+ All Categories
Home > Documents > Rules and methods for dimensioning embarked materials for...

Rules and methods for dimensioning embarked materials for...

Date post: 06-Apr-2018
Category:
Upload: nguyenhanh
View: 217 times
Download: 1 times
Share this document with a friend
24
Rules and methods for dimensioning surface ship embarked materials subjected to underwater explosions. Prof. Hervé Le Sourne & Mauricio García N. 2016 1 Department of acoustics and vibrations STX France
Transcript

Rules and methods for dimensioning surface ship embarked materials subjected to underwater explosions.

Prof. Hervé Le Sourne & Mauricio García N. 2016 1

Department of acoustics and vibrations STX France

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 2

Main parameters:

𝑆𝐹 =𝑊

𝐷 Shock factor:

Bubble pulsation effect:

noncontact underwater explosion

W : Weight of the charge

D : Stand off distance

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 3

1. Objectives

1. - Key points identification for surface ships submitted to an UNDEX.

2. - Shock response rules for embarked materials.

3. - Simulation of a simplified structure submitted to an UNDEX.

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 4

2. Rules review

1. DDAM is the most referenced procedure for embarked materials.

2. BV/043 German rules.

3. French rules.

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 5

3. Taylor plate theory

𝑃𝑖𝜌𝑐

= 𝑃𝑟𝜌𝑐

+ 𝑣

Incident velocity

Plate velocity

Reflected velocity

𝑃𝑟 = 𝑃𝑖 − 𝜌𝑐𝑣

𝑃𝑡 = 2𝑃𝑖 − 𝜌𝑐𝑣 𝑣 =2𝑃𝑜𝜌𝑐

1

𝑍 − 1𝑒−

𝑡𝑍𝜃 − 𝑒

−𝑡𝜃

Considering that the surface is fixed

𝑣𝑖 = 𝑣𝑟 Incident velocity Reflected velocity

Supposing

First term

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 6

4. Impulse velocity approximation:

Pressure balance :

𝛽𝑖 =

𝜌𝑐𝜃

𝑚 sin 𝛼𝑖=

𝛽

sin 𝛼𝑖

𝑚𝑑𝑣𝑖𝑑𝑡

= 2𝑝𝐼𝑖 𝑡 −𝜌𝑐𝑣𝑖(𝑡)

sin 𝛼𝑖 2𝑝𝐼𝑖 𝑡 = 2𝑝0 sin 𝛼𝑖 𝑒

−(𝑡−𝑡𝑜)/𝜃

𝑣𝑖𝑚 =2 sin2 𝛼𝑖 𝑝𝑚

𝜌𝑐 𝛽𝑖

1 ( 1−sin 𝛼𝑖)

Spherical wave approximation (SWA).

(Barras, 2007).

where:

where:

Impulse velocity:

𝑥

𝑦 𝑧 LS-DYNA/USA

Initial impulse LS-DYNA

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 7

4. Impulse velocity approximation:

Along the y axis: 𝑢𝑥 = 0 𝑟𝑧 = 𝑟𝑦 = 0

Boundary conditions

Along the x axis: 𝑢𝑦 = 0 𝑟𝑧 = 𝑟𝑥 = 0

Full clamped conditions at the border

Finite element model

Materials: - High strength steel - Mild steel Objective: verify initial speed approach

(Ramajeyathilagam, K.; Vendhan, C.P.; Bhujanga Rao, V., 2000)

Simple plate analysis

0

0,02

0,04

0,06

0,08

0,1

0,12

0 0,0005 0,001

Dis

pla

cem

en

t (m

)

Time (s)

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 8

4. Impulse velocity approximation:

Initial speed results Data

Cowper Symonds material model:

Pressure based (no strain rate)

Initial speed (no strain rate)

Pressure based (strain rate)

Initial speed (strain rate)

Experimental Displacement (m)

Pressure based Displacement (m)

Shock factor

0,072 0,062 0,794

Strain rate must be considered

Strain rate effect

The initial velocity approximation underestimates the results.

𝑊

𝑅

𝛼𝑖

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 9

5. Pressure based approximation: Time history pressure for a single shell element.

𝑃𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 2𝑃0 sin 𝛼𝑖 𝑒

−(𝑡)/𝜃 −𝜌𝑐

2 sin 𝛼𝑖 𝑃𝑜𝑚

𝜃1 − 𝛽𝑖

𝑒−𝛽𝑖𝑡/𝜃 − 𝑒−𝑡/𝜃

sin 𝛼𝑖

Fluid structure interaction First term

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 10

Shock Factor 0,794 High strength steel

5. Pressure based approximation:

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,0000 0,0005 0,0010

Dis

pla

cme

nt

(m)

Time (s)

Pressure input first term

0

0,02

0,04

0,06

0,08

0,1

0,12

0,0000 0,0005 0,0010

Dis

pla

cem

en

t (m

)

Time (s)

Shock Factor 0,849 Mild Steel

Experimental

Pressure input (Reference)

Initial speed

Pressure input (Reference)

Experimental

Initial speed

pressure SWA (First term)

pressure SWA (First term)

Final deformation (slightly) found above the experimental results.

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 11

5. Pressure based approximation: SWA full equation.

0

0,02

0,04

0,06

0,08

0,1

0,0000 0,0005 0,0010

Dis

pla

cem

en

t (m

)

Time (s)

Shock Factor 0,849 Mild Steel

0

0,02

0,04

0,06

0,08

0,1

0,0000 0,0005 0,0010

Dis

pla

cem

en

t (m

)

Time (s)

Experimental

Pressure input (Reference)

Initial speed

Pressure SWA

Experimental

Initial speed

Pressure input (Reference) Pressure SWA

Results similar to the reference.

Shock Factor 0,794 High strength steel

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 12

Taken from: https://www.geogebra.org/m/26707

• ANSYS does not have explicit solution option (LS-DYNA only)

Full transient simulation.

Yiel

d s

tres

s

Strain rate

Cowper Symonds Perzyna model

5. Pressure based approximation:

Same equation.

1/p = m and 𝛾 = D

Implicit solution Explicit solution

ANSYS & LS-DYNA material model.

D = 40 & m = 5 for steel.

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 13

5. Pressure based approximation: Results validation using ANSYS.

Shock Factor 0,794 High strength steel Shock Factor 0,849 Mild steel

0

0,02

0,04

0,06

0,08

0,1

0,12

0,0000 0,0005 0,0010

Dis

pla

cem

en

t (m

)

Time (s)

0

0,02

0,04

0,06

0,08

0,1

0,12

0,0000 0,0005 0,0010Dis

pla

cem

en

t (m

)

Time (s)

Experimental

Experimental

Pressure input (Reference)

Pressure input (Reference)

Initial speed Initial speed

Pressure (ANSYS)

Pressure (ANSYS)

Results above the ones obtained using LS-DYNA.

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 14

4 loading approaches tested

• Initial impulse

• Initial impulse + added mass

• Pressure only

• Pressure + FSI

Slightly overestimates but conservative!

Oscillates near experimental results.

Underestimates the damage

Largely underestimates the damage

4 Different loading approaches 60 calculations using LS-DYNA or ANSYS

5. Pressure based approximation: Results summary

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 15

6. Stiffened plate : ANSYS compared to LS-DYNA

Finite element model

Boundary Conditions

Along the y axis: 𝑢𝑥 = 0 𝑟𝑧 = 𝑟𝑦 = 0

Along the x axis: 𝑢𝑦 = 0 𝑟𝑧 = 𝑟𝑥 = 0

Full clamped conditions at the border

𝑥

𝑦

𝑧

Plate thickness: 12 mm

Quench

Steel Mild steel

Young Modulus (MPa)

400 250

Tangent Modulus (MPa)

631 350

Poisson ratio 0,3 0,3

Material Properties

¼ of the model

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 16

0,00

0,10

0,20

0,30

0,40

0,50

0,000 0,005Dis

pla

cem

en

t (m

)

Time (s)

0,00

0,10

0,20

0,30

0,40

0,50

0,000 0,005

Dis

pla

cem

en

t (m

)

Time (s)

𝐸𝑓 = 0.056 + 0.54 𝑡

𝑙𝑒 Shock factor increased until rupture

6. Stiffened plate : ANSYS compared to LS-DYNA

Mild steel SF: 0,6 Quench steel SF: 0,8

Results obtained by the two software are similar.

ANSYS

LS-DYNA LS-DYNA

ANSYS

Erosive law.

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 17

LS-DYNA results ANSYS results SF LS-DYNA ANSYS ERROR %

0,44 0,25 0,25 2,89

0,55 0,33 0,34 5,35

0,6 0,36 0,38 6,16

Mild Steel

Quench Steel

SF LS-DYNA ANSYS ERROR %

0,66 2,94 3,04 3,40

0,77 0,35 0,36 4,82

0,833 0,36 0,40 9,86

6. Stiffened plate : ANSYS compared to LS-DYNA

Similar pattern on the distributions of plastic strains

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 18

7. Ship full section: ANSYS compared to LS-DYNA.

Same procedure applied to the stiffened plate.

Boundary Conditions

Restricted displacement at the

edges. Rotation is allowed.

Plate thickness: 10 mm

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 19

7. Ship full section: ANSYS compared to LS-DYNA.

Scantling dimensions First load step

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 20

7. Ship full section: ANSYS compared to LS-DYNA.

Points being measured

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 21

7. Ship full section: ANSYS compared to LS-DYNA.

Exact modeling: number of elements – stiffeners – load profile.

0,000,050,100,150,200,250,300,35

0,000 0,020

Dis

pla

cem

en

t (m

)

Time (s)

MS-Corner scantling SF-0,378

0,000,050,100,150,200,250,300,35

0,000 0,020

Dis

pla

cem

en

t (m

)

Time (s)

MS-Small scantling SF-0,378

0,000,050,100,150,200,250,300,35

0,000 0,010 0,020

Dis

pla

cem

en

t (m

)

Time (s)

MS-Large scantling SF-0,378

LS-DYNA

ANSYS

LS-DYNA

ANSYS

LS-DYNA

ANSYS

Slightly overshoot possibly due to the element formulation.

Maximum: Mild Steel SF: 0,378. Quench Steel SF: 0,489

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 22

7. Ship full section: ANSYS compared to LS-DYNA.

Plastic strain comparison using Mild Steel S.F.:0,33.

ANSYS results LS-DYNA results

Plastic strain distribution present the same pattern.

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 23

• The initial speed approach underestimates the experimental results.

• The results obtained by the pressure, neglecting the second term, overestimate the level of deformation.

• LS-DYNA and ANSYS end up having approximately similar results. Considering the rupture strain of the plate.

• Discrepancies occur between LS-DYNA and ANSYS. Those discrepancies are probably due to the solvers themselves and to the formulation of the shell elements used.

8. Conclusions

Rules and methods for dimensioning embarked materials for surface ships when subjected to UNDEX.

Prof. Hervé Le Sourne & Mauricio García N. 2016 24

MANY THANKS: Special thanks to: • Supervisor: Hervé Le Sourne. • Reviewer: Phillippe Rigo. • Reviewer: Lionel Gentaz.

• Sylvain Branchereau. • Marc Yu. • Clement Lucas.

But also to: • Department of Acoustics and

Vibrations @ STXFrance. • All of the professors and students

@ ICAM.

• z


Recommended