+ All Categories
Home > Documents > Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

Date post: 05-Jan-2016
Category:
Upload: peers
View: 31 times
Download: 3 times
Share this document with a friend
Description:
This course is approximately at this level. CHEMISTRY E182019. CH1. General information about course, Basic notions-quantities. Remark : fo i l s with „ black background “ could be skipped, they are aimed to the more advanced courses. - PowerPoint PPT Presentation
Popular Tags:
20
Remark: foils with „black background“ could be skipped, they are aimed to the more advanced courses Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2016 General information about course, Basic notions-quantities This course is approximately at this level CHEMISTRY E182019 CH1
Transcript
Page 1: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

Remark: foils with „black background“ could be skipped, they are aimed to the more advanced courses

Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2016

General information about course, Basic notions-quantities

This course is approximately at this level

CHEMISTRY E182019 CH1

Page 2: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

• Lectures Prof.Ing.Rudolf Žitný, CSc. (Tuesday 10:45)• Tutorials Ing. Jaromír Štancl, PhD. (Tuesday 9:00) • Evaluation (questions and written example max. 30 points)

A B C D E F

27+ 24+ 21+ 18+ 15+ ..14

Summary: General chemistry from the point of view of mechanical and process engineering. Physical chemistry forms 2/3 of the course (structure and properties of matter, thermodynamics, phase equilibrium, chemical reactions, reaction engineering), the remaining 1/3 is devoted to organic chemistry (hydrocarbons, polymers) and biochemistry. Laboratory practice is oriented upon the material properties measurement.

CHEMISTRY E182019 2+1

(Lectures+Tutorials), Classified assesment, 3 credits, Tuesday 10:45, room 312

CH1

http://www.fsid.cvut.cz/~zitnyrud/

excellent very good good satisfactory sufficient failed

Page 3: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CHEMISTRY E182019 CH1

First lecture 4.10.2016 Room 312

Page 4: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

LITERATURE• Textbook: Žitný R., Krysa J.: Chemistry, ČVUT Praha, 2000

• Books: Malone L.J.: Basic concepts of chemistry. J.Wiley&Sons, N.Y., 1994Bloomfield M.M.:Chemistry and living organisms. J.Wiley&Sons, N.Y., 1992Moran M.J., Shapiro H.N.: Fundamentals of Engineering Thermodynamics,

J.Wiley&Sons, N.Y., 1992

• Database of scientific articles: You (students of CTU) have direct access to full texts of thousands of papers,

available at

https://dialog.cvut.cz

Jméno DUPS

CH1

Page 5: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

DATABASE selection CH1

You can find out qualification of your teacher (the things he is really doing and what he knows)

The most important journals for technology (full texts if pdf format)

Page 6: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

SCIENCE DIRECT CH1

Specify topic by keywords (in a similar way like in google)

Title of paper is usually sufficient guide for selection.

Page 7: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 CHEMISTRY Principal subject of this course (important for mechanical engineers)

Only 3 lectures will be delivered

Page 8: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 CHEMISTRY Why chemistry for mechanical engineers? Typical examples

Combustion and chemical reactors (example reactor for steam reforming)

Processing and properties of plasts

Page 9: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 CHEMISTRY Why chemistry for mechanical engineers? Typical examples

Microbial activity in a transported food E.Coli

Salmonella

0 1 0 2 0 t im e [d ]

0 1 0 2 0 t im e [d ]

c fu /g1 0 0 0 1 0 0 1 0 1

T [ 0 C ] 2 0 1 5 1 0 5 0

S a lm o n e lla

S a la d (F E M m e sh )S a lm ons .r .o .

T IN Y T A L K IE

T

t la g p h a s e

Page 10: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 Properties of matterPhysical properties (intensive) T,p,v,u,s,h,… usually lower case letters

Physical quantities (extensive) U, S, H, … usually capitals

Rules of nomenclature

A) Symbols are usually derived from english words (t for time, T for temperature, m for mass, L for length, V for volume, p for pressure, c for capacity or concentration). Exceptions: U-internal energy, H-enthalpy, S-entropy, G-Gibbs energy, Q-heat.

B) If there exists a pair (intensive/extensive) we use CAPITALs for extensive parameter (V-volume, v-specific volume, H-enthalpy, h-specific enthalpy,…)

C) If a property is related to unit mass, use the word SPECIFIC (e.g. v-specific volume, c-specific heat capacity, u-specific internal energy, s-specific entropy, g-specific Gibbs energy of 1 kg)

D) If a property is related to number of particles, use the word MOLAR and lowercase with tilda. As a unit of number of particles is 1 mole (Avogadro’s number) = 6.022.1023. molar internal energy, molar volume and molar enthalpy.

Page 11: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 UNITS - conversion Units SI (Standard International) kg/m/s/K, English lb,ft,0Fmass m kg 1 lb=0.4536 kgmolar mass M kg/kmollength L m 1 ft=0.3048 m 1 in=0.0254 mtemperature T K,oC oF=1.8 oC+32, K=C+273.15internal energy U J 1 BTU=1055.056 J 1 cal=4.186 J enthalpy H Jentropy S J/K

specific volume v m3/kgforce F(=m.a) N(=kg.m/s2) 1 lbf=0.4536∙9.81=4.448222 Npressure p(=F/m2) Pa(=N/m2) 1 bar=105Pa 1 mm Hg=133.22 Pa

1 psi=6895 Padensity (=1/v) kg/m3

Prefixesk kilom milli 10-3

μ micro 10-6 red cell 10 mn nano 10-9 macromoleculesp pico 10-12 atomic radius measured in pm

Page 12: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 PREFIXES - relax

TERA = 1012 PICO = 10-12

GIGA = 109 NANO = 10-9

Page 13: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

Given Convert toDensity of Titanium SI units

Density of air 1.2 kg.m-3 Pounds and feet

=1.2(1/0.4536)lb((1/0.3048)ft)-3=1.2/0.45360.30483 lbft-3=0.0749 lbft-3

Atmospheric pressure

1 bar = 105 Pa =

PSI (pound per square inch)

= 105 (1/6895 psi)=14.5 psi

1 lbf (pound-force) SI units (Newton)

lbf=m.g=0.4536 kg 9.81 m/s2 = 4.45 N

PSI is derived unit

1 PSI

Pascals (SI unit)

1 Psi=1 lbf(1 in)-2 =4.4482N(0.0254m)-2=6895 Pa

Boiling point of water is 1000C Degree of Fahrenheit

=1001.8 +32 =212 F

Enthalpy of evaporation of water

2400 kJkg-1=2.4106 J kg-1

BTU (British Thermal Units)

=2.4106(1/1054) BTU((1/0.4536) lb)-1=1033 BTUlb-1

332

3

34401

)10(

10401.4401.4

m

kg

m

kg

cm

g

CH1 Examples-conversion

3401.4

cm

g

Please remember at least density of air (1.2), atmospheric pressure (1 Bar) and enthalpy of evaporation of water (2.4 MJ/kg)

Page 14: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 Examples-unit consistency

pdvduTds

KKkg

J

kg

J 32

Pam

J

m

N

kg

m3

vT T

p

v

s)( )(

Km

J

kg

m

Kkg

J

33

. Km

J

K

Pa3

RT v~p

3m

JPa K

Kmol

J

mol

m3

You do not know (probably) meaning of the following equations. But you can check their corectness by checking units (dimensions of any term must be the same)

It is highly recommended to check in this way any equation or correlation used in your calculations. This is the most effective techniques of errors localisation.

For interested reader: the first equation is the first law of thermodynamic in terms of entropy, the second is Maxwell equation and the last one is state equation of ideal gas. These equations will be discussed in more details later in this course.

Page 15: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 Avogadro’s number Chemistry describes matter at the molecular level. Because amount of atoms/molecules in analyzed samples is extremely large, it is useful to use a new unit for counting tiny elements (atoms, electrons, molecules,…)

mole = 6.02 x 1023 (Avogadro's number)

Avogadro's number is the number of atoms in 12 grams of pure carbon 12C (the upper index 12 identifies the prevailing isotope of carbon).

Statement that in a reactor are 2 moles of O2 means that there are 12.1023 molecules of oxygen (or 4 moles of atoms O).

There are 6.1023 of atoms in 1.008 grams of pure hydrogen. Using this we can conclude, that the mass of one atom of 12C is approximately 12 times greater than the mass of one atom of hydrogen. For other

elements the relative masses are presented in the Periodic Table of the Elements.

Examples of atomic masses (H-hydrogen, C-carbon, N-nitrogen, O-oxygen, Na-sodium, S-sulphur, Cl-chlorine

MH=1.008 g/mole, MC=12.011 g/mole, MN=14.007 g/mole, MO=15.999 g/mole, MNa=22.990 g/mole, MS=32.066 g/mole, MCl=35.453 g/mole.

This value is little bit greater than 12. The reason is that the value 12.011 corresponds to the mixture of carbon isotopes encountered in nature (atomic mass 12 holds only for the pure carbon 12)

Page 16: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 Atomic mass - example

Let us demonstrate, how the atomic mass of titanium (Ti) can be evaluated, given:

• Measured density of solid titanium cube =4.4 g/cm3

• Size of cell (edge in the crystal lattice) measured by X-ray technique L=330.6 pm

Solution:

Titanium crystal lattice is of the type Body Centered Lattice (BCC) looking like this

L 1 cm

How many atoms are in one cell?

Answer nc=2 (see Figure, not 9, think about it)

How many atoms are in cube having side 1cm?

Answer N=nc/L3/106 (106 is conversion 1m =100cm)

How many moles of atoms are in the cube?

Answer n=N/6.02.1023

Atomic mass of titanium

Answer MTi=/n [g/mol]

Final formula (and even than use a pocket calculator)

g/mol 86.472

)106.330(4.41002.61002.6 31229329

cTi n

LM

periodic table Ti 47.87

atomic mass

Page 17: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 ISOTOPES – atomic structure

Electron2H

Neutron

Proton

Electron3H

Neutron

Proton

Electron1H

Proton

There exist different isotopes of almost any element, characterized by the same number of protons (positively charged particles in nucleus), the same number number of negatively charged electrons (at orbits), but different number of neutral nucleus particles – neutrons. Neutron has approximately the same mass as proton (and mass of electrons is almost negligible).

Example is hydrogen Deuterium Tritium

A - Mass number (protons+neutrons)

Z - Atomic number (protons=electrons) 6

12C

Page 18: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 Historical remark - atomDalton – law of multiple proportions

Thomson – discovery of electrons 1897 (plum pudding model)

Planck – quantum mechanics 1900

Einstein – photoelectric effect 1905

Rutheford – mass concentrated in nucleus 1909 (planet model)

Bohr – discrete orbitals, distance of electrons proportional to energy 1913

Rutheford – nuclear particles 1918

Schrodinger - equation for wave function 1926

Murray Gell-Mann, Zweig – quarks 1964

Page 19: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 Historical remark - nucleusDiscovery of nucleus is contribution of Rutheford, who interpreted experiments carried out by Geiger. Geiger bombarded a target (gold Au – sheet) by -particles. Almost all particles came through without any changes of motion, but some were bounced back. Rutheford said: “Ridiculous, it is like a 15” shell bounced from a soft tissue”. It was a nucleus, tiny, but with a big concentrated mass, having capacity to bounce back the incoming -particle of a comparable mass.

detectors

source

Page 20: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 201 3

CH1 summary – atomic structure

Molecules of compounds consist of atoms, which have a nucleus (protons+neutrons) and an electron shell.

Atomic number Z is the number of protons (=number of electrons).

Atomic mass is the mass of protons and neutrons in the nucleus (mass of 1 proton = mass of 1 neutron = 1 amu).

Isotopes are elements with the same atomic number but different atomic mass (a different number of neutrons).


Recommended