+ All Categories
Home > Documents > Résumé Context - Université de Mons · Résumé Context Objectif: optimiser le choix des...

Résumé Context - Université de Mons · Résumé Context Objectif: optimiser le choix des...

Date post: 11-Aug-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
1
Université de Mons Ir. Hoai Nam Huynh, Prof. Edouard Rivière-Lorphèvre , Prof. Olivier Verlinden University of Mons: [email protected] Mardi des chercheurs UMons Mons - 5 March 2019 materials UMONS RESEARCH INSTITUTE FOR MATERIALS SCIENCE AND ENGINEERING Robotic Machining Development & Validation of a Robotic Machining Numerical Model in order to Optimise Cutting Parameters Résumé Context Objectif: optimiser le choix des para- mètres de coupe à l'usinage robotisé Department of Theoretical mechanics, dynamics and vibrations Simulation de l'usinage robotisé sur base d'un modèle numérique Modélisation multicorps d'un robot et couplage au procédé d'usinage Validation du modèle dynamique par des essais expérimentaux Mise en place d'outils visant la recom- mandations des paramètres de coupe optimaux suivant le compromis "stabilité-productivité-précision" Milling operations Operations: deburring, drilling, cutting, polishing, milling, grinding, contouring, ... Materials: aluminium, plastic, composite, foam, wood, stone, steel, ... Attractive cost: cost reduction of about 30 to 50 % in comparison with a CNC machine tool having the same workspace [1] I. Iglesias, M.A. Sebastian, J.E. Ares. Overview of the state of robotic machining: Current situation and future potential. Procedia Engineering, 132:911-917, 2015. Simulation environment Experimental setup and milling tests References Perspectives [5] S. Mousavi, V. Gagnol, B.C. Bouzgarrou, P. Ray. Dynamic modeling and stability prediction in robotic machining. The International Journal of ad- vanced Manufacturing Technology, 1-13, 2016. [2] Olivier Verlinden, Lassaad Ben Fékih, Georges Kouroussis. Symbolic ge- neration of the kinematics of multibody systems in EasyDyn: From Mu- pad to Xcas/Giac. Theoretical & Applied Mechanics Letters 3:013012, 2013. [3] H.N. Huynh, E. Rivière-Lorphèvre, F. Ducobu, A. Ozcan, O. Verlinden. Dystamill: a framework dedicated to the dynamic simulation of milling operations for stability assessment. J. Adv. Manuf. Technology, 2018. [4] H. N. Huynh, Edouard Rivière-Lorphèvre, Olivier Verliden. Multibody mo- delling of a flexible 6-axis robot dedicated to robotic machining. The 5th Joint International Conference on Multibody System Dynamics, 2018. Machining of large workpiece with complex shapes and difficult access Increase of productivity for current manual opera- tions such as composite trimming and chamfering However, robot joint stiffness is low: < 1 N/µm (CNC machine tool stiffness > 50 N/µm) Machining errors are mainly caused by joint flexi- bility, backlash and friction losses Hence, vibration of the structure, instability and loss of accuracy (chatter phenomenon) [1] EasyDyn Dystamill Coupling EasyDyn: multibody framework [2] Simulation of a multibody system such as an industrial robot Dystamill: milling routine [3] Coupling of EasyDyn and Dystamill [4] + = [M]{q}+[C]{q}+[K]{q}={0} . Simulation of milling operations: - prediction of the cutting forces Macroscopic model of milling dF= K h da dF: cutting forces K: cutting coecients h: undeformed chip thickness da: elementary cutting length Validation of the coupling - update of the workpiece geometry Stability lobes Axial depth of cut [mm] Spindle speed [1000 x RPM] 5 10 15 20 25 0 3 2 1 4 5 Stable milling process for the cutting para- meters in the green area Stability limit Force max. criterion Vibration max. criterion Roughness max. criterion .. . . Experimental setup Milling tests in aluminium blocks Resulting workpiece Surfacing operations: a p =2 mm a e =4 mm Lateral roughness: R a =0.4-0.8 µm R t =3 µm Overall flatness: 0.228 mm Robotic machining simulation Cutting forces Model fitting to experimental data F x F y F z Simulation VS. experiment Extension of the multibody model to a robot including control, actuators & flexible links [5] Validation of the robotic machining environ- ment on the basis of milling tests Analysis of the stability using different criteria Development of numerical tools leading to an optimal choice of cutting parameters Aluminium 6082 T6 Construction and resolution of the equations of motion by application of the d'Alembert principle: Current model Simulation of the milling performed by a complex mechanical system Halle Génie Méca. Rue du Joncquois 53 7000 Mons Stäubli TX200 robot Spindle Cutting tool Workpiece Good prediction of cutting forces in aluminium milling Fx Fy Time [s] Cutting Forces [N] 0 2 0.5 1.5 1 2.5 3 x 10 -3 -250 -200 -100 -50 -150 0 50 150 100 UMONS Université de Mons MANUMONS th
Transcript
Page 1: Résumé Context - Université de Mons · Résumé Context Objectif: optimiser le choix des para-mètres de coupe à l'usinage robotisé Department of Theoretical mechanics, dynamics

Université de MonsIr. Hoai Nam Huynh, Prof. Edouard Rivière-Lorphèvre , Prof. Olivier Verlinden

University of Mons: [email protected]

Mardi des chercheurs

UMons

Mons - 5 March 2019

materialsUMONS RESEARCH INSTITUTE

FOR MATERIALS SCIENCE

AND ENGINEERING

Robotic MachiningDevelopment & Validation of a Robotic Machining Numerical Model

in order to Optimise Cutting Parameters

Résumé ContextObjectif: optimiser le choix des para-mètres de coupe à l'usinage robotisé

Department of Theoretical mechanics, dynamics and vibrations

Simulation de l'usinage robotisé surbase d'un modèle numérique

Modélisation multicorps d'un robotet couplage au procédé d'usinage

Validation du modèle dynamiquepar des essais expérimentaux

Mise en place d'outils visant la recom-mandations des paramètres de coupe optimaux suivant le compromis"stabilité-productivité-précision"

Milling operations

Operations: deburring, drilling, cutting, polishing, milling, grinding, contouring, ...

Materials: aluminium, plastic, composite, foam, wood, stone, steel, ...

Attractive cost: cost reduction of about 30 to 50 %in comparison with a CNC machine tool having thesame workspace

[1] I. Iglesias, M.A. Sebastian, J.E. Ares. Overview of the state of robotic machining: Current situation and future potential. Procedia Engineering, 132:911-917, 2015.

Simulation environment

Experimental setup and milling tests

ReferencesPerspectives

[5] S. Mousavi, V. Gagnol, B.C. Bouzgarrou, P. Ray. Dynamic modeling and stability prediction in robotic machining. The International Journal of ad- vanced Manufacturing Technology, 1-13, 2016.

[2] Olivier Verlinden, Lassaad Ben Fékih, Georges Kouroussis. Symbolic ge- neration of the kinematics of multibody systems in EasyDyn: From Mu- pad to Xcas/Giac. Theoretical & Applied Mechanics Letters 3:013012, 2013.[3] H.N. Huynh, E. Rivière-Lorphèvre, F. Ducobu, A. Ozcan, O. Verlinden. Dystamill: a framework dedicated to the dynamic simulation of milling operations for stability assessment. J. Adv. Manuf. Technology, 2018.

[4] H. N. Huynh, Edouard Rivière-Lorphèvre, Olivier Verliden. Multibody mo- delling of a flexible 6-axis robot dedicated to robotic machining. The 5th Joint International Conference on Multibody System Dynamics, 2018.

Machining of large workpiece with complex shapesand difficult access

Increase of productivity for current manual opera-tions such as composite trimming and chamfering

However, robot joint stiffness is low: < 1 N/µm(CNC machine tool stiffness > 50 N/µm)

Machining errors are mainly caused by joint flexi-bility, backlash and friction losses

Hence, vibration of the structure, instability andloss of accuracy (chatter phenomenon) [1]

EasyDyn Dystamill Coupling

EasyDyn: multibody framework [2]

Simulation of a multibody systemsuch as an industrial robot

Dystamill: milling routine [3] Coupling of EasyDyn and Dystamill [4]

+ =

[M]{q}+[C]{q}+[K]{q}={0}.

Simulation of milling operations:- prediction of the cutting forces

Macroscopic model of milling

dF= K h da dF: cutting forces

K: cutting coefficients

h: undeformed chip thickness

da: elementary cutting length

Validation of the coupling - update of the workpiece geometry

Stability lobes

Axi

al d

epth

of cu

t [m

m]

Spindle speed [1000 x RPM]5 10 15 20 250

3

2

1

4

5Stable milling processfor the cutting para-meters in the greenarea

Stability limitForce max. criterionVibration max. criterionRoughness max. criterion

..

..

Experimental setup

Milling tests in aluminium blocks

Resulting workpiece

Surfacing operations: ap=2 mm ae=4 mm

Lateral roughness: Ra=0.4-0.8 µm Rt=3 µm

Overall flatness: 0.228 mm

Robotic machining simulationCutting forces

Model fitting to experimental data

FxFyFz

Simulation VS. experiment

Extension of the multibody model to a robotincluding control, actuators & flexible links [5]

Validation of the robotic machining environ-ment on the basis of milling tests

Analysis of the stability using different criteria

Development of numerical tools leading to anoptimal choice of cutting parameters

Aluminium6082 T6

Construction and resolution of the equations of motion by applicationof the d'Alembert principle:

Current model

Simulation of the milling performedby a complex mechanical system

Halle Génie Méca.

Rue du Joncquois 53

7000 Mons

Stäubli TX200 robot

SpindleCutting toolWorkpiece Good prediction of cutting forces

in aluminium milling

FxFy

Time [s]

Cut

ting

For

ces

[N]

0 20.5 1.51 2.5 3x 10-3

-250

-200

-100

-50

-150

0

50

150

100

UMONSUniversité de Mons

MANUMONS

th

Recommended