+ All Categories
Home > Documents > RS RTN CIRCUIT LEVEL ULTRA FAST CIRCUIT UPC – UAB 1-12-2014 1.

RS RTN CIRCUIT LEVEL ULTRA FAST CIRCUIT UPC – UAB 1-12-2014 1.

Date post: 16-Dec-2015
Category:
Upload: rachelle-fenno
View: 213 times
Download: 0 times
Share this document with a friend
28
RS RTN CIRCUI T LEVEL ULTRA FAST CIRCUIT UPC – UAB 1-12-2014 1
Transcript

1

RSRTN

CIRCUIT LEVEL

ULTRA FAST CIRCUIT

UPC – UAB 1-12-2014

2

CIRCUIT FOR ULTRA FAST MEASURES

CIRCUIT SETUP for RESISTIVE SWITCHING

ULTRA FAST SETUP for RESISTIVE SWITCHING ULTRA FAST CAPTURE

PULSE SETUP

ULTRA FAST SETUP for RTN

WEIGHTED TIME LACK METHOD/PLOT (WTLM/WTLP) TRAPPING AND DETRAPPING DETECTION

WTLM WITH ULTRA FAST SETUP

TOOLS FOR RTN CHARACTERIZATION

RTN and RS MODELING

RESISTIVE SWITCHING VARIABILITY

TOOLS for VARIABILITY and CIRCUIT PERFORMANCE

RESISTIVE SWITCHING BASED CELLS FOR CROSSPOINTS

ANNEX

SUMMARY

RSRTN

CIRCUIT LEVEL

ULTRA FAST CIRCUIT

3

ULTRA FAST CIRCUIT

4

Ultra-Fastcharacterization

circuit V

DUT Device Under Test

Circuit for ultra fast measures

SETUP

CIRCUIT

Cont

rolle

d by

GPI

B

Current limit

Ultra fast captures

5

Circuit setup for Resistive Switching

1,45 mA

215 μA

14,5 μA

Control Voltage

Current limit applied by hardware and controlled by voltage.

0 3 60

2

4

6

5 10 15 20 251E-7

1E-6

1E-5

1E-4

1E-3

0.01

VD

UT

Vapp

Cu

rren

t li

mit

Vcontrol

6

0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.010-11

10-9

10-7

10-5

10-3

Cur

ent

(A)

Voltage (V)

SETRESET

LRS

HRS

Typical RS characteristic

Circuit setup for Resisitive Switrching

VCONTROL

Current limit changes between two levels

controlled by the VCONTROL

Current limit circuit improves the setup increasingProgramming speedCurrent limit controlMeasure Resolution

7

RSRTN

8

Ultra fast setup for Resisitive Switrching

1,5 2,0 2,5 3,0

10µ

100µ

1m

Curr

ent (A

)

Voltage (V)

4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0

10µ

100µ

1m

Curr

ent (A

)

Time (ms)

Ultra fastcapture

2 3 4 5

100n

10µ

100µ

Cur

rent

(A

)

Voltage (V)

0 5 10 15 20 25

100n

10µ

100µ

Cur

rent

(A

)

Time (ms)

Ultra fastcapture

Circuit allows ultra fast measures and applies the current limit during SET process.

Circuit allows ultra fast measures and applies the current limit during SET process.

9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.510

-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-1

0

1

2

3

4

5

6

7

8

9

Ultra fast setup with pulses

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.510

-12

10-10

10-8

10-6

10-4

10-2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

SET

RESET

More and faster cycles. Allows endurance sample studies.

Improves Semiconductor Analyzer setup.

10

Random Telegraph Noise RTN

0.00 0.05 0.1020

40

60

time (s)

Curr

ent (

nA

)

RTN introduces variability to the RS States, specially during HRS.

RTN during HRS

Top Electrode

Bottom Electrode

Vstress“Traps”

RTN is due to changes in the filament structure

Device Array High Density Array

Variability

11

RS Cycling

RTN measurement with semiconductor parameter analyzer (SPA)

oscilloscopeRTN capture

End of SPA measurement

Time Scale Change

Yes

No

New RTN measurement

Ultra fast setup for RTN

Poor sampling resolution

Ultra fast capture

12

0 200 400 600 800 10000

100200300400500

Curr

ent (n

A)

Time (s)

V=2.1V

0,00 0,05 0,10 0,15 0,20

1E-7

1E-6

Curr

ent (n

A)

Time (s)

46.8 47.0 47.2 47.4 47.621

28

35

Curr

ent (n

A)

time (s)

0.00 0.05 0.1020

40

60

time (s)

Curr

ent (

nA

)

SMU

Scope Scope

RS Cycling

RTN measurement with semiconductor parameter analyzer (SPA)

oscilloscopeRTN capture

End of SPA measurement

Time Scale Change

Yes

No

New RTN measurement Ultra fast setup for RTN

Osciloscope captures by GPIB interruptions

13

0.00 0.02 0.04 0.06 0.08 0.10

240.0

280.0

320.0

360.0

0.00 0.01 0.02 0.03 0.04 0.05

200.0

220.0240.0

260.0

280.0

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

200.0

220.0240.0

260.0

280.0

Cur

rent

(nA

)

Osc. time window (s)

6.7msa) Time Res.= 40s

L3

L6

L1L6

L10

Time Res.= 20sb)

Cur

rent

(nA

)

Osc. time window (s)

1.84ms

L7

L5

L10

L6Time Res.= 1sc)

Cur

rent

(nA

)

Osc. time window (s)

200s

(a) 7.26s and 9.68s with 40µs time resolution.

(b) 9.68s and 12.15s with 20µs time resolution.

(c) 19.5s and 21.93s with 1µs time resolution.

Ultra fast setup for RTN

Different time window length

Weighted Time Lack Method/Plot

More likely due to defect fluctuations in the filament, caused by stochastic atomic movements in and out of the CFs.

VG=-0.11V

current at i

curr

ent

at

i+1

0.8 1 1.2 1.4 1.6

x 10-9

0.8

1

1.2

1.4

1.6

x 10-9

0 200 400 600 800 1000 12000.6

0.8

1

1.2

1.4

1.6

1.8x 10

-9 VG=-0.11V

Time (s)

I (A

)

0.5 1 1.5 2

x 10-9

0.5

1

1.5

2x 10

-9 VG=-0.11V

Top Electrode

Bottom Electrode

Vstress“Traps”

Filament Conductivity Fluctuations

WTLPcapture

14

15

0 5 10 15 20 25 30 35 40 45

160,0n

180,0n

200,0n

220,0n

240,0n

260,0n

280,0n

300,0n

320,0n

340,0n

1 0,1 0,01

160,0

180,0

200,0

220,0

240,0

260,0

280,0

300,0

320,0

340,0

Curr

ent (

A)

time (s)

L9

L8

L7

L6

L5

L4

L2

L3

Curr

ent (

nA

)

WTLP Diag. (a.u.)

L1

(Left) Typical multilevel RTN signal measured by a semiconductor parameter analyzer at Vapp=1.25V, step time ~6ms and number of measured points 8000.

(Right) Trap levels obtained by using the WTLP method.

Weighted Time Lack Method

16

Weighted Time Lack Plot16

0.0

200.

0

240.

0

280.

0

320.

0

160.0

180.0

200.0

220.0

240.0

260.0

280.0

300.0

320.0

340.0

L10

L2

L3

L4

L5L6

L7

L8L9

Cur

rent

at i

+1

(nA

)

L1a)

160.

0

200.

0

240.

0

280.

0

320.

0

L1

L6

L3

b)

Time Res.=40s

160.

0

200.

0

240.

0

280.

0

320.

0

L10

L7

L6

c)

Time Res.=20s

160.

0

200.

0

240.

0

280.

0

320.

0

L5

L10

-3.500

-2.800

-2.100

-1.400

-0.7000

0

L6

Current at i (nA)

Time Res.=1s

d) WTLP (a.u.)

WTLP method applied to

(a) RTN measured by the SPA with 9 trap levels detected.(b) Oscilloscope capture with a time resolution of 40μs where 3 trap levels detected.(c) Oscilloscope capture with time resolution of 20μs with 3 trap levels detected.(d) Oscilloscope capture at lower time resolution of 1μs with 2 trap levels.

More resolution of de Weighted Time Lack Plot with ultra fast captures

Fast emission and capture times not detected with SPA setup

17

0,00 0,05 0,10 0,15 0,20

1E-7

1E-6

Curr

ent (n

A)

Time (s)

Tools for RTN characterization

Weighted Time Lag Method Ultra fast characterization

Measuring capture and emission timeStudy variability of Resistive Switching states

Extract statistics of RTN variability for modeling

The combination of both tools allows:

18

CIRCUIT LEVEL

19

Variability sources.

Electrically minimize variability.

Variability analysis on circuit performance.

Circuit Level: Objectives

Reliability issues

Architectures

Cross point structures based on RS cells.

20

RTN and RS modeling

Electrical model.

RS state represented by R value.

Bipolar RS.

Potential law for RS currents.

Easy transfer to circuit level.

RS electrical model

Diode – Resistance model

Circuit level simulations

Including variability

Statistical models

21

Resistive Switching variability

1 10 100 10001E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

ESET

ERESET

Ene

rgy

(J)

Ramp Speed (V/s)

Energy Average

0 50 100 150 200 250 300 3501E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

IBD @ -0.5V

IR @ -0.5V

|Co

rrie

nte

de

pu

ert

a [

A]|

Ciclos

HBD

SBD

Estado BD

-5 -4 -3 -2 -10.1

1

10

40

70

95

99.5

Pro

ba

bili

da

d [

%]

Tensión de puerta [V]

VBD

VR

ciclos iniciales

RS CurrentProgramming voltages

Programming consumption VARIABILITY

0.00 0.05 0.1020

40

60

time (s)

Cur

rent

(nA

)RTN

22

Resistive Switching variability

1 10 100 10001.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

VSET

VRESET

Vol

tage

(V

)

Ramp Speed (V/s)

Voltage Average of last 4

Programming voltage window increases as speed programming increases

-2 0 2 4 6 8 10 12 1410

-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.510

-12

10-10

10-8

10-6

10-4

10-2

100

-2 0 2 4 6 8 10 12 1410

-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.510

-12

10-10

10-8

10-6

10-4

10-2

100

VSET

VRESET

Programming speed

23

Resistive Switching variability

Current limit

1E-10 1E-8 1E-6 1E-4

1

10

40

70

95

99.5

IR @-0.5V

IBD @-0.5V

Pro

babili

dad (

%)

|Corriente de puerta [A]|

-4.5 -4.0 -3.5 -3.0 -2.5

-7-6-5-4-3-2-10123

Distribución de IBD

Ln(-

Ln(1

-F))

Log_10(Corriente de puerta [A])

CL=2mA CL=1mA CL=0.5mA

(a)

-12 -11 -10 -9 -8 -7 -6 -5 -4

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Ln(-

Ln(1

-F))

Log_10(Corriente de puerta [A])

CL = 2mA CL = 1mA CL = 0.5mA

Distribución de IR

(b)

Current limit favors HBD

LRS more stable

24

Tools for variability and circuit performance analysis.

RS and RTN characterization

Electrical and statistical models

Pspice Electrical models Easy link with circuits

Simulink Statistical parameters Equation models (QPC) High density circuits simulation

0,0 -0,5 -1,0 -1,5 -2,0 -2,5 -3,0 -3,5 -4,010-11

10-9

10-7

10-5

10-3

Cur

ent (A

)

Voltage (V)

SETRESET

LRS

HRS

Current Limit

Circuit performanceanalysis

RRAM crossbar

0.00 0.05 0.1020

40

60

time (s)

Cur

rent

(nA

)

HighDensity

Array

Device

Programming voltages

Current levels

Variability

RTN fluctuations

ERROR

25

RS based cells for crosspoints

Crosspoint structure

MOSFET based cell

Simple RS cell

MOSFET based cell

Any suggestions..?

26

Thanks!!

27

ANNEX

28

VOUT

VBULK

VSTRESS

VDUT

DUT

Current Limit Control

Buffer

I-V converter

VC controls the channel current of T1, that means the current limit of the DUT

Current limit applied by a transistor

D2

Ultra fast setup: The circuit...


Recommended