+ All Categories
Home > Documents > Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

Date post: 06-Feb-2016
Category:
Upload: evelia
View: 48 times
Download: 0 times
Share this document with a friend
Description:
Adjoint-based observation impact monitoring at NRL-Monterey. Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker. Fourth Workshop on Observing System Impact in NWP WMO, Geneva, 19-21 May 2008. Outline of Talk. Methodology Observation impact examples - PowerPoint PPT Presentation
Popular Tags:
40
1 Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker Adjoint-based observation impact monitoring at NRL-Monterey Fourth Workshop on Observing System Impact in NWP WMO, Geneva, 19-21 May 2008
Transcript
Page 1: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

1

Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA

Gary G. Love, Nancy L. Baker

Adjoint-based observation impact monitoring at NRL-Monterey

Fourth Workshop on Observing System Impact in NWP

WMO, Geneva, 19-21 May 2008

Page 2: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

2

Outline of Talk

1. Methodology

2. Observation impact examples

3. On-line observation monitoring system

Page 3: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

3

Develop a method to estimate the impacts of all assimilated observations on a measure of short-range forecast error in an operational NWP system

Must be computationally efficient – run in near-real-time for routine observation monitoring

Goal for observation impact monitoring system

Page 4: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

4

NAVDAS: NRL Atmospheric 3d-Variational Data Assimilation System (0.5o lat-lon, 60 levels)

• Adjoint provides sensitivity to observations, including moisture data

NOGAPS: Navy Operational Global Atmospheric Prediction System (T239L30)

• Adjoint run at T239L30, includes simplified vertical mixing, large-scale precipitation

Forecast Model and Analysis Procedure

Analysis procedure:

Forecast model:

Page 5: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

5

xb

xg

t= -6 hrs

eg

xt

xf

xa

t= 24 hrst=0

ef

6 hr assimilation window

Observation Impact Concept

Langland and Baker (Tellus, 2004)

Observations move the forecast from the background trajectory to the trajectory starting from the new analysis

In this context, “OBSERVATION IMPACT” is the effect of

observations on the difference in

forecast error norms (ef - eg)

Page 6: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

6

Forecast error norms and differences

e30

e24

Forecasts from 0600 and 1800 UTC have larger errors

e24 – e30 (nonlinear) e24 – e30 (adjoint)

Global forecast error total energy norm (J kg-1)

Forecast errors on background-trajectories

Forecast errors on analysis-trajectories

Page 7: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

7

Observation Impact Equation

b

a b

, f ggf

e ee

Ty Hx Kx x

• Dry or moist total energy forecast error norm, f = 24h, g = 30hr

• Forecasts are made with NOGAPS-NAVDAS.

• Adjoint versions of NOGAPS and NAVDAS are used to calculate the observation impact

• The impact of observation subsets (separate channels,

or separate satellites) can be easily quantified

T T 1

b b[ ]

K HP H R HP

Page 8: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

8

Observation impact interpretation

< 0.0 the observation is BENEFICIAL

> 0.0 the observation is NON-BENEFICIAL

3024e

3024e

For any observation / innovation … using this error measure

the effect of the observation is to make the error of

the forecast started from xa less than the error of the

forecast started from xb, e.g. forecast error decrease

e.g., forecast error increase

Page 9: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

9

Dry TE Norm (150mb-sfc)

Dry TE Norm (150mb-sfc)

Total impact by instrument type – Jan2007

Page 10: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

10

Impacts per-observation by instrument type

10e-5 J kg-1 10e-5 J kg-1

Page 11: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

11

Percent of observations that produce forecast error reduction (e24 – e30 < 0)

Page 12: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

12

Impact for AMSU-A channels - NAVDAS-NOGAPS

1 – 31 Jan 2007, 00,06,12,18 UTCUnits of impact = J kg-1

-30

-25

-20

-15

-10

-5

0

5 4_15

4_16

4_18

4_19

5_15

5_16

5_18

5_19

6_15

6_16

6_18

6_19

7_15

411

Beneficial

5 6 7 89 10

Channel

Ch. peak near

11: 20mb

10: 50mb

9: 90mb

8: 150mb

7: 250mb

6: 350mb

5: 600mb

4: surface

NOAA 15

NOAA 16

NOAA 18

Page 13: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

13

Why do some “good data” have non-beneficial impact ?

• Observation and background error statistics for data assimilation cannot be precisely specified

• This implies a statistical distribution of beneficial and non-beneficial observation impacts

• Assimilating the global set of observations improves the analysis and forecast, even though 40-50% of observation data are non-beneficial in any selected assimilation

Information about the impact of individual observations and subsets of observations

can be used to improve the data assimilation and observation selection procedures

Page 14: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

14

Beneficial

Non-beneficial

Impact of AMSU-A radiance data

Observations assimilated at 0000 UTC 4 May 2008

Sum = - 0.906 J kg-1

86,308 observations

Page 15: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

15

Interpretation of observation impact

• Non-beneficial impacts: look for data QC issues, instrument accuracy, specification of observation and background errors, bias correction, or model (background) problems …

• Beneficial impacts: associated with heavily weighted observations in sensitive regions; “good”, but extreme impacts indicate need for greater observation density …

Best strategy: many observations which produce small to moderate impacts, not few observations

which produce large impacts …

Page 16: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

16

Example 1: AMV impact problem

Date: Jan-Feb 2006

Issue: Non-beneficial impact from MTSAT AMVs at edge of coverage area

Action Taken: Data provider identified problem with wind processing algorithm.

Page 17: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

17

Restricting SSEC MTSAT Winds 500 mb Height Anomaly Correlation

Southern Hemisphere

Restricted Winds ControlFebruary 16 – March 27, 2006

Page 18: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

18

Example 2: Ship data problem

Date: Jan-Feb 2006

Issue: Some ship data having non-beneficial impact

Actions Taken: Ship ID blacklist implemented; increase wind observation error for ship data (previously was equal to radiosonde surface wind error)

SEA ARCTICA – one of the “problem” ships

Page 19: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

19

Example 3: AMSU-A over land surface

Date: Jan-Feb 2006

Issue: Some AMSU-A channels over-land surfaces produce non-beneficial impact

Action Taken: Investigate bias correction dependence on land surface temperature

Page 20: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

20

AMMA RAOB Temperature Ob Impacts May-Oct 2006

TAMANASET:60680 SUM= -0.2791 J kg-1

BANAKO:61291 SUM= -0.5755 J kg-1

Page 21: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

21

AMMA RAOB Summary Ob Impacts Aug 2006 SOP

Largest Fcst Error Reductions

Fcst Degradations

< -0.10 J kg-1

Page 22: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

22

Current Uncertainty in Analyzed 500mb Temperature – Operational Systems

RMSD

Page 23: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

23

Current Radiosonde Distribution

Page 24: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

24

• Adjoint-based observation impact information is a valuable supplement to “conventional” data impact studies (OSEs, OSSEs)

• Provides quantitative information about every observation that is assimilated and spatial patterns in observation impact

• Identifies possible problems with NAVDAS (observation and background error, bias correction, etc.)

• Information is relevant to QC issues and daily monitoring of observations in operational data assimilation

Applications of observation impact information

Page 25: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

25

On-line observation Impact monitorwww.nrlmry.navy.mil/ob_sens/

Page 26: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

26

Time-series of observation impact www.nrlmry.navy.mil/ob_sens/

Page 27: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

27

Menu for upper-air satellite wind plotswww.nrlmry.navy.mil/ob_sens/

Page 28: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

28

MTSAT: 300-500 hPa wind obswww.nrlmry.navy.mil/ob_sens/

30-day cumulative impact 30-day mean innovation

Page 29: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

29

MTSAT: 300-500 hPa wind obswww.nrlmry.navy.mil/ob_sens/

30-day cumulative impact 30-day mean wind speed

Page 30: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

30

MDCRS Level-Flight: wind obswww.nrlmry.navy.mil/ob_sens/

30-day cumulative impact

Page 31: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

31

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

-2.5 -1.5 -0.5 0 0.5 1.5 2.5

In-Situ Satellite

hours before hours afterAnalysis Time

NAVDAS-AR 8 Apr - 7 May 2008

00UTC observations

Impact per-observation (10-5 J kg-1)

4d-VAR

Page 32: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

32

Summary

• An adjoint-based system has been developed for daily (currently for 00UTC) monitoring of all observations used in data assimilation (3d-VAR and 4d-VAR) at NRL-FNMOC

• Computational cost is slightly less than the regular data assimilation and (24h) nonlinear forecast

• Information can be used for observation quality-control and improvement of the data assimilation procedure – valuable supplement to data-denial or data-addition experiments

Page 33: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

33

ObSens Monitor Design

• Pre-Processing– Bin statistics into 2.5 degree grid– Sort data combinations, totals and groups

• Web-Processing– Provide top-level overviews and time lines– Present comprehensive menus of choices– Render on-demand maps, charts and time lines

• Archiving– Zip 90-day old data, unzip as needed

Page 34: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

34

• Ingest obsens_52.$dtg• Calculate stats for $dtg, and 30-day and 1-yr stats• Calculate impact average and sum by category• Create category bar chart and time bar chart• Create 2.5 degree binned grids for $dtg

By data category, channel, variable type as appropriateFor seven hPa pressure levels: sfc-901, 900-801, 800-701, 700-501, 500-301, 300-101, 100-10

ObSens Pre-Processing

obsens_52.$dtg stats

gridsrd_obsens(C-code)

GrADSscript

AWKscript

Page 35: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

35

ObSens Web-Processing

• Display top page with bar and time charts

• Show other bar and time charts on mouse roll-over

• Present menus for Observation Category

• For selected Observation Category, present:Combinations of platform, pressure, channel, variable, etc.

parameter: counts, ob value, innovation, impact, sensitivitygeo area: global, northern hemisphere, southern hemisphere

Totals for All platforms, pressures, channels, variables, etc.Groups for classes satellite/aircraft types: All GOES, SSEC, Ascending, etc.

• On Demand– Calculate 30-day/1-year grid stats – Create map plots and time lines

Menu pagehtml

Javascript

GrADS script

Display pagehtml

grids

Tcl cgi

Page 36: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

36

ObSens Archiving

• Compress data grids over 90-days old

• Sparse grids compress 50:1

• Uncompress data on-demand: ~ 2 sec/grid

• Leave on-demand data uncompressed

• Assuming future interest in uncompressed data

grids

grids

GrADS script

Unzip andopen file

Zip

Page 37: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

37

Data Assimilation Equation

OBSERVATIONS Temperature

Moisture

Winds

Pressure

BACKGROUND (6h) FORECAST ANALYSIS

T T 1a b b b b[ ] ( ) x x P H HP H R y Hx

K

Page 38: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

38

Sensitivity to Observations:

Sensitivity to Background:

Adjoint of Assimilation Equation

Adjoint of forecast model produces sensitivity to

ax

T 1b b

a

[ ]J J

HP H R HPy x

T

b a

J J J

H

x x y

TK

Baker and Daley 2000 (QJRMS)

Page 39: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

39

Non-beneficial observations

Example 3: Isolated aircraft tracks

Date: First noticed Jan 05, ongoing in several regions

Issue: aircraft flies in jet max eastbound, outside of jet max westbound: observation error representativeness problem ?

Action Taken: Possible change to observation error

AMDAR Level Flight Hong Kong - LAX

Page 40: Rolf H. Langland Naval Research Laboratory – Monterey, Ca. USA Gary G. Love, Nancy L. Baker

40

Example 4: QC for land observing stations

Date: Jan-Feb 2005

Issue: Land station observation problems linked to high elevation and cold surface temperatures (METAR), also problems with station elevation metadata (MIL, conventional)

Actions Taken: Selected stations blacklisted, data flagged if stations above 740m, or above 300m and background temperature below -15°C

Conventional Land Stations

KQ-MIL Stations

AK-METAR Stations


Recommended