+ All Categories
Home > Documents > Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida,...

Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida,...

Date post: 11-Jan-2016
Category:
Upload: frederick-allison
View: 219 times
Download: 0 times
Share this document with a friend
18
Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC# LIGO-G1200547
Transcript
Page 1: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner*

*University of Florida, †University of Texas at Brownville

NSF PHY-0555453DCC# LIGO-G1200547

Page 2: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

TheoryExperimental setupResultsApplication in LIGOCurrent standing

Page 3: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

Exponentially decaying EM field outside a material medium

Produced by total internal reflection inside a medium.

For a propagating wave in the transmitted medium

ktx and ktz can be found by using Snell’s Law. In the case of total internal reflection (sini > nt/ni)

Thus resulting in,

Etz is exponentially decaying

z

kikr

kt

xni

nt

tizkxik

tt eeeEEi

tn

int

itnin

t

1sinsin

0

22

2

i r

t

Page 4: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

If another medium is brought near the interface, then some of the energy emitted in the z direction can propagate into the new material.

This condition known as frustrated total internal reflection (photon tunneling).

Page 5: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

Heat transfer coefficient W is the sum of two parts Wsin and Wexp

Wsin is for propagating fields (far-field)

Wexp is for the near-field

0

d ε

ε

1

k

kkv

0

d ε

ε

k

k

1

Page 6: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#
Page 7: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

To measure the heat transfer we take the ratio of power going to the heater to the area times the difference in temperature of the two plates

By moving the two plates closer together we should see an increase of the power going to the heater

RFF RNFRConduction

THot

TCold

Page 8: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

Sapphire Plate

Kinematic Mount

Capacitor Plates

Temperature Sensors

HeaterMacor SpacerSupport

Structure

Page 9: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#
Page 10: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

Four data runs at four different temperature differences (offset by 2 W/m2K from each other)Model prediction is in solid blackCorrection for bend in sapphire plate is in dashed black

Page 11: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

Future versions of LIGO may be cryogenicTo reduce thermal noiseA need arises to remove absorbed laser power from the test masses ~3W

Methods of Heat Transfer

Convection <<1μWConduction ~60mWRadiation ~700mW(far field)

Gravitational Wave Interferometer Noise Calculator (GWINC) , Sam Finn et al, 1999Pushing towards the ET sensitivity using ‘conventional’ technology, Stefan Hild et al, 2008

Page 12: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

Implementing near field cooling BackBack

Only have to deal with Only have to deal with one surfaceone surfaceHave to deal with noise Have to deal with noise coupling due to coupling due to electrostatics and electrostatics and Casimir forceCasimir force

SidesSidesHave to deal with Have to deal with multiple surfacesmultiple surfacesNoise coupling has Noise coupling has minimal impact minimal impact

Back and SidesBack and Sides

Conduction through the fibers: 4.4x10Conduction through the fibers: 4.4x10-6-6 W/K (<< far field radiation) W/K (<< far field radiation)

Page 13: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

Modified to work in cryogenic conditionsThicker Sapphire platesBoth sapphire plates will be thermally controlled

Page 14: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

The new sapphire plates have a bigger bevel.This adds a stray capacitance to the total which causes our distance measurements to be less accurateA work in progress

TOP VIEW

SIDE VIEW

ANGLED VIEW

Page 15: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

Originally we fit to the equation

Page 16: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

Depending on which case we use and if we approximate we can get different values for the fitsThese fits can be about 5 µm off from one another

CASE 4CASE 2 CASE 3CASE 1

Page 17: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

With thicker sapphire plates Less bendDirt becomes a bigger problem

Even in the UF LIGO clean room there is still dust from wipes and sticky sediment from unknown origin (likely from the clean solutions).We are working on a method for cleaning to clean the sapphire plates.

Drag wipe with acetoneDrag wipe with methanol Coat with first contact (but not on capacitor plates)

Page 18: Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner* *University of Florida, †University of Texas at Brownville NSF PHY-0555453 DCC#

Measured evanescent-wave heat transfer across a small gap and it agrees with theoryCan potentially be used to take excess heat from mirrors in LIGOWorking on important issue to ensure proper measurements


Recommended