+ All Categories
Home > Documents > Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE...

Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE...

Date post: 13-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
38
Inverse problems and sparse models (1/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France [email protected] http://people.irisa.fr/Remi.Gribonval l
Transcript
Page 1: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

Inverse problems and sparse models (1/6)

Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France

[email protected]

http://people.irisa.fr/Remi.Gribonvall

Page 2: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

PDF of the slides

• http://www.irisa.fr/metiss/gribonval/Teaching/

2

Page 3: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Overview of the course

• Introduction✓ sparsity & data compression✓ inverse problems in signal and image processing

✦ image deblurring, image inpainting, ✦ channel equalization, signal separation, ✦ tomography, MRI

✓ sparsity & under-determined inverse problems✦ well-posedness

• Complexity & Feasibility✓ NP-completeness of ideal sparse approximation✓ Relaxations✓ L1 is sparsity-inducing and convex

3

Page 4: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Overview of the course

• Pursuit Algorithms✓ L1 has performance guarantees✓ L1 is computationally feasible: Basis Pursuit✓ Greedy algorithms: Matching Pursuit & al✓ Complexity of Pursuit Algorithms

• Recovery guarantees✓ Coherence vs Restricted Isometry Constant✓ Worked examples✓ Summary

4

Page 5: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Further material on sparsity

5

• Books✓ Signal Processing perspective

✦ S. Mallat, «Wavelet Tour of Signal Processing», 3rd edition, 2008✦ M. Elad, «Sparse and Redundant Representations: From Theory to

Applications in Signal and Image Processing», 2009.✓ Mathematical perspective

✦ S. Foucart, H. Rauhut, «A Mathematical Introduction to Compressed Sensing», Springer, in preparation.

• Review paper: ✦ Bruckstein, Donoho, Elad, SIAM Reviews, 2009

Page 6: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013 - R. GRIBONVAL - SPARSE METHODS

Sparse models & data compression

Page 7: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Large-scale data

• Fact : digital data = large volumes

✓ 1 second stereo audio, CD quality = 1,4 Mbit✓ 1 uncompressed 10 Mpixels picture = 240 Mbit

• Need : «concise» data representations

✓ storage & transmission (volume / bandwidth) ... ✓ manipulation & processing (algorithmic

complexity)

7

Page 8: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Notion of sparse representation

• Audio : time-frequency representations (MP3)

• Images : wavelet transform (JPEG2000)

Black = zero

Gray = zero

8

ANALYSIS

ANALYSIS

SYNTHESIS

SYNTHESIS

Page 9: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Evidence of sparsity

• Histogram of MDCT coefficients of a musical sound

9

Page 10: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Mathematical expression of the sparsity assumption

• Signal / image = high dimensional vector

• Definition: ✓ Atoms: basis vectors

✦ ex: time-frequency atoms, wavelets✓ Dictionary:

✦ collection of atoms

✦ matrix which columns are the atoms

• Sparse signal model = combination of few atoms

10

y 2 RN

y ⇡X

k

xk'k = �x

'k 2 RN

{'k}1kK

� = ['k]1kK

Page 11: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

• Full vector • Sparse vector

Sparsity & compression

11

y xN

nonzero entries = k floats

k ⌧ NN entries

= N floats

+ k positions among N

= bitslog2

✓N

k

◆⇡ k log2

N

k

⇡ �·

Key practical issues: choose dictionary

Page 12: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Sparsity: definition

• A vector is ✓ sparse if it has (many) zero coefficients✓ k-sparse if it has at most k nonzero coefficients

• Symbolic representation as column vector

• Support = indices of nonzero components

• Sparsity measured with L0 pseudo-norm

• In french: ✦ sparse -> «creux», «parcimonieux»✦ sparsity, sparseness -> «parcimonie», «sparsité»

12

Not sparse

3-sparse⇧x⇧0 := ⇥{n, xn �= 0} =

n

|xn|0

a0 = 1(a > 0); 00 = 0Convention here

Page 13: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013 - R. GRIBONVAL - SPARSE METHODS

Inverse problems in signal and image processing

Page 14: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Deconvolution problem2D Example : deblurring problem

14

• Given data: ✓ blurred image

✓ information on blurring process

• Desired estimate:✓ deblurred image

?

y[i, j]

x[i, j]

Page 15: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Blurring process = 2D Convolution

• Definition

• Interpretation : local average

yx h i

j

Reproduced from http://www.robots.ox.ac.uk/~improofs/super-resolution/super-res1.html

15

y[i, j] = (h � x)[i, j] :==X

k,�

h[k, ⇥]x[i� k, j � ⇥]

Page 16: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

• Optical blur

• Motion blur

Examples of 2D convolution

h =point spread function (PSF)

Reproduced from http://www.robots.ox.ac.uk/~improofs/super-resolution/super-res1.html

16

Page 17: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Example of point spread function

Reproduced from http://hea-www.harvard.edu/HRC/calib/hrci_qe.html

17

h[i, j]

ij

Page 18: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

1D deconvolution problems

• General form

• Telecom: channel equalization✓ h = channel impulse response

• Audio: de-reverberation (reflections on walls)✓ h = room impulse response

τ1,h(τ1)€

τ 2,h(τ 2)

τ 3,h(τ 3)

18

y(t) = (h ⇥ x)(t) :=Z

h(�)x(t� �)d�

Page 19: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Example of room impulse response

Reproduced from http://www.am3d.com/technology/acoustical

19

Page 20: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Deconvolution Problem

20

• Given✓ measured data y✓ known filter h

• Find unknown x such that

y = h � x

Page 21: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Naive deconvolution in the Fourier domain

• Convolution and Fourier / inverse Fourier

• H(f) = transfer function of filter h

21

F{·}Y (f) = H(f)X(f)y(t) = (h � x)(t)

F�1{·}X̂(f) =

Y (f)H(f)

= X(f)x̂(t) = x(t)

Page 22: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

• Presence of noise

• Smooth filter: ✓ fast decay of H(f)✓ small values in H(f)✓ division by small values = strong amplification of noise

• Consequence = missing frequency information✓ N frequency components to estimate

✓ m < N reliable frequency components

Issues with naive deconvolution

22

Y (f) = H(f)X(f) + N(f)y(t) = (h � x)(t) + n(t)

X̂(f) :=Y (f)H(f)

= X(f) +N(f)H(f)

X 2 RN

Y 2 Rm YX

Page 23: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013 - R. GRIBONVAL - SPARSE METHODS

Inverse problems

Page 24: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Linear inverse problems: definition

• Definition: a problem where a high-dimensional vector must be estimated from its low dimensional projection

• Generic form:

✓ m observations / measures✓ N unknowns

24

b = Ay + eobservation/measure

projection matrix

unknown noise

b 2 Rm

y 2 RNA 2 Rm⇥N

Page 25: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

• Unknown image with N pixels

• Partially observed image: ✓ m < N observed pixels

• Measurement matrix

Example: Inpainting Problem

25

b y

yy 2 RN

b[�p] = y[�p], �p 2 Observed

b = My

Page 26: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Classes of linear inverse problems

• Determined: the matrix A is square and invertible✓ Unique solution to ✓ Linear function of observations

• Over-determined: more equations than unknowns✓ Unique solution to :✓ Linear function of observations ✓ with pseudo-inverse

• Under-determined: fewer equations than unknowns✓ Infinitely many solutions to✓ Need to choose one?

26

b = Ay

b = Ay

b = Ay

y = A�1bA

A

A

y = A†b

Page 27: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Signal space ~ RN

Observation space ~ Rm m<<N

Linear projection

Nonlinear Approximation =

Sparse recovery

Set of signals of interest

Inverse problems

27

Courtesy: M. Davies, U. Edinburgh

b

x

A

Page 28: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Example : audio source separation

• « Softly as in a morning sunrise »

28

Page 29: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

• Mixing model : linear instantaneous mixture

• Source model : if disjoint time-supports …

Blind Source Separation

... then clustering to :1- identify (columns of) the mixing matrix2- recover sources

s1(t)

s3(t)s2(t)

29

yright(t)

yleft(t)

yleft(t)

yright(t)

Page 30: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

• Mixing model : linear instantaneous mixture

• In practice ...

Blind Source Separation

s1(t)

s3(t)s2(t)

30

yright(t)

yleft(t)

yleft(t)

yright(t)

Page 31: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

• Mixing model in the time-frequency domain

• And “miraculously” ...

Time-Frequency Masking

... time-frequency representations of audio signals are (often) almost disjoint.

S(�, f)

31

Yright(�, f)

Yleft(�, f)

Yleft(�, f)

Yright(�, f)

Page 32: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Inverse problems

• Inverse problem : exploit indirect or incomplete obervation to recontruct some data

• Sparsity : represent / approximate high-dimensional & complex data using few parameters

32

Dat

a

Rep

rese

ntat

ion

Reduce the dimension

Dat

a

Obs

erva

tions

Reconstruct

few nonzero components

fewer equations than unknowns

y ⇡ �x

z = My

Page 33: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Forward linear model

Signal Processing Vocabulary

Known linear system:dictionary, mixing matrix, sensing system...

Observed data:signal, image, mixture of sources,...

b � Ax

Unknownrepresentation, sources, ...

33

A DecompositionReconstruction

Separation

x

b

Page 34: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Unknownrepresentation, sources, ...Regression coeffs

Forward linear model

Machine Learning Vocabulary

Known linear system:dictionary, mixing matrix, sensing system...

Observed data:signal, image, mixture of sources,...

b � Ax

34

A DecompositionReconstruction

SeparationDesign matrix

Observation

X

y

X

b

x

y = Xw

w

Page 35: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Unknownrepresentation, sources, ...Regression coeffs

Forward linear model

Statistics Vocabulary

Known linear system:dictionary, mixing matrix, sensing system...

Observed data:signal, image, mixture of sources,...

b � Ax

35

A DecompositionReconstruction

Separation

y = X�

Design matrix

Observation

X

y

X

b

x

Page 36: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013 - R. GRIBONVAL - SPARSE METHODS

Inverse problems & Sparsity

Page 37: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

Inverse Problems & Sparsity:Mathematical foundations

• Bottleneck 1990-2000 : ✓ Ill-posedness when fewer equations than unknowns

• Novelty 2001-2006 : ✓ Well-posedness = uniqueness of sparse solution:

✦ if are “sufficiently sparse”,

✦ then

✓ Recovery of with practical pursuit algorithms ✦ Thresholding, Matching Pursuits, Minimisation of Lp norms p<=1,...

37

x0, x1

Ax0 = Ax1 ⇥� x0 = x1

Ax0 = Ax1 � x0 = x1

x0

Page 38: Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France · 2013-10-09 · R. GRIBONVAL - SPARSE METHODS 2013 Further material on sparsity 5 •Books Signal Processing perspective

2013R. GRIBONVAL - SPARSE METHODS

x

Sparsity and subset selection

x• Under-determined system✓ Infinitely many solutions

• If vector is sparse: ✓ If support is known (and columns independent)

✦ nonzero values characterized by (over)determined linear problem✓ If support is unknown

✦ Main issue = finding the support! ✦ This is the subset selection problem

• Objectives of the course✦ Well-posedness of subset selection✦ Efficient subset selection algorithms = pursuit algorithms✦ Stability guarantees of pursuits

b ~ A

b ~

38


Recommended