

Inner productInner product

IP(x, y) = x1 y1 + x2 y2 + + xn yn mod 2

Classically, (n) bits of communication are required, even for bounded-error protocols

Quantum protocols also require (n) communication

[KY ‘95] [CNDT ‘98] [NS ‘02]

Page 5: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

5

The BV black-box problemThe BV black-box problem

Let f(x1, x2, …, xn) = a1 x1 + a2 x2 + + an xn mod 2

Given:

f

b

x1

xn

x2

x2

b f(x1, x2, …, xn)xn

x1

H

H

H

H

H

H

H

H

H

H

1

0

0

0

1

a1

an

a2

Goal: determine a1, a2 , …, an

Classically, n queries are necessary

Quantum mechanically, 1 query is sufficient

Bernstein & VaziraniBernstein & Vazirani

Page 6: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

6

Lower bound for inner productLower bound for inner productIP(x, y) = x1 y1 + x2 y2 + + xn yn mod 2

y1 yny2

Alice and Bob’s IP protocol

x2x1 xn

zIP(x, y)

Alice and Bob’s IP protocol inverted

y1 y2 ynx1 x2 xn

zProof:

Page 7: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

7

Lower bound for inner productLower bound for inner productIP(x, y) = x1 y1 + x2 y2 + + xn yn mod 2

Since n bits are conveyed from Alice to Bob, n qubits communication necessary (by Holevo’s Theorem)

Alice and Bob’s IP protocol

x2x1 xn

Alice and Bob’s IP protocol inverted

x1 x2 xnx1 x2 xn

H H H

HHH

0 100

1

H

H

Proof:

Page 8: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

8

• Communication complexity– Lower bound for the inner product problem

• Simultaneous message passing and fingerprinting

• Hidden matching problem

• Nonlocality revisited

Page 9: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

9

Equality revisitedEquality revisited in simultaneous message modelin simultaneous message model

x1x2 xn y1y2 yn

f (x,y)

Exact protocols: require 2n bits communication

Equality function:

f (x,y) = 1 if x = y 0 if x y

Page 10: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

10

Equality revisitedEquality revisited in simultaneous message modelin simultaneous message model

x1x2 xn y1y2 yn

f (x,y)

Bounded-error protocols with a shared random key: require only O(1) bits communication

Error-correcting code: e(x) = 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1

e(y) = 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0

Pr[00] = Pr[11] = ½

random k

classicalcorrelations

classicalcorrelations

Page 11: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

11

Equality revisitedEquality revisited in simultaneous message modelin simultaneous message model

x1x2 xn y1y2 yn

f (x,y)Bounded-error protocols without a shared key:

Classical: θ(n1/2)

Quantum: θ(log n)[A ’96] [NS ’96] [BCWW ’01]

Page 12: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

12

Quantum fingerprintsQuantum fingerprintsQuestion 1: how many orthogonal states in m qubits?

Answer: 2m

Answer: 22am, for some constant a > 0

Let be an arbitrarily small positive constantQuestion 2: how many almost orthogonal* states in m qubits?

(* where |xy| ≤ )

Construction of Construction of almostalmost orthogonal states orthogonal states: start with a suitable (classical) error-correcting code, which is a function e : {0,1}n {0,1}cn where, for all x ≠ y,

dcn ≤ Δ(e(x),e(y)) ≤ (1− d )cn (c, d are constants)

Page 13: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

13

Construction of Construction of almostalmost orthogonal statesorthogonal states

Since dcn ≤ Δ(e(x),e(y)) ≤ (1− d )cn, we have |xy| ≤ 1− 2d

Set x for each x{0,1}n (log(cn) qubits)

cn

k

kkxe

cn 1

11 )(

)(

Then xy

cn

yexek

cn

k

kyexe

cn

)(),()(

)]()([

211

1

1

By duplicating each state, xx … x, the pairwise

inner products can be made arbitrarily small: (1− 2d )r ≤

Result: m = r log(cn) qubits storing 2n = 2(1/c)2m/r different states

(as opposed to n qubits!)

Page 14: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

14

What are almost orthogonal What are almost orthogonal states good for?states good for?

Question 3: can they be used to somehow store n bits

using only O(log n) qubits?

Answer: NO—recall that Holevo’s theorem forbids this

Here’s what we can do: given two states from an almost orthogonal set, we can distinguish between these two cases:• they’re both the same state• they’re almost orthogonal

Question 4: How?

Page 15: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

15

Quantum fingerprintsQuantum fingerprints

if x = y, Pr[output = 0] = 1

if x ≠ y, Pr[output = 0] = (1+ 2)/2

Given xy, one can check if x = y or x ≠ y as follows:

Let 000, 001, …, 111 be 2n states on O(log n) qubits such

that |xy| ≤ for all x ≠ y

HSWAP

H

x

y

0

Intuition: 0xy +

1yx

Note: error probability can

be reduced to ((1+ 2)/2)r

Page 16: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

16

Equality revisitedEquality revisited in simultaneous message modelin simultaneous message model

x1x2 xn y1y2 yn

f (x,y)Bounded-error protocols without a shared key:

Classical: θ(n1/2)

Quantum: θ(log n)[A ’96] [NS ’96] [BCWW ’01]

Page 17: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

17

Quantum protocol for equality Quantum protocol for equality in simultaneous message in simultaneous message

modelmodelx1x2 xn y1y2 yn

x y

Orthogonality test

x yRecall that, with a shared key, the problem is easy classically ...

Page 18: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

18

• Communication complexity– Lower bound for the inner product problem

• Simultaneous message passing and fingerprinting

• Hidden matching problem

• Nonlocality revisited

Page 19: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

19

Hidden matching problemHidden matching problemFor this problem, a quantum protocol is exponentially more efficient than any classical protocol—even with a shared key

x {0,1}nmatching on {1, 2, …, n}Inputs: M =

[Bar-Yossef, Jayram, Kerenidis, 2004]

(i, j, xixj), such that

(i, j) MOutput:

Only one-way communication (Alice to Bob) is permitted

Page 20: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

20

The hidden matching problemThe hidden matching problem

x {0,1}nmatching on {1,2, …, n}Inputs:

Output: (i, j, xixj), (i, j) M

M =

Rough intuition: Alice doesn’t know which edges are in M,

so she apparently has to send (n) bits of the form xixj …

Classically, one-way communication is (n), even with a shared classical key (the proof is omitted here)

Page 21: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

21

The hidden matching problemThe hidden matching problem

x {0,1}nmatching on {1,2, …, n}Inputs: M =

Output: (i, j, xixj), (i, j) M

Quantum protocol: Alice sends (log n qubits)

n

k

kkx

n 1

11

)(

Bob measures in i j basis, (i, j)

M, and uses the outcome’s relative phase

to determine xixj

Page 22: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

22

• Communication complexity– Lower bound for the inner product problem

• Simultaneous message passing and fingerprinting

• Hidden matching problem

• Nonlocality revisited

Page 23: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

23

Restricted-equality nonlocalityRestricted-equality nonlocality

b

x y

a

inputs:

outputs:

(n bits)

(log n bits)

(n bits)

(log n bits)

With classical resources, (n) bits of communication needed for an exact solution*

With (00 + 11)log n prior entanglement, no communication is needed at all*

Precondition: either x = y or (x,y) = n/2

Required postcondition: a = b iff x = y

[BCT ‘99] Technical details similar to restricted equality of Lecture 17

Page 24: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

24

Restricted-equality nonlocalityRestricted-equality nonlocalityBit communication:

Cost: θ(n)

Qubit communication:

Cost: log n

Bit communication & prior entanglement:

Cost: zero Cost: zero

Qubit communication & prior entanglement:

Page 25: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

25

Nonlocality and communication Nonlocality and communication complexity conclusionscomplexity conclusions

• Quantum information affects communication complexity in interesting ways

• There is a rich interplay between quantum communication complexity and:

– quantum algorithms

– quantum information theory

– other notions of complexity theory …

Page 26: Richard Cleve  DC 3524 cleve@cs.uwaterloo Course web site at:

26


Recommended