+ All Categories
Home > Documents > Rtm Upm 2011

Rtm Upm 2011

Date post: 20-Dec-2015
Category:
Upload: pwienprove
View: 17 times
Download: 1 times
Share this document with a friend
Description:
Practica RTM
Popular Tags:
21
Infusión de resina: Práctica 4 confidencial. derechos reservados. Documento c © AIRBUS S.A.S. Todos los d Pag. 1
Transcript
Page 1: Rtm Upm 2011

• Infusión de resina: Práctica 4

conf

iden

cial

.de

rech

os re

serv

ados

. Doc

umen

to c

© A

IRB

US

S.A

.S. T

odos

los d

Pag. 1

Page 2: Rtm Upm 2011

Resin infusion

• Resin infusionDry reinforcement and resin are supplied separately before the manufacturing of the part.A preform of dry reinforcement is manufactured (lay-up and stitching of fabric patterns, braiding,...) and placed into the mould. Then, the mould is closed and the preform is impregnation with the resin by a process of infusion.The infusion can be done using liquid resin (LRI, RTM...), or solid resin integrated together with the preform during the lay-up process (RFI).g p g y p p ( )

LIQUID RESIN FILM OF RESIN

conf

iden

cial

.de

rech

os re

serv

ados

. Doc

umen

to c

© A

IRB

US

S.A

.S. T

odos

los d

Pag. 2

Page 3: Rtm Upm 2011

Resin infusion

• Resin infusionGeneral characteristics

METHOD CHARACTERISTICS PROS CONS

C l t t• High investment in

i t f t i fRTM

(Mould closed by mechanical pressure)

• Complex structures• Good repetitivity: control of

Vf through the shape of the mould

• High surface quality

equipments: manufacturing of performs, moulds presses, injection equipments.

• Require very liquid resins (low damage tolerance)

• Difficult automatisation• Difficult automatisation

RLI (VARTM, MVI) • Tooling similar to “prepreg”

based manufacturing • Require very liquid resins (low

• Dry fabric reinforcement + resin (liquid or film)

• Allow parts with high geometrical

conf

iden

cial

.

( , )(vacuum and autoclave

pressure)

g• Investments similar or

lower than prepreg based manufacturing

• Require very liquid resins (low damage tolerance)

complexity (3D) • Storing of

reinforcement at RT • Single or bi-

component resins M di l i

dere

chos

rese

rvad

os. D

ocum

ento

c

RFI (Vacuum and autoclave

pressure)

• Medium-large series• Tooling similar to “prepreg”

based manufacturing • Resins similar to those

used in prepreg based manufacturing

• Require the use of resin films: difficult thickness control, complex storing…

• Do not allow very complex t i

© A

IRB

US

S.A

.S. T

odos

los d

Pag. 3

p ) manufacturing • Investments similar or

lower than prepreg based manufacturing.

geometries• High cost of preforms

Page 4: Rtm Upm 2011

“Acronym” anarchy !

• CIRTM: co-injection RTM • Crystic VI: vacuum infusion (Scott Bader)• DRDF: double RIFT diaphragm forming (University of Warwick)• LRI: liquid resin infusion• MVI modified vacuum infusion (Airbus)• Quickstep use of liquids for enhanced heat transfer in infusionQuickstep use of liquids for enhanced heat transfer in infusion• RFI: resin film infusion• RIFT: resin infusion under flexible tooling (ACMC Plymouth)• RIRM: resin injection recirculation moulding• SCRIMP Seeman Composites Resin Infusion Molding Process (TPI) • VAIM: vacuum-assisted injection moulding• VAP vacuum assisted processing (patented by EADS)• VARI: vacuum assisted resin injection system (Lotus Cars)

conf

iden

cial

.

VARI: vacuum assisted resin injection system (Lotus Cars)• VARIM: vacuum assisted resin injection moulding• V(A)RTM: vacuum (-assisted) resin transfer moulding• VIM: vacuum infusion moulding.

dere

chos

rese

rvad

os. D

ocum

ento

c • VIMP: vacuum infusion moulding process • VM/RTM Light: a hybrid RIFT/RTM (Plastech)• VIP: vacuum infusion process

© A

IRB

US

S.A

.S. T

odos

los d

Pag. 4

Extracted from “Resin Infusion under Flexible Tooling (RIFT)”. John SummerscalesAdvanced Composites Manufacturing CentreSchool of Marine Science and Engineering - University of Plymouth, UK

Page 5: Rtm Upm 2011

Resin infusion

• Resin transfer moulding (RTM)Resin infusion method more used in aerospace applicationsCharacteristics:

– A two-part, matched-metal mould is used as toolas tool

– Liquid resin is pumped into the tool– The part is cured into the tool

RTM at a glimpse

conf

iden

cial

.de

rech

os re

serv

ados

. Doc

umen

to c

© A

IRB

US

S.A

.S. T

odos

los d

Pag. 5

Page 6: Rtm Upm 2011

Resin infusion

• Advantages and drawbacks of RTM

AdvantagesAdvantages– Excellent mechanical properties– High fiber volume– Relatively low capital equipment cost

R l ti l l t f t i l– Relatively low cost of raw materials– Possibility of manufacturing of very complex geometries– High dimensional tolerances (even thicknesses)– Excellent surface control (mould finish over entire part)Excellent surface control (mould finish over entire part)– Near-net shape parts possible– Excellent quality control possible– High repetitivity

Hi h it f t i t ti i i h d l b t i bl

conf

iden

cial

.

– High capacity of parts integration, saving weigh and labour costs in assembly– High capability of automatisation

Disadvantages– Size limitations

dere

chos

rese

rvad

os. D

ocum

ento

c – Size limitations– Manufacturing only with fabric and textile preforms– High tooling cost– Mould deflection during processing

© A

IRB

US

S.A

.S. T

odos

los d

Pag. 6

Page 7: Rtm Upm 2011

Resin infusion

• Moulds: basic concepts

S f ti th th ld f ti lSame function than the mould of a conventional process

Parts:B ld d l i ld– Base mould and closing mould

– Internal modules– Sealing system

System for mould alignment closing and compression– System for mould alignment, closing and compression– Systems of injection and vacuum– Heating and cooling system

conf

iden

cial

.

This elements configure the tool to achieve the final part with all its geometrical and functional requirements:

G t i l t l di i l t bilit d tiff

dere

chos

rese

rvad

os. D

ocum

ento

c – Geometrical accuracy, tolerances, dimensional stability and stiffness– Correct filling of the mould– Possibility of extraction of the part

© A

IRB

US

S.A

.S. T

odos

los d

Pag. 7

Page 8: Rtm Upm 2011

Aproximación académica: Práctica de RTM

BOMBA DE VACÍO

UTIL+

PREFORMA

conf

iden

cial

.de

rech

os re

serv

ados

. Doc

umen

to c

SISTEMA DE INYECCIÓN

© A

IRB

US

S.A

.S. T

odos

los d

Pag. 8

Page 9: Rtm Upm 2011

Aproximación académica: Ley de Darcy

resina de frente del velocidad siendo :, uPku ∇−=μ

dadpermeabili:KCondiciones de contorno

l d d l ld

presiones de gradienteviscosidad :

dadpermeabili

:

:

P

K

∇μ

0. =nu en la pared del molde

P = Pinj en el punto de inyección

P = P en el frente de resina0=⋅∇ u Ecuación de continuidad

P = Po en el frente de resina

conf

iden

cial

.

En caso de flujo unidireccional, la presión de la resina cae linealmente desde el punto deinyección hasta el frente de resina. El tiempo de inyección será entonces:

dere

chos

rese

rvad

os. D

ocum

ento

c

2

2L

PKt

Δ=

μ

© A

IRB

US

S.A

.S. T

odos

los d

Pag. 9

2 PK Δ

Page 10: Rtm Upm 2011

• Viscosity, Permeability: Some ideas from the U. Delaware

conf

iden

cial

.de

rech

os re

serv

ados

. Doc

umen

to c

© A

IRB

US

S.A

.S. T

odos

los d

Pag. 10

Page 11: Rtm Upm 2011

A typical Resin Transfer Mold is illustrated below.

The resin is injected under pressure through one or more "gates". The air is expelled through vents. The vents should be located in the region that fills last in order to avoid entrapped air that can cause "dry spots".

Página 1 de 1MFS Tutorial Page 1

12/04/2011file://C:\Temp\www.ccm.udel.edu\Techsite\Pages\MFS\MFS_Tutorial_pg1.html

Page 12: Rtm Upm 2011

Viscosity is a measure of the resistance of a fluid to flow through the open conduits and pores of a preform. Viscosity is defined by Newton’s law as the material characteristic that relates the stress required to sustain a given strain rate. This law is schematically defined below.

Página 1 de 1MFS Tutorial Page 5

12/04/2011file://C:\Temp\www.ccm.udel.edu\Techsite\Pages\MFS\MFS_Tutorial_pg5.html

Page 13: Rtm Upm 2011

As a consequence of the temperature dependence of the viscosity, a temperature processing window is imposed on the mold. This window is illustrated in the Figure below.

Initially the viscosity decrease as the monomers become more mobile and less resistant to flow at elevated temperatures. However, a continued increase in temperature causes the resin to react to from higher molecular weight and less mobile species. Eventually the systems begins to gel and form rigid cross linked networks that are resistant to flow and the viscosity increases rapidly. Viscosity is an important factor in selecting resins. If the viscosity is too high, the resin will not flow easily and may not penetrate fiber bundles. If the viscosity is too low, the resin may follow a path of least resistance and leave voids or dry spots. As a rule of thumb, the resin viscosity should be in the range of 100 to 1000 cps.

Página 1 de 1MFS Tutorial Page 7

12/04/2011file://C:\Temp\www.ccm.udel.edu\Techsite\Pages\MFS\MFS_Tutorial_pg7.html

Page 14: Rtm Upm 2011

Viscosity can be a strong function of temperature. In particular, at higher mold temperatures the resin can begin to cure during filling. In this event, the viscosity will increase dramatically and impede flow. This situations is schematically illustrated below.

Página 1 de 1MFS Tutorial Page 6

12/04/2011file://C:\Temp\www.ccm.udel.edu\Techsite\Pages\MFS\MFS_Tutorial_pg6.html

Page 15: Rtm Upm 2011

Página 1 de 1MFS Tutorial Page 4

12/04/2011file://C:\Temp\www.ccm.udel.edu\Techsite\Pages\MFS\MFS_Tutorial_pg4.html

Page 16: Rtm Upm 2011

If a preform is isotropic in the in-plane directions such that Kxx = Kyy , then the flow fronts progress as circles. This situation is illustrated in the figure below.

Random fiber mats and symmetric bi-directional fabrics produce isotropic preforms.

Página 1 de 1MFS Tutorial Page 9

12/04/2011file://C:\Temp\www.ccm.udel.edu\Techsite\Pages\MFS\MFS_Tutorial_pg9.html

Page 17: Rtm Upm 2011

If the preform is anisotropic in the plane with Kxx different from

Kyy, the flow fronts become elliptic and remain elliptic through out filling. This situation is illustrated below.

The major and minor axes of the ellipse coincide with the in-plane principal directions. The ratio of the major and minor axes of the ellipse is equal to the ratio of the square roots of the principal permeability’s. This situation can be encountered with unidirectional stitched mats.

Página 1 de 1MFS Tutorial Page 10

12/04/2011file://C:\Temp\www.ccm.udel.edu\Techsite\Pages\MFS\MFS_Tutorial_pg10.html

Page 18: Rtm Upm 2011

Preforms are usually assembled by stacking several plies of mats and/or fabrics. The permeability for fluid flow in the plane of the plies is generally much more than the permeability for the fluid flow in the transverse or out-of-plane direction. This situation results in anisotropy of the permeability. Consequently the directional dependence of the permeability must be taken into account. The figure below assigns directional indices to the permeability.

The quantities Kxx and Kyy denote the in-plane permeability’s of

the preform: Kzz denotes the out-of-plane permeability

Página 1 de 1MFS Tutorial Page 8

12/04/2011file://C:\Temp\www.ccm.udel.edu\Techsite\Pages\MFS\MFS_Tutorial_pg8.html

Page 19: Rtm Upm 2011

For multiple layers of plies, the overall effective permeability’s can be estimated by the relationships shown below.

Página 1 de 1MFS Tutorial page 11

12/04/2011file://C:\Temp\www.ccm.udel.edu\Techsite\Pages\MFS\MFS_Tutorial_pg11.html

Page 20: Rtm Upm 2011

A phenomenon called "race tracking" or channeling is observed in most mold filling situations. An example of race tracking is shown below.

In this illustration, the fluid at the edge of the mold is moving ahead of the fluid in the center due to high permeability regions near the edges. This effect usually occurs because it is difficult to place the preform into the mold so that the dimensions exactly match the mold size. High permeability areas can also be created by the unraveling of the fiber bundles during the cutting of the preform. Race tracking can also develop when permeability gradients exist in the preform due to preform deformation or "wash". Race tracking can lead to voids and resin rich areas. However, in some cases race tracking can enhance the uniformity of flow by designing specific channels in the preform

Página 1 de 1MFS Tutorial Page 12

12/04/2011file://C:\Temp\www.ccm.udel.edu\Techsite\Pages\MFS\MFS_Tutorial_pg12.html

Page 21: Rtm Upm 2011

Aproximación académica: Práctica de RTM

• Los alumnos, en grupos de 4, realizarán un informe con una extensión aproximada de 8 hojas, que deberá incluir al menos los siguiente apartados:

Descripción de la pieza a fabricar representada en la página anterior el panel de 2x1 y 10Descripción de la pieza a fabricar, representada en la página anterior, el panel de 2x1 y 10 mm de espesor presentado en claseDescripción del proceso de inyección. Los parámetros básicos del proceso son

– Presión de inyección: 0 Presión de vacío: 0.5 atmy– Líquido inyectado: agua– Tiempo entre el inicio de la inyección y el inicio de salida del líquido inyectado (asociado a la velocidad

del frente del líquido en los bordes): 10 s– Tiempo de llenado (asociado a la velocidad del frente del líquido a través de la diagonal): 100 sTiempo de llenado (asociado a la velocidad del frente del líquido a través de la diagonal): 100 s

Obtención de las permeabilidades en el borde (race-tracking) y en el centro del panel empleando la expresión de la ley de Darcy para flujo unidireccionalDescargar el programa MyRTM (http://www.myrtm.ch)

conf

iden

cial

.

Comparar la ley de Darcy y la definición de permeabilidad empleada por dicho programaCon las permeabilidades obtenidas, y realizando las hipótesis necesarias (detallar):

– Modelizar el panel utilizando el ejecutable gmsh u otro programa CAD (CATIA, por ejemplo)– Realizar un mallado del panel utilizando el ejecutable gmsh

dere

chos

rese

rvad

os. D

ocum

ento

c – Realizar un mallado del panel utilizando el ejecutable gmsh– Alimentar el programa MyRTM con el modelo y las permeabilidades obtenidas, introduciendo el punto

de inyección mostrado en el ensayo– Ejecutar el programa realizando las hipótesis que el alumno considere necesarias.

D ibi l d i ió i l d bt i d l ti d d

© A

IRB

US

S.A

.S. T

odos

los d

Pag. 11

Describir el proceso de inyección simulado, obteniendo los tiempos de proceso, y comparando los resultados con los del ejercicio representado en claseEl informe se entregará una semana después del examen final de la asignatura


Recommended