+ All Categories
Home > Documents > Roumiana Tsenkova 2 Water Conference 2013

Roumiana Tsenkova 2 Water Conference 2013

Date post: 04-Jun-2018
Category:
Upload: namkay-tenzyn
View: 213 times
Download: 0 times
Share this document with a friend

of 107

Transcript
  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    1/107

    Aquaphotomics forweak signals quantification in

    water

    Roumiana Tsenkova

    Kobe University, Japan

    [email protected]

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    2/107

    http://nirslab.org/

    io MeasurementTechnologyLaboratory

    Kobe University

    Bio measurement Technology Laboratory, Kobe University, Japan

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    3/107

    Understanding that the smallestamount of a substance affects the

    organismA person can enter aroom two days after a cat has left itand still suffer an allergic response.

    Yolene Thomas, Larbi Kahhak and Jamal Aissa (2006) The physical nature of the biological signal, a puzzlingphenomenon: the critical contribution of Jacques Benveniste, In Water and the Cell, 325-340, Ed. GeraldPolack, Springer.

    Dr. Jacques Benveniste

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    4/107

    electromagnetic transmission of biochemical

    information can be stored in the electric dipole

    moments of water in close analogy to the

    manner in which magnetic moments store

    information on a computer disk. A. Widom, Y.N. Srivastava, V. Valenzi The Biophysical Basis of Water Memory , http://jacques-

    benveniste.org/bio_conf_widom.pdf

    Vibrational Spectroscopy IR, NIR

    IRInfrared spectroscopy

    NIRNear infrared spectroscopy (overtone IR)IR active transitionelectric dipole moment of molecule

    changes

    NIR overtone spectroscopycan measure water in-vivo

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    5/107

    NIR rangeovertone region

    IR range

    fundamentalfrequencies

    WATER SPECTRUM

    Bio measurement Technology Laboratory, Kobe University, Japan

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    6/107

    AQUA

    PHOTOME

    Spectral

    Data Base

    BioAqueousSystemNIR spectrum

    W M CSThe LETTERSActivated Water

    Absorbance Bandswater

    Water Spectral Pattern

    THE WORD

    Perturbations

    AQUAPHOTOMICS:

    WATER as aMOLECULAR MIRROR

    Bio measurement Technology Laboratory, Kobe University, Japan

    WAMACS= Water Matrix Coordinates, i.e. water absorbance bands in VIS-NIR range

    AQUAPHOTOMICS: THE CONCEPT

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    7/107

    Prof. Rustum Roy

    Water structures should be the LETTERS

    and

    water functionalities will be described as WORDS

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    8/107

    Medical Science,

    Pharmacy.

    Engineering

    Building

    bio-systemHOLISTICMODELSthrough

    analyzing

    spectral

    changes of

    W TERMOLECUL R

    SYSTEM

    Spectral Data Base

    Epmes

    Database

    AQUAPHOTOMEDatabase of water

    absorbance bands and

    patterns

    WAPSDatabase of waterabsorbance patterns

    according to change

    perturbation

    WAMACSActivated Water

    Absorbance Bands

    Biotechnology

    Basic ScienceAnalyzing of aqueous system

    Interaction of water with DNA

    Interaction of water withorganic and non-organic

    molecules

    Aqueous systems in cells

    Aqueous systems in tissue

    Aqueous systems in organs

    Aqueous systems in whole

    body

    GOAL

    Days

    Applying in various fields

    UVVISIR

    NIRS

    WaterBio

    Aqueous

    System

    Sun

    Perturbations

    Multivariate Analysis

    Bio measurement Technology Laboratory, Kobe University, Japan

    AQUAPHOTOMICS

    Prof. Rustum Roy

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    9/107

    SPECTRA and AQUGRAMSof WATER AND

    VAPOR

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    1344nm

    (V3)

    1364nm

    (water shell)

    1372nm

    (V1+V3)

    1382nm

    (water shell)

    1398nm

    (free OH)

    1410nm

    (S0, free water)

    1438nm

    (H5O2)

    1444nm

    (S1)

    1464nm

    (S2)

    1474nm

    (S3)

    1492nm

    (S4)

    1518nm

    (V1, V2)

    moisture

    water

    1300 1410 1490 1580 1680

    Wavelength (nm)

    A

    bsorbance

    1362

    1382

    1372

    1452

    VAPOR

    WATER

    MPA

    Bio measurement Technology Laboratory, Kobe University, Japan

    A

    A'A : Absorbance after EMSC (1300-1600 nm)

    Mean of Averaged spectraSD of absorbance each wave length

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    10/107

    Following the idea of

    QUANTUM SPECTROSCOPY

    wherematter is excited and probed with a

    sequence of light pulses at definedfrequencies

    IN ORDER TO

    control and characterize quantum

    dynamics of many-body states1

    APPROACHING WATER with MONITORING

    1. http://en.wikipedia.org/wiki/Quantum-optical_spectroscopy

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    11/107

    Measurement of NIR Spectra Under

    Perturbations

    NIR spectra of water and protein solutions measured every minute,for the first 5 minutes and every 15 minutes, for 690 min, at 37oC

    Instrument: (NIRSystem 6500, wavelength range from 400 to 2500 nm)

    Cuvette cellis inserted in to the instrument holder and kept at 37oC

    MODELS DEVELOPED: Y = F [ I ], Y = F [ T ]

    1,2,3,4,5 20 35 690

    TIME as a perturbation

    ILLUMINATIONas a perturbation

    [I, times]

    [T, min]VISNIR Light

    65 7 45

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    12/107

    Room temperature

    25.0

    25.2

    25.4

    25.6

    25.826.0

    26.2

    26.4

    26.6

    0 5 10 15 20 25 30 35 40 45 50 55 60

    time(minute)

    roomtemperature()

    12

    3

    experiment

    Temperature Changes

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    13/107

    Humidity

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    0 5 10 15 20 25 30 35 40 45 50 55 60time(minute)

    hu

    idit

    y(% 1

    2

    3

    experiment

    Humidity Changes

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    14/107

    10.84

    10.88

    10.92

    10.96

    11.00

    11.04

    11.08

    1 2 3

    experiment

    e

    ight(g

    difference

    after

    experiment(g) 1st 2nd 3rd

    before 10.9324 11.0326 10.9596after 10.9088 10.9981 10.9302difference 0.0236 0.0345 0.0294

    LOSS of Water

    1stexp0.22%

    2ndexp0.31%

    3rdexp0.27%

    Weight Changes

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    15/107

    PCA SCORE PLOT

    experiment

    1st2nd3rd

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    16/107

    Water Matrix Coordinates: WAMACSPCA,

    EZ WAMACS, LOADINGS

    wavelength(nm)

    Factor1Factor2

    1872

    1412

    1364 1490

    1842

    14901368

    1530

    1474

    934

    1842

    1482

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    17/107

    Wavelengths, nm

    Water Spectra

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    18/107

    WATER DYNAMIC SPECTRA

    2D and 3D Synchronous Correlation Maps

    600- 2500 nm

    represent positive correlation

    represent negative correlation

    T SO C TT S WAP

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    19/107

    WATER ABSORBANCE PATTERNS,WAPs(dynamic study)

    Power Spectra at 1530nm

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    20/107

    Loading of the first PC over the 600

    850nm region

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    21/107

    0.95

    1

    1.05

    1.1

    1.15

    001

    004

    035

    080

    125

    170

    215

    260

    320

    Time, min

    a.u.

    670nm

    684nm

    694nm724nm

    774nm

    792nm

    806nm

    0.95

    1

    1.05

    1.1

    1.15

    1.2

    001

    004

    035

    080

    125

    170

    215

    260

    320

    Time, min

    a.u.

    626nm

    644nm

    654nm

    722nm

    772nm

    810nm

    Real time monitoring

    of

    NIR water absorbance

    at

    various wavelengths

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    22/107

    Spectral Differences in Waters

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    23/107

    9 nm

    446nm

    97 nm

    3456

    nm

    LogT

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    24/107

    MagneticVivoWater miliQWater

    Blue: miliQ; Green:magnetic; Red: Vivo water

    MSC, Baseline correction: miliQ second measurement subtracted+ smooth 13nm

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    25/107

    Measurement of Very Low

    Concentration of Progesterone

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    26/107

    Samples

    PdG (ng/ml)1 100

    2 50

    3 25

    4 12.55 6.25

    6 3.13

    7 1.56

    8 0.781

    9 0.391

    10 0.195

    Each of samples is measured 10 consecutive spectra.

    Pregnanediol

    glucuronide

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    27/107

    400 700 1100 1880 2500

    Wavelength (nm)

    Absorbance

    Raw spectra

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    28/107

    2262 nm

    100ng/ml

    50ng/ml

    25ng/ml

    Wavelength (nm)

    Absorbance

    2ndderivative spectra

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    29/107

    R = 0.7195

    0.935

    0.94

    0.945

    0.95

    0.955

    0.96

    0 20 40 60 80 100

    Absorbancea

    t2262nm

    concentration of PdG (ng/ml)

    Correlation absorbance at2262 nmwith concentration of PdG standard

    Exclude

    10 samples100 spectra

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    30/107

    Correlation absorbance at2262 nmwith concentration of PdG standard

    8 samples80 spectra

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    31/107

    PLSRfor PdG (the water region 1300 - 1600 nm)

    Actual concentration (PdG ng/ml)

    Predicted

    concentration(PdGng/m

    l)

    R=0.999

    SEC=1.42

    Preprocessing : mean-center

    Transformation: smooth

    10 samples100 spectra

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    32/107

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    33/107

    EMS from DNA Solutions Measurement

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    34/107

    34

    Data set for analysis

    15 sample data sets (EMS from DNA, Imprinted EMS, and Water)

    Spectral data of each sample are divided into two groups depending on

    amplitudes of electromagnetic signal (EMS).

    1) Higher EShigher or normal EMS, 2) Lower ESlower EMS

    Patient HIV+

    HIV LTR 104bp

    HIV LTR 137bp (1stDay)

    HIV LTR 137bp (2ndDay)HIV LTR 194bp

    HIV LTR 300bp

    E. Coli (1stDay)

    E. Coli (2ndDay)

    Borrelia

    Distilled Water (DW)

    MilliQ

    Kobe

    HIV LTR 104bp

    Borrelia

    Distilled Water (DW)

    DNA Water

    Imprinted EMS

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    35/107

    35

    Prediction of EMS by PLS(Higher ES Samples)

    Higher ES

    Lower ES

    Mean-center

    Smooth[25]

    1st, 2nd, and 3rd

    Step 3

    Measured EMS (dB / Hz)

    PredictedEMS(dB/Hz)

    Factor: 16R: 0.90

    SEV: 53 dB / Hz

    Sample ES

    DNA-HIV-Patient 2

    DNA-HIV-104bp 2DNA-HIV-137bp (1st) 2

    DNA-HIV-137bp (2nd) 2

    DNA-HIV-194bp 2

    DNA-HIV-300bp 1

    DNA-E.Coli (1st) 2

    DNA-E.Coli (2nd) 2

    DNA-Borr 2

    Water-DW 1

    Water-MilliQ 1

    Water-Kobe 1

    Wave-HIV-104bp 2

    Wave-Borr 1

    Wave-DW 1

    Cross Check 1

    LB 1

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    36/107

    36

    Prediction of EMS by PLS (Higher ES Samples)

    Mean-center

    Smooth[25]

    1st, 2nd, and 3rd

    Step 3

    Regression Vector, WAMACSSample ES

    DNA-HIV-Patient 2

    DNA-HIV-104bp 2DNA-HIV-137bp (1st) 2

    DNA-HIV-137bp (2nd) 2

    DNA-HIV-194bp 2

    DNA-HIV-300bp 1

    DNA-E.Coli (1st) 2

    DNA-E.Coli (2nd) 2

    DNA-Borr 2

    Water-DW 1

    Water-MilliQ 1

    Water-Kobe 1

    Wave-HIV-104bp 2

    Wave-Borr 1

    Wave-DW 1

    Cross Check 1

    LB 1

    Wavelength (nm)

    Regressioncoefficient(10^5)

    702

    838

    1248

    1274

    1526618

    964

    636

    754

    728

    776

    790

    900 1030

    998

    1560

    1114

    1814

    658

    808 930

    1392

    1364

    1376

    1858

    674

    872

    1056

    1084

    1136

    11241184

    1208

    1296

    1326

    1422

    1458

    1486

    1588

    1638

    1616

    1760

    1870

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    37/107

    37

    Prediction of EMS by PLS (Lower ES Samples)

    Higher ES

    Lower ES

    Mean-center

    Smooth[25]

    1st, 2nd, and 3rd

    Step 3

    Measured EMS (dB / Hz)

    PredictedEMS(dB/Hz)

    Factor: 9R: 0.89

    SEV: 40 dB / Hz

    Sample ES

    DNA-HIV-Patient 2

    DNA-HIV-104bp 2DNA-HIV-137bp (1st) 2

    DNA-HIV-137bp (2nd) 2

    DNA-HIV-194bp 2

    DNA-HIV-300bp 1

    DNA-E.Coli (1st) 2

    DNA-E.Coli (2nd) 2

    DNA-Borr 2

    Water-DW 1

    Water-MilliQ 1

    Water-Kobe 1

    Wave-HIV-104bp 2

    Wave-Borr 1

    Wave-DW 1

    Cross Check 1

    LB 1

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    38/107

    38

    Prediction of EMS by PLS (Lower ES Samples)

    Mean-center

    Smooth[25]

    1st, 2nd, and 3rd

    Step 3

    Regression VectorSample ES

    DNA-HIV-Patient 2

    DNA-HIV-104bp 2DNA-HIV-137bp (1st) 2

    DNA-HIV-137bp (2nd) 2

    DNA-HIV-194bp 2

    DNA-HIV-300bp 1

    DNA-E.Coli (1st) 2

    DNA-E.Coli (2nd) 2

    DNA-Borr 2

    Water-DW 1

    Water-MilliQ 1

    Water-Kobe 1

    Wave-HIV-104bp 2

    Wave-Borr 1

    Wave-DW 1

    Cross Check 1

    LB 1

    Wavelength (nm)

    Regressionc

    oefficient(10^4)

    746

    900

    1872

    792

    1376

    814

    1004

    1344

    1526

    1566

    17021744 18461148

    1408

    1442

    1482

    606

    776

    944928

    884

    844

    1040

    1052

    1084

    1646

    16681788

    1884

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    39/107

    E.Coli DNA

    2012 Experiment in Kobe

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    40/107

    40

    Water for DNA dilution

    Filter 1 (450nm)

    Filter 2 (100nm)

    measurement

    measurement

    1/101/10 1/101/10 1/101/10 1/101/101/10

    Water for DNA dilution

    Filter 1 (450nm)

    Filter 2 (100nm)

    measurementmeasurement

    measurementmeasurement

    1/101/101/101/10 1/101/101/101/10 1/101/101/101/10 1/101/101/101/101/10

    10 stage

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    41/107

    41

    NIR Spectroscopy

    Sample : E.coliDNA

    Spectrometer : NIRSystems 6500

    Temperature : room temperature

    Consective spectra : 3 times

    Date : 2011/06/23 (Exp. 1)

    2011/06/25 (Exp. 2)

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    42/107

    42

    Results

    Exp. 1 Exp. 2D2NF 1042 801

    D2F450NM 1042 801

    D2F450+100 or 20nm 1060 832

    D3 1125 855

    D4 1107 829

    D5 1004 798

    D6 990 768

    D7 760 809

    D8 765 575

    D9 709 635

    D10 671 610

    D11 1188 584

    D12 1170 865D13 1596 801

    D14 1589 807

    D15 1480 809

    Exp. 1

    ES : D7D10

    Exp. 2

    ES : D8D11

    ES : Electromagnatic signal

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    43/107

    43

    Raw spectra

    Wavelength (nm)

    Absorbanc

    e(-)

    Exp. 1 Exp. 2

    Wavelength (nm)

    Absorbance(-)

    EMSignal (ES)

    No Signal (NS)

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    44/107

    44

    Raw spectra

    Absorbance(-)

    Wavelength (nm) Wavelength (nm)

    Absorbance(-)

    Exp. 1 Exp. 2

    Wavelength (nm)

    Absorbance

    (-)

    Wavelength (nm)

    Absorbance

    (-)

    EMSNS

    Different spectra (Non Filtered sample)

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    45/107

    45

    Different spectra (Non-Filtered sample)

    770

    736748

    910

    936

    Exp. 1 Exp. 2

    13621384

    1416

    1490

    1460

    Wavelength (nm)

    Absorbanc

    e(-)

    1362

    1382 1406

    1410

    1488

    Wavelength (nm)

    Absorbance(-)

    778

    770750832 916

    934

    1046

    1068

    Ab

    sorbance(-)

    EMSNS

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    46/107

    46

    Signal calibration with PLSExp. 1 Exp. 2

    Factor = 7

    R2= 0.68

    SEV = 175.7

    Factor = 5

    R2= 0.53

    SEV = 66.2Shortrange

    Middler

    ange

    Transform : Smooth (9)

    averaged spectra (1st3rd)

    Factor = 8

    R2= 0.67

    SEV = 59.4

    Factor = 8

    R2= 0.61

    SEV = 198.2

    Signal prediction with PLS: WAMACS

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    47/107

    47

    Signal prediction with PLS: WAMACS

    Model : Exp. 1

    Test : Exp. 2

    Factor = 5

    R2= 0.69SEV = 188.4

    R2= 0.61

    SEP = 250.31200 1300 1400 1500 1600 1700 1800

    -60000

    -40000

    -20000

    0

    20000

    40000

    60000

    1382

    1452

    156016221360

    1410

    15521652

    regr

    ession

    vector(-)

    wavelength (nm)

    1404

    1436

    Model : averaged spectra (1st3rd)

    Test : averaged spectra (1st3rd)

    Transform : Smooth (9)

    E Coli All Signal DATA Assignment

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    48/107

    E.Coli All Signal DATA Assignment

    (2012)Exp. 1 Exp. 2

    D2NF 1042 801

    D2F450NM 1042 801D2F450+100 or 20nm 1060 832

    D3 1125 855

    D4 1107 829

    D5 1004 798

    D6 990 768

    D7 760 809

    D8 765 575

    D9 709 635

    D10 671 610D11 1188 584

    D12 1170 865

    D13 1596 801

    D14 1589 807

    D15 1480 809

    1336nm(aqueous proton [H+(H2O)6] - H2O

    asymmetric stretch, 1st overt.), 1358nm (H17O8+free OH stech, 1st overt.), 1374-78nm(aqueous

    proton [H+(H2O)3] - H3O+ symmetric stretch, ),

    1398nm 1421-28nm, 1460nm, 1482nm, 1678nm,

    1742nm(1st overtone Superoxide Tetrahydrate O2-

    .(H2O)2 ), 1792nm (1st overtone Superoxide

    Tetrahydrate O2-.(H2O)3)

    E C li All Si l DATA A i

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    49/107

    E.Coli All Signal DATA Assignment

    (2013)

    l

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    50/107

    50

    E.Coli EMS Aquagram Exp. 1

    A=A-

    A : Absorbance after MSC (1110 nm1800 nm)

    : Mean of all the spectra (with NF, F1)

    : SD of absorbance each wavelength

    Exp. 1

    D2NF 1042

    D2F450 nm 1042

    D2F450+100 or 20 nm 1060

    D3 1125

    D4 1107

    D5 1004

    D6 990

    D7 760

    D8 765

    D9 709

    D10 671

    D11 1188

    D12 1170

    D13 1596

    D14 1589

    D15 1480

    -2.5

    -1.5

    -0.5

    0.5

    1.5

    2.5

    1344

    1364

    1372

    1382

    1398

    1410

    1438

    1444

    1464

    1474

    1492

    1518

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    51/107

    51

    Lowest Signal

    -2.5

    -1.5

    -0.5

    0.5

    1.5

    2.5

    1344

    1364

    1372

    1382

    1398

    1410

    1438

    1444

    1464

    1474

    1492

    1518

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    52/107

    52

    -2.5

    -1.5

    -0.5

    0.5

    1.5

    2.5

    1344

    1364

    1372

    1382

    1398

    1410

    1438

    1444

    1464

    1474

    1492

    1518

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    53/107

    53

    -2.5

    -1.5

    -0.5

    0.5

    1.5

    2.5

    1344

    1364

    1372

    1382

    1398

    1410

    1438

    1444

    1464

    1474

    1492

    1518

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    54/107

    54

    Highest Signal

    -2.5

    -1.5

    -0.5

    0.5

    1.5

    2.5

    1344

    1364

    1372

    1382

    1398

    1410

    1438

    1444

    1464

    1474

    1492

    1518

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    55/107

    55

    2013 Experiment in Paris

    Sample : E.coliDNA

    Spectrometer : XDS Methrom

    Temperature : room temperature

    Consective spectra : 3 times

    Date : 2013/06

    E C li All Si l DATA A i t

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    56/107

    E.Coli All Signal DATA Assignment

    (2013)

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    57/107

    Less hydrogen

    bonded

    structures

    activated with

    high EMS

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    58/107

    S l P i 2

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    59/107

    Sample Preparation - 2

    In: A_IL_OA_IOut: A_IL_OA_O

    In: A_IA_OA_IOut: A_IA_OA_O

    In: A_IL_OL_IOut: A_IL_OL_O

    Open-top

    In: C_IL_OA_I

    Out: C_IL_OA_O

    In: C_IA_OA_I

    Out: C_IA_OA_O

    In: C_IL_OL_I

    Out: C_IL_OL_O

    Closed

    LB

    LB+A

    Control

    Cont_LBACont_LB

    SampleName

    Sample

    Name

    M f N i f d

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    60/107

    Measurement of Near-infrared spectrum

    Near-infrared spectrum of each sample was measured using

    NIRSystems 6500Spectroscopy: NIRSystems 6500 (FOSS NIRSystems)

    Wavelength: 400-2500 nm

    Methods: Transmittance

    Path length: 1 mm

    Temperature: Room temperature

    Consecutive measurement times: 3 times per a sample

    NIRSystems 6500

    1) Moving a sample into a cuvette cell 2) Measuring a spectrum

    Green: with lid

    Red: no lid

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    61/107

    LB

    LB + A

    LB + A and LB in LB+A

    Red: no lid

    LB: inside

    and

    outside

    LB: insideLBA: outside

    LB: measured

    LB: inside LBA:

    outsideLB: measured

    LB: inside

    and

    outside

    LB: inside

    LBA: outsideLBA: measured

    LBA influence is stronger

    Diff i WAMACS

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    62/107

    Difference in WAMACSLoadings of PC Factors 1-red,2-green,3-blue

    Close Top C WAMACS:

    Open Top A WAMACS:

    1362, 1398, 1410, 1420, 1462, 1490,

    1538nm

    1410nm, So

    1412nm, So

    1362nm

    solvation

    shell

    1398nm

    solvation

    shell 1420nm

    hydration

    1462nm, S2

    1366nm

    solvation

    shell1368,

    1386nm

    1428nm

    hydration

    1486nm

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    63/107

    Investigation of water structural

    changes

    induced by cellular phone irradiation

    63

    S l i

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    64/107

    Sample preparation

    10 mL at each sample

    Distilled water

    Milli-Q waterCallReceive

    Duration of call0 minute5 minutes10 minutes15 minutes20 minutes

    Location of samples

    2

    12/16/2013 Biomeasurement technology laboratory 64

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    65/107

    Spectral measurement

    Spectrometer: NIRSystems6500(Foss NIRSystems)

    Mode: Transmittance

    Path length: 1mm

    Temperature: Room temperature

    Consecutive times: 3 times

    Materials

    Cellular phone (PT002, KDDI, 800MHz)Milli-Q water

    Distilled water

    12/16/2013 Biomeasurement technology laboratory 65

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    66/107

    66

    PCA score plot

    Wavelength range : 680-1090 nm + 1110-1800 nm

    Transform : SNV

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    67/107

    SIMCA

    67

    Interclass distance

    CS1@8 CS2@6

    CS1 0.000000 6.163845

    CS2 6.163845 0.000000

    Middle NIR a elength range

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    68/107

    Middle NIR wavelength range1110-1800nm

    12/16/2013 Biomeasurement technology laboratory 68

    1452nm1.2

    0

    Discrimination of irradiated water

    and non irradiated with PCA

    Score plots: discrimination

    Loading spectra: investigation ofwavelengths which contribute the

    discrimination

    Absorba

    nce(-)

    Wavelength (nm)

    1110nm 1800nm

    PCAScore Plots

    Optimal factors: 10

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    69/107

    12/16/2013 Biomeasurement technology laboratory 69

    Optimal factors: 10

    Preprocessing: mean center

    Transforms: smooth(17)

    Validation: cross(1)

    : 0 minute: 5 minutes: 10 minutes: 15 minutes: 20 minutes

    Factor2(-)

    [33.00%]

    Factor1(-) [66.60%]

    Factor3

    (-)[0.37%]

    Factor3

    (-)[0.37%]

    Factor1(-) [66.60%] Factor2(-) [33.00%]

    Factor 2 showed the

    duration of call.

    0 minute

    5 minutes

    10 minutes

    15 minutes

    20 minutes

    Loading spectra: WAMACS l f

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    70/107

    12/16/2013 Biomeasurement technology laboratory 70

    Loading spectra: WAMACS Optimal factors: 10Preprocessing: mean center

    Transforms: smooth(17)

    Validation: cross(1)

    Loadings(-)

    Wavelength (nm)

    : Factor1

    : Factor2

    : Factor3

    : Factor4

    0.1

    0

    -0.1

    1110nm 1800nm

    Number Wavelength

    1364nm

    1386nm

    1412nm

    1414nm

    1426nm

    1430nm

    1490nm

    1492nm

    1508nm

    Classification Model: SIMCAPreprocessing: mean center

    Transforms: smooth(17)

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    71/107

    Classification Model: SIMCA

    12/16/2013 Biomeasurement technology laboratory 71

    Transforms: smooth(17)

    Class Variable: duration

    Optimal factors (duration):

    5 (0 minute)

    4 (5 minutes)5 (10 minutes)

    5 (15 minutes)

    4 (20 minutes)

    Model Pred. 1 Pred. 2 Pred. 3 Pred.4 Pred.5 No match

    Actual 1 16 0 0 0 0 0

    Actual 2 1 15 0 0 0 0

    Actual 3 0 0 16 0 0 0

    Actual 4 0 0 0 16 0 0

    Actual 5 0 0 0 0 16 0

    Test Pred. 1 Pred. 2 Pred. 3 Pred.4 Pred.5 No match

    Actual 1 8 0 0 0 0 0

    Actual 2 1 7 0 0 0 0

    Actual 3 0 0 8 0 0 0

    Actual 4 0 0 0 8 0 0

    Actual 5 0 0 0 0 8 0

    Misclassifications

    97.0%

    97.5%

    98.0%

    98.5%

    99.0%

    Accuracy

    Model

    Test

    98.75%

    97.50%

    SIMCA

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    72/107

    Preprocessing: mean center

    Transforms: smooth(17)

    Class Variable: duration

    Optimal factors (duration):

    5 (0 minute)

    4 (5 minutes)

    5 (10 minutes)

    5 (15 minutes)

    4 (20 minutes)

    0 minute 5 minutes 10 minutes 15 minutes 20 minutes

    0 minute 1.39 4.10 7.52 9.79

    5 minutes 2.50 12.06 10.94

    10 minutes 7.55 7.24

    15 minutes 2.61

    20 minutes

    SIMCA

    Interclass distance

    : Over 3.00

    SIMCADi i i i WAMACS

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    73/107

    Discriminating power: WAMACS

    12/16/2013 Biomeasurement technology laboratory 73

    Number Wavelength

    1136nm

    1174nm

    1190nm

    1200nm

    D

    iscriminatingpower(-)

    Wavelength (nm)

    1228nm

    1270nm

    1366nm

    1424nm

    1468nm

    1482nm

    1544nm

    1556, 1562, 1568nm

    1598nm

    1622nm

    1642nm

    1674nm

    1704nm

    1732nm

    1756nm

    1796nm

    1110nm 1800nm

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    74/107

    Investigate whether duration of

    irradiation or measurement orderinfluenced spectra.

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    75/107

    Sample preparation

    2

    Two locations, 1 & 2.

    call receive

    Cellular phonePT002, KDDI, 800MHz

    (another one is the same one)

    A cell phone called the opposite one near some kinds of waters in test tubes.

    5 kinds water (Milli-Q water,distilled water, gold water,

    silver water, and bronze

    water)

    4 kinds of duration of call

    (5,10,15,20min)

    2(Irradiated or no)

    2 locations

    =80 samples

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    76/107

    Spectra measurement

    Spectrometer : MPA

    Mode : Taransmittance

    Consecutive times : 3 times

    Path length : 1mm

    Temperature : room temperatrure

    Wavelength range : 800-2500nm

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    77/107

    Raw spectra

    Wavelength (nm)

    Absorban

    ce(-)

    800 1100 1800 2500

    PCA Score plots (irradiation)

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    78/107

    PCA Score plots (irradiation)

    factor2

    factor3

    factor4

    factor5

    factor1 factor2 factor3 factor4

    Consecutive No 1

    Consecutive No 2

    Consecutive No 3

    Factor2 loadings

    1412

    1489

    factor2 shows temperature influenced by consecutive measurement

    CA S l

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    79/107

    PCA Score plots: waters

    factor

    2

    factor3

    factor4

    factor5

    factor1 factor2 factor3 factor4

    bronze

    Milli-Q

    distilled

    gold

    silver

    ll d l

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    80/107

    PLS: Milli-Q water Model accuracy

    Measured order (-)

    Predictedorde

    r(-)

    SEC=0.00080

    R=1.00

    Measurement order Duration of irradiation

    Measured duration (-)

    Predictedduratio

    n(-)

    SEC=0.013

    R=1.00

    Preprocessing : Mean-center

    Smooth(21)

    PLS: Milli-Q water Accuracy of

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    81/107

    PLS: Milli Q water Accuracy of

    prediction

    Predictedorde

    r(-)

    Measured order (-)

    Measurement order

    SEP=0.26

    R=0.97

    Duration of irradiation

    Predictedorder

    (-)

    Measured order (-)

    SEP=5.00

    R=0.79

    PLS Di ill d M d l

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    82/107

    PLS: Distilled water Model accuracy

    Measured order (-)

    Predictedorde

    r(-)

    SEC=0.0010

    R=1.00

    Measurement order Duration of irradiation

    Measured duration (-)

    Predictedduratio

    n(-)

    SEC=0.020

    R=1.00

    Preprocessing : Mean-center

    Smooth(21)

    PLS: Distilled water Accuracy of

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    83/107

    PLS: Distilled water Accuracy of

    prediction

    Predictedorde

    r(-)

    Measured order (-)

    Measurement order

    SEP=0.34

    R=0.96

    Duration of irradiation

    Predictedorder

    (-)

    Measured order (-)

    SEP=5.67

    R=0.69

    PLS b M d l

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    84/107

    PLS: bronze water Model accuracy

    Measured order (-)

    Predictedorde

    r(-)

    SEC=0.0013

    R=1.00

    Measurement order Duration of irradiation

    Measured duration (-)

    Predictedduratio

    n(-)

    SEC=0.013

    R=1.00

    Preprocessing : Mean-center

    Smooth(21)

    PLS: Bronze water Accuracy of

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    85/107

    P S: ron e water Accuracy of

    prediction

    Predictedorde

    r(-)

    Measured order (-)

    Measurement order

    SEP=0.42

    R=0.93

    Duration of irradiation

    Predictedorder

    (-)

    Measured order (-)

    SEP=7.69

    R=0.42

    PLS Sil t M d l

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    86/107

    PLS: Silver water Model accuracy

    Measured order (-)

    Predictedorde

    r(-)

    SEC=0.0007

    R=1.00

    Measurement order Duration of irradiation

    Measured duration (-)

    Predictedduratio

    n(-)

    SEC=0.10

    R=1.00

    Preprocessing : Mean-center

    Smooth(21)

    PLS: Silver water Accuracy of

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    87/107

    y

    prediction

    Predictedorde

    r(-)

    Measured order (-)

    Measurement order

    SEP=0.25

    R=0.98

    Duration of irradiation

    Predictedorder

    (-)

    Measured order (-)

    SEP=6.10

    R=0.67

    PLS G ld t M d l

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    88/107

    PLS: Gold water Model accuracy

    Measured order (-)

    Predictedorde

    r(-)

    SEC=0.0010

    R=1.00

    Measurement order Duration of irradiation

    Measured duration (-)

    Predictedduration(-)

    SEC=0.015

    R=1.00

    Preprocessing : Mean-center

    Smooth(21)

    PLS G ld t A f di ti

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    89/107

    PLS: Gold water Accuracy of prediction

    Predictedorde

    r(-)

    Measured order (-)

    Measurement order

    SEP=0.40

    R=0.95

    Duration of irradiation

    Predictedorder

    (-)

    Measured order (-)

    SEP=7.56

    R=0.61

    PLS R i R lt

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    90/107

    PLS Regression Results

    All models showed high accuracy

    Measurement order tests showed high accuracy, but duration ofirradiation time tests showed very low accuracy.

    SEC R SEP R SEC R SEP R

    Milli-Q 0.00080 1.00 0.26 0.97 0.013 1.00 5 0.79

    distilled 0.0010 1.00 0.34 0.96 0.02 1.00 5.67 0.69

    bronze 0.0013 1.00 0.42 0.93 0.013 1.00 7.69 0.42silver 0.00070 1.00 0.25 0.98 0.1 1.00 6.1 0.67

    gold 0.001 1.00 0.4 0.95 0.015 1.00 7.56 0.61

    model test

    measurement order duration of irrudiation

    model test

    SIMCA M d l i l ifi ti

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    91/107

    SIMCA : Model misclassification

    predicted 5min predicted 10min predicted 15min predicted 20min predicted 0min No match

    actual 5min 20 0 0 0 0 0

    actual 10min 0 20 0 0 0 0

    actual 15min 0 0 20 0 0 0

    actual 20min 0 0 0 20 0 0

    actual 0min 0 1 3 0 76 0

    Duration of irradiation

    Measurement order

    predicted 1(5mi predicted 2(15mi predicted 3(10minpredicted 4(20mi No match

    actual 1(5min) 40 0 0 0 0

    actual 2(15min) 0 40 0 0 0actual 3(10min) 0 0 40 0 0

    actual 4(20min) 0 0 0 40 0

    Preprocessing : Mean-center

    SIMCA Test misclassification

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    92/107

    SIMCA : Test misclassification

    Duration of irradiation

    Measurement order

    predicted 5min predicted 10min predicted 15min predicted 20min predicted 0min No match

    actual 5min 3 0 0 0 7 0

    actual 10min 0 6 0 0 4 0

    actual 15min 0 0 4 0 6 0

    actual 20min 0 0 0 3 7 0

    actual 0min 1 2 0 1 36 0

    Unmodeled 0 0 0 0 0 0

    PredCS1@5 PredCS2@5 PredCS3@5 PredCS4@6 No match

    1(5min) 20 0 0 0 0

    2(15min) 0 20 0 0 0

    3(10min) 0 0 20 0 0

    4(20min) 0 0 0 20 0

    Unmodeled 0 0 0 0 0

    Classification SIMCA

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    93/107

    Both of two patterns of model sets showedhigh accuracy.

    Interclass distance of duration of irradiation

    model set showed high values, but theyshowed very low accuracy in prediction.

    Measurement order prediction showed 100%accuracy.

    The effect of cell phone could be controlled bythe water

    Classification: SIMCA

    NAFION AND EZ

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    94/107

    NAFION AND EZ

    WAMACS:

    1378nm, 1388, 1394,

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    95/107

    14041414nm(-),

    1438-1440nm(+), 1454nm(+), 1464nm(+),

    1480nm(+), 1496nm last sharp max

    Blue: Water : consecutive spectra (firstsubtracted)

    WAMACS:

    1386nm (+) first max

    1414nm (-)

    1446 -1448nm second max

    1464min14741480nm max

    Naphion

    Water

    ONLY Naphion: 3 consecutive measurements,

    1st one subtracted

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    96/107

    1stone subtracted

    WAMACS:

    1324nm (-), 1340nm (+), 1420nm (+),

    1444nm (+)?, 1458nm(+), 1498nm (-),

    1520nm, 1526nm (+), 15381558nm (+)

    These are water molecules in the air

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    97/107

    Effect of magnetic force on

    the electrical conductivityand spectra of milliQ water

    Materials and methods

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    98/107

    Materials and methods

    mQ water used

    Electrical conductivity was

    measured in a 20 mm cuvette(by a portable conductometer)

    Magnets attached at the two

    sides of the cuvette during theexperiment

    N S N S

    Place of

    the

    magnets

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    99/107

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    100/107

    RESULTS

    N NS S

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    101/107

    Red line are 9 consecutive spectra of mQ water

    (second consecutive subtracted).S-N blue, N-S dark green, S-S brown, NN light

    green1432nm OHR,, ncII) and DDA OH-(H2O)4,

    14481458nm, O-HCl, deionized water, 1stover tone of O-H

    stretch, DDA symmetric stretch of OH-(H2O)4,5,

    1492nm,second overtone of bending and symmetric str vibr., S4.

    Very small increase in 1464nm, S2, working horses and1518nm.; 1667nm1682nm O-HR, H13O6+ H-bonded OH

    strech, 1st overt.

    Decrease in S1, 1441nm!!!Dicrease in H-bonded OH

    stretch1477nm; 1479.3nm,

    1482nm, IHB/HOH bend (OH-H2O) and H5O2 (terminal water)

    at. Decrease of aqueous protons.

    Isosbestic point moves from 1438nm to 1420nm.

    N - N1st experiment (in every 40s)

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    102/107

    No magnet S - N N - S

    S - S

    2nd experiment 1st part

    (continuous)

    conductivity,S/cm(1stmeasurement)

    conductivity,S/cm(2ndmeasurement)

    number of data

    1.

    1.

    2.

    2.

    3.

    3.

    4.

    4.

    5.

    5.

    Measurement

    order

    Legend

    S-S pink

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    103/107

    N-N blue

    S-N red

    N-S green

    mQbrown

    AQUAPHOTOME DATA BASE

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    104/107

    Systems PerturbationsWavelengths, LETTERS

    Spectral Patterns, WORDSFunctiona

    lities

    Waters: Temperature first overtone stress tolerancemQ, distilled, deionised, mineral, treated etc.

    Pressure second overtone disease

    Water solutions:

    DNA Illumination third overtone probiotics

    biomolecules: proteins, sugars, lipids, alcohols etc.

    minerals, salts, metals etc. Concentration combination bands dehydration

    Bio fluidsMagnetic field solvation shells hydration

    blood, urine, serum, rumen juice etc.

    Cells Dillution oxidationCHO, bacteria

    Tissue: (in vitro and in vivo)

    organs: liver, kidney, stomack etc.

    mammary gland, mussels, plants tissue, etc.

    Water Bands (WAMACS)

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    105/107

    1368.7 1st overtone OH-str (OH-H2O) Science28

    1368.7 H15O7+, 1st overt. Wei and Salahub 1997: The Journal of Chemical Physics, 106: 6086.

    1369.5 H17O8+, 1st overt. Wei and Salahub 1997: The Journal of Chemical Physics, 106: 6086.

    1369.5 H15O7+ free OH stech, 1st overt. Mizuse and Fijii 2012: The Journal of Physical Chemistry, 116: 4868.

    1369.5 H17O8+ free OH stech, 1st overt. Mizuse and Fijii 2012: The Journal of Physical Chemistry, 116: 4868.

    1369.9 aqueous proton [H+(H2O)6] - H2O symmetric stretch, 1st overt. Headrick et al. (Mark Johnson) 2005: Science, 308: 1765.

    1370.5 1st overtone (OH-(H2O)5) Science28

    1370.6 H13O6+ free OH stech, 1st overt. Mizuse and Fijii 2012: The Journal of Physical Chemistry, 116: 4868.

    1371.0 aqueous proton [H+(H2O)5] - H2O symmetric stretch, 1st overt. Headrick et al. (Mark Johnson) 2005: Science, 308: 1765.

    1371 1st overtone Superoxide Tetrahydrate O2-.(H2O)4 Weber, Science 2000

    1371.4 H11O5+ free OH stech, 1st overt. Mizuse and Fijii 2012: The Journal of Physical Chemistry, 116: 4868.

    1372.1 aqueous proton [H+(H2O)4] - H2O symmetric stretch, 1st overt. Headrick et al. (Mark Johnson) 2005: Science, 308: 1765. 1374.0 aqueous proton [H+(H2O)3] - H2O symmetric stretch, 1st overt. Headrick et al. (Mark Johnson) 2005: Science, 308: 1765.

    1375.9 H9O4+ free OH stech, 1st overt. Mizuse and Fijii 2012: The Journal of Physical Chemistry, 116: 4868.

    1377.4 aqueous proton [H+(H2O)3] - H3O+ symmetric stretch, 2nd overt. Headrick et al. (Mark Johnson) 2005: Science, 308: 1765.

    1379 n1+n3 Tsenkova1379.3 H2O - n1+n3 Ozaki 1982

    1380 1st overtone OH-str (OH-H2O) Xantheas, 1995

    1380.85 1st overtone (OH-(H2O)5) Science28

    1383 1st overtone Superoxide Tetrahydrate O2-.(H2O)4 Weber, Science 2000

    1383.15 1st overtone interwater / DD stretch (OH-(H2O)4) Science28

    1388.7 H2O - 2*n1 Ozaki 1982

    1388.9 H+(H2O)10, 1st overt. Headrick et al. (Mark Johnson) 2005: Science, 308: 1765.

    1388.9 H bond 18=

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    106/107

    Water Matrix Coordinates are the Letters or

    the Characters related to water structures

    Water Spectral Patterns are the words that

    speak about functionalities

    Huge data base, i.e. Aquaphotome

    has to be organized in order to

    learn the language of water and

    to measure and understand weak signals

  • 8/13/2019 Roumiana Tsenkova 2 Water Conference 2013

    107/107


Recommended