+ All Categories
Home > Documents > Riser Flexibility Analysis - 16 Inch Oil PL

Riser Flexibility Analysis - 16 Inch Oil PL

Date post: 12-Oct-2015
Category:
Upload: jacobzate
View: 94 times
Download: 0 times
Share this document with a friend
Description:
Riser Flexibility Analysis - 16 Inch Oil Pipeline
1
6/2/2018 Whoops-DiscoverSharePresent-SLIDEPDF.COM http://slidepdf.com/reader/full/riser-flexibility-analysis-16-inch-oil-pl 1/1
Transcript
  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg2 /55

    2272NRP0056Rev.0

    RecordofRevisions

    Revision

    No.Date PageNos. Description

    0 12052014 IssuedforReview/Approval

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg3 /55

    2272NRP0056Rev.0

    TABLE OF CONTENTS

    1.0 INTRODUCTION ................................................................................................................... 6

    2.0 PURPOSE OF THIS DOCUMENT ........................................................................................ 7

    3.0 TERMINOLOGY .................................................................................................................... 8

    3.1 Abbreviations..........................................................................................................................8

    3.2 Symbols.................................................................................................................................10

    4.0 CODES, STANDARDS AND SPECIFICATIONS ............................................................... 12

    4.1 Design Codes, Standards and Guidelines.......................................................................12

    4.2 ADMA-OPCO Standards & Specifications.......................................................................12

    5.0 SUMMARY, CONCLUSIONS & RECOMMENDATIONS ................................................... 13

    5.1 Summary................................................................................................................................13

    5.2 Conclusions and Recommendations.................................................................................14

    6.0 DESIGN DATA .................................................................................................................... 15

    6.1 Pipeline, Spool & Riser Design Parameter.......................................................................15

    6.2 Pipe Material Data................................................................................................................16

    6.3 Anti-Corrosion Coating Data...............................................................................................17

    6.4 Weight Coating Data............................................................................................................17

    6.5 Water Depths........................................................................................................................18

    6.6 Wave and Current................................................................................................................18

    6.7 Wind Load..............................................................................................................................19

    6.8 Hydrodynamic Coefficients.................................................................................................20

    6.9 Seawater Data......................................................................................................................21

    6.10 Marine Growth......................................................................................................................21

    6.11 Temperature & Pressure Philosophy................................................................................21

    6.12 Corrosion Allowance Philosophy.......................................................................................22

    6.13 Soil Data................................................................................................................................22

    6.14 Safety Class..........................................................................................................................22

    6.15 Usage Factors.......................................................................................................................23

    6.16 Safety Factors.......................................................................................................................23

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg4 /55

    2272NRP0056Rev.0

    6.17 Pipeline end Expansion.......................................................................................................24

    6.18 Jacket Displacements..........................................................................................................25

    6.19 Co-ordinate System @ ZK-42 Platform............................................................................26

    6.20 Co-ordinate System @ ZK-38 Platform............................................................................27

    6.21 Load Combinations Summary............................................................................................28

    7.0 RISER/SPOOL STRESS ANALYSIS .................................................................................. 29

    7.1 Autopipe Models...................................................................................................................29

    7.2 Soil Model..............................................................................................................................29

    7.3 Loads......................................................................................................................................30

    7.4 Design Cases........................................................................................................................30

    7.5 Riser Vortex Shedding Analysis.........................................................................................31

    7.6 Riser Fatigue Analysis.........................................................................................................33

    7.7 Local Buckling Checks.........................................................................................................34

    7.8 Method of Analysis...............................................................................................................34

    8.0 RESULTS ............................................................................................................................ 36

    8.1 AUTOPIPE Models..............................................................................................................36

    8.2 Riser / Spool Stresses.........................................................................................................39

    8.3 Riser Clamp Loads & Local Buckling Checks..................................................................39

    8.4 Riser Span Fatigue Check..................................................................................................41

    9.0 REFERENCES .................................................................................................................... 42

    Appendix A: Drawings & Sketches ............................................................................................ 43

    Appendix B: Riser & Spool Stress Analysis ............................................................................. 44

    Appendix B1: Installation Case .................................................................................................. 45

    Appendix B2: Hydrotest Case .................................................................................................... 46

    Appendix B3: Operation Case .................................................................................................... 47

    Appendix C: Local Buckling Check ........................................................................................... 48

    Appendix D: Riser Span Calculation .......................................................................................... 49

    Appendix E: Fatigue Check for Riser Span ............................................................................... 50

    Appendix F: Wave Load Calculations ........................................................................................ 51

    Appendix G: Soil Stiffness Calculations ................................................................................... 52

    Appendix H: Wave Data for Fatigue .......................................................................................... 53

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg5 /55

    2272NRP0056Rev.0

    Appendix I: Jacket Displacements ............................................................................................. 54

    Appendix J: Equivalent Density ................................................................................................. 55

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg6 /55

    2272NRP0056Rev.0

    1.0 INTRODUCTION

    ADMA-OPCO has developed a Subsea Pipeline Replacement Strategy and Plans for progressive replacement of aging subsea pipelines network based on Integrity in a safe and coordinated manner with minimum interruption to business and exposure to environmental risks. In line with Shareholders directives all future infield lines replacement shall be based on deterministic actual condition approach. Accordingly, based on the ongoing intelligent pigging campaign / Integrity Assessments, Business and Environmental risks, 26 nos. pipelines have been identified for replacement with associated topside modifications, facilities for new wells wherever required and new riser platform at each Complex under Zakum Oil Lines Replacement (ZKOL) Project - Phase 1 on fast track basis. Figure 1 illustrates the schematic diagram of the ZKOL Project. Additionally, it was demonstrated that with the solar system, it is not technically feasible to meet the increased power demand at wellhead towers. ADMA-OPCO has developed a master plan for powering up wellhead towers to meet this increase in power demand and to comply with ADNOC Code of Practice. Accordingly electrification of wellhead towers including laying of subsea cables to wellhead towers have been included under ZKOL project. For sourcing power from Complexes, modification work on Complex topside facilities (ZWSC and ZCSC) shall be by Other EPC Contractor (Zakum WHTs Electrification Package- A). National Petroleum Construction COMPANY (NPCC) as a major EPC CONTRACTOR shall execute the project Zakum Oil Lines Replacement Project Phase 1.

    Figure 1.1 Schematic diagram for Zakum Oil Lines Replacement Project Phase-1

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg7 /55

    2272NRP0056Rev.0

    2.0 PURPOSE OF THIS DOCUMENT

    The purpose of this report is to present the Riser Flexibility Analysis for the 16 oil risers at ZK-42 and ZK-38 platforms for the pipeline PL31 from ZK-42 to ZK-38 in radial 38. The dynamic free span analyses for the risers have been performed as per the design methodology provided in DNV-RP-F105. The design methodology used for riser stress analysis is in accordance with DNV-OS-F101. The methodology used for Fatigue analysis is in accordance with DNV-RP-F204.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg8 /55

    2272NRP0056Rev.0

    3.0 TERMINOLOGY

    For the purpose of this document the words and expressions listed below shall have meaning assigned them as follows:

    Definition Meaning

    COMPANY Abu Dhabi Marine Operating Company (ADMA - OPCO)

    CONTRACTOR National Petroleum Construction Company (NPCC)

    CONTRACT Refers to the contract awarded to CONTRACTOR (NPCC) by COMPANY (ADMA OPCO)

    HSEIA CONSULTANT The Consultant appointed by COMPANY to assess the Health, Safety and Environmental Impacts on Zakum Field Development Project.

    PROJECT Zakum Oil Lines Replacement Project Phase-1

    PMC COMPANY appointed agency to provide Project Management Consultancy services

    PMT Project Management Team

    SUBCONTRACT Defines the specific Subcontract Scope of Work awarded by CONTRACTOR (NPCC) to SUBCONTRACTOR

    SUBCONTRACTOR The Company, group of companies or entity entrusted by CONTRACTOR (NPCC) to perform a part of the project defined in the Subcontract scope of work

    TP/ CA-(Bureau Veritas)

    COMPANY appointed Third Party Authority or Certifying Agency which shall provide services, viz.:

    a) Certification & Verification of specified packages /equipmentb) Provision of independent inspection services to ensure the

    CONTRACTOR is complying to equipment and material purchase orders

    IVB-(Bureau Veritas) Independent Verification Body appointed by the COMPANY.

    3.1 Abbreviations

    Abbreviation Meaning

    ADMA OPCO Abu Dhabi Marine Operating Company

    ADNOC Abu Dhabi National Oil Company

    API American Petroleum Institute

    CRP Central Riser Platform

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg9 /55

    2272NRP0056Rev.0

    Abbreviation Meaning

    CS Carbon Steel

    DNV Det Norske Veritas

    EPC Engineering, Procurement, and Construction

    FATFREE Fatigue Analysis of Free Spanning Pipelines

    HAT Highest Astronomical Tide

    H/U Hydrotest Uncorroded

    LAT Lowest Astronomical Tide

    LCC Load Controlled Criterion

    MG Marine Growth

    MSL Mean Sea Level

    NACE National Association of Corrosion Engineers

    NPCC National Petroleum Construction Company

    O/C Operation Corroded

    OS Offshore Standard

    PL Pipeline

    PP Polypropylene

    PSI Pounds Per Square Inch

    PSL Product Specification Level

    RP Recommended Practice

    SMYS Specified Minimum Yield Strength SMTS Specified Minimum Tensile Strength

    SN Stress versus Number of CyclesSP Specification STD Standard

    VIV Vortex Induced Vibration

    WD Water Depth

    WHT Well Head Tower

    ZCSC Zakum Central Super Complex ZK Zakum

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg10 /55

    2272NRP0056Rev.0

    Abbreviation Meaning

    ZKOL Zakum Oil Lines ZWSC Zakum West Super Complex

    3.2 Symbols

    Current flow ratio minimum value of 0.6 fat Allowable damage ratio (1/10) from Eqn 5.1 and Table 6-1, DNV-RP-F204

    C1 C3 Boundary condition coefficients CSF Concrete Stiffness Enhancement Factor = 0

    Static Deflection, normally ignored for in-line direction D Outer pipe diameter including coating Dfat deterministic cumulative fatigue damage stress range E Young's Modulus for steel Fn Natural Frequency Fn,IL In-line Natural Frequency Fn,CF Cross Flow Natural Frequency

    f Safety factor on natural frequency CF Safety factor for cross-flow screening criterion IL Safety factor for in-line screening criterion k Safety factor on stability parameter ILonsetR, Safety factor on onset value for in-line ILonsetRV ,

    CFonsetR, Safety factor on onset value for cross-flow CFonsetRV ,

    I Moment of inertia for steel K Total number of stress blocks L Free span length Leff Effective span length

    alog Intercept of log N-axis by S-N curve

    M Bending Moment m Negative inverse slope of S-N curve me Effective mass N Predicted number of cycles to failure for stress range

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg11 /55

    2272NRP0056Rev.0

    ni Number of stress cycles in stress block Ni Number of cycles to failure at constant stress range PE Euler buckling load, not applicable Seff Effective axial force, considered as 0 tref Reference thickness, 25 mm, Section 2.4.3, DNV-RP-C203, 2012.

    yearcU 100, 100 year return period value for the current velocity at the top of pipe level

    yearwU 1, 1 year return period value for the wave induced flow velocity at the pipe

    level orresponding to the annual significant wave height Hs, 1year. ILonsetRV , Reduced velocity for the onset of in-line VIV determined in accordance with

    Section 4.3.5 of DNV-RP-F105, 2006 CFonsetRV , Cross flow onset value for the reduced velocity determined in accordance

    with section 4.4.4 of DNV-RP-F105, 2006.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg12 /55

    2272NRP0056Rev.0

    4.0 CODES, STANDARDS AND SPECIFICATIONS

    The regulations, codes, guidelines and specifications to be used as a basis for the design are outlined under the following:

    4.1 Design Codes, Standards and Guidelines

    DNV (Det Norske Veritas)

    DNV-OS-F101, 2012 : Submarine Pipeline Systems

    DNV-RP-F105, 2006 : Free Spanning Pipelines

    DNV-RP-C205, 2010 : Environmental Conditions & Environmental Loads

    DNV-RP-C203, 2012 : Fatigue Design of Offshore Steel Structures

    DNV-RP-F204, 2010 : Riser Fatigue

    4.2 ADMA-OPCO Standards & Specifications

    Code / Standard Document Title

    SP-1046 Rev.1 : Specification for Submarine Pipeline Systems

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg13 /55

    2272NRP0056Rev.0

    5.0 SUMMARY, CONCLUSIONS & RECOMMENDATIONS

    5.1 Summary

    The pipeline, spool, riser and topside pipeline up to the flange face of the pig launcher/receiver were modeled and the system has been analyzed for operational, hydrotest and installation conditions. For operational condition, corroded pipe wall thickness has been considered but for installation and hydrotest conditions, uncorroded pipe wall thickness has been considered. Topside pipeline up to the pig launcher/receiver end has been considered for continuity purpose only and the pipeline scope ends at the weld neck flange below the top riser bend. The effect of platform deflections, pipeline expansion, environmental loads, pressure, temperature and weight of contents is considered in the stress analyses. Riser spans are analysed for VIV oscillations in accordance with DNV-RP-F105 screening criteria. The summary of riser span calculations, equivalent stress checks and local buckling checks for the risers at ZK-42 and ZK-38 are presented in Tables 5.1. Fatigue analysis due to direct wave action is required when the current flow velocity ratio is less than 2/3. The detailed dynamic span calculations for the risers are presented in Appendix D. The analysis results for stress, riser clamp load, hanger flange load, local buckling check & fatigue span check are presented in Table 8.1, Table 8.2, Table 8.3, Table 8.4 and Table 8.5 respectively.

    Table 5.1: Summary of Riser Spans & Natural Frequency

    Clamp Elevation wrt MSL (m) Condition

    Allowable Span

    Natural Frequency (Allowable)

    Frequency (Selected Span) Selected

    Span IL CF IL CF IL CF

    From To (m) (m) (Hz) (Hz) (Hz) (Hz) (m)

    ZK-42

    (+) 3.912 (-) 2.184 Operation

    14.437 17.501 5.32 3.62 5.31 3.61 6.10

    (-) 2.184 (-) 7.163 15.680 19.935 4.51 2.79 4.50 2.78 4.98

    ZK-38

    (+) 3.912 (-) 2.184 Operation

    14.674 16.993 5.15 3.84 5.14 3.83 6.10

    (-) 2.184 (-) 7.010 15.930 19.355 4.37 2.96 4.36 2.95 4.83 Note:- 1. IL In Line; CF Cross Flow

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg14 /55

    2272NRP0056Rev.0

    5.2 Conclusions and Recommendations

    The following conclusions are made based on review of results.

    The results presented in section 8.0 show that the riser configuration (Ref. Appendix A) is sufficient to accommodate all the functional and environmental load combinations and the selected riser spans satisfy the inline and cross flow VIV span requirements in accordance with DNV-RP-F105. Summary of riser clamp loads are presented in Section 8.3 of this report.

    Riser spans are not susceptible to Vortex Induced Vibration (VIV) and are within the allowable limit. However the spans are to be checked for fatigue due to direct wave attack. Fatigue checks have been performed and presented in Table 8.5 of this report.

    The Riser & Spool stresses are within the DNV-OS-F101 allowable limits and summarized in Section 8.2 of this report.

    The analysis results for riser clamp load, hanger flange load and local buckling check are presented in Table 8.2, Table 8.3 and Table 8.4 respectively.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg15 /55

    2272NRP0056Rev.0

    6.0 DESIGN DATA

    6.1 Pipeline, Spool & Riser Design Parameter

    Pipeline, Spool and Riser parameters used for this analysis are extracted from Pipeline and Riser Design Basis [Ref. 2] and are presented below in Table 6.1.

    Table 6.1: Design Data

    Description Parameter

    Pipeline ID No. PL31

    Radial 38

    Start Location ZK-42

    End Location ZK-38

    Nominal Diameter (inch) 16

    Pipe outer diameter (mm) 406.4

    Pipeline Wall Thickness (mm) Zone-1 22.2

    Spool/Riser Wall Thickness(mm) Zone-2 23.8

    Fluid Category (DNV OS F101) B

    Product Transported Oil

    Design Pressure (Barg) 224.14

    Hydrostatic Test Pressure (Barg) 235.35

    Riser Design Temperature (C) (from pig launcher/receiver to riser bottom bend)

    93.3

    Spool / Pipeline Operating Temperature (C) (up to riser bottom bend)

    81

    Hydrotest Temperature (C) 31 Max. Product Density (Operation) (kg/m3) 1010

    Corrosion Allowance (mm) 6

    Design Life (years) 40

    Notes:- 1. 100% corrosion allowance has been considered for riser stress analysis. 2. As per company letter no. 27/1955-AO-NPCC-L-0091 dated 16th-February 2014.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg16 /55

    2272NRP0056Rev.0

    6.2 Pipe Material Data

    The material data for the pipe is indicated below in Table 6.2 which is extracted from Pipeline and Riser Design Basis [Ref. 2].

    Table 6.2: Pipe Material Data

    Description Parameters

    Material Carbon Steel (CS)

    Type of Service Sour

    Density of line pipe material (kg/m3) 7850

    Modulus of elasticity of pipe material (N/mm2) 2.07E+05

    Coefficient of thermal expansion (mm/mm/C) 11.7E-06 Poissons ratio 0.3

    Linepipe type Seamless

    Material Grades API 5L Gr.L450 QSO, PSL 2 (1)

    SMYS (N/mm2) 450 ( at 00C)

    424 ( at 93.30C)

    SMTS (N/mm2) 535 ( at 00C)

    509 ( at 93.30C)

    NACE compliance Yes

    Pipe Joint Length (m) 12.2

    Note:- 1. Line pipe Material grade referred as per COMPANY P. O. NO.156343.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg17 /55

    2272NRP0056Rev.0

    6.3 Anti-Corrosion Coating Data

    A summary of the coatings on the pipeline is indicated below in Table 6.3. This data is extracted from Pipeline and Riser Design Basis [Ref. 2].

    Table 6.3: Anti-Corrosion Coating Data

    Description Parameters

    Anti-Corrosion Coating (Pipeline & Spool)

    Anti-Corrosion Coating (Pipeline & Spool) 3 Layer PP

    PP Coating thickness(1) 3.5 mm

    Density 3L PP 900 kg/m3

    Anti-Corrosion Coating (Riser)

    Riser/Spool bend Coating Thickness(4) 1 mm

    Riser/Spool bend Coating Density(4) 100 kg/m3

    Anti-Corrosion Coating Type Neoprene

    Anti- Corrosion Coating Thickness 20 mm

    Anti- Corrosion Coating Density 1450 kg/m3

    Riser Coating type above +6.00 m -after Neoprene / PFP Coating & topside pipe coating Painting as per MNL-01

    (4)s

    Riser Splash Zone (-) 2.00 to (+) 3.75 w.r.t. MSL Notes:- 1. PP coating thickness is selected based on the weight of the pipeline as per SP1012. 2. Neoprene coating has been considered from 350mm above bottom riser bend to bottom of WN flange

    below the top riser bend (+) 6.00 m above MSL. 3. Neoprene coating thickness on the riser shall be as per SP-1040. 4. These coating thickness and density are assumed from previous projects for riser/spool bends and

    topside piping in the model. 5. Equivalent density used for the coatings on pipeline, spool, riser, spool and riser bends in riser stress

    analysis during installation/hydrotest and operation is presented in Appendix J: Equivalent Density.

    6.4 Weight Coating Data

    The required weight coating data for pipeline and spool are presented in Tables 6.4. This data is extracted from Pipeline on bottom stability design report for ZCSC radials [Ref. 4].

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg18 /55

    2272NRP0056Rev.0

    Table 6.4: Concrete Coating Data for Pipeline and Spool

    Description Unit Value

    Concrete Coating Thickness at ZK-42 mm 180

    Concrete Coating Thickness at ZK-38 mm 190

    Concrete Weight Coating Density kg/m3 3400

    Water absorption of concrete 2.7% by weight(1) Note:- 1. Water absorption shall be as per DNV-OS-F101, 8% by volume which is equal to 2.7% by weight and shall

    be consider in operation case.

    6.5 Water Depths

    The design water depths used in the analysis are presented below in Table 6.5. The water depths at the tower locations w.r.t to MSL are extracted from riser GA drawings [Ref. 11 & 12].

    Table 6.5: Water Depths

    Riser At Water Depth w.r.t. MSL (m) Water Surface Elevation(1) (m)

    ZK-42 7.2 6.8 ZK-38 7.0 6.6

    Note:- 1. Water surface elevation from pipeline axis = Water depth wrt MSL- half pipe overall diameter.

    6.6 Wave and Current

    Wave and current data are referred to Deltares Metocean report [Ref. 7] for riser flexibility analysis of ZK-42 and ZK-38 risers.

    A summary of the extreme environmental data for Omni direction of ZK-42 and ZK-38 locations are given in Table 6.6 below. Maximum wave conditions are used for riser stress analysis and dynamic riser span analysis.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg19 /55

    2272NRP0056Rev.0

    Table 6.6: Wave and Current Data

    Description Return Period

    1 Year 10 Year 100 Year

    ZK-42

    Maximum wave height (m) 3.8 4.4 4.9

    Associated wave period Tmean (s) 7.4 8.1 9.4

    Significant wave height (m) 2.2 2.7 3.1

    Associated wave period Tzmean (s) 4.7 5.2 5.4

    Peak period Tp (s) 7.4 8.1 9.4

    Current velocity at surface (m/s) 0.84 0.94 1.06

    Near bottom current (m/s) @ 1.0m above seabed 0.48 0.53 0.60

    HAT w.r.t MSL (m) 1.08

    LAT w.r.t MSL (m) -1.18

    ZK-38

    Maximum wave height (m) 3.8 4.4 4.8

    Associated wave period Tmean (s) 7.5 8.2 8.8

    Significant wave height (m) 2.2 2.8 3.1

    Associated wave period Tzmean (s) 4.8 5.3 5.5

    Peak period Tp (s) 7.5 8.2 8.8

    Current velocity at surface (m/s) 0.79 0.89 1.03

    Near bottom current (m/s) @ 1.0m above seabed 0.45 0.51 0.59

    HAT w.r.t MSL (m) 1.08

    LAT w.r.t MSL (m) -1.18

    6.7 Wind Load

    The wind load parameters considered for the loading on the topside piping and riser above seawater are presented in Table 6.7. The values have been calculated as per the requirements of section 5.2 of DNV-RP-C205.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg20 /55

    2272NRP0056Rev.0

    Table 6.7: Wind Load Data

    Elevation (w.r.t 10m above sea level)

    1 year 100 year

    Wind Pressure, q (N/m2) ZK-42

    10m 158.90 291.32

    15m 172.83 319.97

    20m 183.08 341.10

    25m 191.23 357.96

    ZK-38

    10m 158.90 291.32

    15m 172.83 319.97

    20m 183.08 341.10

    25m 191.23 357.96 Note: 1. The above values have been calculated based on 1-hour mean wind speed.

    6.8 Hydrodynamic Coefficients

    The hydrodynamic coefficients used for the riser flexibility analysis are presented in Table 6.8. The pipeline/spool force coefficients are in accordance with Section 5.4 of DNV-RP-F105 and the riser force coefficients are in accordance with sections 6.6, 6.7 and 6.9 of DNV-RP-C205.

    Table 6.8: Hydrodynamic Coefficients

    Hydrodynamic coefficients

    Riser Pipeline/Spool on Seabed

    Smooth Rough Smooth Rough

    Drag, CD 0.65 1.05 1.11 1.05

    Inertia, CM 1.60 1.20 3.29 3.29

    Lift, CL 0 0 0.9 0.9

    Notes:- 1. Hydrodynamic coefficients for the riser are based on DNV-RP-C205 as applicable. 2. Hydrodynamic coefficients for the pipeline are based on DNV-RP-F105. 3. Smooth and rough correspond to installation and hydrotest conditions without marine growth & operation

    with marine growth on the pipe, respectively.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg21 /55

    2272NRP0056Rev.0

    6.9 Seawater Data

    The sea water parameters used for the analysis are presented in Table 6.9 which is extracted from the Pipeline and Riser Design Basis [Ref. 2].

    Table 6.9: Seawater Parameters

    Description Parameters

    Maximum temperature (sea bed) [C] 31 Minimum temperature (sea bed) [C] 18 Sea water kinematic Viscosity [m2/sec] 1x106

    Sea water Density [kg/m3] 1032

    6.10 Marine Growth

    The following values are considered for marine growth for operation condition in accordance with Pipeline and Riser Design Basis [Ref. 2].

    Table 6.10: Marine Growth Data

    Description Marine Growth parameters

    Marine Growth

    Thickness [mm]

    Riser 0.00 m to (-) 6.00 m w.r.t MSL 75

    Below (-) 6.00 m w.r.t MSL 50

    Pipeline 15

    Marine Growth Density [kg/m3] 1026

    Note:- 1. Equivalent density used for the coatings on pipeline, spool, riser, spool and riser bends in riser stress

    analysis during installation/hydrotest and operation is presented in Appendix J: Equivalent Density.

    6.11 Temperature & Pressure Philosophy

    The Temperature and Pressure Philosophy used in the riser flexibility analysis is presented in Table 6.11 which is extracted from the Pipeline and Riser Design Basis [Ref. 2].

    Table 6.11: Temperature & Pressure Philosophy

    Description Temperature Pressure

    Riser Flexibility Design Design

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg22 /55

    2272NRP0056Rev.0

    6.12 Corrosion Allowance Philosophy

    The Corrosion Allowance Philosophy used in the present analysis is as given below in Table 6.12.

    Table 6.12: Corrosion Allowance Philosophy

    Description Operation Installation

    Riser Flexibility Fully Corroded Un-Corroded

    6.13 Soil Data

    The Soil Data has been extracted from Pipeline and Riser Design Basis [Ref. 2] and are presented in Table 6.13. Based on the available geophysical and geotechnical information soil has been considered as loose sand. The lateral and axial friction coefficient value of 0.6 has been considered in the analysis for pipe soil interaction [Ref. 2].

    Table 6.13: Soil Data

    Description Unit Value

    Submerged Weight KN/m3 8.5

    Friction Angle Deg 28

    Lateral Friction Coefficient - 0.6

    Axial Friction Coefficient - 0.6

    6.14 Safety Class

    Pipeline design is normally to be based on Safety/Location Class, Fluid Category and potential failure consequence for each failure mode, and to be classified into safety classes. The safety class as per Section 2, C400 of DNV-OS-F101 is presented in the following Table 6.14.

    Table 6.14: Safety Class

    Phase Oil

    Location Class 2

    Installation/Hydrotest Low

    Operational High (1)

    Note:- 1. Safety Class High is used for the parts of the pipeline close to platforms, or in areas with frequent human

    activity.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg23 /55

    2272NRP0056Rev.0

    6.15 Usage Factors

    The allowable stresses for the pipeline/spool/riser in high safety class are calculated based on the factors mentioned in Table 6.15 in accordance with DNV-OS-F101.

    Table 6.15: Usage Factors

    Parameter Operation (High) Hydrotest/ Installation

    (Low) Derated

    Usage Factor for Equivalent Stress 0.8 1.0

    Material Strength Factor (U) 0.96 Derating of SMYS (fytemp) (MPa) 26 -

    Allowable Equivalent Stress (MPa) 325.6 432 Notes:- 1. Values are based on DNV-OS-F101. 2. Allowable Stress for Equivalent Stress, Operation, Zone 2 = Derated SMYS x x U 3. Allowable Stress for Pressure Test and Installation = SMYS x x U

    6.16 Safety Factors

    The safety factors considered in the riser free span analyses as given in DNV-RP-F105 are summarized in Table 6.16.

    Table 6.16: Safety Factors

    Parameter Notation Safety Class

    High

    Safety factor for screening criteria - Inline IL 1.40

    Safety factor for screening criteria Cross Flow CF 1.40 Safety factor on Stability Parameter [Ref. Table 2.2, RP-F105] k 1.30 Onset inline safety factor for fatigue [Ref. Table 2.2, RP-F105] on,IL 1.10 Onset cross flow safety factor for fatigue [Ref. Table 2.2, RP-F105] on,CF 1.20 Safety factor considered for natural frequency calculations- inline and cross flow (for very well-defined and high safety class)

    F 1.00

    Safety factor on stress Amplitude for fatigue check S 1.30

    Total model damping ratio [Ref. Cl.6.2.11, RP-F105] 0.005

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg24 /55

    2272NRP0056Rev.0

    Parameter Notation Safety Class

    High

    Correction factor for seabed proximity [Ref. Cl.4.4.6, RP-F105] proxi,onset 1.0 Correction for the pipe in/over trench [Ref. Cl.4.4.7, RP-F105) trench,onset 1.0 Boundary condition coefficients for Fixed pinned condition [Ref. Table 6-1, RP-F105] C1 2.45

    Intensification factor IF 1.07 (ZK-42) 1.14 (ZK-38)

    Notes:- 1. Values are based on DNV-RP-F105. 2. The velocity intensification factor is calculated by the formula 1 + r2 / z2 where r is the radius of the riser

    and z is the center to center distance between jacket leg and the riser (z r) in accordance with DNV OS F101.

    6.17 Pipeline end Expansion

    The pipeline expansion summary is presented in Table 6.17 as per the Pipeline Expansion Analysis Report [Ref. 5].

    Table 6.17: Summary of Pipeline Expansions

    P/L Route length (km)

    Location

    Concrete Coating

    Thickness (mm)

    Virtual Anchor Point Locations

    (km) Expansion (m)

    O/C H/U O/C H/U

    PL31 (16) 2.69

    ZK-42 (Hot End) 180 0.826 0.292 0.3598 0.0420

    ZK-38 (Cold End)

    190 0.670 0.276 0.2080 0.0396

    Note:- 1. O/C refers to Operation Corroded and H/U refers to Hydrotest Uncorroded.

    The pipeline expansion in the finite element model is presented in Table 6.18 below.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg25 /55

    2272NRP0056Rev.0

    Table 6.18: Pipeline Expansion Applied in Auto Pipe Model

    Platform Pipeline length

    modeled (m)

    Node Load Case

    Imposed Displacementat the Node

    (mm) X-dir Z-dir

    ZK-42 (Hot End) 122

    PL11-ANC1

    Installation 0 0

    Hydrotest 5.4465 23.8378

    Operation 68.3048 298.9538

    ZK-38 (Cold End) 122

    PL11-ANC1

    Installation 0 0

    Hydrotest 21.2535 6.0422

    Operation 163.6410 46.5217

    6.18 Jacket Displacements

    Jacket displacements extracted from the respective In-place analysis using SACS (computer software used for structural analysis) are presented in Appendix I and the same shall be considered for the riser flexibility analysis. The jacket displacements for 1 year return period operating storm case is used for installation and hydrotest conditions and jacket displacements for 100 year return period extreme storm case is used for functional & environmental loads and functional (operating) conditions. The expected deflections for given elevations extracted from the in-place analyses of ZK-42 and ZK-38 jackets are presented in Table 6.18. The jacket displacements are applied in the same direction of wave and current. Direction of wave is presented in section 6.18 and 6.19 of this report for ZK-42 and ZK-38 respectively.

    Table 6.19: Jacket Displacements

    Platform Elevation w.r.t. to MSL (m) Operational Case (mm) Installation/Hydrotest Case (mm)

    X Z X Z

    ZK-42 HC (+)3.912 30.5 15.60 15.41 7.29

    GC (-)2.184 21.03 9.03 10.59 3.81

    ZK-38 HC (+)3.912 64.56 65.31 27.05 31.57

    GC (-)2.184 58.87 56.09 26.77 27.61 Notes: 1. X and Z axes are based on the Autopipe coordinate system. Refer to Section 6.19 & 6.20. 2. Topside piping imposed displacement is assumed to be similar to hanger clamp (HC) imposed

    displacement values.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg26 /55

    2272NRP0056Rev.0

    6.19 Co-ordinate System @ ZK-42 Platform

    Autopipe coordinate systems: The coordinate system is a right hand coordinate system.

    Y is the vertical axis with positive direction upwards with Y equal to 0 at MSL.

    Z and X are parallel to and perpendicular to platform north.

    Wave directions: Wave directions (Ui) used in the 16 oil riser analyses are parallel to or perpendicular to the platform north.

    SACS:

    Platform displacements implemented in the riser analysis were given in a coordinate system (SACS Co-ordinates) with Z in positive upward direction.

    Y and X are parallel to and perpendicular to platform north in SACS.

    SACSCoordinateSystems

    AutopipeCoordinateSystems

    WaveDirectionsU4

    U3 U1

    U2

    ZK42

    16"ZK42RISER

    NGridNorth

    2400

    O

    P

    PlatformNorth

    47.10

    Y

    X

    Z

    Y Z

    X

    Figure 6.1 Co-ordinate Systems at ZK-42

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg27 /55

    2272NRP0056Rev.0

    6.20 Co-ordinate System @ ZK-38 Platform

    Autopipe coordinate systems:

    The coordinate system is a right hand coordinate system.

    Y is the vertical axis with positive direction upwards with Y equal to 0 at MSL.

    Z and X are parallel to and perpendicular to platform north.

    Wave directions:

    Wave directions (Ui) used in the 16 oil riser analyses are parallel to or perpendicular to the platform north.

    SACS:

    Platform displacements implemented in the riser analysis were given in a coordinate system (SACS Co-ordinates) with Z in positive upward direction.

    Y and X are parallel to and perpendicular to platform north in SACS.

    PlatformNorth

    SACSCoordinateSystems

    45.90

    Z

    AutopipeCoordinateSystems

    X

    Y

    WaveDirectionsU2

    U1 U3

    U4

    ZK38

    N

    P

    16"ZK38 RISER

    O

    GridNorth

    970

    X

    Z Y

    Figure 6.2 Co-ordinate Systems at ZK-38

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg28 /55

    2272NRP0056Rev.0

    6.21 Load Combinations Summary

    For all the load cases, the analysis was performed with wave loading in the positive and negative X and Z directions. The load conditions and combinations considered are listed in Table 6.20 below.

    Table 6.20: AutoPIPE Load Conditions

    Load Condition Load Type Description Comments

    GR Functional Gravity Includes contents and dry weights, minus buoyancy

    T1 Functional Design Temperature Includes pipeline end expansion

    P1 Functional Design Pressure Maximum Effective Pressure

    GR + T1 + P1 Combined Functional Functional Loading -

    U1 EnvironmentalWave and current load

    (+Z global axis direction) Includes platform deflections

    Omni directional maximum wave height and period +

    surface current distribution over depth

    U2 Environmental Wave and current load (-X global axis direction)

    Includes platform deflections

    Omni directional maximum wave height and period +

    surface current distribution over depth

    U3 Environmental Wave and current load (-Z global axis direction)

    Includes platform deflections

    Omni directional maximum wave height and period +

    surface current distribution over depth

    U4 EnvironmentalWave and current load

    (+X global axis direction) Includes platform deflections

    Omni directional maximum wave height and period +

    surface current distribution over depth

    W1 Wind Wind Load on the topside piping. Same direction as U1 Wind pressure distribution over

    height above MSL

    W2 Wind Wind Load on the topside piping. Same direction as U2 Wind pressure distribution over

    height above MSL

    W3 Wind Wind Load on the topside piping. Same direction as U3 Wind pressure distribution over

    height above MSL

    W4 Wind Wind Load on the topside piping. Same direction as U4 Wind pressure distribution over

    height above MSL

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg29 /55

    2272NRP0056Rev.0

    7.0 RISER/SPOOL STRESS ANALYSIS

    The riser and spool stress analysis is performed using the software AUTOPIPE. Local forces and moments on the hanger flange, restraint forces on the guide clamps and hanger clamp, total stress on the spool and riser are extracted from the Autopipe output. The calculated riser/spool stresses are checked against the permissible limits (Usage Factors) as per Table 6.15.

    7.1 Autopipe Models

    The autopipe model consists of around eight (8) to ten (10) pipe joints of the pipeline section, spool pipe, spool bends, riser bend, riser pipes supported by one (1) guide clamp (GC) and a hanger clamp (HC) at fixed elevations along the jacket face, and topside piping and pipeline components like valves, flanges, barred tee and topside pipe supports. The models are extended up to pig receiver/pig launcher for integrity purpose.

    Defining limits-

    Pipeline: Around eight (8) to ten (10) pipe joints from pipe spool tie in point were modeled.

    Spool: Extends from the pipeline spool tie-in point up to the start of riser bend. Riser: Extends from the start of riser bend up to the riser hang off flange, i.e. offshore

    pipeline and topside piping tie-in point. Topside Piping: Extends from the riser hang off flange up to the launcher/receiver on

    the topside deck.

    The spacing between clamps is selected such that riser is not subjected to any oscillation due to vortex shedding and static stresses are within permissible limits.

    The pipeline section modeled shall be within the anchor length and the expansion shall be applied at the anchor point at the pipeline end. The deflection of jacket with respective elevation shall be considered in the riser model as in the same direction of wave and current. Direction of wave shall be as per section 6.19 and 6.20 for ZK-42 and ZK-38 respectively.

    7.2 Soil Model

    Pipe/seabed interaction is modeled using independent non-linear soil springs at every 1m interval and three (3) directions axial, lateral and vertical at each soil point. Soil restraints are spaced at sufficiently short intervals so as not to include large bending moments into the pipe from spanning. Soil friction has been modelled by defining the friction coefficient. Soil stiffness has been modelled by applying spring stiffness. The characteristics of the springs are defined through a non-linear force deflection curve which represents the frictional restraint of the pipeline acting in the axial and normal directions with respect to the pipe axis, and the soils bearing capacity in the vertical direction.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg30 /55

    2272NRP0056Rev.0

    Soil supports are modeled as bi-linear springs having an initial stiffness, an ultimate load, and yield stiffness. The lateral and axial soil friction forces are increased monotonically to a maximum value calculated as the product of the pipe submerged weight and the friction coefficient, at a mobilization distance of 30mm. The axial and lateral yield stiffness is typically set close to zero to reduce errors in the soil convergence iterations, i.e. once the ultimate load on the soil is reached there is no further increase in load even though the displacement may continue. Once the axial, lateral and vertical ultimate loads are known, the stiffness in these directions can be determined by dividing the ultimate load by the yield displacement/settlement. The detailed soil restraint modeling algorithms are presented in Autopipe reference manual [Ref. 19]. Soil spring calculations are attached in Appendix G.

    7.3 Loads

    Stresses are developed in the spool/riser due to functional, operational and environmental loads. These loads include hydrostatic pressure, hydrodynamic loads due to waves & current, thermal expansion of pipeline, stresses due to internal pressures, jacket deflection, submerged weight of riser and its contents. Functional loads include self-weight, design temperature and design pressure for operational case. Hydrotest load case includes self-weight, hydrotest temperature (maximum of ambient temperature) and hydrotest pressure. Environmental load case includes hydrodynamic loads due to waves & current. The spool riser system has been analyzed for +ve X, -ve X, +ve Z and -ve Z direction waves. Current profile along the water depth has been calculated using 1/7th power law. Wave phase angle calculations are presented in Appendix F.

    7.4 Design Cases

    The finite element program AutoPIPE is used to calculate the riser and spool stresses for the design cases defined below and the calculated stresses are checked against the permissible limits (Usage Factors) as per Table 6.16. Local buckling checks are also carried out for the spool and riser under the installation, hydrotest and operation conditions based on the load controlled criteria (LCC) as per section 5, D 600 of DNV-OS-F101.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg31 /55

    2272NRP0056Rev.0

    Table 7.1: Load Cases

    Load Cases Conditions

    Installation

    Worst combination of 1 year & 1 year maximum wave and current 1 year operating year platform deflections 1 year wind pressure No pressure & No temperature Air filled conditions No marine growth Uncorroded No pipeline expansion

    Hydrotest

    Worst combination of 1 year & 1 year maximum wave and current 1 year operating year platform deflections 1 year wind pressure Hydrotest pressure & Hydrotest temperature Water filled conditions No marine growth Pipeline expansion for Hydrotest Uncorroded

    Operational (Design) - Corroded

    Worst combination of 100 year & 100 year maximum wave and current 100 year platform deflections 100 year wind pressure Design pressure & Design temperature Fully Corroded Filled with product With marine growth Pipeline expansion for Operation Condition

    7.5 Riser Vortex Shedding Analysis

    Fluid passing a free span on a riser may cause unsteady flow patterns due to the phenomenon of vortex shedding. The tendency of the unsupported sections of the pipe to shed the vortices results in oscillations normal to the pipe axis. Two (2) types of oscillations may occur. Oscillations in line with the velocity vector (in-line oscillations) and that perpendicular to the velocity vector (cross-flow oscillations). The riser spans and clamp locations are selected such that they do not undergo any in-line or cross flow vibrations.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg32 /55

    2272NRP0056Rev.0

    This VIV span analysis is performed as per DNV-RP-F105 screening criteria. Moreover the selected span is checked for the direct wave criterion, otherwise fatigue analysis is performed to satisfy the allowable fatigue damage. Vortex shedding is investigated for each riser span for the Operational conditions with marine growth & corroded wall thickness. The Installation/ Hydrostatic test conditions without marine growth & un-corroded wall thickness. The criterion to be used in the analysis is that vortex-induced resonant oscillation of the riser span shall not occur either in the in-line direction or cross-flow direction under the design wave and current conditions. DNV-RP-F105 defines the amplitude response model for inline and cross flow vibration which depends on the reduced velocity and stability parameter. The reduced velocity depends on the natural frequency of the riser spans. The response models in DNV-RP-F105 define the onset of inline and cross flow vibration by defining the onset reduced velocities. The Reduced flow velocity is given by:

    DFUUV

    n

    wcR

    +=

    The natural frequency is given by:

    ++

    2

    3241 ..1....1.

    DC

    PS

    CLmIECSFCF

    E

    eff

    effen

    DNV-RP-F105 prescribes the following fatigue screening criterion for in-line VIV to be avoided. The in-line natural frequency of the span is such that:

    1..

    250/1.

    .,100,,

    > DL

    DVUF

    ILonsetR

    yearc

    IL

    ILn

    If the above criterion is violated, then a full in-line VIV fatigue analysis is required.

    For the curtailment of cross flow vibrations, the following criterion must be satisfied:

    DV

    UUFCFonsetR

    yearwyearc

    Cf

    CFn

    .,

    1,100,, +>

    If the cross-flow VIV criterion is violated, a full in-line and cross flow VIV fatigue analysis is required.

    Fatigue analysis due to direct wave action is not required provided:

    32

    100,1,

    100, >+ yearcyearwyearc

    UUU

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg33 /55

    2272NRP0056Rev.0

    The wave induced velocity, combined velocity at the center of each riser span is presented in Table 7.2 below. The wave velocity calculations for center of the spans are presented in Appendix F.

    Table 7.2: Design Parameters for Riser Span Analysis

    Platform at

    Clamp Elevation w.r.t. MSL

    (m)

    Riser Span (m)

    Wave-Induced Velocity

    (m/s)

    Current Velocity

    (m/s)

    Combined Velocity

    (m/s)

    ZK-42

    (+) 3.912 6.10 1.6231 1.0600 2.6831

    (-) 2.184

    (-) 2.184 4.98 1.1539 0.9115 2.0654 Seabed

    (-) 7.163

    ZK-38

    (+) 3.912 6.10 1.6488 1.0300 2.6788

    (-) 2.184

    (-) 2.184 4.83 1.1818 0.8844 2.0662 Seabed

    (-) 7.010

    7.6 Riser Fatigue Analysis

    Fatigue analysis will be carried out by the methodology described in DNV-RP-F204. The fatigue analysis is carried to determine the cumulative damage using PALMGREN-MINER accumulation of Damage Hypothesis. A unique relationship exists between the stress ranges in a member to the number of allowable stress cycles up to failure defined as S-N curve for the material. A material subjected to a stress range for a number of cycles of loading n smaller than the allowable number of cycles N accumulation a certain amount of damage d the damage is given by

    NnDfat =

    Similarly a material subjected to different stress ranges in succession, accumulates the cumulative damage as given in Section 5, D808 (Eqn 5.32 and Table 5-11), of DNV-OS-F101 and is as follows,

    fat= =

    )N/(nD iK

    1iifat

    The fatigue analyses are carried out as outlined in the following steps:

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg34 /55

    2272NRP0056Rev.0

    Four (4) wave directions parallel and perpendicular to the platform north are considered for the analysis.

    Wave forces at the desired riser span locations are computed using Industry software SACS A computer program used for analysis of offshore structures.

    Stresses in the riser span due to above wave loads is calculated considering partially restrained span (Fixed-Pinned) end condition as a conservative approach.

    Stress range is considered to be equal to twice the stresses.

    The design S-N curve should be based on the classification of welds in pipelines as per Table 2-4 of DNV-RP-C203, 2012. For the root assessment, the S-N curve shall be F1 or F3 curve in seawater with cathodic protection using SCF=1.0. For weld toe assessment the S-N curve shall be F3 curve in seawater with cathodic protection using SCF calculated from equation 2.10.1. The number of cycles to failure (N) is assessed for the stress range. The basic S-N Curve is given by

    = log.logl maogN

    For material thickness above reference thickness, tref = 25mm, the thickness effect shall be applied as per equation 2.4.3 of DNV-RP-C203.

    =

    k

    refttmaogN log.logl

    Applying Miner Rule the damage ratio (di) is assessed for the critical riser span.

    An in-house spreadsheet is used to carry out the above defined fatigue check.

    7.7 Local Buckling Checks

    Local buckling checks are carried out for spool and riser portions up to hanger flange under the installation, operation and hydrotest conditions and summarized in section 8.0 of this report. Local buckling checks based on the Load Controlled Criteria (LCC) are carried out as per Section 5, D500 of DNV-OS-F101. For operation and hydrotest cases, the buckling checks are carried out as per clause D505 for the internal overpressure condition. Refer Appendix C for detailed computations.

    7.8 Method of Analysis

    The riser configuration is checked against the vortex shedding and stress criteria as described in Section 7.4 of this report. The order of analysis is broadly outlined below:

    Perform a structural analysis of riser for the design operational, hydrotest and installation conditions described in Section 7.4 of this report. If necessary, relocate the riser clamps in order to reduce the stresses to permissible levels.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg35 /55

    2272NRP0056Rev.0

    Check that the modified riser spans satisfy the vortex shedding criteria. Relocate the riser clamps if necessary, in order to achieve an arrangement that satisfies both the vortex shedding and the riser stress criteria.

    The riser stress analysis is performed for elevations up to the launcher/receiver on

    the topside piping deck.

    Maximum riser clamps loads based on above analysis is summarized and provided for riser clamp design by structural discipline.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg36 /55

    2272NRP0056Rev.0

    8.0 RESULTS

    8.1 AUTOPIPE Models

    The Autopipe models for the pipeline, spool, riser and topside arrangement for stress analysis are shown in Figures 8.1 and 8.2 respectively for ZK-42 and ZK-38.

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg37 /55

    2272NRP0056Rev.0

    Figure 8.1 - Riser, Spool and Topside Piping General Arrangement ZK-42

    PIGL=PigLauncherTPV=TopsideValveTPS=TopsidePipingSupportTPB=TopsideBendTP=TopsidePipingBTEE=BarredTeeWNF=WeldNeckFlangeHF=HangerFlangeHC=HangerClampMSL=MeanSeaLevelGC=GuideClampRB=RiserBendSP=SpoolSPB=SpoolBendPL=Pipeline

    WNF

    HC

    GC

    RB

    SPB

    SP01

    PL01

    MSL

    PIGL

    TPV1

    TPV2

    TPV3

    TPV4

    BTEE

    HF

    TPV5

    TOPSIDEPIPING

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg38 /55

    2272NRP0056Rev.0

    Figure 8.2 - Riser, Spool and Topside Piping General Arrangement ZK-38

    WNF

    TPV=TopsideValveTPS=TopsidePipingSupportTPB=TopsideBendBTEE=BarredTeeWNF=WeldNeckFlangeHC=HangerClampHF=HangerFlangeMSL=MeanSeaLevelGC=GuideClampRB=RiserBendSP=SpoolSPB=SpoolBendPL=Pipeline

    HC

    GC

    MSL

    RB

    SPB

    SP01PL01

    HF

    TPV1

    TPV2

    TPV3

    TPV4

    BTEE

    TOPSIDEPIPING

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg39 /55

    2272NRP0056Rev.0

    8.2 Riser / Spool Stresses

    The maximum equivalent stresses for the 16 oil risers and spools at ZK-42 and ZK-38, under Installation, hydrotest and operation conditions are presented in Table 8.1. Refer Appendix B for detailed AutoPIPE output results.

    Table 8.1: Summary of Maximum Stress

    Condition Maximum Equivalent Stress (N/mm2) Allowable equivalent

    stress (N/mm2) Spool Riser

    ZK-42

    Installation 11.19 (SP01) 26.64 (RB) 432.0

    Hydrotest 177.05 (SP02) 175.83 (RB) 432.0

    Operation 240.48 (SP02) 206.79 (GC) 325.6

    ZK-38

    Installation 44.17 (SP01) 54.64 (RB) 432.0

    Hydrotest 180.12 (SP03) 180.86 (GC) 432.0

    Operation 199.35 (SP03) 199.19 (GC) 325.6

    8.3 Riser Clamp Loads & Local Buckling Checks

    The riser clamp loads are summarized below for the 16 oil risers at ZK-42 and ZK-38, under Operation (Corroded), Hydrostatic Testing and Installation condition are presented in Table 8.2. The summary of hanger flange loads is presented in Table 8.3. Table 8.4 presents the summary of local buckling checks for the spool and riser portions.

    Table 8.2: Summary of Riser Clamp Loads

    Conditions Support ID Clamp Type Forces (KN)

    Fx Fy Fz

    ZK-42

    Installation HC (+) 3.912 Hanger Clamp 6.455 -113.292 -8.097

    GC (-) 2.184 Guide Clamp 7.881 0 -3.834

    Hydrotest HC (+) 3.912 Hanger Clamp 14.996 -145.078 -13.452

    GC (-) 2.184 Guide Clamp -14.316 0 -2.619

    Operation HC (+) 3.912 Hanger Clamp 38.000 -158.221 -90.357

    GC (-) 2.184 Guide Clamp -66.976 0 128.396

    ZK-38

    Installation HC (+) 3.912 Hanger Clamp -63.751 -96.007 25.943

    GC (-) 2.184 Guide Clamp -12.195 0 61.057

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg40 /55

    2272NRP0056Rev.0

    Conditions Support ID Clamp Type Forces (KN)

    Fx Fy Fz

    Hydrotest HC (+) 3.912 Hanger Clamp -63.690 -111.937 26.634

    GC (-) 2.184 Guide Clamp -17.744 0 48.918

    Operation HC (+) 3.912 Hanger Clamp 146.523 -138.860 57.010

    GC (-) 2.184 Guide Clamp -37.933 0 -128.769

    Table 8.3: Summary of Maximum Hanger Flange Loads

    Conditions Support ID Forces (KN) Moments (KN-m)

    Fx Fy Fz Mx My Mz

    ZK-42

    Installation VC & HC 73.586 -5.115 6.094 5.015 -20.104 -13.231

    Hydrotest VC & HC 96.749 -10.161 11.952 -33.209 -29.174 -13.421

    Operation VC & HC 121.969 57.930 28.093 -214.710 -73.322 103.226

    ZK-38

    Installation VC & HC -59.444 23.417 49.573 -13.074 -99.082 -40.030

    Hydrotest VC & HC -68.455 27.029 50.324 15.350 -108.355 44.989

    Operation VC & HC 111.302 68.865 -109.644 60.950 -239.713 122.008

    Table 8.4: Summary of Local Buckling Checks

    Description

    Installation Hydrotest Operation

    Load Combination Load Combination Load Combination

    a b a b a b

    ZK-42

    Riser (Maximum) 0.0051 0.0068 0.0450 0.0439 0.6111 0.5636 Spool (Maximum) 0.0007 0.0013 0.0532 0.0510 0.8204 0.7773

    ZK-38

    Riser (Maximum) 0.0150 0.0280 0.0469 0.0553 0.4560 0.6658 Spool (Maximum) 0.0039 0.0091 0.0549 0.0541 0.4034 0.4013

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg41 /55

    2272NRP0056Rev.0

    8.4 Riser Span Fatigue Check

    The screening criterion as per DNV-RP-F105 shows that fatigue check is required for direct wave attack on the spans. The fatigue checks are performed in the present analysis and presented in Table 8.5.

    Table 8.5: Summary of Fatigue Span Checks

    Clamp Elevation w.r.t. MSL (m)

    Span Length

    (m) Remarks

    Damage Ratio

    From To Allowable Actual

    ZK-42

    (+) 3.912 (-) 2.184 6.10 Fatigue damage check due to direct wave is required as

    per screening criteria for fatigue (DNV-RP-F105)

    0.1 3.476E-03

    (-) 2.184 Seabed 4.98 5.859E-03

    ZK-38

    (+) 3.912 (-) 2.184 6.10 Fatigue damage check due to direct wave is required as

    per screening criteria for fatigue (DNV-RP-F105)

    0.1 2.098E-03

    (-) 2.184 Seabed 4.83 3.001E-02

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg42 /55

    2272NRP0056Rev.0

    9.0 REFERENCES

    1. EPC Scope of work for Zakum Oil Lines Replacement Project Phase-1, AD178-

    27/216-G-00020 Rev.5

    2. Pipeline and Riser Design Basis, Document No. AD178-27/216-G-06000

    3. Pipeline Wall Thickness Design Report, Document No. AD178-27/216-G-06003

    4. Pipeline On-bottom Stability Design Report (for ZCSC), Document No. AD178-27/216-G-06004

    5. Pipeline Expansion Analysis Report (for ZCSC), Document No. AD178-27/216-G-06008

    6. Steady State Pipeline Hydraulic Study Report, Document No. AD178-27/216-G-01006

    7. Deltares data (ADMA-OPCO Metocean data base version 2.1)

    8. Pre-Engineering Survey Report, 1281P2-PES-GRPT-003 Vol. 2 & 3

    9. Soil Parameters Investigation Replacement of 8, 12 & 16 Critical Zakum Oil Pipelines Zakum Field, and Abu Dhabi, Document No. 261103

    10. Soil Parameters Investigation Replacement of 20 Critical Zakum Oil Pipelines Zakum Field, Abu Dhabi, Document No. 260408

    11. General Arrangement for 16 oil riser (to ZK-38) at ZK-42 (PL31), Drawing No. AD-178-266-PL-60339

    12. General Arrangement for 16 oil riser (from ZK-42) at ZK-38 (PL31), Drawing No. AD-178-239-PL-60328

    13. Pipeline and Cable Approach Drawing at ZK-42 (PL31), Drawing No. AD-178-306-PL-60406

    14. Pipeline and Cable Approach Drawing at ZK-38 (PL31), Drawing No. AD-178-209-PL-60322

    15. Piping Isometric for ZK-42, Drawing No. AD178-266-M-269, Email Dated on 31-Mar-2014

    16. Piping Isometric for ZK-38, Drawing No. AD178-239-M-267, Email Dated on 30-Mar-2014

    17. Jacket Displacement for ZK-42, Email Dated on 5-Apr-2014

    18. Jacket Displacement for ZK-38, Email Dated on 5-Apr-2014

    19. AutoPIPE User Reference - Bentley

    20. Structural Design Basis (ZCSC), Document No. AD178-27/216-G-03001

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg43 /55

    2272NRP0056Rev.0

    Appendix A: Drawings & Sketches

  • F A X . : + 9 7 1 - 2 6 2 6 6 0 0 5

    T E L . : + 9 7 1 - 2 6 0 6 0 0 0 0

    U N I T E D A R A B E M I R A T E S

    A B U D H A B I

    P . O . B O X 3 0 3

    A B U D H A B I M A R I N E O P E R A T I N G C O M P A N Y

    Z K - 4 2

    MEGATRText BoxFOR INFORMATION ONLY

  • F A X . : + 9 7 1 - 2 6 2 6 6 0 0 5

    T E L . : + 9 7 1 - 2 6 0 6 0 0 0 0

    U N I T E D A R A B E M I R A T E S

    A B U D H A B I

    P . O . B O X 3 0 3

    A B U D H A B I M A R I N E O P E R A T I N G C O M P A N Y

    ZK-38

    MEGATRText BoxFOR INFORMATION ONLY

  • FAX.: +971-2 6266005TEL.: +971-2 6060000UNITED ARAB EMIRATESABU DHABIP. O. BOX 303ABU DHABI MARINE OPERATING COMPANY

    ZK-45PS 57

    ZK-42

    ZK-38

    A

    B

    G

    C

    S I

    ZK-42

  • BST

    ZK-153/61

    ZK-8

    ZK-15 ZK-45PS 57

    ZK-38

    FL. B

    FL. A FL. C

    PS 151

    PS 149 E

    F

    CSP

    FAX.: +971-2 6266005TEL.: +971-2 6060000UNITED ARAB EMIRATESABU DHABIP. O. BOX 303ABU DHABI MARINE OPERATING COMPANY

    ZK

    -38

    PIPELINE SPOOL CONFIGURATION IS UNDER STUDY

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg44 /55

    2272NRP0056Rev.0

    Appendix B: Riser & Spool Stress Analysis

  • ZAKUMOILLINESREPLACEMENTPROJECTPHASE1 ADMAOPCOContractNo.:167168 BudgetRef.:EZ22E

    RISERFLEXIBILITYANALYSISREPORTFOR16OILPIPELINE(PL31)FROMZK42TOZK38

    ADMAOPCODoc.No.:AD17827/216G06055Rev.0

    NPCCDoc.No.:2272NRP0056 Pg45 /55

    2272NRP0056Rev.0

    Appendix B1: Installation Case

  • ----------------------------------------------------------------------------------------------------------------1. 16INCH ZK42-INST-OMNI-MAX 04/30/2014 ZAKUM OIL LINE REPLACEMENT BENTLEY 10:32 AM PROJECT PHASE-1 AutoPIPE Advanced 9.6.0.15----------------------------------------------------------------------------------------------------------------

    * ******* ** ******* ******* *** ** ** ** ** ** ** ** ** ** ****** ** ** ** ** ** ** ** ** ** ** ** ***** ******* ** ******* ***** ********* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ***** ** ***** ** ** ** ******* Pipe Stress Analysis and Design Program Version: 09.06.00.15 Edition: Advanced Developed and Maintained by BENTLEY SYSTEMS, INCORPORATED 1600 Riviera Ave., Suite 300 Walnut Creek, CA 94596

  • ----------------------------------------------------------------------------------------------------------------1. 16INCH ZK42-INST-OMNI-MAX 04/30/2014 ZAKUM OIL LINE REPLACEMENT BENTLEY 10:32 AM PROJECT PHASE-1 AutoPIPE Advanced 9.6.0.15----------------------------------------------------------------------------------------------------------------

    ************************************************************ ** ** ** AUTOPIPE SYSTEM INFORMATION ** ** ** ************************************************************ SYSTEM NAME : 1. 16INCH ZK42-INST-OMNI-MAX PROJECT ID : ZAKUM OIL LINE REPLACEMENT PROJECT PHASE-1 PREPARED BY : ______________________________ MFR CHECKED BY : ______________________________ VDR 1ST APPROVER : ______________________________ 2ND APPROVER : ______________________________ PIPING CODE : DNV YEAR : 1981 VERTICAL AXIS : Y AMBIENT TEMPERATURE : 18.0 deg C COMPONENT LIBRARY : AUTOPIPE MATERIAL LIBRARY : AUTODINM MODEL REVISION NUMBER : 98

  • ----------------------------------------------------------------------------------------------------------------1. 16INCH ZK42-INST-OMNI-MAX 04/30/2014 ZAKUM OIL LINE REPLACEMENT BENTLEY 10:32 AM PROJECT PHASE-1 AutoPIPE Advanced 9.6.0.15----------------------------------------------------------------------------------------------------------------

    T A B L E O F C O N T E N T S Displacement.................................................................... 1 Restraint Reactions............................................................. 34 Forces & Moments................................................................ 37 General Stress.................................................................. 100 Result Summary.................................................................. 144

  • ----------------------------------------------------------------------------------------------------------------1. 16INCH ZK42-INST-OMNI-MAX 04/30/2014 ZAKUM OIL LINE REPLACEMENT BENTLEY 10:32 AM PROJECT PHASE-1 AutoPIPE Advanced 9.6.0.15 RESULT PAGE 1----------------------------------------------------------------------------------------------------------------

    D I S P L A C E M E N T S Point Load TRANSLATIONS (mm ) ROTATIONS (deg ) name combination X Y Z X Y Z ------ ------------------------ ------ ------ ------ ------ ------ ------ *** Segment A begin *** PIGL GT1P1{1} 0.00 0.00 0.00 0.00 0.00 0.00 FUNC+U1+W1 0.00 0.00 7.29 0.00 0.00 0.00 FUNC+U2+W2 -15.41 0.00 0.00 0.00 0.00 0.00 FUNC+U3+W3 0.00 0.00 -7.29 0.00 0.00 0.00 FUNC+U4+W4 15.41 0.00 0.00 0.00 0.00 0.00 TPS6 GT1P1{1} 0.00 0.00 0.00 0.00 0.00 0.00 FUNC+U1+W1 0.00 0.00 7.29 0.00 0.00 0.00 FUNC+U2+W2 -15.41 0.00 0.00 0.00 0.00 0.00 FUNC+U3+W3 0.00 0.00 -7.29 0.00 0.00 0.00 FUNC+U4+W4 15.41 0.00 0.00 0.00 0.00 0.00 TPS5 GT1P1{1} 0.00 0.00 0.00 0.01 0.00 0.00 FUNC+U1+W1 0.00 0.00 7.29 0.01 0.00 0.00 FUNC+U2+W2 -15.41 0.00 0.00 0.01 0.02 0.00 FUNC+U3+W3 0.00 0.00 -7.29 0.01 0.00 0.00 FUNC+U4+W4 15.41 0.00 0.00 0.01 -0.02 0.00 TPV3 GT1P1{1} 0.01 -0.28 0.01 0.01 0.00 0.00 FUNC+U1+W1 0.03 -0.29 7.30 0.01 0.00 0.00 FUNC+U2+W2 -15.06 -0.27 0.20 0.01 0.03 0.00 FUNC+U3+W3 0.00 -0.28 -7.29 0.01 0.00 0.00 FUNC+U4+W4 15.02 -0.30 -0.22 0.02 -0.03 0.00 TPV3M GT1P1{1} 0.03 -0.44 0.02 0.01 0.00 0.00 FUNC+U1+W1 0.04 -0.44 7.31 0.01 0.00 0.00 FUNC+U2+W2 -14.75 -0.42 0.38 0.01 0.03 0.00 FUNC+U3+W3 0.01 -0.42 -7.28 0.01 0.00 0.00 FUNC+U4+W4 14.68 -0.46 -0.42 0.02 -0.03 0.00 FL3 GT1P1{1} 0.04 -0.59 0.02 0.01 0.00 0.00 FUNC+U1+W1 0.06 -0.59 7.32 0.01 0.00 0.00 FUNC+U2+W2 -14.44 -0.56 0.56 0.01 0.03 0.00 FUNC+U3+W3 0.01 -0.57 -7.28 0.01 0.00 0.00 FUNC+U4+W4 14.35 -0.62 -0.61 0.02 -0.03 0.00 TPB5N GT1P1{1} 0.08 -0.42 0.05 -0.01 0.00 -0.01 FUNC+U1+W1 0.07 -0.42 7.32 -0.01 0.00 -0.01 FUNC+U2+W2 -13.65 -0.37 1.01 -0.01 0.02 -0.01 FUNC+U3+W3 0.07 -0.42 -7.24 -0.01 0.00 -0.02 FUNC+U4+W4 13.48 -0.48 -1.10 -0.01 -0.02 -0.02 TB5 M GT1P1{1} 0.09 -0.22 0.05 -0.01 0.00 -0.02 FUNC+U1+W1 0.05 -0.21 7.29 -0.01 -0.01 -0.01 FUNC+U2+W2 -13.51 -0.17 1.13 -0.01 0.01 -0.01 FUNC+U3+W3 0.12 -0.22 -7.18 -0.01 0.01 -0.02 FUNC+U4+W4 13.34 -0.27 -1.23 -0.01 -0.01 -0.02

  • ----------------------------------------------------------------------------------------------------------------1. 16INCH ZK42-INST-OMNI-MAX 04/30/2014 ZAKUM OIL LINE REPLACEMENT BENTLEY 10:32 AM PROJECT PHASE-1 AutoPIPE Advanced 9.6.0.15 RESULT PAGE 2----------------------------------------------------------------------------------------------------------------

    D I S P L A C E M E N T S Point Load TRANSLATIONS (mm ) ROTATIONS (deg ) name combination X Y Z X Y Z ------ ------------------------ ------ ------ ------ ------ ------ ------ TPB5F GT1P1{1} 0.09 -0.05 0.06 -0.01 0.00 -0.01 FUNC+U1+W1 0.03 -0.04 7.22 -0.01 -0.01 -0.01 FUNC+U2+W2 -13.50 -0.03 1.16 -0.01 0.00 -0.01 FUNC+U3+W3 0.15 -0.06 -7.09 0.00 0.01 -0.01 FUNC+U4+W4 13.33 -0.07 -1.24 -0.01 0.01 -0.01 TPS4 GT1P1{1} 0.09 0.00 0.07 -0.01 0.00 0.00 FUNC+U1+W1 0.03 0.00 7.18 -0.01 0.00 0.00 FUNC+U2+W2 -13.49 0.00 1.10 -0.01 -0.01 0.00 FUNC+U3+W3 0.15 0.00 -7.04 0.00 0.00 0.00 FUNC+U4+W4 13.33 0.00 -1.16 0.00 0.01 -0.01 TPV2 GT1P1{1} 0.09 -0.10 0.05 0.00 0.00 0.00 FUNC+U1+W1 0.04 -0.11 7.19 0.00 0.00 0.00 FUNC+U2+W2 -13.50 -0.16 0.63 0.00 -0.02 0.00 FUNC+U3+W3 0.14 -0.10 -7.07 0.01 -0.01 0.00 FUNC+U4+W4 13.33 -0.03 -0.64 0.00 0.02 0.00 TPV2M GT1P1{1} 0.09 -0.08 0.03 0.00 0.00 0.00 FUNC+U1+W1 0.04 -0.08 7.23 0.00 0.00 0.00 FUNC+U2+W2 -13.50 -0.12 0.39 0.00 -0.02 0.00 FUNC+U3+W3 0.14 -0.07 -7.15 0.01 -0.01 0.00 FUNC+U4+W4 13.33 -0.02 -0.40 0.00 0.02 0.00 FL2 GT1P1{1} 0.09 -0.05 0.01 0.00 0.00 0.00 FUNC+U1+W1 0.04 -0.05 7.26 0.00 0.00 0.00 FUNC+U2+W2 -13.50 -0.08 0.15 0.00 -0.02 0.00 FUNC+U3+W3 0.14 -0.05 -7.23 0.01 -0.01 0.00 FUNC+U4+W4 13.33 -0.01 -0.15 0.00 0.02 0.00 TPS3 GT1P1{1} 0.09 0.00 0.00 0.00 0.00 -0.01 FUNC+U1+W1 0.04 0.00 7.29 0.00 0.00 -0.01 FUNC+U2+W2 -13.50 0.00 0.00 0.00 -0.02 -0.01 FUNC+U3+W3 0.14 0.00 -7.29 0.01 -0.01 -0.01 FUNC+U4+W4 13.33 0.00 0.00 0.00 0.02 0.00 TPB4N GT1P1{1} 0.09 0.04 -0.01 0.00 0.00 -0.01 FUNC+U1+W1 0.04 0.04 7.31 0.00 0.00 -0.01 FUNC+U2+W2 -13.50 0.08 -0.10 0.00 -0.02 -0.02 FUNC+U3+W3 0.14 0.04 -7.34 0.01 -0.01 -0.01 FUNC+U4+W4 13.33 -0.02 0.09 0.00 0.02 0.00 TB4 M GT1P1{1} 0.04 0.19 -0.13 0.01 -0.01 -0.01 FUNC+U1+W1 -0.02 0.18 7.34 0.00 0.00 -0.01 FUNC+U2+W2 -13.68 0.53 -0.41 0.01 -0.02 -0.04 FUNC+U3+W3 0.09 0.21 -7.68 0.02 -0.02 -0.01 FUNC+U4+W4 13.42 -0.21 0.21 0.01 0.01 0.02

  • ----------------------------------------------------------------------------------------------------------------1. 16INCH ZK42-INST-OMNI-MAX 04/30/2014 ZAKUM OIL LINE REPLACEMENT BENTLEY 10:32 AM PROJECT PHASE-1 AutoPIPE Advanced 9.6.0.15 RESULT PAGE 3----------------------------------------------------------------------------------------------------------------

    D I S P L A C E M E N T S Point Load TRANSLATIONS (mm ) ROTATIONS (deg ) name combination X Y Z X Y


Recommended