+ All Categories
Home > Documents > Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Date post: 14-Jan-2016
Category:
Upload: cleta
View: 78 times
Download: 0 times
Share this document with a friend
Description:
Multimodal Complex Trait Analysis: Combined Use of F2, HS, RI, SNPs, SSLP Haplotypes and Arrays to Fine-Map Behavioral Traits". Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University Portland, OR. Phenotype to Gene. The Beginning…. - PowerPoint PPT Presentation
Popular Tags:
58
Multimodal Complex Trait Analysis: Combined Use of F2, HS, RI, SNPs, SSLP Haplotypes and Arrays to Fine- Map Behavioral Traits" Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University Portland, OR
Transcript
Page 1: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Multimodal Complex Trait Analysis: Combined Use of F2, HS, RI, SNPs,

SSLP Haplotypes and Arrays to Fine-Map Behavioral Traits"

Robert Hitzemann, Ph.D.

Department of Behavioral Neuroscience

Oregon Health & Sciences University

Portland, OR

Page 2: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Phenotype to Gene

Page 3: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

The Beginning…

Schueler HE, Hitzemann RJ, Harris RA, Kreishman GP (1989)Ethanol-induced differential disordering of synaptic plasmamembranes from mice selected for genetic differences in

ethanol intoxication. Prog Clin Bio Res 292: 425-434.

Page 4: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

0 4 8 12 16

100

90

80

70

60

50

40

30

20

10

020 24

Generation

Per

cen

t R

esp

on

din

g

NR

NNR

0 3 5 7 9 11 14 16 20

50

40

30

20

10

0

NR

AlbinoPiebald

Generation

Per

cent

NNR

Page 5: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Selective Breeding as a Mode of Contemporary QTL Analysis.

• Strong evidence that the phenotype of interest has a measurable heritability

• Provides a mechanism for detecting correlated traits and thus potential candidate genes

• Both short and long term selective breeding provide instruments for confirming QTLs

• Selectively bred animals may prove useful for the fine mapping of QTLs

Page 6: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Phenotype to Gene

SelectiveBreeding

Page 7: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Phenotype to Gene

Basic Genetics

Selective Breeding

Page 8: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Hal

op

erid

ol

ED

50 (

mg

/kg

)+

/- S

.D.

D2BcD2F1BcB6B6

4

3

2

1

0

F2

Gene Dosage (% D2 alleles)0% 50% 100%

Isogenic GenerationsSegregating Generations

Page 9: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Basal Activity

Time5 10 15 20

Act

ivit

y -

cm/5

min

0

1000

2000

3000

4000

5000

6000

C57BL/6JDBA/2JF1F2

Ethanol-InducedActivity

Time5 10 15 20

Act

ivit

y -

cm/5

min

0

500

1000

1500

2000

2500

3000

C57BL/6JDBA/2JF1F2

Page 10: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Scatterplot: ETHANOL1 vs. ETHANOL1 (Casewise MD deletion)

ETHANOL1 = 2621.2 + .26595 * ETHANOL1Correlation: r = .27391

-20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000 30000

ETHANOL1

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

ETHA

NOL1

95% confidence

Scatterplot: SALINE1T vs. SALINE1T (Casewise MD deletion)

SALINE1T = 3013.6 + .59582 * SALINE1TCorrelation: r = .53850

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

SALINE1T

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

SALI

NE1T

95% confidence

Page 11: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Scatterplot: SALINE1T vs. SALINE1T (Casewise MD deletion)

SALINE1T = 3013.6 + .59582 * SALINE1TCorrelation: r = .53850

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

SALINE1T

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

SA

LIN

E1T

95% confidence

Test - Retest - Total Basal Activity - C57BL/6 x LP

Var9 = 442.20 + .68757 * Var8Correlation: r = .72346

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

Var8

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

Var9

95% confidence

Page 12: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Phenotype to Gene

Basic Genetics

Selective Breeding

Recombinant

InbredStrains

Page 13: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Plomin R. McClearn GE. Gora-Maslak G. Neiderhiser JM. Use of recombinant inbred strains to detect quantitative trait loci associated with behavior.Behavior Genetics. 21(2):99-116, 1991 Mar.

Key Publications for QTL Analysis in Mice.

Page 14: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

D230

2224

3121

115

527

813

914

1911

2820

126

25B6

3216

1823

292

9

8

7

6

5

4

3

2

1

0

0.4 0.5

5

0.6

1

0.9

3

0.9

6

0.9

8

1.1

7

1.1

7

1.2

3

1.3

5

1.4

8

1.5

3

1.7

3

2.3

1

2.3

9

2.4

7

2.7

3

2.8

0

2.9

4

3.2

5

3.6

2

3.8

0

3.8

1

4.1

8

4.4

3

5.8

9

6.6

7

7.9

0

BXD Strain

Hal

op

eri

do

l - E

D 5

0 m

g/k

g

2

4

6

8

10

Inbred Strains

BA

LB/c

AK

R

D2

PL

CE

SJL

C3H

A A/H

e

B6

P CB

A

129

LP

C57L

Standard

Page 15: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Conditional QTLs (p < 0.01) Obtained from the Analysis of the RI Strain Means

• D2Mit238, D2Ncvs31, D2Mit7 (27-30 cM, r = -.54)

• D4Mit17, b(Trp1), Ifa (29-42 cM, r = -.62)

• D6Mit16, D6Mit9, Tgfa(26-33 cM, r = -.72)

• D9Mit4, Ncam, Drd2, D9Mit21 (28-32 cM, r = 0.56)

• D15Mit1 (41-48 cM, r = -.65)

• D16Mit131 (10 cM, r = .52)

0

5

15

20

25

30

35

40

45

50

Fli-1 (0.33)

Lap-1 (0.27)

Xmv-16 (0.40)T3d (0.40)

Ncam, D9Mit22 (0.55)D9Mit4, D9Byu1b (0.54)

Apoa-1 (0.40)

Xmv-15 (0.38)

D9Mit8 (0.04)

Drd2

11q23-q24

11q23-q2411q23-q2415q23-q2415q22-q24

(0.55)

Chromosome 9

Htr1b

d

Page 16: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Plomin R, McClearn GE, Gora-Maslak G, Neiderhiser JM (1991)Use of recombinant inbred strains to detect quantitative trait loci associated with behavior. Behavior Genetics. 21(2):99-116.

Key Publications for QTL Analysis in Mice.

Belknap JK, Mitchell SR, Crabbe JC (1996) Type I and II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains: Computer simulation andempirical results. Behavior Genetics 26:581-592.

Page 17: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Dietrich W, Katz H, Lincoln SE, Shin HS, Friedman J, Dracopoli NC, Lander ES (1996) A genetic map of the mouse suitable for typing intra-specific crosses.Genetics. 131(2):423-47.

Key Publications for QTL Analysis in Mice.

Flint J, Corley R, DeFreis JC, Fulker DW, Gray JA, Miller S, Collins AC (1995) A simple genetic basis for a complex psychological trait in laboratory mice. Science 269: 1432-35

Page 18: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Phenotype to Gene

Basic Genetics

Selective Breeding

Recombinant

InbredStrains

IntercrossMapping

Page 19: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Chromosome 9

cM 0 10 20 30 40 50 60 70

LO

D S

core

0

1

2

3

4

5

6

D9M

it18

8

D9M

it90

D9M

it20

6

D9M

it22

D9M

it21

D9M

it14

4

D9M

it74

D9M

it11

1

D9M

it21

2

Pe

nk2

Gria

4

El4

Grik

4S

cn2

bN

cam

Drd

2A

cat1

Acr

a5

Acr

a5

Myo

5a

Htr

1b

Acr

a3

El1

Cp

u3

Phenotype = Haloperidol-Induced Catalepsy

Page 20: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

LO

D

0

1

2

3

4

5

6

FreeDominantRecessiveAdditive

D2M

IT80

D2M

IT464

D2M

IT521

D2M

IT241

D2M

IT458

D2M

IT94

D2M

IT420

D2M

IT102

D2M

IT491

D2M

IT493

D2M

IT412

D2M

IT282

D2M

IT229

.. . .. . . . . . . . .10 cM

IA

lcp1q

Scn1

a

Gad

1

Plcb2

Adra

2b

Sna

p2

5

Lo

rr2

Ntsr

Kcna

1-rs2N = 600

Phenotype = Ethanol-Induced Locomotor Activation

Chromosome 2

Page 21: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

B6D2 Intercross

cM0 20 40 60 80 100

F-V

alue

0

5

10

15

20

25

30

0 - 5 Min5 - 10 Min10 - 15 Min15 - 20 Min

N = 1820 Chromosome 2

Ethanol-Induced Locomotor Activation

Page 22: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Comparison of IM and CIM Techniques

Relative Chromosome Length0 1

LOD

0

10

20

30

40

50

Page 23: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Ethanol Response 0-5 Min (CIM)

cM - Chromosome 2

0 20 40 60 80 100 120

LO

D

0

2

4

6

8

10

Free Additive

Dominant

Ethanol Response 5-10 Min (CIM)

cM - Chromosome 2

0 20 40 60 80 100 120

LO

D

0

2

4

6

8

10

Free Additive

Dominant

Ethanol Response 10-15 Min (CIM)

cM - Chromosome 2

0 20 40 60 80 100 120

LO

D

0

2

4

6

8

10

12

14

16

Free

Additive

Dominant

Ethanol Response 15-20 Min (CIM)

cM - Chromosome 2

0 20 40 60 80 100 120

LO

D

0

2

4

6

8

10

12

14

Free

Additive

Dominant

Page 24: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

D8Mit236

D1Mit365 -------------------------------------------------------------------------------------------------- --:-- B6:B6 B6:D2 D2:D2 B6:B6 2660 + 88 2250 + 166*** 2650 + 238 3080 + 198 B6:D2 2180 + 95*** 2380 + 113 2090 + 88 2090 + 173 D2:D2 1790 + 58**** 1870 + 172 1910 + 106 1600 + 280 --:-- 2300 + 115 2080 + 113 2260 + 98

Evidence for epistasis – basal locomotor activity

Koyner et al. 2000

Page 25: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Phenotype to Gene

Basic Genetics

Selective Breeding

Recombinant

InbredStrains

IntercrossMapping

Fine

Mapping

Page 26: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nature Genetics 18: 19-24.

Key Publications for QTL Analysis in Mice.

Talbot CJ, Nicod A, Cherny SS, Fulker DW, Collins AC, Flint J (1999) High resolution mapping of quantitative trait loci in outbred mice. Nature Genetics 21: 305-308.

Threadgill DW, Hunter KW, Williams RW (2002) Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort. Mammalian Genome 13: 175-8.

Page 27: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Strategies for Fine Mapping (< 1 cM) QTLs.

• Interval specific congenic strains

• Advanced F2 intercrosses

• Heterogeneous stock (HS) > G30

• Large (~1,000 strains) recombinant inbred panels – also includes the use of RIX animals

• The integration of functional genomics and QTL analysis

Page 28: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University
Page 29: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University
Page 30: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

B6D2 Intercross

cM0 20 40 60 80 100

F-V

alu

e

0

5

10

15

20

25

30

HS Population

cM

45 50 55 60 65 70 75

F-V

alu

e

-20

-10

0

10

20

30

0 - 5 Min5 - 10 Min10 - 15 Min15 - 20 Min

0 - 5 Min5 - 10 Min10 - 15 Min15 - 20 Min

Chromosome 2

N = 1820

N = 550 @ G32

Ethanol-Induced Locomotor Activation

Page 31: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Phenotype to Gene

Basic

Genetics

Selective Breeding

Recombinant

InbredStrains

IntercrossMapping

Fine

Mapping

Mechanism

& Circuit

Page 32: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Central Amygdaloid Nucleus

20

40

60

80

0 0.25 0.5 1 4

Ethanol - g/kg

2

DBA

C57

Fos

Pos

itiv

e C

ells

/ S

ecti

on

Page 33: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

GABA(Peptide)

GABA Glu(Peptide)

DA, NE5-HT, ACh

CeL CeM

BST

Ins Cx, , PB Motor Response

GABA(Peptide)

Glu(Peptide)

1

23

5

4

Page 34: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Multiple Cross Mapping (MCM): A New Recipe for QTL Measurement and Gene

Detection

Page 35: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Multiple Cross Mapping (MCM)• Builds from the observation that for open-field/basal

activity, three different diallele crosses (B6xC, B6xA and B6xD2) appear to generate some similar QTLs, most notably on distal chromosome1 (Hitzemann et al. 2000). One interpretation of these data would be that the C, A and D2 strains have common allele(s) in the region of interest.

• The more general interpretation is that polymorphic and non-polymorphic alleles are not randomly distributed and thus, provide a source of information. MCM can be used to “mine” this information to reduce the QTL interval.

• MCM provides a mechanism to interrogate the data obtained from gene and protein array analysis.

Page 36: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Ingredients for MCM (v2.0)

• Four inbred mouse strains – C57BL/6J (B6), DBA/2J (D2), BALB/cJ (C) and LP/J (LP).

• The six F2 intercrosses that can be produced from these four strains.

• A four-way cross of the strains – Heterogeneous Stock 4 (HS4) at G11.

• An eight way HS at G44 containing the above four strains plus the AKR/J, A/J, C3H/HeJ and CBA/J strains (HS8).

• Chromosome-gene expression maps for the inbred strains.

• Dense microsatellite and SNP maps for the inbred strains.

• Multiple phenotypes: basal activity, ethanol-induced activity, haloperidol-induced catalepsy, the acoustic startle response (ASR) and pre-pulse inhibition (PPI) of the ASR.

Page 37: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

QTL Maps - Ethanol Response

0 20 40 60 80 100 120

-Log

P

0

1

2

3

4

5

6

C57BL/6 x DBA/2C57BL/6 x LPC57BL/6 x BALB/c

cM - Chromosome 1

0 20 40 60 80 100 120

-Log

P

0

1

2

3

4

5

6

C57BL/6 x DBA/2BALB/c x DBA/2DBA/2 x LPBALB/c x LP

Page 38: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

C57BL/6 vs DBA/2

Chromosome 1 - cM

0 20 40 60 80 100 120

Fra

ctio

n o

f T

otal

Mar

ker

s

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

PolymorphicNot Polymorphic

Distribution of Marker Set Based On QTL Criteria

Chromosome 1 - cM

0 20 40 60 80 100 120

Fra

ctio

n of

Tot

al M

arke

rs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Page 39: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Table 1: Analysis of Chromosome 1 QTL for Ethanol Response in HS Mice11

Markers (Catalog Position-cM)

Calculated Interval - cM - Log P

0 D1Mit 103(73) - D1Mit423(73) 64.100 - 64.730 2.46

1 D1Mit423(73) - D1Mit 100(71.5) 64.730 - 64.760 2.68

2 D1Mit 100(71.5) - D1Mit496(70) 64.760 - 64.840 3.18

3 D1Mit496(70) - D1Mit264(71.5) 64.860 - 64.960 3.30

4 D1Mit264(71.5) - D1Mit289(74.3) 64.960 - 65.170 5.86

5 D1Mit289(74.3) - D1Mit425(81.6) 65.170 - 68.010 13.5

6 D1Mit425(81.6) - D1Mit268(83.4) 68.010 - 71.980 12.7

7 D1Mit268(83.4) - D1Mit452(86.6) 71.980 - 73.880 10.8

8 D1Mit452(86.6) - D1Mit16(87.2) 73.880 - 75.100 2.72

9 D1Mit16(87.2) - D1Mit370(87.9) 75.100 - 77.280 2.99

10 D1Mit370(87.9) - D1Mit110(88.1) 77.280 - 77.550 2.99

11 D1Mit110(88.1) - D1Mit15(87.9) 77.550 - 77.960 3.51

12 D1Mit15(87.9) - D1Mit270(92.3) 77.960 - 80.270 1.91

13 D1Mit270(92.3) - D1Mit36(92.3) 80.270 - 80.800 0.91

14 D1Mit36(92.3) - D1Mit113(93.3) 80.800 - 81.400 3.06

15 D1Mit113(93.3) - D1Mit402(92.3) 81.400 - 81.900 1.95

16 D1Mit402(92.3) - D1Mit149(94.2) 81.900 - 82.500 1.26

17 D1Mit149(94.2) - D1Mit354(95.8) 82.500 - 82.600 0.39

18 D1Mit354(95.8) - D1Mit456(95.8) 82.600 - 82.800 0.33

19 DiMit456(95.8) - D1Mit541(97.7) 82.800 - 83.500 0.41

20 D1Mit541(97.7) - D1Mit115(99.7) 83.500 - 84.340 2.71

Page 40: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

The Problem. “All genetic studies begin with variation because

perturbations in biological processes reveal functionally important elements in the life history of an organism. Naturally occurring variation still drives many studies because complex genetic traits remain important in humans, model organisms and agriculturally important animal and plant species. The existing challenge in complex trait analysis is to distinguish the mutations responsible for trait variability from closely linked, selectively neutral polymorphisms.” Nadeau and Dunn (1998)

Page 41: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Gene Expression Project

• Affymetrix “A” chip & 16,000 gene cDNA arrays for some groups of interest

• Whole brain data in C57BL/6, DBA/2, BALB/c, LP, A, AKR, C3H/He, CBA and 129/SV – N=6-8/strain

• Data from extended amygdala (CeA+BSTLP) and dorsomedial striatum both at baseline and after acute haloperidol (1 mg/kg) or acute ethanol (1.5g/kg) treatment; data will be obtained in C57BL/6, DBA/2, BALB/c, LP, A and 129/SV strains – N=6-8/strain

• Purpose: to construct chromosome expression maps for the various strains and to integrate expression maps with sequence maps

• Samples from other brain regions have been collected e.g. VTA, SNc, Cb and are available for analysis

Page 42: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Results of the Gene Expression Project to Date

• Whole brain data (Affymetrix) have been obtained from 4 strains (B6, D2, C and LP) – N = 6

• ~6000 transcripts were detected as present in one or more of the strains; the actual number of genes expressed will be substantially fewer given that some genes have multiple transcripts

• ~ 1900 transcripts were detected as being differentially expressed among the four strains at p < 0.05

• ~ 400 transcripts were detected as being differentially expressed among the four strains at p < 0.000005

Page 43: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Gene cM F-value

glutamate receptor, ionotropic, NMDA1 (zeta 1) 12 7prostaglandin D2 synthase (21 kDa, brain) 13 12prostaglandin D2 synthase (21 kDa, brain) 13 8prostaglandin D2 synthase (21 kDa, brain) 13 7heat shock 70kD protein 5 (glucose-regulated protein, 78kD) 22 13pre B-cell leukemia transcription factor 3 22 8gelsolin 25 26tumor necrosis factor induced protein 6 30 19neurogenic differentiation 1 46 6CD59a antigen 55 50reticulocalbin 58 15secretory granule neuroendocrine protein 1, 7B2 protein 64 129maternal inhibition of differentiation 68 10beta-2 microglobulin 69 27protein tyrosine phosphata 73 6cystatin C 84 21inhibitor of DNA binding 1 84 19neuronatin 88 55protein kinase inhibitor, gamma 94 67protective protein for beta-galactosidase 96 9SRY-box containing gene 18 96 7potassium voltage-gated channel, subfamily Q, member 2 104 21myelin transcription factor 1 106 10sialyltransferase 7 7transcription termination factor 1 7c-mer proto-oncogene 9fibroblast growth factor 7 25isovaleryl coenzyme A dehydrogenase 43

Chromosome 2

Page 44: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

S g n e1

Dif

f. S

core

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

C 5 7 B L /6 D B A /2 B A L B /c L P /J

QTL MapsEthanol Response

Chromosome 2 - cM

0 20 40 60 80 100

F va

lue

0

2

4

6

8

10

12

14

C57BL/6 x DBA/2BALB/c x DBA/2LP x DBA/2

0 20 40 60 80 100 120

F V

alue

0

2

4

6

8

10

12

14

C57Bl/6 x DBA/2C57BL/6 x BALB/cLP x BALB/cC57Bl/6 x LP

R eticu lo ca lb in

Dif

f. S

core

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

C 5 7 B L /6 D B A /2 B A L B /c L P /J

B e ta -2M ic r o g lo b u lin

Dif

f. S

core

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

C 5 7 B L /6 D B A /2 B A L B /c L P /J

Page 45: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Allele

Cat

alas

e A

ctiv

ity

60

70

80

90

100

110

120

130

140

B6 D2

B6RI-#1RI-#6

RI-#16D2

RI-#28

RI-#11RI-#32

D2 = C = LP Cas1

Bdnf

B6 LeuD2 MetC MetLP Leu

QTL MapsEthanol Response

Chromosome 2 - cM

0 20 40 60 80 100

F va

lue

0

2

4

6

8

10

12

14

C57BL/6 x DBA/2BALB/c x DBA/2LP x DBA/2

0 20 40 60 80 100 120

F Va

lue

0

2

4

6

8

10

12

14

C57Bl/6 x DBA/2C57BL/6 x BALB/cLP x BALB/cC57Bl/6 x LP

Page 46: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

cM - chromosome 1

0 20 40 60 80 100 120

F v

alue

0

5

10

15

20

25

B6 vs D2LP vs D2Lp vs CC vs D2

QTL Maps - Basal Actvity

0 20 40 60 80 100 120

F-v

alue

0

5

10

15

20

25

B6 vs D2B6 vs LPB6 vs C

Page 47: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Gene cM F-value

Eph receptor A4 7 6

myosin Ib 25 6

acetyl-Coenzyme A dehydrogenase, long-chain 27 7

isocitrate dehydrogenase 1 (NADP+), soluble 30 6

insulin-like growth factor binding protein 5 36 23

insulin-like growth factor binding protein 2 36 8

peptidylglycine alpha-amidating monooxygenase 58 61

troponin T2, cardiac 60 11

astrotactin 1 85 7

POU domain, class 2, transcription factor 1 87 17

pre B-cell leukemia transcription factor 1 88 6

peroxisomal farnesylated protein 93 13

potassium inwardly-rectifying channel, subfamily J, member 9 94 172

ATPase, Na+/K+ transporting, alpha 2 polypeptide 94 7

LanC (bacterial lantibiotic synthetase component C)-like 104

growth arrest specific 5 61

transcription elongation factor A (SII) 1 55

kinesin heavy chain member 1A 22

expressed sequence C77892 9

Chromosome 1

Page 48: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

cM - chromosome 1

0 20 40 60 80 100 120

F va

lue

0

5

10

15

20

25

B6 vs D2LP vs D2Lp vs CC vs D2

QTL Maps - Basal Actvity

0 20 40 60 80 100 120

F-va

lue

0

5

10

15

20

25

B6 vs D2B6 vs LPB6 vs C

Pxf

Dif

f. S

core

0

20

40

60

80

100

120

140

160

180BALB/cLP

C57BL/6DBA/2

Atp1a2D

iff.

Sco

re

0

200

400

600

800

1000

1200

1400

1600

1800BALB/cLP

C57BL/6DBA/2

GIRK3

Dif

f. S

core

0

100

200

300

400

500

600

C57BL/6DBA/2BALB/cLP

Page 49: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

1 gggaacctag ggtactgggg gagatggtgt cagggacatg gacgccaacc cccaagggtt 61 tctgctgctg gctactcttc tctccaggct ctgggaccct gaaagcctag gaaccgactc121 tggccatcca tctctccggg aagattataa cccagagtgc ttctcagggg ggaagaattt181 gaagcaaaac cagaccccgc aggatccccg ctgcggccgc catgcgccag gagaacgccg241 ctttctctcc cgggtcggag gagccgccac gccgccgcgg tcgccagcgc tacgtggaga ………..481 gcgacctgga gcacctggag gacaccgcgt ggaccccgtg cgtcaacaac ctcaacggct541 tcgtggccgc cttcctcttc tccatagaga cggagaccac carcggctat gggcaccgcg ………..781 gtctcagtt tcgcgtgggc gaccctgcgat cctcacacat cgtcgaggcc tccatccgag ……….. 1081gccaagctcg aagctcgtac ctggtggatg aagtgttgtg gggccaccgg ttcacatccg ………..1201aggtgcccac accctcgtcg agtgcttcggg aactggcaga agccgcggcc cgccttgatg …………

Polymorphisms Between the C57BL/6J and DBA/2J Strains in Kcnj9 (GIRK3)

Page 50: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Gene Chr cM F-value P-value C57BL/6J DBA/2J LP/J BALB/cJ

Gabra1 11 19cM 16.7756 0.000011 526+44 298 + 15 505 + 59 497 + 103Gabra2 5 40cM 17.5145 0.000008 51 + 18 140 + 29 125 + 26 132 + 23Gabra6 11 23cM 13.5512 0.000047 672 + 81 848 + 89 901 + 57 922 + 71Gabrb1 5 40cM 13.5435 0.000047 965 + 85 1085 + 101 769 + 78 969 + 83Gabrb2 11* *25cM 10.0278 0.000304 34 + 14 2 + 6 44 + 17 46 + 21Gabrb3 7 29cM 1.8440 0.171715 69 + 23 83 + 22 99 + 28 86 + 17Gabrg1 5 40cM 5.8868 0.004744 40 + 8 51 + 9 64 + 14 57 + 10Gabrg2 11 19cM 3.0945 0.050183 801 + 45 881 + 72 902 + 77 888 + 54Gabrg3 7 28cM 1.3917 0.274346 71 + 25 87 + 17 80 + 11 91 + 15Gabt1 3 50cM 0.4664 0.708949 1064 + 90 1105 + 76 1110 + 65 1092 + 58Gad1 2 43cM 3.0010 0.054809 1900 + 116 1973 + 123 2055 + 123 2082 + 93

Mean + SD (N=6/strain)

Gad2 2 9cM 2.1515 0.125644 61 + 16 75 + 13 84 + 19 89 + 29

GABA Related Genes

Viaat 2 80cM 98 0.000000 1434 + 70 748 + 109 1494 + 88 1456 + 80

Page 51: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Gene Chr cM Region C57BL/6J DBA/2J LP/J BALB/cJ

Gabra1 11 19cM WB 526 + 44 298 + 15 505 + 59 497 + 103Striatum (DM) 272 + 106 143 + 41 195 + 55 258 + 23CeA-BSTLP 475 + 35 220 + 19 318 + 29 386 + 56

Gabra2 5 40cM WB 51 + 18 140 + 29 125 + 26 132 + 23Striatum (DM) 57 + 17 186 + 21 168 + 32 196 + 15CeA-BSTLP 108 + 10 211 + 44 217 + 24 213 + 59

Gabra3 X WB A A A AStriatum (DM) A A A ACeA-BSTLP 40 + 17 25 + 8 33 + 13 23 + 21

Gabra6 11 23cM WB 672 + 81 848 + 89 901 + 57 922 + 71Striatum (DM) 10 + 4 8 + 6 20 + 18 13 + 6CeA-BSTLP A A A A

A = absent

Mean + SD (N=3-6/strain)

Comparison of GABA Receptor Subunit Gene Expression in Whole Brain, the Dorsomedial Striatum

and the Central Extended Amygdala.

Page 52: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

QTLs and GABA Related Gene Expression

• Chr 11 ( – Acute pentobarbital withdrawal, acute alcohol withdrawal, forced swim test, light-dark latency, tail suspension

• Chr 5 ( – kianic acid induced seizures, PTZ induced seizures, alcohol hypothermic sensitivity and tolerance, (elevated plus maze behavior)

• Chr 2 (Viaat) – acute locomotor response to ethanol and chlordiazepoxide

Page 53: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Genotype vs Response at D1Mit150Four-way Cross

Eth

anol

-In

du

ced

Res

pon

se -

cm

/20

min

0

1000

2000

3000

4000

5000

6000

B6:B6 C:C B6:D2 B6:LP D2:LPD2:D2 LP:LP B6:C D2:C C:LP

QTL Maps - Ethanol Response

0 20 40 60 80 100 120

-Log

P

0

1

2

3

4

5

6

C57BL/6 x DBA/2C57BL/6 x LPC57BL/6 x BALB/c

cM - Chromosome 1

0 20 40 60 80 100 120

-Log

P

0

1

2

3

4

5

6

C57BL/6 x DBA/2BALB/c x DBA/2DBA/2 x LPBALB/c x LP

Page 54: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Phenotype to Gene

Basic

Genetics

Selective Breeding

Recombinant

InbredStrains

IntercrossMapping

Fine

Mapping

Mechanism

& Circuit MultipleCross

Mapping

FunctionalGenomics

Page 55: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Complex Trait Probable Gene Reference

Intestinal tumor resistance Pla2g2a Cormier et al., 1997 Mom1 [mice] Nature Genet 17:88Type II diabetes-insulin Cd36 Aitman et al., 1999; Pravenac resistance [rats] et al., 2001, Nature

Genet 16:197 & 27:156Type I diabetes- Idd3 Lyons et al., 2000 islet degeneration [mice] Genome Res 10:446Allergen-induced airway Cd5 Karp et al., 2000 hyperresponsiveness- Nature Immun 1:221 asthma [mice]Susceptibility to lupus Ifi202 Rozzo et al., 2001 [mice] Immunity 15:435Cardiac ventricular Nppa Deschepper et al., 2001 hypertrophy [rats] Circul Res 88:223Blood pressure Cyp11b1 Cicila et al., 2001 [rats] Genomics 72:51Sweet taste preference Tas1r3 Max et al., 2001 behavior [mice] Nature Genet 28:58

JKB, Dec 2001

Page 56: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Complex Trait Probable Gene Method of gene ID

Intestinal tumor resistance Pla2g2a High res mapping/Transgenic Mom-1 [mice] rescueType II diabetes-insulin Cd36 Microarray analysis in congenic resistance [rats] vs background strain/

transgenic rescueType I diabetes- Idd3/Il2 Mapping to 780 kb/ islet degeneration [mice] functional testingAllergen-induced airway Cd5 Microarray analysis in congenic hyperresponsiveness-

vs background strain asthma [mice]Susceptibility to lupus Ifi202 Microarray analysis in congenic [mice] vs background strain/functionalCardiac ventricular Nppa Promotor SNP/functional hypertrophy [rats] testing/in vitro expressionBlood pressure Cyp11b1 Mapping to 220kb/SNPs/ [rats] functional testing Sweet taste preference Tas1r3 Taste cell specific expression/ behavior [mice] glycosylation site SNP/ functional

testing. JKB, Dec. 2001

Page 57: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Distribution of Some Murine Behavioral QTLs - LOD > 3

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

Num

ber

of Q

TL

s

0

5

10

15

20

25

AggressionCircadian RhythmDrug PreferenceDrug ResponseEmotionLearningMotor Activity

Total Number of QTLs = 124

Page 58: Robert Hitzemann, Ph.D. Department of Behavioral Neuroscience Oregon Health & Sciences University

Acknowledgements

Stony Brook

Jim McCaughranLaura CippKristin DemarestJay KoynerStephen Kanes Nilay PatelErik RasmussenBarbara HitzemannYifang QianPeter ThanosAdena Svingos

OHSU

Barry MalmangerShannon CoulombeStaci CooperCheryl ReedBarbara HitzemannMaureen LawlerKristin HitzemannTarra Gupta Ronnie Dhamer

Kari BuckBrooks Rademacher

Denver

Jim SikelaYan Xu

Oxford, UK

Jonathan FlintChris Talbot


Recommended