+ All Categories
Home > Documents > ROBOT CONTROL

ROBOT CONTROL

Date post: 23-Feb-2016
Category:
Upload: kevyn
View: 77 times
Download: 2 times
Share this document with a friend
Description:
ROBOT CONTROL. T. Bajd and M. Mihelj. Robot control. Robot control deals with computation of the forces or torques which must be generated by the actuators in order to successfully accomplish the robot task. The robot task can be - PowerPoint PPT Presentation
Popular Tags:
31
T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010 ROBOT CONTROL T. Bajd and M. Mihelj
Transcript
Page 1: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

ROBOT CONTROL

T. Bajd and M. Mihelj

Page 2: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Robot control deals with computation of the forces or torques which must be generated by the actuators in order to successfully accomplish the robot task.

• The robot task can be – execution of the motion in a free space, where position control

is performed, or – in contact with the environment, where control of the contact

force is required.• The choice of the control method depends on

– the robot task,– the mechanical structure of the robot mechanism.

• Robot control usually takes place in the world coordinate frame, which is defined by the user and is called also the coordinate frame of the robot task.

Robot control

Page 3: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

General control approach

End-effector pose

Position Orientation

RPY notation of the orientation

Page 4: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Control loop is closed separately for each particular degree of freedom

• Less suitable for robotic systems characterized by nonlinear and time varying behavior

• Position error computation– Reference positions– Measured robot joint positions– Position error

PD position control

Page 5: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Control law; computation of control variable (torque, velocity)

• Actuation of robot motors is proportional to the error• Velocity feedback loop introduces damping into the system• Velocity error can be introduced into the control law (faster

system response)

• leading to

PD position control

Page 6: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

Block schemes

Page 7: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Robot inverse dynamic model

• In static conditions can be simplified to

• Estimated gravity term part of the control law

PD position control with gravity compensation

Page 8: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

PD position control with gravity compensation

Page 9: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Robot inverse dynamic model

• Robot forward dynamic model

• Define new variable

• leading to

Robot dynamic model

Page 10: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Assume that the robot dynamic model is known– inertial matrix is an approximation of real values ,– represents an approximation of

• Consider the following control law

• where input y will be defined later.

Inverse dynamics control

Page 11: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

Inverse dynamics control block scheme

y represents computed acceleration in joint space

Page 12: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• position error

• velocity error

• control law

• error dynamics

PD position control

Page 13: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

Controller block scheme

Page 14: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Definition of pose error

• Control based on the transposed Jacobian matrix

• Control based on the inverse Jacobian matrix

Robot control in external coordinates

Page 15: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• End-effector position

• Differential kinematics

Manipulator Jacobian matrix

Jacobian matrix

Page 16: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Jacobian matrix

Manipulator Jacobian matrix

Page 17: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Inverse velocity relation

• For a square matrix of dimension two

• Inverse velocity relation

• Inverse Jacobian matrix equals

Inverse Jacobian matrix

Page 18: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Robot in contact with the environment (contact force f)• Find resulting joint torques

• In matrix form

Transposed Jacobian matrix

Page 19: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Velocity relation

• Force/torque relation

• Transposed matrix

• Force/torque relation

Transposed Jacobian matrix

Transposed Jacobian matrix

Page 20: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Pose error in external coordinates

• Control law formulation (control variable in external coordinates)

• Control variable in joint space

Transposed Jacobian matrix based Control

Page 21: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Velocity relation

• Relation for small displacements

• Relation for small pose errors

• Control law in joint space

Inverse Jacobian matrix based Control

Page 22: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

PD position control with gravity compensation in external coordinates• Control law

Page 23: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Inverse dynamics

• Velocity relation

• Acceleration relation

• Computed acceleration for external coordinates control

Inverse dynamics control in external coordinates

Page 24: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Pose error

• Velocity error

• Acceleration error

• Error dynamics

• Control law

Inverse dynamics control in external coordinates

Page 25: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

Inverse dynamics control in external coordinates – block scheme

Page 26: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• control of end-effector desired pose while the robot is in contact with the environment

– case of robot assembly (inserting a peg into a hole)

– robot movement assures minimal contact force during action

• robot end-effector exerts a predetermined force on the environment

– case of machining parts with robot (grinding)

– robot movement depends on the difference between the desired and the actual contact force.

Control of contact force with environment

Page 27: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Dynamic model with contact force

• Define new variable

• leading to

Robot dynamics with contact

result of interaction with the environment

Page 28: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Inverse dynamics with contact

• Forward dynamics with contact

• Control law

Inverse dynamics control with contact

Page 29: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Force control is based on position control

• Reference values for acceleration, velocity and pose are computed from force error

Force control

Page 30: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Force error

• Predefined manipulator behavior via inertia and damping matrices and

• Reference trajectory

Force control

Page 31: ROBOT CONTROL

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Parallel composition assumes force control in certain direction and pose control in other directions

Parallel composition


Recommended