+ All Categories
Home > Documents > Rumus Caesar.pdf

Rumus Caesar.pdf

Date post: 03-Apr-2018
Category:
Upload: rizairawan09
View: 258 times
Download: 0 times
Share this document with a friend

of 47

Transcript
  • 7/28/2019 Rumus Caesar.pdf

    1/47

    Quick

    ReferenceGuide

    CAESAR II

    V E R S I O N 4.20

    ( L A S T R E V I S E D 1/2000)

  • 7/28/2019 Rumus Caesar.pdf

    2/47

    CAESAR II Quick Reference Guide - 1/2000

    CAESAR II Quick Reference Guide (Version 4.20)

    The CAESAR II Quick Reference Guide is intended to aid users in quickly identifying

    needed information and to resolve common questions and problems. This Reference

    Guide is distributed with each copy of the software and users are urged to copy it (the

    Reference Guide) as necessary.

    Comments and suggestions concerning the CAESAR II program, the Users Guide, or

    the Quick Reference Guide are always welcome. Users with problems, questions, or

    suggestions can contact the COADE Development/Support staff.

    CAESAR II

    CAESAR II is an advanced PC based tool for the engineer who designs or analyzes

    piping systems. CAESAR II uses input spreadsheets, on-line help, graphics, and

    extensive error detection procedures to facilitate timely operation and solution.

    CAESAR II is capable of analyzing large piping models, structural steel models, or

    combined models, both statically and dynamically. ASME, B31, WRC, and rotating

    equipment reports combine to provide the analyst with a complete description of the

    piping systems behavior under the applied loading conditions. Additional technical

    capabilities such as out-of-core solvers, force spectrum analysis (for water hammer and

    relief valve solutions), time history, and large rotation rod hangers provide the pipe stress

    engineer with the most advanced computer based piping program available today.

    The CAESAR II program is continuously enhanced to incorporate new technical

    abilities, to provide additional functionality, and to modify existing computation

    procedures as the piping codes are updated. A complete list of the most recent changes

    to the CAESAR II program can be found in the later section of Chapter 1 of the Users

    Guide. Users desiring software sales or seminar information are urged to contact the

    COADE Sales staff at:

    Phone: 281-890-4566 E-mail: [email protected]: 281-890-3301 Web: www.coade.com

  • 7/28/2019 Rumus Caesar.pdf

    3/47

    CAESAR II Quick Reference Guide - 1/2000

    CAESAR II / Pipe Stress Seminars

    COADE offers seminars periodically to augment the Engineers knowledge ofCAESAR II

    and Pipe Stress Analysis. The general seminar is held in the COADE Houston office and

    covers three days of statics and two days of dynamics. This seminar emphasizes thepiping codes, static analysis, dynamic analysis, and problem solving.

    Custom seminars held at client locations are also available. For additional seminar

    details, please contact COADE and ask for seminar information.

    CAESAR II Quick Reference Guide

    Table of Contents

    System Requirements ................................................................. 1

    Troubleshooting .......................................................................... 1

    Overview of CAESAR II Interfaces ........................................... 3

    List of CAESAR II Piping Codes ............................................... 3

    Restraints .................................................................................... 4

    List of Setup File Directives ....................................................... 4

    List of Materials ......................................................................... 7

    Intersection Types in CAESAR II .............................................. 8

    Code Stresses .............................................................................. 9

    Node Locations on Bends ........................................................ 16

    CAESAR II Combined Index ................................................... 18

    CAESAR II Quality Assurance Manual ................................... 43

    Mechanical Engineering News ................................................. 43

    Additional COADE Software Programs ................................... 43

  • 7/28/2019 Rumus Caesar.pdf

    4/47

    CAESAR II Quick Reference Guide - 1/2000

    System Requirements

    Pentium 200 or better CPU

    Windows 95,98 or Windows NT 4.00

    32 Mbyte RAM

    80 Mbyte Hard Disk Space FreeVGA Graphics Board & Monitor 800x600

    Troubleshooting

    The installation aborts with an error stating: An error occurred during the move

    data process: 623.

    This is caused by attempting to install the software when a previous copy is currentlyrunning.

    This error occurs because InstallShield could not rename an intermediate file during

    the file transfer process. This error can be caused by running the target application

    during the installation, as well as some virus-checking programs. When this error

    occurs, shut down all running applications and restart the installation process.

    The installation aborts with an error stating: An error occurred during the move

    data process: 115.

    A problem has been encountered on Novell networks in that they may not work with

    long file names. In builds ofCAESAR II Version 4.00 up through and including

    980122, the file C2PIPENET.EXE is longer than 8.3 characters, and causes the

    installation to abort.

    This error is caused when the installation can not write a file to the target hard disk. In

    addition to the Novell problem noted above, a lack of sufficient access rights will also

    cause this error. On some networks, other workstations using the software have caused

    this error.

    Any build after March 1, 1998 will report the file which can not be installed, prior to

    the termination of the installation process.

    The software will not startup properly and indicates an ESL (External Software

    Lock) problem.

    Check that the necessary ESL drivers have been loaded correctly. Refer to

    ..\caesar\assidrv or ..\caesar\ssidrv for documentation on the drivers. Check the filepatch.ver and insure the correct version (full run, limited run, dealer) has been

    installed, and matches your ESL type.

    To check that the drivers have been loaded properly, go to ..\caesar\assidrv (for red or

    white) ESLs and run HINSTALL -info. For green ESLs, go to ..\caesar\ssidrv and

    run CHECKVDD.

    Q-1

  • 7/28/2019 Rumus Caesar.pdf

    5/47

    CAESAR II Quick Reference Guide - 1/2000

    The Main Menu starts up but attempting to enter the piping input immediately fails.

    If this is an NT system, check the program directory for the files OPENGL32.DLL and

    GLU32.DLL. These files should not exist in the CAESAR II program directory, as

    they are Windows 95 components. Delete these two files. (Windows NT provides

    these DLLs as part of the operating system. The Windows 95 versions are not

    compatible with Windows NT.)

    Try a different input file. If the user takes a pre-3.24 input file and renames it from _a

    to ._a, then the logic to upgrade the file to the new format is bypassed. This will crash

    the input processor which uses the file name format to detect pre versus post 3.24

    versions.

    This problem can also be caused by the lack of a configuration file, CAESAR.CFG or

    changing the data directory to one containing an out-of-date configuration file.

    Only a portion of the window can be seen, some parts or controls are cut off.

    CAESAR II was designed to operate in 800x600 resolution with small fonts.

    Large fonts, or custom fonts may be too large for this (800x600) resolution. Either

    decrease the font size or increase the screen resolution.

    When attempting to use a module which uses tab controls, such as: MISC,

    C2SETUP, ROT, or PREPIP, some users may get an abort in a debug message

    box.

    This is probably caused by an out of date COMCTL32.DLL. Ask the user to check the

    date of COMCTL32.DLL, usually located in C:\WINDOWS\SYSTEM, but wherever

    the Windows directory is. The date on the one that works is 8/26/96 or newer, and is

    about 378K in size. The one that doesnt work has a date in 1995 and is about 178K.

    The only people with this problem are running Win95 OSR1 (OEM Service Release

    1). They should get the latest service packs from the Microsoft WEB site.

    Q-2

  • 7/28/2019 Rumus Caesar.pdf

    6/47

    CAESAR II Quick Reference Guide - 1/2000

    Overview of CAESAR II Interfaces

    There are several external interfaces in existence which transfer data between CAESAR II

    and other software packages. These interfaces can be accessed via the TOOLS option of

    the main menu.

    CADWorx (requies AutoCAD)

    AUTOCAD (DXF Output)

    COMPUTER VISION (mainframe)

    INTERGRAPH (mainframe)

    CADPIPE (requires AutoCAD)

    ISOMET (mainframe)

    PDMS (mainframe)

    PCF (Alias format)

    Users interested in these interfaces should contact COADE for further information. We

    anticipate other interfaces in the future. We will keep users updated via the newsletter

    or revised documentation.

    List of CAESAR II Piping Codes

    ANSI B31.1 (1998) November 30, 1999

    ANSI B31.3 (1999) April 15, 1999

    ANSI B31.4 (1998) April 30, 1999

    ANSI B31.4 Chapter IX (1998) April 30, 1999

    ANSI B31.5 (1992) August 31, 1994

    ANSI B31.8 (1995) December 7, 1995

    ANSI B31.8 Chapter VIII (1995) December 7, 1995

    ASME SECT III CLASS 2 (1998) July 1, 1999

    ASME SECT III CLASS 3 (1998) July 1, 1999

    U.S. NAVY 505 (1984)

    CANADIAN Z662 (9/95)BS 806 (1993, ISSUE 1, SEPTEMBER 1993)

    SWEDISH METHOD 1 (2ND EDITION STOCKHOLM 1979)

    SWEDISH METHOD 2 (2ND EDITION STOCKHOLM 1979)

    ANSI B31.1 (1967)

    STOOMWEZEN (1989)

    RCC-M C (1988)

    RCC-M D (1988)

    CODETI (1995)

    NORWEGIAN (1990, Rev 1)FBDR (1995)

    BS7159 (1989)

    UKOOA (1994)

    IGE/TD/12 (1990)

    DNV (1996)

    Q-3

  • 7/28/2019 Rumus Caesar.pdf

    7/47

    CAESAR II Quick Reference Guide - 1/2000

    Restraints

    Restraint Type Abbreviation

    1 - Anchor ........................................................................................... A

    2 - Translational Double Acting ............................................X, Y, or Z3 - Rotational Double Acting .........................................RX, RY, or RZ

    4 - Guide, Double Acting ................................................................ GUI

    5 - Double Acting Limit Stop ......................................................... LIM

    6 - Translational Double Acting Snubber ............XSNB,YSNB, ZSNB

    7 - Translational Directional ............................. +X, -X, +Y, -Y, +Z, -Z

    8 - Rotational Directional .................................... +RX, -RX, +RY, etc.

    9 - Directional Limit Stop .................................................. +LIM, -LIM

    10 - Large Rotation Rod ..................................... XROD, YROD, ZROD

    11 - Translational Double Acting Bilinear ............................ X2, Y2, Z212 - Rotational Double Acting Bilinear ......................... RX2, RY2, RZ2

    13 - Translational Directional Bilinear ..................... -X2, +X2, -Y2, etc.

    14 - Rotational Directional Bilinear ................ +RX2, -RX2, +RY2, etc.

    15 - Bottom Out Spring ......................................... XSPR, YSPR, ZSPR

    16 - Directional Snubber .........................+XSNB, -XSNB, +YSNB, etc.

    List of Setup File Directives

    The following list represents the possible directives which can be controlled by the user

    via the CAESAR II configuration file CAESAR.CFG. These directives can be changed

    by the user through the use of the CONFIGURE-SETUP program, accessed via MAIN

    MENU option #9. Directives are listed in groups corresponding to the configuration

    program's menu options.

    GEOMETRY DIRECTIVES

    CONNECT GEOMETRY THRU CNODES = YES 34

    MIN ALLOWED BEND ANGLE = .5000000E+01 36MAX ALLOWED BEND ANGLE = .9500000E+02 37

    BEND LENGTH ATTACHMENT PERCENT = .1000000E+01 38

    MIN ANGLE TO ADJACENT BEND PT = .5000000E+01 39

    LOOP CLOSURE TOLERANCE = .1000000E+01 42

    THERMAL BOWING HORZONTAL TOLERANCE = .1000000E-03 92

    AUTO NODE NUMBER INCREMENT= .1000000E+02 109

    COMPUTATION CONTROL

    USE PRESSURE STIFFENING = DEFAULT 65

    ALPHA TOLERANCE = .5000000E-01 33

    HANGER DEFAULT RESTRAINT STIFFNESS = .1000000E+13 49

    DECOMPOSITION SINGULARITY TOLERANCE = .1000000E+11 50

    BEND AXIAL SHAPE = YES 51

    FRICTION STIFFNESS = .1000000E+07 45

    FRICTION NORMAL FORCE VARIATION = .1500000E+00 47

    FRICTION ANGLE VARIATION = .1500000E+02 48

    FRICTION SLIDE MULTIPLIER = .1000000E+01 46

    ROD TOLERANCE = .1000000E+01 59

    Q-4

  • 7/28/2019 Rumus Caesar.pdf

    8/47

    CAESAR II Quick Reference Guide - 1/2000

    COMPUTATION CONTROL (Cont.)

    ROD INCREMENT = .2000000E+01 58

    INCORE NUMERICAL CHECK = NO 60

    DEFAULT TRANSLATIONAL RESTRAINT STIFFNESS= .1000000E+13 98

    DEFAULT ROTATIONAL RESTRAINT STIFFNESS= .1000000E+13 99

    IGNORE SPRING HANGER STIFFNESS = NO 100

    MISSING MASS ZPA = EXTRACTED 101MINIMUM WALL MILL TOLERANCE= .1200000E+02 107

    WRC-107 VERSION = MAR 79 1B1/2B1 119

    WRC-107 INTERPOLATION = LAST VALUE 120

    SIFS AND STRESSES

    REDUCED INTERSECTION = B31.1(POST1980) 32

    USE WRC329 NO 62

    NO REDUCED SIF FOR RFT AND WLT NO 53

    B31.1 REDUCED Z FIX = YES 54

    CLASS 1 BRANCH FLEXIBILITY NO 55

    ALL STRESS CASES CORRODED = NO 35

    ADD TORSION IN SL STRESS = DEFAULT 66ADD F/A IN STRESS = DEFAULT 67

    OCCASIONAL LOAD FACTOR = .0000000E+00 41

    DEFAULT CODE = B31.3 43

    B31.3 SUSTAINED CASE SIF FACTOR = .1000000E+01 40

    ALLOW USERS BEND SIF = NO 52

    USE SCHNEIDER NO 63

    YIELD CRITERION STRESS= MAX 3D SHEAR 108

    USE PD/4T NO 64

    BASE HOOP STRESS ON NO 57

    FRP PROPERTIES

    USE FRP SIF = YES 110

    USE FRP FLEXIBILITY = YES 111

    BS 7159 Pressure Stiffening= Design Strain 121

    FRP Property Data File= CAESAR.FRP 122

    Axial Modulus of Elasticity = .3200000E+07 113

    Ratio Shear Mod : Axial Mod = .2500000E+00 114

    Axial Strain : Hoop Stress = .1527272E+00 115

    FRP Laminate Type = THREE 116

    FRP Alpha = .1200000E+02 117

    FRP Density = .6000000E-01 118

    PLOT COLORS

    PIPES LIGHTCYAN 1

    HIGHLIGHTS GREEN 2

    LABELS GREEN 3

    BACKGROUND BLACK 5

    AXES LIGHTRED 15

    HANGER/NOZZLES BROWN 16

    RIGID/BENDS LIGHTGREEN 17

    NODES YELLOW 18

    STRUCTURE LIGHTRED 31

    DISPLACEDSHAPE BROWN 30

    STRESS > LEVEL 5 RED 24

    STRESS > LEVEL 4 YELLOW 25STRESS > LEVEL 3 GREEN 26

    STRESS > LEVEL 2 LIGHTCYAN 27

    STRESS > LEVEL 1 BLUE 28

    Q-5

  • 7/28/2019 Rumus Caesar.pdf

    9/47

    CAESAR II Quick Reference Guide - 1/2000

    PLOT COLORS (Cont.)

    STRESS < LEVEL 1 DARK BLUE 29

    STRESS LEVEL 5 .3000000E+05 19

    STRESS LEVEL 4 .2500000E+05 20

    STRESS LEVEL 3 .2000000E+05 21

    STRESS LEVEL 2 .1500000E+05 22

    STRESS LEVEL 1 .1000000E+05 23

    DATA BASE DEFINITIONS

    STRCT DBASE= AISC89.BIN 70

    VALVE & FLANGE= CADWORX.VHD 90

    EXPANSION JT DBASE= PATHWAY.JHD 91

    PIPING SIZE SPECIFICATION ANSI88

    DEFAULT SPRING HANGER TABLE = 1 112

    SYSTEM DIRECTORY NAME SYSTEM 123

    UNITS FILE NAME= ENGLISH.FIL 124

    MISCELLANEOUS CONTROL

    OUTPUT REPORTS BY LOAD CASE YES 87

    DISPLACEMENT NODAL SORTING YES 89

    DYNAMIC INPUT EXAMPLE TEXT MAX 94

    TIME HIST ANIMATE YES 104

    OUTPUT TABLE OF CONTENTS ON 105

    INPUT FUNCTION KEYS DISPLAYED YES 106

    MEMORY ALLOCATED 6 NA

    USER ID " " NA

    ENABLE ODBC OUTPUT NO 125

    APPEND RE-RUNS TO EXISTING DATA NO 126

    ODBC DATAASE NAME 127

    Q-6

  • 7/28/2019 Rumus Caesar.pdf

    10/47

    CAESAR II Quick Reference Guide - 1/2000

    List of Materials

    The CAESAR II material table contains 17 different isotropic materials. Properties and

    allowed temperature ranges for each isotropic material are listed below: (see Chapter 5

    of the CAESAR II Technical Reference Guide)

    MATERIAL ELASTIC POISSONS PIPE TEMPERATURE

    NO. NAME MODULUSRATIO DENSITY RANGE

    ______________________ (psi) _______________ (lb./cu.in) __ (deg.F) __

    1 Low Carbon Steel 29.5 E6 0.292 0.28993 -325 1400

    2 High Carbon Steel 29.3 E6 0.289 0.28009 -325 1400

    3 Carbon Moly Steel 29.2 E6 0.289 0.28935 -325 1400

    4 Low Chrome Moly Stl 29.7 E6 0.289 0.28935 -325 1400

    5 Med Chrome Moly Stl 30.9 E6 0.289 0.28935 -325 1400

    6 Austenitic Stainless 28.3 E6 0.292 0.28930 -325 15007 Straight Chromium 29.2 E6 0.305 0.28010 -325 1400

    8 Type 310 Stainless 28.3 E6 0.305 0.28990 -325 1400

    9 Wrought Iron 29.5 E6 0.300 0.28070 -325 1000

    10 Grey Cast Iron 13.4 E6 0.211 0.25580 70 1000

    11 Monel 67%Ni/30%Cu 26.0 E6 0.315 0.31870 -325 1400

    12 K-Monel 26.0 E6 0.315 0.30610 -325 1400

    13 Copper-Nickel 22.0 E6 0.330 0.33850 -325 400

    14 Aluminum 10.2 E6 0.330 0.10130 -325 600

    15 Copper 99.8% Cu 16.0 E6 0.355 0.32290 70 40016 Commercia l B ra ss 17.0 E 6 0.331 0.30610 -325 120017 Lea ded Tin B ronze 1 14.0 E 6 0.330 0.31890 -325 1200

    In addition CAESAR II supports material types 18 or 19 for cut short and cut long cold

    spring elements.

    Material number 20 activates the CAESAR II orthotropic material model (i.e. Fiber-

    glass reinforced plastic pipe); default coefficient of expansion is

    12.0E-6in./in./F.

    Material 21 indicates user defined properties.

    Material numbers over 100 are from the Material Data base and include allowable stress

    and other piping code data.

    Q-7

  • 7/28/2019 Rumus Caesar.pdf

    11/47

    CAESAR II Quick Reference Guide - 1/2000

    Intersection Types in CAESAR II

    Q-8

    CAESAR II TYPE B31.3 TYPE NOTES SKETCH

    1 Reinforced Reinforced - U sed to low er S IFs

    - Not a f itting

    - Modified P ipe

    2 U nreinforced U nreinforced - Rout ine Int ersect ion

    - Not a f itting

    - Modified pipe

    - Usually the cheapest

    3 Welded Tee Welding Tee - U sua lly size-on-size

    - Governed by B16.9

    - Usua lly the lowest S IF

    - Usually Expensive

    4 Sw eepolet Welded-in

    contour

    - "S it-in" f itting

    - Forged fitt ing on a pipe

    5 Weldolet B ra nch Welded

    On

    - "Sit-on" fitting

    - Forged fitt ing on a pipe

    6 E xt ruded E xt ruded

    Welding Tee

    - Seldom used

    - Used for thick wall manifolds

    - Extr uded from st ra ight pipe

    Fabricated Tee

    Fabricated Tee

    Insert

    Fitting

  • 7/28/2019 Rumus Caesar.pdf

    12/47

    CAESAR II Quick Reference Guide - 1/2000Q-9

    Code Stresses

    Listed below are the code stress equations for the actual and allowable stresses used

    by CAESAR II. For the listed codes, the actual stress is defined by the left hand side

    of the equation and the allowable stress is defined by the right hand side. The

    CAESAR II load case label is also listed after the equation.

    Typically the load case recommendations made by CAESAR II are sufficient for code

    compliance. However, CAESAR II does not recommend occasional load cases.

    Occasional loads are unknown in origin and must be specified by the user.

    Longitudinal Pressure Stress - Slp

    Slp = PD0/4t

    ncode approximation

    Slp = PDi

    2/(D0

    2

    - D

    i

    2) code exact equation, CAESAR II default

    Operating Stress - unless otherwise specified

    S = Slp + Fax/A + Sb < NA (OPE)

    B31.1

    Sl = Slp + 0.75 i Ma / Z < Sh (SUS)

    i Mc / Z < f [ 1.25 (Sc+Sh) - Sl ] (EXP)

    Slp + 0.75 i Ma / Z + 0.75 i Mb / Z < k Sh (OCC)

    B31.3

    Sl = Slp + Fax/A + Sb < Sh (SUS)

    sqrt (Sb**2 + 4 St**2) < f [ 1.25 (Sc+Sh) - Sl ] (EXP)

    Fax/A + Sb + Slp < k Sh (OCC)

    Sb = [sqrt ( (iiM

    i)2 + (i

    0M

    0)2 )]/Z

    ASME SECT III CLASS 2 & 3

    B1 * Pmax Do + B2 * Ma / Z < 1.5 Sh (SUS)

    2tn

    i Mc / Z < f (1.25 Sc + 0.25 Sh) + Sh - Sl(EXP)

    B1 * Slpmax + B2 * (Ma + Mb) / Z < 1.8 Sh and < 1.5 Sy. (OCC)

  • 7/28/2019 Rumus Caesar.pdf

    13/47

    CAESAR II Quick Reference Guide - 1/2000

    B31.1 (1967) and Navy Section 505

    Sl = Slp + sqrt (Sb**2 + 4 St**2) < Sh (SUS)

    sqrt ( Sb**2 + 4 St**2 ) < f (1.25Sc + 0.25Sh + (Sh-Sl))(EXP)

    Slp + sqrt (Sb**2 + 4 St**2) < k Sh (OCC)

    B31.4

    If FAC = 1.0 (fully restrained pipe)

    FAC | E dT - SHOOP

    | + SHOOP

    < 0.9 (Syield) (OPE)

    If FAC = 0.001 (buried, but soil restraints modeled)

    Fax/A - SHOOP + Sb + SHOOP < 0.9 (Syield) (OPE)(If Slp + Fax/A is compressive)

    If FAC = 0.0 (fully above ground)

    Slp + Fax/A + Sb + SHOOP

    < 0.9 (Syield) (OPE)

    (If Slp + Fax/A is compressive)

    (Slp + Sb + Fax/A) (1.0 - FAC) < (0.75) (0.72) (Syield) (SUS)

    sqrt ( Sb**2 + 4 St**2 ) < 0.72 (Syield) (EXP)

    (Slp + Sb + Fax/A) (1.0 - FAC) < 0.8 (Syield) (OCC)

    B31.4 Chapter IX

    Hoop Stress: Sh

  • 7/28/2019 Rumus Caesar.pdf

    14/47

    CAESAR II Quick Reference Guide - 1/2000Q-11

    B31.5

    Sl = Slp + Fax/A + Sb < Sh (SUS)

    sqrt (Sb**2 + 4 St**2) < f [ 1.25 (Sc+Sh) - Sl ] (EXP)

    Fax/A + Sb + Slp < k Sh (OCC)

    Sb = [sqrt ( (iiM

    i)2 + (i

    0M

    0)2 )]/Z

    B31.8

    Se + Sl < Syield (OPE)

    Sl = Slp + Sb < .75 (Syield) (SUS)

    Se = sqrt ( Sb**2 + 4 St**2) < 0.72 (Syield) (EXP)

    Se + Sl < .75 (Syield) * k (OCC)

    B31.8 Chapter VIII

    Hoop Stress: Sh

  • 7/28/2019 Rumus Caesar.pdf

    15/47

    CAESAR II Quick Reference Guide - 1/2000 Q-12

    Canadian Z662 (Continued)

    If FAC = 0.0 (Fully Above Ground)

    |Slp

    + Fax

    / A| + Sb

    + Sh

    < S * T (OPE)

    (If Slp

    + Fax

    / A is compressive)

    Sl= 0.5S

    h+ S

    b< S * F * L * T (SUS, OCC)

    SE

    = sqrt [Sb

    ** 2 + 4St** 2] < 0.72 S * T (EXP)

    RCC-M C & D

    Slp + 0.75i Ma/Z < Sh (SUS)

    iMc/Z < f (1.25 Sc + .25 Sh) + Sh - Sl (EXP)

    Slpmax + 0.75i (Ma + Mb)/Z < 1.2 Sh (OCC)

    Stoomwezen

    Slp + 0.75i Ma/Z < f (SUS)

    iMc/Z < fe (EXP)

    Slp + 0.75i (Ma + Mb)/Z < 1.2f (OCC)

    CODETI

    Sl = Slp + Fax/A + Sb < Sh (SUS)

    sqrt (Sb **2 + 4St **2) < f [1.25 (Sl + Sh)] - Sl (EXP)

    Slp + Fax/A + iMa/Z + iMb/Z < Ksh (OCC)

    Sb = [ Sqrt ((iiMi)

    2

    + (i0M0)

    2

    ] /Z

    Norwegian

    Sl = PDi2 + .75 i Ma < Sh (SUS)

    Eff(D0

    2-Di

    2) Z

    iMc/Z < Sh + Sr - Sl (EXP)

    PmaxDi2 + .75i (Ma + Mb) < 1.2 Sh (OCC)

    Eff(D0

    2-Di

    2) Z

    M = sqrt (Mx

    2 + My

    2 + Mz

    2)

    Sr = Minimum of 1.25 Sc + 0.25 Sh; FrR

    s-F

    2; or F

    r(1.25R

    1+ 0.25R

    2)

    (The latter applies to temperatures over 370c; 425c for Austenitic

    stainless steel)

  • 7/28/2019 Rumus Caesar.pdf

    16/47

    CAESAR II Quick Reference Guide - 1/2000

    Norwegian (Continued)

    Fr

    = Cyclic reduction factor

    Rs

    = Permissable extent of stress for 7000 cycles

    R1

    = Minimum of Sc and 0.267 Rm

    R2

    = Minimum of Sh and 0.367 Rm

    Rm

    = Ultimate tensile strength at room temperature

    FBDR

    Sl = Slp + 0.75 i Ma / Z < Sh (SUS)

    i Mc / Z < f [ 1.25 (Sc+Sh) - Sl ] (EXP)

    Slp + 0.75 i Ma / Z + 0.75 i Mb / Z < k Sh (OCC)

    BS 7159

    If Sx

    is tensile:

    ( )sqrt S 4Sx2 s2+ < Sh (OPE)and

    ( )sqrt S 4S2

    s

    2

    + < Sh*EH/EA (OPE)or, if S

    xis compressive:

    S Sx x < Sh*EH/E

    A(OPE)

    and

    Sx < 1.25Sh (OPE)

    ( )

    ( )

    ( ) ( )( )S

    P D

    t

    sqrt i M i M

    Zx

    mxi i xo o

    = ++

    4

    2 2

    ( )( )

    ( ) ( )( )P Dt

    sqrt i M i M

    Z

    F

    A

    mxi i xo o

    x

    4

    2 2

    +

    (If Fx/A > P (D

    m)/(4t), a nd it is compress ive)

    ( )S

    MP D

    t

    m

    =( )2

    (for straight pipes)

    ( ) ( ) ( )

    = ++

    MP D

    t

    sqrt i M i M

    Z

    mi i o o

    ( )2

    2 2

    (for bends)

    Q-13

  • 7/28/2019 Rumus Caesar.pdf

    17/47

    CAESAR II Quick Reference Guide - 1/2000

    BS7159 (Continued)

    ( ) ( ) ( )( )

    = ++

    MP D

    t

    sqrt i M i M

    Z

    mxi i xo o

    ( )2

    2 2

    (for tees) ,

    D and are always for the Run Pipe

    m

    t

    Eff = Ratio of Eto Ex

    UKOOA

    ab (f2/r) + PD

    m/ (4t) (f

    1f

    2LTHS) / 2.0

    Where:

    P = design pressure

    Dm

    = pipe mean diameter

    t = pipe wall thickness

    f1

    = factor of safety for 97.5% lower confidence limit, usually 0.85

    f2

    = system factory of safety, usually 0.67

    ab = axial bending stress due to mechanical loadsr = a(0:1) /a(2:1)a(0:1) = long term axial tensile strength in absence of pressure loada(2:1) = long term axial tensile strength in under only pressure loading

    LTHS = long term hydrostatic strength (hoop stress allowable)

    BS 806

    Straight Pipe

    < SAOPE

    fc

    = sqrt(F2 + 4fs

    2) < SASUS

    < SAEXP

    fs

    = Mt(d + 2t) / 4I

    F = max (f t, f

    L)

    ft

    = pd/2t + 0.5p

    fL

    = pd2/[4t(d + t)] + (d + 2t)[sqrt(mi

    2 + mo

    2)] / 2I

    Bends

    < SAOPE

    fc = sqrt (F2

    + 4 fs2

    ) < SASUS< S

    AEXP

    fs

    = Mt(d + 2t) /4I

    F = max (f t, f

    L)

    Q-14

  • 7/28/2019 Rumus Caesar.pdf

    18/47

    CAESAR II Quick Reference Guide - 1/2000

    BS806 (Continued)

    ft

    = r/I * sqrt[(miF

    Ti)2 + (m

    0F

    To)2]

    fs

    = r/I * sqrt[(miF

    Li)2 + (m

    0F

    Lo)2]

    Branch Junctions< S

    AOPE

    fcb

    = q * sqrt[fb

    2 + 4fsb

    2] < SASUS

    < SAEXP

    fb

    = (d + t)*p*m/(2t) + r/I*sqrt[(miF

    TL)2 + (m

    oF

    TO)2]

    Fsb

    = Mt (d + 2t) / 4I

    q = 1.0 except for operating cases

    = .5 or .44 bases on d2/d

    1ratio in operating cases

    m = geometric parameter

    EXP SA

    = min[H*Sproof

    ambient

    + H*Sproof

    design

    ),

    OPE SA

    = Savg rupture

    at design temperature

    SUS SA

    = min[.8*Sproof

    , Screep

    rupture

    ]

    Det Norske Veritas (DNV)

    Hoop Stress: Sh

  • 7/28/2019 Rumus Caesar.pdf

    19/47

    CAESAR II Quick Reference Guide - 1/2000

    Node Locations on Bends

    Bends are defined by the element entering the bend and the element leaving the bend. The

    actual bend curvature is always physically at the TOend of the element entering the bend.

    The element leaving a bend must appear immediately after the element defining (entering)the bend.

    The default bend radius is 1.5 times the pipe nominal OD.

    For stress and displacement output the TO node of the element entering the bend is

    located geometrically at the FAR point on the bend. The FAR point is at the weldline

    of the bend, and adjacent to the straight element leaving the bend.

    The NEAR point on the bend is at the weldline of the bend, and adjacent to the straight

    element entering the bend.

    The FROM point on the element is located at the NEAR point of the bend if the total

    length of the element as specified in the DX, DY and DZ fields is equal to: Radius * tan(

    Beta / 2 ) where Beta is the bend angle, and Radius is the bend radius of curvature to

    the bend centerline.

    Nodes defined in the ANGLE # and NODE # fields are placed at the given angle on the

    bend curvature. The angle starts with zero degrees at the NEAR point on the bend and

    goes to Beta degrees at the FAR point of the bend.

    Angles are always entered in degrees.

    By default, nodes on the bend curvature cannot be specified within five (5) degrees of one

    another or within five degrees of the nearest endpoint. This and other bend settings may

    be changed through the MAIN MENU, CONFIGURE-SETUP processor. (See pp Q5-6)

    When the FROM node on the element entering the bend is not at the bend NEAR point

    a node may be placed at the near point of the bend by entering an ANGLE # on the bend

    spreadsheet equal to 0.0 degrees. (See the following figure.)

    When defining a bend element for the first time in the pipe spreadsheet, nodes areautomatically placed at the near and mid point of the bend. The generated midpoint node

    number is one less than the TO node number on the element, and the generated near point

    node number is two less than the TO node number on the element. A near point should

    always be included in the model in tight, highly formed piping systems.

    The top-left figure below shows the points on the bend as they would be input. The top-

    right figure shows the actual geometric location of the points on the bend. The bottom-

    left figure shows the same geometry except that two nodes are defined on the bend

    curvature at angles of zero and forty-five degrees.

    Q-16

  • 7/28/2019 Rumus Caesar.pdf

    20/47

    CAESAR II Quick Reference Guide - 1/2000Q-17

  • 7/28/2019 Rumus Caesar.pdf

    21/47

    CAESAR II Quick Reference Guide - 1/2000

    CAESAR II Combined Index

    The following index is a Combined Index, consisting of the index entries from all three

    CAESAR II manuals. In thisCombined Index, entries preceded with aU are referencing

    the Users Guide, entries preceded with an A are referencing the Applications Guide,

    and entries preceded with a T are referencing the Technical Reference Manual.

    Numerics

    180 degree return (fitting-to-fitting 90 deg.

    bends)A2-6

    3-D graphicsU5-38

    3-D spaceT3-5

    A

    AbsU8-18Absolute

    Expansion loadT6-4

    MethodT5-72, T5-75

    Acceleration

    FactorT5-68

    VectorT5-49, T5-58

    Access protected dataT2-28

    Account numberT7-2

    AccountingT7-2

    File T7-7MenuT7-3

    Summary reportsT7-2

    SystemT7-2

    Accounting file structureT7-7

    Acoustic

    Flow problemsT5-51

    ResonancesT5-85

    ShockT5-88

    VibrationT5-4

    WavesA7-29

    Activate accounting tabT7-3

    Activate bourdon effectsT3-85

    Actual cold loadsU6-19

    Actual pressureT2-20

    AddT4-3

    Add f/a in stressesT2-11

    Add torsion in sl stressT2-11

    Added mass coefficientT6-33

    Adding snubbersT5-45

    AdvancedU8-27, U8-31

    Advanced parametersT5-82, U8-19Advanced parameters show screenU8-10

    Airy wave theoryT6-29

    Airy wave theory implementationT6-32

    AISC 1977 databaseT4-47

    AISC 1989 databaseT4-51

    AISC databaseU10-5

    AISC output reportsU12-47

    AISC unity checks

    Allow sideswayU12-42

    Allowable stress increase factorU12-41

    Bending coefficientU12-42

    Double angle spacingU12-46

    Fixity coefficientsU12-46

    Form factor qaU12-42Member typeU12-44

    Stress reduction factorsU12-41

    Structural codeU12-41

    All cases corrodedT2-10

    Allow short range springsT3-32, T3-81

    Allow sideswayU12-42

    Allow users sif at bendT2-9

    Allowable

    Load variationT3-31, T3-81

    StressT2-38, T3-54, T6-41, T6-78Stress tablesT3-59

    Allowable stress increase factorU12- 41

    Allowable stressesU5-15

    Allowed travel limitT3-32

    AlphaT4-6

    Alpha toleranceT2-4, T3-8, U5-5

    Alpha tolerance valueT6-7

    Alternating pressureT5-87

    Ambient temperatureT3-61, T3-62, T3- 87, U5-5

    Analysis

    TypeT5-49

    Analysis menuU4-6

    Analysis type (harmonic/spectrum/ modes/time-

    history)T5-49

    Analytical modelT6-67

    Analyzing the dynamics job

    EigensolverU8-33

    Mode shapesU8-33

    Performing a harmonic analysis

    Forcing frequencyU8-34

    Phase angleU8-34Performing a modal analysis

    EigensolverU8-33

    Frequency cutoffU8-33

    Modes of vibrationU8-33

    Natural frequenciesU8-33

    Sturm sequence checkU8-33

    Q-18

  • 7/28/2019 Rumus Caesar.pdf

    22/47

    CAESAR II Quick Reference Guide - 1/2000Q-19

    Performing a spectral analysis

    Mass participation factorsU8-35

    Selection of phase angles

    Harmonic resultsU8-34

    Harmonic stressU8-34

    AnchorT3-24

    AnchorsA3-2, T3-100Anchors with displacementsA3-3

    Anchors, flexibleA3-5

    AngleT3-12, T4-23, T4-25

    Angle fieldA2-2

    Angle to adjacent bendA2-3

    Angular

    Forcing frequencyT5-49

    FrequencyT5-57, T5-58

    StiffnessT3-74

    Angular gimbalA5-26

    Animation

    MotionU7-18

    Animation of dynamic resultsU9-14

    Dynamic animationU9-14

    AnimationU9-15

    Dynamics review optionsU9- 15

    ANSI

    A58.1T6-22, T6-25

    B16.5U12-23

    B36.10T3-6

    B36.10 Steel Pipe NumbersT3-6B36.19T3-6

    Nominal Pipe ODT3-6

    API 560 (fired heaters for general refinery

    services)U12-73

    API 605 rating tablesU12-23

    API 610 (centrifugal pumps)U12-57

    API 617 (centrifugal compressors)U12-64

    API 661 (air cooled heat exchangers)U12-66

    API-650

    delta tT3-45fluid heightT3-44

    nozzle heightT3-44

    nozzlesT3-43

    reinforcing 1 or 2T3-44

    specific gravityT3-44

    tank coefficient of thermal expansionT3-44

    tank diameterT3-44

    tank modulus of elasticityT3-45

    tank wall thicknessT3-44

    Applicable wave theory determinationT6-30Applied load vectorT5-49

    ArchiveA8-33, U6-13

    ArchivingT9-12

    Archiving and reinstallingU1-8

    AreaT4-8

    ASCE #7 wind loadsU6-9

    ASME

    Piping codesT6-94

    Sect. IIIT2-12, T6-98

    Sect. III Piping CodeT6-98

    Sect. VIII Division 2T6-41

    ASME III subsections NC and ND T6-100

    ASME Sect. IIIT2-12Australian 1990 databaseT4-59

    Auto node number incrementT2-13

    AutorunU2-22

    Auxiliary

    DataT3-93

    Element dataT8-67

    ProcessorsT1-2

    Auxiliary data areaU5-9

    Auxiliary data fields

    Auxiliary screensU5-9

    Expansion joint

    Effective diameter of bellowsU5-10

    Pressure thrust in expansion joints

    U5-10

    Auxiliary element dataT8-66

    Auxiliary fields

    boundary conditionsT3-23

    component informationT3-11

    imposed loadsT3-49

    piping code dataT3- 54

    Available commandsT3-65, U6-5Available expansion joint end- typesT3-76

    Available spaceT3-30, T3-76

    AxesT2-17

    Axial

    BendingT6-79

    Elastic modulusT2-21

    Expansion stressT6-101

    ModulusT3-9

    RestraintT3-61

    Shape functionT2-3StiffnessT6-8

    StressT6-74, T6-78, T6-101

    Axial deflectionA5-4

    Axial member forceU12-46

    Axial strain

    Hoop Stress (Ea/Eh*Vh/a)T2-21

    Axial tensile strengthT6-79, T6-114

    B

    B1T3-18B2T3-18

    B31.1T6-94, T6-109

    (post 1980)T2-11

    (pre 1980)T2-11

    reduced z fixT2-12

  • 7/28/2019 Rumus Caesar.pdf

    23/47

    CAESAR II Quick Reference Guide - 1/2000 Q-20

    B31.3T6-95

    sustained case SIF factorT2-8

    B31.4T6-96

    B31.4 Chapter IX T6-97

    B31.8T6-98

    B31.8 chapver VIII T6-99

    BackfillU11-11BackgroundT2-17

    Ball JointsA6-5

    BandwidthU6-12

    Bandwidth optimizerT3-88

    Base hoop stressT2-10

    Base patternT4-18

    Basic element dataT8-64, T8-66

    load casesU6-16

    loading caseT6-5

    material yield strengthT3-60

    operationU3-5

    Batch modeT7-8

    Batch runU6-2

    Batch stream processorT7-8

    BeamsT4-28

    FixT4-29

    FreeT4-29

    BellowsT3-78, T6-9

    Allowed torsionT3-75

    Bellows application notesT3-76

    Bellows IDA5-2Bellows, tiedA5-4

    BendT3-11

    Axial shapeT2-3

    CurvatureT2-14

    Length attachment percentT2-14

    MiterT3-12

    NodeT3-21

    RadiusT3-12, T6-85

    Bend

    angleA2-2, A2-3auxiliary inputA2-4

    dataU5-9

    definitionA2-2

    length attachment percentT2-14

    radiusA2-2

    stress intensification factorsU12-5

    Bending coefficientU12-42

    Bending stiffnessT6-8

    Bending stressU12-14

    BendsA2-1, T3-11Bends with trunnionsU12-7

    Bends, doubleA2-4

    Bends, single-flangedA2-4

    Bends, stiffenedA2-4

    Bends, teesT3-101

    Bilinear

    RestraintsA3-47

    SpringsU11-9

    SupportsA3-47, U11-9

    Block operationsT3-93

    Bolts and gasketU12-20

    Bonney forge sweepoletsT3-18, T6-90Bottom-outA4-15

    Bottom-out springA4-23

    Boundary conditionsU5-6, U9-12

    Bourdon pressureT3-85

    BoxhT4-8

    BoxwT4-8

    BracesT4-30

    FixT4-30

    FreeT4-30

    Branch

    Combined stressT6-75

    ConnectionsT3-17, T3-18

    FlexibilitiesT6-15

    Pipe spreadsheetT3-20

    Stress intensificationT3-20

    Torsional stressT6-75

    Branch error and coordinate promptsT3-85

    BreakT3-66

    Break commandT3-65

    BrowserU2-15

    BS 5500nozzlesT3-45

    radio buttonT3-45

    BS 7159T3-10, T6-113

    codeT3-18, T6-66, T6-74

    pressure stiffeningT2-20

    BS 806T6-104, U12-6

    17.3.1T6-104

    Building elementsT4-15

    Building spectrum / time history load casesT5-25

    Building static load casesU6-6Building the load casesU3-10

    Buoyancy forceT6-31

    Buried pipe

    displacementsU11-4

    exampleU11-13

    restraintsU11-3

    Butt weldT3-18, T3-64

    Butt-welded teesT3-18

    BYT4-14

    C

    Cad interfacesT8-4

    CadcentreT8-63

    Cadpipe example transferT8-8

    Cadpipe interfaceT8-5

    Cadpipe logT8-18

  • 7/28/2019 Rumus Caesar.pdf

    24/47

    CAESAR II Quick Reference Guide - 1/2000Q-21

    Cadpipe log file discussionT8-13

    Cadpipe/CAESAR II data transferT8- 17, T8-18

    CADWorx/PIPET3-68, U1-3

    databaseT2-23, T3-67

    directoryT3-68

    linkT8-4

    CAESAR IIfatal error processingT7- 10

    file guideT9-2

    gas thrust load calculationsA7-9

    initial capabilities (12/ 84)T10-2

    log fileT8-21

    neutral file interfaceT8- 63

    operational (job) data filesT9-12

    quick startU3-2

    underground pipe modelerU11-2

    version 1.1s features (2/ 86)T10-3

    version 2.0a features (10/ 86)T10-4

    version 2.1c features (6/ 87)T10-5

    version 2.2b features (9/ 88)T10-6

    version 3.0 features (4/ 90)T10-7

    version 3.1 features (11/ 90)T10-8

    version 3.15 features (9/ 91)T10-9

    version 3.16 features (12/ 91)T10-10

    version 3.17 features (3/ 92)T10-11

    version 3.18 features (9/ 92)T10-12

    version 3.19 features (3/ 93)T10-14

    version 3.20 features (10/ 93)T10-16version 3.21 changes & enhancements

    (7/94)T10-18

    version 3.22 changes & enhancements

    (4/95)T10-20

    version 3.23 changes (3/ 96)T10-22

    version 3.24 changes & enhancements

    (3/97)T10-23

    version 4.00 changes and enhancements

    (1/98)T10-26

    version 4.10 changes and enhancements(1/99)T10-27

    Caesar.cfgT2-2

    Calculate actual cold loadsT3-81

    Canadian

    Z184T6-100

    Z662T6-102

    CaseU9-16

    Center of gravity reportU3-10

    TutorialU3-10

    Change passwordT2-28Checking nozzle loadsA9-21

    Checking the installationU2-11

    Chopped strand matT2-20, T3-11, T6- 84,

    T6-113

    Circumferential

    (hoop) directionT3-57, T3-59

    StressT6-74

    WeldT3-18

    Weld joint efficiencyT3-56, T3-59

    Weld strength factorT3-59, T6-110

    Class 1

    Branch flexibilityT2-12, T6-13

    Flexibility calculationsT2-12Intersection flexibilitiesT6-13

    Closely spaced mitered bendA2-8

    Closely spaced mode criteriaT5-67

    CNodeA3-6, A3-22, A3-32, T3-24, T3-96,

    T5- 46

    Code

    ComplianceT3-55, T6-18, T6-90, U8-5

    Code stresses for dynamicsU9-7

    Code-calculatedT3-20

    Code-calculated stressT3-21

    Code-calculated valuesT3-19

    CodesT3-55

    Codes and databasesT10-12

    Code-specific notesT6-94

    CODETI T6-111

    Cold

    Allowable stressT3-55, T6-96

    Elastic modulusT2-37

    Load caseT6-88

    Load designT3-28

    Loads U6-19ModulusT3-62

    Spring A6-8, T3-8, T3-9, T6-4

    Spring elementT6-5

    SustainedT6-20

    Column reportsU7-5

    ColumnsT4-32

    FixT4-32

    FreeT4-32

    Combination casesA7-30

    Combination load casesU6-16, U6-17Combination methodU8-18

    Combined stressT6-74

    Combining independent piping systemsT3-89

    Combining static and dynamic resultsT5-33

    CommandsT1-2, U6-5

    Compressed formattingT9-7

    CompressionT6-70

    Computation controlT2-3

    Computational interfacesT8-81

    Computed mass flowrateT5-96Computed mass flowrate (vent gas)T5-92

    Computervision interfaceT8-20, T8-21

    Computervision/CAESAR II data transferT8-21

    Concentrated forcesU8-2

    Concentric reducer modelingA6-3

    Concentric reducersA6-2

  • 7/28/2019 Rumus Caesar.pdf

    25/47

    CAESAR II Quick Reference Guide - 1/2000 Q-22

    ConclusionsA8-42

    ConfigurationT1-2, U2-12

    ProgramT3-6

    SpreadsheetsT2-2

    Configure

    SetupT3-102

    Setup routineT3-70ButtonT2-2

    Configure-setupgeometryA2-3

    Connect geometry through CNodesA4-12, T2-13

    Connecting node displacementsA4-10

    Connecting nodesA4-10, A7-79, T2-13, T3-24,

    U10-19

    Conservative cutoffT5-66

    Constant effort hangerT6-12

    Constant effort supportT6-12

    Constant effort support designA4-5

    Constant force valueT6-16

    Construction design factorT6-101

    Construction elementU5-5

    Control

    KeysT3-98

    ParametersT1-2

    Control informationT8-64

    Control parametersU8-5, U8-10, U8-13, U8-19,

    U8-26, U8-31

    Controlling the dynamic solutionT5-3

    Convergence errorT2-4Convert input to new unitsT2-32

    Converting forces/moments in CAESAR II

    global coordinates to WRC 107 local

    axesA7-83

    ConvolutionsT3-76

    Corroded effective section modulusT6-91

    Corroded pipelines, B31G

    Calculating corroded areaU12-27

    Flaw LengthU12-27

    Corroded stress calculationsT6-96CorrosionT2-10, T3-7

    CoversT3-79

    Cpu time usedT7-2

    Crane databaseT2-23, T3-67

    Create a new units fileT2-30

    Create tableT5-24

    Creating a more accurate modelA9-12

    Creep rupture design stress valueT3- 60

    Creep rupture stressT3-56

    Critical dampingT5-68Cross section areaT4-8

    Crotch RT3-17

    Crotch radiusT3-17

    Cryogenic piping dynamics exampleA7-36

    Cumulative usageU9-8

    Current dataT6-37

    Current profileT6-31

    Curve boundaryT3-39

    Curved pipeT3-18

    Cut longT6-5

    Cut shortT3-8, T6-5

    Cutoff

    See non-conservative, conservative, andoptimalT5-66

    Cutoff frequencyU8-10

    Cyclic frequencyT5-57

    Cyclic reduction factorT3-59, T6-86, T6-96

    Cyclic reduction factor fieldsT3-62

    Cyclic stress rangeU8-2

    D

    Damped harmonicsT5-51

    DampingT5-50, T5-68, U8-13Damping matrixT5-49

    Damping ratioT5-58, T5-75

    Data

    DirectoryT3-102

    FilesT9-4, T9-12

    SetT9-5

    Data fieldsU5-3

    Data matrix interfaceT8-52, T8-79

    Data processing - statT4-45

    Database definitionsT2-22

    Decomposition singularity toleranceT2-5, T5-82

    Default

    codeT2-7

    restraint stiffnessT2-6

    rotational restraint stiffnessT2-6

    spring hanger tableT2-23

    translational restraint stiffnessT2-6

    Defining global restraints - fixT4-34

    Defining response spectra profilesT5- 38

    Defining time history profilesT5-17

    Definition of a load caseU6-15Degree-of-freedom oscillatorT5-77

    DeleteT3-94, T4-3

    Delta xT3-3

    Delta yT3-3

    Delta zT3-3

    DensT4-6

    DensitiesT3-10, U5-8

    DensityT2-36

    Depth-decay functionT6-36

    DesignCADWorx/PIPEU1-3

    Design strainT2-20, T6-74

    Design stressT3-57

    Det Norske Veritas (DNV) T6-116

    Diagnostics menuU4-9

    Diagnostics-error reviewT7-10

  • 7/28/2019 Rumus Caesar.pdf

    26/47

    CAESAR II Quick Reference Guide - 1/2000Q-23

    Diagonal damping matrixT5-58

    Diagonal stiffness matrixT5-58

    DiameterT3-6

    Diameter fieldT3-6

    Differences between the 1977 and 1989 AISC

    codesU12-49

    Diffraction effectsT6-36Din nominal pipe odT3-6

    Din pipe schedulesT3-7

    DirectionT5-11, T5-14, T5-25, T5-38, T5-43

    Directional combination methodT5-79

    Directory structureT9-2

    Discontiguous systemsA7-79

    Discussion of resultsA7-45

    Displaced shapeT2-17

    DisplacementT3-48, T5-14

    ComponentsT6-47

    LoadsT6-4

    RangeT6-18

    ReportsT2-25

    VectorT5-49, T5-58

    Displacement load caseU6-17

    Displacement reportA7-16, A7-30

    Displacement reports sorted by nodesT2-25

    Displacement stress rangeA8-27

    Displacement submenuU7-14

    Displacement vectorA3-4

    DisplacementsT3-48, U5-12, U7-6, U9-5Displaying element informationT3- 100

    Distance to opposite-side stiffener or headT3-41,

    T3-47

    Distance to stiffener or headT3-41, T3- 47

    Dlf curvesT5-88

    DLF spectrum generatorU8-23

    Double angle spacingU12-46

    Double sum method (DSRSS)T5-74

    Double-acting restraint (rotational)A3-18

    Double-acting restraintsA3-17Drag coefficientT6-39

    Driving frequenciesU8-5

    Driving frequencyT5-85, T5-87

    Dual gimbalA5-30

    Dummy leg, verticalA3-36

    DuplicateT3-94

    Duplicate dialog boxT3-94

    DxT3-3

    Dx,Dy,DzT4-14

    Dxf autocad interfaceT8-4Dxf fileT8-4

    DyT3-3

    Dynamic

    AnalysesT5-61

    Control parametersT1-2

    Displacement criteriaT5-85

    Earthquake loadingT3-87

    EarthquakesT6-22

    Equation of motionT5-49

    Example input textT2-26

    InputT1-2

    Input processorT5-47

    LoadT5-3Load factorT5-52, T5-54, T5-63, T8- 82,

    T8-87

    Load factor spectrumT5-56

    LoadsT5-51

    ProblemT5-51

    Dynamic amplitudeU8-2

    Dynamic analysis inputT5-2

    Dynamic analysis input processor

    Dynamic analysis typesU8-7

    Dynamic input commandsU8-8

    Initiating dynamic inputU8-6

    Prerequisites for dynamic inputU8- 6

    Dynamic animationU9-14

    Dynamic capabilities

    Harmonic analysisU8-2

    Concentrated forcesU8-2

    Cyclic stress rangeU8-2

    Dynamic amplitudeU8-2

    Equipment start-upU8-2

    Fluid pulsationU8-2

    Forcing frequenciesU8-2Phase angleU8-2

    Rotating equipmentU8-2

    VibrationU8-2

    Modal analysisU8-2

    Mode shapesU8-2

    Natural frequencyU8-2

    Spectrum analysisU8-2

    Impulse analysisU8-2

    Relief valveU8-2

    Response spectrum methodU8-2Response vs. frequency spectraU8-2

    Sustained stresses in spectrum

    analysisU8-2

    Time history analysisU8-3

    Dynamic capabilities in CAESAR IIU8-2

    Dynamic example input textT2-26

    Dynamic imbalanceU8-12

    Dynamic load case numberU8-18

    Dynamic load factorU8-20

    Dynamic load specificationU8-5Dynamic output processorU9-2

    Boundary conditionsU9-12

    Friction resistanceU9-12

    Nonlinear restraintsU9-12

    Forces/stresses, dynamicsU9-8

    Global forces, dynamicsU9-7

  • 7/28/2019 Rumus Caesar.pdf

    27/47

    CAESAR II Quick Reference Guide - 1/2000 Q-24

    Harmonic resultsU9-2

    General resultsU9-3

    Included mass dataU9-11

    % Force activeU9-11

    % Force addedU9-12

    % Mass includedU9-11

    Extracted modesU9-11Missing mass correctionU9- 11

    System responseU9-11

    Local forces, dynamicsU9-6

    Mass modelU9-12

    Lumped massesU9-12

    Mass participation factorsU9-9

    Modes mass normalizedU9-10

    Modes unity normalizedU9-10

    Natural frequenciesU9-10

    Report types, dynamics

    Displacements, dynamic outputU9-5

    Report optionsU9-5

    Restraints, dynamicsU9-5

    Maximum load on restraintsU9-5

    Maximum modal contributionU9-5

    Mode identification lineU9-5

    Spectrum resultsU9-3

    Static/dynamic combinationsU9-3

    Stresses, dynamicsU9-7

    Code stresses for dynamicsU9-7

    Stress intensification factorsU9-7Stress reportU9-7

    Time history resultsU9-3

    Dynamic responsesU8-3

    DzT3-3

    E

    E mod / axialT2-37

    Earthquake

    EffectsT5-3

    LoadT5-53Load magnitudesT6-22

    LoadsT3-87

    SpectrumT5-68, U8-14

    Static load casesT6-22

    Earthquake input spectrum

    Spectrum definitionsU8-14

    Response spectrum tableU8- 14

    Shock definitionU8-14

    Spectrum dataU8-14

    Spectrum nameU8-14Spectrum load cases

    EarthquakeU8-16

    El Centro earthquake dataU8- 17

    Independent support motionU8-17

    Spectrum load cases exampleU8-17

    Static/dynamic combinations

    ABSU8-18

    Combination methodU8-18

    Hanger sizing for dynamicsU8-18

    Occasional allowable stressU8-18

    Occasional dynamic stressesU8-18

    Occasional StressU8-18Piping codes for earthquakesU8-18

    SRSSU8-18

    Sustained static stressesU8- 18

    EarthquakesU8-24

    Eccentric reducer modelingA6-4

    Eccentric reducersA6-2

    Edit menuU5-24

    EffT3-58

    Eff, cf, zT2-36

    Effective

    diameterU5-10

    gasket modulusU12-23

    idT3-15

    massT5-78

    EfillT4-16

    EgenT4-18

    EigensolutionT5-57, U8-5

    EigensolverU8-33

    Eigensolver algorithmT5-54

    EigenvalueT5-57

    EJMA (expansion joint manufacturersassociation)U12-33

    El centroU8-15

    Elastic ModulusT2-38, T3-61, T3-62, T6-83

    Elbows - different wall thicknessA2- 13

    Elbows, pressure-balancedA5-32

    ElemT4-15

    Element

    DuplicationT3-94

    ListT3-93

    RotationT3-94Element lengthU11-4

    Element lengthsU5-3

    Element offsetsT3-5

    Elemental volume plotsT3-102

    ElevationT6-27

    Elevation table entryT6-25

    End connection informationT4-26

    End connectionsU10-6

    Ending frequencyT5-8

    Ending the input sessionA8-25Endurance limitT5-52

    Entering existing springs (no design)A4-7

    Entering the dynamic analysis input menuU8-6

    Entity informationT8-14

    Entry into the processorU9-2

    Entry into the static output processorU7-2

  • 7/28/2019 Rumus Caesar.pdf

    28/47

    CAESAR II Quick Reference Guide - 1/2000Q-25

    Equation

    for pipe under complete axial restraintT3-61

    for stressT3-61

    ModelingT6-104

    Equipment and component evaluationU12-2

    Bend SIFs

    TrunnionU12-6Bends with trunnions

    TrunnionsU12-7

    Equipment checksU12-2

    Flanges attached to bend ends

    BS-806U12-6

    FlexibilityU12-6

    OvalizationU12-6

    Intersection SIFsU12-3

    Pressure stiffening

    Flexibility factorU12-6

    Stress intensification factorU12-6

    Stress concentrations and intensifications

    Peak stress indexU12-7

    Stress concentration factorU12-7

    TrunnionU12-7

    Equipment start-upU8-2

    Equipment vibrationT5-4

    Equivalent stress failureT6-70

    Equivalent wind pressureT6-25

    Error checkingU6-2

    Commands, error checkingU6-5Errors, warnings, and notesU6-2

    Error checking the modelU3-9

    Error code definitionsT8-13, T8-14

    Error handling and analyzing the jobU8-32

    Errors

    Errors and warningsU3-9

    ESLU2-9, U8-32

    driversU2-17

    installation on a networkU2-20

    menuU4-10Estimated number of significant figures in

    eigenvaluesT5-82

    Evaluating pump discharge loadsA9-2

    Evaluating vessel stressesT6-41

    Examples

    Dynamic analysisA7-58

    Dynamic analysis of independent support

    earthquake excitationA7-36

    Dynamic analysis of water hammer loads

    A7-20Harmonic analysisA7-2

    Jacketed pipingA7-72

    Multiple load- case spring-hanger design

    T3- 34

    Natural frequency analysisA7-2

    Nema sm23A7-95

    Omega loop modelingA7-66

    Relief valve loadsA7-7

    Structural analysisA7-47

    WRC 107A7-82

    Example transferT8-29

    Excitation frequencyU8-11

    Exe files - requiredT9-3Executing static analysisU3-12, U6-11

    Existing file to start fromT2-31

    Existing springsA4-7

    ExitU2-19

    Exit pipe end flow conditionsT5-97

    Exp. coeff.T2-38

    Expansion

    AllowableT6-95, T6-101, T6-102

    Case allowable stressT3-62

    JointsT6-8

    Load caseT6-88

    StressT3-61, T3-62

    Stress allowableT3-60

    Stress rangeT6-18, T6-19

    StressesT6-18

    Expansion coefficientT2-38, T3-62

    Expansion jointU5-10

    ModelerT3-70, T3-74

    StylesT3-77

    Expansion joint design notesT3-75

    Expansion joint ratingA5-10, U12-33EJMAU12-33

    Maximum axial movementU12-33

    Maximum lateral deflectionU12-33

    Maximum rotationU12-33

    OutputU12-36

    Expansion jointsA5-1, A5-2, T2-23, T3- 15,

    T3-84, T6-8, U5-5, U5-28

    DatabaseT2-23

    ModelT3-70, T3-74

    Expansion joints and rigidsT3-100Expansion load casesU3-10, U6-18

    Expansion stressesA8-27

    Exponential formatT3-3

    Extended

    Operating conditionsT3-8, T3-9

    RangeT3-28

    External software lock

    ESL updatingU4-10

    Local ESLU2-20

    Network ESLU2-20Extra thermal caseT6-6

    ExtractedT2-3, T5-77

    Extracted mode shapesT6-46

    Extracted modesU9-11

  • 7/28/2019 Rumus Caesar.pdf

    29/47

    CAESAR II Quick Reference Guide - 1/2000 Q-26

    F

    F1, rrgT2-38

    F2, rmgT2-39

    F3, rmminT2-39

    FacT2-37, T3-61

    FactorT5-25, T5-33

    Fatal error dialogU6-3Fatigue

    Curve dataT3-64

    CycleT3-58

    EvaluationsT3-64

    FactorT3-58

    TestT6-90

    Fatigue (FAT)U6-7, U6-16

    analysis of piping systemsT6-51

    analysis using CAESAR IIT6-50

    basicsT6-50

    capabilities in dynamic analysisT6-61

    curveU5-15

    curve dataU5-16

    curve dialogU5-16

    failureU9-8

    load casesU9-8

    loadingsU7-11

    stress typesU6-7, U8-11, U8-17, U9-8

    Fatigue-type load casesU7-11

    FDBRT6-113

    Fetch lengthT6-28Fiberglass reinforced plasticT2-19, T3-9, T3-11,

    T6-90, T6-111

    Fiberglass reinforced plastic piping systems

    T3-85

    Fiber-matrix compositeT6-68

    File

    Clean up filesT9-2

    CompatibilityT6-10

    File menuU4-3, U5-22

    Files-accountingT7-7FilletT3-18

    Fillet weldT3-64

    Final CAESAR II dataT8-17

    Finite length expansion jointsT3-15

    Fitting

    Flexibility factorT2-19

    Outside radiusT3-17

    Fitting thicknessT3-13

    Fixity coefficients, AISCU12-46

    Flange databaseT3-66Flange leakage and stress calculationsT10-9,

    U12-18

    Flange leakageU12-18

    MethodologyU12-18

    Flange rating

    ANSI B16.5U12-23

    API 605U12-23

    Rating TablesU12-23

    Leak pressure ratio

    Gasket FactorU12-23

    Flange ratingU12-23

    Flanged endsT3-67

    Flanges attached to bend endsU12-6Flaw lengthU12-27

    FlexibilitiesT6-45

    Flexibility

    AnalysisT3-62

    FactorT2-19, T3-10, T3-12, T6-85

    MatrixT6-18

    OrientationT3-46

    Flexible anchorsA3-5

    Flexible anchors with predefined

    displacementsA3-6

    Flexible nozzle (WRC bulletin 297)A3-8

    Flexible nozzle w/ complete vessel modelA3-12

    Flexible nozzle w/ predefined displacements

    A3-11

    Flexible nozzlesU5-19

    Fluid

    Bulk modulusT5-96

    HammerT5-6

    Fluid densityT3-10, T5-96

    Fluid loadsT6-31

    Fluid pulsationU8-2FnT3-58

    ForceT5-11, T5-24, T5-38, T5-58

    Orthogonalization after convergenceT5-84

    SetsT5-59

    Spectrum analysisT5-56

    Force response spectrum definitionsT5-23

    Force set #T5-26, T5-39

    Force setsU8-5, U8-24, U8-28, U8-30

    Force spectrum analysisT5-56

    Force spectrum methodologyU8-20Force spectrum nameT5-23

    ForcesT3-49, T3-75, U5-13

    Forces and momentsT3-49

    Forces at elbowsT5-6

    Forces, moments, displacementsT3-101

    Forces/moments submenuU7-15

    Forces/stressesU9-8

    Force-time profilesU8-28, U8-29

    Forcing frequencyU8-2, U8-34

    Form factor QAU12-42Free

    Anchor/Restraint at nodeT3-35

    Free codeA4-13, T3-36

    Free end connections - freeT4-26

    French petrochemical codeT6-20

    FrequencyU8-13

  • 7/28/2019 Rumus Caesar.pdf

    30/47

    CAESAR II Quick Reference Guide - 1/2000Q-27

    Array spacesT5-84

    CutoffT5-63, T5-65, U8-33

    Friction

    Angle variationT2-5

    CoefficientT3-26

    Normal force variationT2-4

    Restraint stiffnessT2-4Slide multiplierT2-5

    StiffnessT2-4

    Stiffness factorT5-62

    Friction angle variationT2-5

    Friction effectsU8-4

    Friction normal force variationT2-4

    Friction resistanceU9-12

    Friction restraintsU8-4

    Friction slide multiplierT2-5

    Friction stiffnessT2-4, U8-4

    From node numberT3-3

    Frp

    Alpha (e-06)T2-21

    AnalysisT6-81

    DataT9-6

    Modulus of elasticityT2-21

    Pipe densityT2-21

    Property data fileT2-20

    Frp coefficient of thermal expansion

    (x 1,000,000 )T3-88

    Frp laminate typeT2-20, T3-88Frp modulus of elasticityT2-21

    Frp pipe densityT2-21

    Frp pipe propertiesT2-19

    Frp property data fileT2-20

    Frp ratio of shear modulus/emod axialT3-88

    Ftg roT3-17

    Full runU1-9

    G

    GT4-6GapT3-26

    Gasket factorU12-23

    Gas-specific heatsT5-90

    General informationA4-2

    General notesT8-12

    General notes for all codesT6-90

    General propertiesT4-3

    Generalized modal coordinatesT6-47

    Generate filesU6-5

    Generating CAESAR II inputA8-5Generation of the CAESAR II configuration

    fileT2-2

    Generic databaseT3-67

    Generic neutral filesT8-63

    GenincT4-19

    GeninctoT4-19

    GenlastT4-19

    Geometry directivesT2-13

    German 1991 databaseT4-57

    GimbalT3-78

    Gimbal jointA5-26

    Girth butt weldT6-90

    Glass reinforced plasticsT6-66Global

    EditingT3-93

    LevelT3-33

    Load vectorT6-16

    Stiffness matrixT6-11

    X directionT3-3

    Y directionT3-3

    Z directionT3-3

    Global element forcesU7-7

    Global forcesU9-7

    Global parametersU12-40

    Gram-schmidt orthogonalizationsT5-83

    Graphical outputU7-13

    Graphics updatesT10-8

    Gravitational acceleration constantT6-22

    Gravitational loadingT3-87

    Gravity loads - gloadsT4-39

    Grinnell springsT3-28

    Group modal combination methodT5-67

    Grouping methodT5-73

    Grp pipingT6-66Grp piping offshoreT6-74

    GuidesA3-20

    H

    HangerU6-19

    AlgorithmT6-11

    Auxiliary data fieldT3-23

    Between two pipesA4-12

    DataA4-3, T3-80

    Default restraint stiffnessT2-6DesignA4-2, A4-11, T6-10

    Design algorithmT6-11

    Design control dataU5-30

    Design control dialogT6-12

    Design control spreadsheetT3-32, T3-80

    Design with anchorsA4-13

    Design with support thermal movementA4-11

    Design with user-specified operating load

    A4-14

    Hot loadsT6-10Run control spreadsheetT3-28

    TravelT6-10

    Type restraintT3-25

    Hanger selection

    Actual cold loadsU6-19

    Additional hangerU6-19

  • 7/28/2019 Rumus Caesar.pdf

    31/47

    CAESAR II Quick Reference Guide - 1/2000 Q-28

    Design load casesU6-19

    Hanger sizing load casesU6-19

    Hot loadU6-18

    Operating load casesU6-19

    Recommended load casesU6-19

    Restrained weightU6-18

    Spring hanger designU6-18Hanger sizingU6-19, U8-18

    Hanger sizing algorithmA8-26, T6-10

    Hanger tableT3-27, T3-82

    Hanger/can available spaceT3-30

    HangersA4-1, T3-27, T3-100, U5-20

    Hangers/nozzlesT2-16

    HardcopyU9-16

    Hardware requirementsU2-3

    HarmonicT5-4, U8-11, U8-34

    AnalysisT6-27

    EquationT5-49

    LoadT5-85

    LoadsA7-2, T5-86

    MethodT5-4

    ProfileT5-4

    Harmonic analysisT5-49, T5-51, T5-85, U8-2,

    U8-5

    Harmonic analysis input

    Harmonic displacementsU8-12

    Harmonic forcesU8-11

    Harmonic load definitionU8-11Excitation frequencyU8-11

    Phasing of harmonic loads

    DampingU8-13

    FrequencyU8-13

    Harmonic control parametersU8-13

    Harmonic forceU8-13

    Pressure waveU8-12

    Reciprocating pumpsU8-12

    Rotating equipmentU8-12

    Harmonic analysis of this systemA7-4Harmonic control parametersU8-13

    Harmonic displacementsT5-14, U8-12

    Harmonic forceU8-11, U8-13

    Harmonic forces and displacementsT5-11

    Harmonic load vectorT5-49

    Harmonic loadsU8-11

    Harmonic resultsU8-34, U9-2

    Harmonic stressU8-34

    Header stress intensificationT3-20

    Heat exchangersU12-66HEI standard for closed feedwater heatersU12-71

    Help menuU4-11

    Help screenT3-4

    Help screens and unitsT3-3

    HighlightT3-101

    Highlight commandU5-36

    HighlightsT2-17

    HingedT3-77

    Hinged jointA5-19

    Hinges, plasticA3-52

    Hoop

    DirectionT3-57

    Elastic modulusT2-21ModulusT3-9

    StressT3-61, T6-74, T6-78

    Stress in the pipeT3-62

    Stress valueT2-10

    HoopsU5-38

    Horizontal dummy leg on bendsA3-40

    Horizontal thermal bowing toleranceT2-15

    Horizontal threshold valueT2-15

    Hot

    Allowable stressT3-57, T6-96

    Hanger loadsT3-36

    LoadT3-28, T6-10, U6-18

    Load designT3-29

    ModulusT3-62

    SustainedT6-20

    Html help facilityU2-16

    Huber-von mises-hencky criterionT6- 70

    Hydrodynamic loading of piping systemsT6-28

    Hydrodynamic loadsT6-31

    Hydrostatic pressureT6-114

    Hydrostatic strengthT6-79, T6-114

    I

    ID manifold pipingT5-95

    ID of relief valve orificeT5-89

    ID of relief valve pipingT5-89

    ID of vent stack pipingT5-89

    ID relief exit pipingT5-95

    ID relief orifice or rupture disk openingT5-95

    ID supply headerT5-95

    IdealizedAllowable stress envelopeT3-58

    Envelope of combinationsT6-78

    Stress envelopeT6-88

    Identical resultsT2-2

    IEEE 344-1975T5-71

    I-factorsT6-80

    IGE/TD/12U5-4, U5-16

    IGE/tD/12 codeT3-7, T3-13, T3-64

    Ignore spring hanger stiffnessT2-6

    Implementation of macro-level analysis forpiping systemsT6-74

    Importance factorT6-23, T6-26

    Imposed stressesT6-67

    ImpulseT5-6, U8-26

    Impulse analysisU8-2

    Impulse profileT5-6

  • 7/28/2019 Rumus Caesar.pdf

    32/47

    CAESAR II Quick Reference Guide - 1/2000Q-29

    In- and out-of-plane fixity coefficients ky and

    kzU12-46

    IncT4-16, T4-19, T4-24, T4-27, T4-38, T4-40

    Include

    Missing mass componentsT5-76

    Piping input filesT3-89

    Pseudostatic (anchor movement)componentsT5-76

    Include missing mass components T5-76

    Include pseudostatic (anchor movement)

    components T5-76

    Include structural filesU5-34

    Included forceT5-65

    Included massT5-63

    Included mass dataU9-11

    Including structural modelsT3-91

    Inclusion of missing mass correction during

    spectral analysis resultsT6-46

    IncmatidT4-17, T4-19

    Incore numerical checkT2-5

    Incore solutionU6-11

    IncrementT5-8, T5-12, T5-44

    IncsecidT4-17, T4-19

    InctoT4-17, T4-19, T4-24, T4-27, T4-38, T4-41

    Independent shockT5-71

    Independent support motionA7-58, T5-55,

    T5-56, T5-76, U8-17

    Independent support motion load casesT5-79Index numbers, structural steel inputU10-5

    Inertia coefficientT6-39

    In-plane bending momentT6-75, U12- 47

    In-plane large bending momentU12-47

    In-plane small bending momentU12- 47

    In-plane stress intensificationT6-102

    In-plane stress intensification factorT3-21

    Input

    Data cellsT3-3, T3-55

    DynamicT9-12EchoT3-97

    FieldsT1-2

    GraphicsT3-98

    SoilT9-12

    StaticT9-12

    StructuralT9-12

    Input items optionally effecting sif

    calculationsT3-17

    Input listingU9-12

    Input menuU4-5Input overview based on analysis categoryU8-9

    Input plottingT3-98

    Input presentation - plot, list, statT4- 42

    Input reviewA8-20

    Inputting constant effort supportsA4-6

    InsertT4-3

    Insert weldoletsT3-18

    InstallationU2-2, U2-4

    Installation directoryT2-2

    Installation menu optionsU2-4

    Installation processU2-4

    Installed load caseT6-11, U6-17

    Installed weightT6-11Insul thkT3-7

    InsulationT3-7

    Insulation densityT3-10, U5-8

    InterfacesT1-2, T8-2

    Interfaces addedT10-12

    Intergraph

    DataT8-42

    InterfaceT8-26

    Intergraph data

    after bend modificationsT8-46

    after element sortT8- 39

    after tee/cross modifications T8-40

    after valve modificationsT8-41

    Intergraph interfaceT8-23

    Intermodal correlation coefficientT5- 74

    Internet Explorer 4U2-16

    Interpolation parametersT2-5

    Intersection modelT3-16

    Intersection stress intensification factorsU12-3

    IntersectionsT3-18

    J

    Jacketed PipeA6-6

    Jacketed piping

    SystemsA7-72

    Jacobi sweep toleranceT5-82

    JacobusT8-63

    JIS nominal pipe odT3-6

    JIS pipe scheduleT3-7

    Joint endtypesT3-74

    K

    KauxT3-89

    Kaux menuU5-31

    Kaux menu items

    Include structural input filesU5-34

    Review sifsU5-31

    Special execution parametersU5-31

    Kaux-include structural filesU10-6

    Keulegan-carpenter numberT6-33

    Kinematic viscosityT6-39Korean 1990 databaseT4-62

    L

    LabelsT2-17

    Laminate

    PropertiesT6-72

  • 7/28/2019 Rumus Caesar.pdf

    33/47

    CAESAR II Quick Reference Guide - 1/2000 Q-30

    TypeT2-20, T3-11, T3-88, T6-84, T6- 85

    Large

    LoadsA7-72

    Large job includesT3-90

    Large rotation rods

    (basic model)A3- 42

    (chain supports)A3-44(constant effort hangers)A3-46

    (spring hangers)A3-45

    (struts)A3-47

    LastT4-14, T4-17, T4-19, T4-24, T4-27, T4-38,

    T4-41

    Lateral

    bearing lengthU11-4

    control stopsA5-18

    deflectionA5-4

    forceT6-22

    Leak pressure ratioU12-23

    Length of manifold pipingT5-96

    Length of relief exit pipingT5-96

    Length of the vent stackT5-89

    Liberal stress allowableT3-86

    License types

    Full runU1-9

    LeaseU1-9

    Limited runU1-9

    Lift coefficientT6-39

    Lift forceT6-31Lift-offA4-15

    Limit stopsA3-22

    Line drawingU5-36

    Line pressureT5-89

    Line temperatureT5-89

    Linear multi-degree-of-freedom systemT5-76

    LinersT3-79

    LIQT interfaceT8-81

    Liquid vent systemT5-94

    LISPT8-4ListT4-43

    List optionT3-92

    List utilityT3-90

    List/edit facilityT3-92

    ListingT9-13

    Load

    DurationT5-67, T5-75

    Forcing frequencyT5-68

    ProfilesT5-59

    RangeT3-28VectorT6-47

    Load caseT5-33, U7-2, U7-3, U7-4, U7- 11,

    U7-13, U7-14, U7-17, U7-18, U8-11,

    U8-15, U8-26, U8-35, U9-3, U9-5,

    U9-8, U9-9, U9-10, U9-11, U9-15,

    U10-6, U10-27, U12-12

    Load case listU6-7

    Load casesU3-2, U3-13, U5-5, U5-7, U5-20,

    U5-23, U6-6, U6-7, U6- 11, U6-12,

    U6-13, U6-17, U6-18

    Basic load casesU3-11

    Combination load casesU3-11, U6-16

    Example of load casesU6-17Expansion load caseU6-18

    Occasional load casesU6-18

    Operating load casesU6-17

    Recommended load casesU3-10

    Stress categoryU6-15

    Stress typesU6-16

    Sustained load caseU6-18

    Types of load casesU3-11

    Types of loadsU6-15

    Load cyclesU6-17

    Load duration (time history or dsrss method)

    (sec.)T5-67

    Loading conditionsU5-7

    LoadsT4-36

    Local

    element forcesU7-8

    flexibilitiesT6-13

    forcesU9-6

    member dataU12-44

    stressesT6-41

    Location factorT6-101Log fileT8-23

    Longitudinal

    Design stressT6-86

    StressT2-10, T6-74

    Longitudinal weld joint efficiencyT3- 55, T3-58,

    T3-59

    Loop closure toleranceT2-14, T3-85

    Lumped massesU8-9

    MMacro-level analysisT6-72

    Main menuU4-2

    Analysis

    Menu itemsU4-6

    FileU3-2

    Default data directoryU4-3

    Input file typesU4-4

    New commandU4-3

    Open commandU4-3

    Select an existing job fileU4- 4Input

    Data entryU3-6

    Input menu itemsU4-5

    Main show menuU7-14

    Make units fileT2-29

    Manifold pipe end flow conditionsT5- 97

  • 7/28/2019 Rumus Caesar.pdf

    34/47

    CAESAR II Quick Reference Guide - 1/2000Q-31

    Manifold pipingT5-95

    Marine growthT6-36

    MarklT6-108

    MassT5-43

    FlowrateT5-92, T5-96

    MatrixT5-49

    Normalized mode shapeT5-77Mass and stiffness modelU8-5

    Mass modelU8-9, U9-12

    Mass participation

    factorsU8-35, U9-9

    reportA7-14, A7-30

    Material

    AddT2-34

    Coefficient of thermal expansionT4-6

    DatabaseT2-34, T9-2

    DeleteT2-34

    DensityT4-6

    EditT2-34

    Elastic propertiesU5-8

    Fatigue curvesU5-15, T3-64

    FilesT2-20

    ID numberT4-5

    Identification - MATIDT4-5

    Name T3-9, U5-7

    Number U5-7

    PropertiesT3-9

    Yield strengthU12-42, U12-46MaterialsT3-9, T3-78

    MatidT4-5, T4-17, T4-19

    Matrix of modal massT5-77

    Max. no. of Eigenvalues calculatedT5-62

    Maximum

    Shear theoryT2-8

    Maximum allowed bend angleT2-14

    Maximum allowed travel limitT3-32, T3-82

    Maximum desired unity checkU12-43

    Maximum table frequencyT5-23Mechanical resonancesT5-85

    Member end nodeU12-44

    Member start nodeU12-44

    Member typeU12-44

    Member weight loadT4-38

    Membrane stressU12-14

    Memory allocatedT2-26

    Menu

    AccountingT7-3

    ItemsT1-2Menu commandsU5-22

    Miche limitT6-30

    Micro

    Level analysisT6-66

    ScaleT6-67

    Mill toleranceT3-7

    Mini-level analysisT6-71

    Minimum

    Wall mill toleranceT2-6

    Yield strengthT3-60

    Yield stressT3-61

    Minimum allowed bend angleT2-14

    Minimum angle to adjacent bendT2-14Minimum desired unity checkU12-43

    Minimum temperature curve (a-d)T2- 37

    Minimum wall mill tolerance (%)T2-6

    MiscellaneousT2-25, T10-9

    Miscellaneous changesT10-12

    Miscellaneous data group #1T8-73

    Miscellaneous ModelsA6-1

    Miscellaneous modificationsT10-8

    Missing

    Force correctionT5-78

    MassT5-63, T6-46

    Mass combination methodT5-79

    Mass correctionT5-76, T5-78, U9-11

    Mass data reportT6-48

    Mass ZPAT2-3

    Miter pointsT3-12

    Mitered bend, evenly spacedA2-7

    Mitered bend, widely spacedA2-10

    Mitered bendsA2-7

    MitersT3-12

    Miters, closely spacedA2-7ModalU8-9

    Combination methodT5-72

    CombinationsT5-72

    ComponentsT5-71

    ExtractionT5-52, T5-57

    MatrixT6-46

    Modal analysisU8-2

    Modal analysis input

    Control parameters

    Cutoff frequencyU8-10Modes of vibrationU8-10

    Lumped massesU8-9

    Modes of vibrationU8-9

    Natural frequenciesU8-9

    System responseU8-9

    Mass modelU8-9

    Modes of vibrationU8-9

    Natural frequenciesU8-9

    System responseU8-9

    Modal combination method (group/ 10%/dsrss/abs/srss)T5-72

    Modal extractionT5-57

    Mode identification lineU9-5

    Mode shapeT5-57, T5-60, T5-85, U8-2, U8-33

    Model - expansion joint menuT3-71

    Model menuU5-27

  • 7/28/2019 Rumus Caesar.pdf

    35/47

    CAESAR II Quick Reference Guide - 1/2000 Q-32

    Model menu items

    Expansion jointsU5-28

    Hanger design control dataU5-30

    TitleU5-29

    ValveU5-28

    Model modifications for dynamic analysisU8-3

    Control parameterU8-5DynamicsU8-5

    Conversion from static inputU8-5

    Mass and stiffness modelU8- 5

    Friction effectsU8-4

    Friction restraintsU8-4

    Friction stiffnessU8-4

    Nonlinear restraints in dynamicsU8-3

    Dynamic responses, nonlinear

    effectsU8-3

    Nonlinear supportsU8-3

    Static load case for nonlinear

    restraintU8-3

    Specifying loadsU8-5

    Code complianceU8-5

    Driving frequenciesU8-5

    Dynamic load specificationU8-5

    Force set specificationU8-5

    Harmonic analysisU8-5

    Load casesU8-5

    Natural frequenciesU8-5

    Occasional stressesU8-5Point loadsU8-5

    Shock resultsU8-5

    Static resultsU8-5

    Model rotation, panning, and zoomingT3-98

    Modeling

    friction effectsT6-16

    reducersA6-2

    spring cans w/ frictionA4-24

    techniquesT1-2

    Models, complexA5-4Models, simpleA5-4

    ModesU8-33

    Modes mass normalizedU9-10

    Modes of vibrationT5-54, U8-9, U8-10, U8-33

    Modes unity normalizedU9-10

    Modified theoriesT6-36

    Modifying mass and stiffness modelU8-13,

    U8-19, U8-26, U8-28, U8-31

    Modifying mass lumpingT5-43

    Modulus of elasticityT3-9, T6-68, T6-71Modulus ratioT3-62

    MomentsT3-49, T3-75

    Morrisons equationT6-31

    MotionU7-18

    Movement capabilityT3-76

    MuT3-26

    Multi-degree-of-freedom systemT5-68

    Multiple can designA4-8

    Multiple load case designT3-33

    Multiple load case design optionsT3- 83

    N

    N1T4-13, T4-16, T4-18, T4-24, T4-26, T4-37,T4-40

    NameT4-7, T5-17

    Name of the converted fileT2-33

    Name of the input file to convertT2-32

    Name of the units file to useT2-32

    Natural frequenciesU8-5, U8-9, U8-33, U9-10

    Natural frequencyT5-57, T5-77

    Navy 505T6-104

    Near/far point methodA3-36

    Nema example pt69mA7-95Nema SM23

    Steam turbines

    Cumulative equipment calculations,

    NEMA SM23U12-50

    Nozzel calculations, NEMA

    SM23U12-50

    Nema turbine exampleU12-51

    Neutral fileT8-79

    Neutral file interfaceT8-63

    New units file nameT2-31

    NfillT4-12

    NgenT4-13

    No rft/wlt in reduced fitting sifsT2-12

    No. hangers at locationT3-32

    No. of hanger-design operating load casesT3-81

    No. of iterations per shift (0-pgm computed)

    T5-83

    No. to converge before shift allowed (0-not

    used)T5-83

    Nodal coordinate dataT8-79, T8-80

    Nodal degree of freedomA3-3Nodal displacementsT6-16

    NodeT2-14, T3-12, T3-24, T4-11, T5-38, T5-45

    NumberT3-3, T3-12, T3-19, T3-24

    Node fieldsA2-2

    Node numbersT3-101, U5-3

    NodeincT4-14

    NodesT2-16, T3-95

    Nominal pipe schedulesT3-6

    Nominal pipe sizeU5-4

    Non-conservative cutoffT5-66Non-extractedT5-78

    Nonlinear

    Code complianceT6-18

    Piping code complianceT6-18

    RestraintT6-18

    Nonlinear code complianceT6-18

  • 7/28/2019 Rumus Caesar.pdf

    36/47

    CAESAR II Quick Reference Guide - 1/2000Q-33

    Nonlinear effectsU8-3

    Nonlinear restraint statusU8-3

    Nonlinear restraintsU6-13, U9-12

    Nonlinear supportsU8-3

    Non-zero displacementsA3-3

    Norwegian (TBK 5-6) (1990, rev. 1)T6-112

    Norwegian codeT6-110Note dialogU6-4

    Novell file server ESL installationU2- 20

    Novell workstation ESL installationU2-20

    Nozzle

    Auxiliary data fieldT3-23, T3-38, T3- 43

    DataU12-12

    DiameterT3-41, T3-44, T3-46

    FlexibilityU12-17

    Flexibility - WRC 297T3-38

    FlexibilitiesT3-23

    Load summation reportA7-100

    LoadsU12-13

    Node numberT3-40, T3-43, T3- 46

    Results for pt69mA7-99

    ScreenU12-16

    SpreadsheetA3-12

    Vessel analysisT6-44

    Wall thicknessT3-41, T3-44

    NozzlesT3-100

    NRC

    Benchmark problemsA7-58Spectrum exampleA7-58

    NRC example NUREG9A7-58

    Nuclear Regulatory Guide 1.92T5-72

    Number formatsT3-4

    Number of points in the tableT5-23

    Number to converge before shift allowedT5-83

    O

    Occasional

    AllowableT6-95, T6-101, T6-102Dynamic stressesU8-18

    Load cases U6-18

    Load factorT2-7, T2-8, T6-96

    StressU8-2, U8-5, U8-18

    Ocean currentsT6-33

    Ocean wave particularsT6-29

    Ocean wavesT6-28

    ODBC driversU2-15

    Off-diagonal coefficientsT2-5

    Offset element methodA3-36Offset gimbalA5-26

    OffsetsU5-21

    OffsettingT6-4

    Old spring redesignA4-9

    Omega loopA7-66

    On curvature methodA3-36

    On-diagonal coefficientT2-5

    Online documentationU2-19

    Operating

    AllowableT6-101

    AnalysisT6-18

    CaseT6-10

    Case vertical displacementT6-10loadT3-33

    Load case T6-17, T6-88

    Load fieldT3-33

    LoadsT3-29

    PressureT3-63

    TemperatureT3-61, T3-62

    Thermal casesT3-33

    Operating conditions

    Temperatures and pressuresU5-4

    Operating load, user-specifiedA4-14

    Optimal cutoffT5-66

    OrdinateT5-22

    OrientT4-24

    Orifice flow conditionsT5-97

    OrthogonalT3-26

    Orthotropic material modelT6-83

    Out-of-plane bending momentU12-47

    Out-of-plane large bending momentU12-47

    Out-of-plane small bending momentU12-47

    Outplane bending momentT6-75

    Outplane stress intensificationT6-102OutputT9-13

    MenuU4-7

    PlottingU7-13

    ProcessorT5-59

    Reports by load caseT2-25

    Table of contentsT2-25

    Output from the liquid relief load synthesizer

    T5-96

    Ovalization, bendsU12-6

    Overburden compaction multiplierU11-11OverviewA1-2, T1-2, T4-2, U2-2

    Overview of CAESAR II interfacesT8-2

    Overview of structural capability in CAESAR

    IIU10-2

    Overview of the dynamic analysis input

    processorU8-6

    P

    Pad thkT3-17

    PanningU5-35Partition of y matrixT6-47

    PDMST8-63

    Peak pressureT3-63

    Peak stress indexU12-7

    Percent of iterations per shift before

    orthogonalizationT5-84

  • 7/28/2019 Rumus Caesar.pdf

    37/47

    CAESAR II Quick Reference Guide - 1/2000 Q-34

    Performing the analysisU8-32

    Performing the static analysisA8-26

    PeriodT5-57

    PhaseT5-12, T5-14

    Phase angleT5-12, T5-14, U8-2, U8-12, U8-34

    PhasingU8-12

    PipeDensityT3-9, T3-10

    Element exposed areaT6-25

    Element spreadsheetT3-5, T3-49, T3- 50,

    T3-51, T3-52, T3-54, T6-8

    Nominal diameterA2-2

    Outside diameterT3-46

    Section dataT3-6

    Section propertiesU5-4

    SizeT2-22

    SpreadsheetT3-71, T3-79

    Stress analysisT6-66

    Pipe and hanger supportA4-10

    Pipe stress analysis of FRP pipingT6-66

    Pipenet interfaceT8-86, T8-87

    PipesT2-16

    Piping

    CodesT3-55

    DimensionsU10-13

    Element dataT6-39

    Input plot utilityT4-42

    JobU10-6MaterialsT3-9, U5-7

    Screen referenceT1-2

    Size specificationT2-22

    SpreadsheetT3-54

    Spreadsheet dataT3-2

    System modelT5-51

    Piping codes for earthquakesU8-18

    Piping inputU3-5

    Alpha toleranceU5-5

    Ambient temperatureU5-5Construction elementU5-5

    DensitiesU5-8

    Expansion jointsU5-5

    GenerationU3-5

    Input spreadsheetU5-2

    Insulation densityU5-8

    Material nameU5-7

    Material numberU5-7

    Nominal pipe sizeU5-4

    Rigid elementsU5-5Sif & teesU5-6

    Specific gravityU5-8

    Stress intensification factorsU5-6

    Thermal strainsU5-5

    Plant spaceT8-63

    Plastic hingesA3-52

    Plastic pipeT3-9

    PlateT3-76

    PlotT4-42, U5-35

    Plot colorsT2-16

    Plot functions

    Highlight commandU5-36

    Line drawingU5-36Panning, zooming, and rotatingU5- 35

    Range of nodes to plotU5-36

    Render and wire frame plotsU5-36

    Volume plotU5-36

    Plot screenT1-2

    Plotting

    Static output reviewU3-13

    TutorialU3-8

    Point loads T4-36, U8-5

    PoisT4-5

    Poisson effectT6-69

    Poissons ratioT2-21, T2-37, T3-9, T3-61,

    T3- 62, T4-5, T6-71, T6-83, T6-101

    PolarT4-8

    Polar moment of inertiaT4-8, T4-46

    Practical applicationsT6-81

    Predefined

    Nuclear Regulatory Guide 1.60T5- 55

    Uniform building codeT5-55

    Predefined displacementsA3-6

    Predefined el centroT5-55Predefined hanger dataT3-36

    Preparing the drawingA8-3

    PressureT3-9

    Hoop stressT6-101

    PeaksT5-86

    PulsesA7-21, T5-85, T5-86

    StiffeningT2-3, T6-96

    Stress multiplierT3-18

    ThrustT6-9

    WaveA7-28Pressure ratingT3-76

    Pressure stiffeningU12-6

    Pressure thrustA5-2, U5-10

    Pressure vs. elevation tableU6-8

    Pressure waveU8-12

    Pressure-balanced tees and elbowsA5-32

    PressuresT3-9

    Pricing factorsT7-3

    Primary membrane stressT6-42

    Primary stress indexT3-18Print alphas and pipe propertiesT3-85

    Print forces on rigids and expansion jointsT3-84

    Printer/listing filesT9-8

    Printing an input listingT3-96

    Problem solutionA7-31

    Procedure to perform elastic analyses of

    nozzlesT6-43

  • 7/28/2019 Rumus Caesar.pdf

    38/47

    CAESAR II Quick Reference Guide - 1/2000Q-35

    Proctor numberU11-11

    Product demosU2-16

    Product informationU2-19

    Program improvementsU1-10

    Program supportU1-5

    Technical support phone numbersU1-5

    TrainingU1-5User assistance A1-2, T1-2

    PRO-ISO

    example transferT8-55

    interfaceT8-53

    interface (standard)T8-52

    PRO-ISO/CAESAR II data transferT8-58

    Proof stressT3-56, T3-60

    Providing wind dataU6-8

    Pseudostatic

    Combination methodT5-79

    DisplacementT5-56

    ResponsesT5-79

    Pseudo-static hydrodynamic loadingT6-31

    Publication datesT3-55

    PulsationT5-4

    Pulsation loadsT5-85

    Pulse table generatorT5-23

    Pulse table/DLF spectrum generation T5-57,

    U8-21, U8-28

    PvarT3-63

    Q

    Quality assuranceT10-11

    Quick startU3-2

    R

    RadiusT3-11

    RandomT5-3

    Random profileT5-3

    RangeT3-101, T5-22

    CommandT3-102OptionT3-102

    Range commandU5-36

    Ratio of gas-specific heats (k) gas constant (r)

    (ft.lbf./lbm./ deg.r)T5-90

    Ratio shear mod

    EmodT2-21

    Rayleigh dampingT5-68

    RCC-M Subsection C and DT6-110

    Reciprocating pumpsU8-12

    Recommended load casesU6-17Recommended load cases for hanger

    selectionU6-18

    Recommended proceduresU11-12

    Reduced intersectionT2-11, T6-90

    ReducersA6-2

    Re-enabling the autorun featureU2-22

    ReferencesT6-40, T6-49, T6-88

    Refractory lined pipeT3-7

    Reinforcing padT3-17, T3-41

    Relief

    Exit pipingT5-95

    Valve thrust load analysisT5-88

    ValvesA7-10, T5-6, T5-95Relief load

    AnalysisT5-88

    Relief load synthesis T5-88, U8-20

    for gases greater than 15 psigT5-88

    for liquidsT5-94

    Relief load synthesizerU8-28

    Relief loads spectrum U8-20

    Force sets for relief loads

    EarthquakesU8-24

    Relief valvesU8-24

    Skewed loadU8-25

    Water hammerU8-24

    Relief load synthesis

    Dynamic load factorU8-20

    Force spectrum methodologyU8-20

    Relief valveU8-20

    Thrust loadsU8-20

    Spectrum definitions

    DLF spectrum generatorU8- 23

    Spectrum dataU8-23

    Spectrum load casesImpulseU8-26

    Time historyU8-26

    Relief valveU8-2, U8-20, U8-24, U8-28

    Relief valve example problem setupA7-10

    Relief valve loading - output discussionA7-14

    Relief valve or rupture diskT5-95

    Relief valve thrust load analysisT5-88

    Remaining strength of corroded

    pipelines,B31gU12-27

    Remove passwordT2-28RenderU5-36

    ReplaceT4-3

    Report optionsU7-6

    Report typesU9-5

    Reset plotT3-99

    Resetting element strong axis - angle, orient

    T4-23

    Re-setting loads on existing spring hangersT3-37

    Residual responseT6-48

    Resize membersU12-42Response spectra profilesT5-17

    Response spectrumT5-53

    Response spectrum / time history profile data

    point inputT5-22

    Response spectrum methodU8-2

    Response spectrum tableU8-14

  • 7/28/2019 Rumus Caesar.pdf

    39/47

    CAESAR II Quick Reference Guide - 1/2000 Q-36

    Response vs. frequency spectraU8-2

    Restrained weightT3-36, T6-10, U6-18

    Restrained weight runA4-13

    Restraint

    Auxiliary dataU10-20

    Auxiliary fieldT3-24

    LoadsT5-85ReportA7-17, A8-37

    SettlementA3-28

    SummaryU7-7

    TypeT3-24

    Restraint between two pipesA3-32

    Restraint between vessel and pipe modelsA3-33

    Restraint, single-dimensionalA3-26

    Restraint/force/stress reportsA7-30

    RestraintsA3-1, T3-23, T3-100, U5-11, U7-6,

    U9-5

    Restraints on a bend at 30 and 60 degreesA3-35

    Restraints on a bend at 45 degreesA3-34

    Restraints submenuU7-15

    Restraints, rotational directionalA3-25

    Restraints, single-directionalA3-19

    Re-use last eigensolutionT5-71

    Review existing units fileT2-29

    Reviewing the static resultsA8-29

    Reynolds numberT6-33

    RigidT5-78

    Body motionA7-80Element applicationT6-2

    ElementsT3-14, T3-84, U5-5

    Fluid weightT6-2

    Insulation weightT6-2

    Material weightT6-2

    ModesT5-63

    RodT3-32

    Support displacement criteriaT3-31, T3-82

    WeightU5-10

    Y restraintsT3-36Rigids/bendsT2-16

    Rod incrementT2-4

    Rod toleranceT2-4

    RotateT3-94

    RotatingU5-35

    Rotating equipmentU8-2, U8-12

    Rotating equipment report updatesT10-8

    Rotation rodT3-25

    Rotation rods, largeA3-42

    Rotational directional restraints with gapsA3-25Rotational optionT3-85

    RotationsT3-99

    Run control data spreadsheetT3-33

    Rupture diskT5-95

    Rupture disk openingT5-95

    Rx (cosx, cosy, cosz) or rx (vecx, vecy, vecz)

    T3-25

    Rx, ry, or rzT3-25

    S

    Sample inputU10-8

    ScT3-55

    SchneiderT2-12

    ScratchT9-12ScreensU5-9

    Se isometric viewT3-100

    Sea spectrumT6-28

    Seam-weldedT3-7, T3-13

    Section IDT4-7, T4-17, T4-19

    Section identification T4-7

    Section modulus calculationsT3-13

    Segment informationT8-14

    SegmentsA7-74, A7-75

    SeismicAnalysisU8-2

    Anchor movementsT5-56

    LoadsT5-53

    Spectrum analysisT5-53

    ZoneT6-24

    Zone coefficientT6-23

    Selection of phase anglesU8-34

    Serial numberU2-5

    Set/change passwordT2-28

    Setting

    Defaults - DEFAULTT4-10

    Nodes in spaceT4-10, T4-11

    Setting up the spring load casesT6-11

    Setup optionT3-94

    Sh fieldsT3-57

    ShapeT4-41

    Shape factor, windU6-8

    Shear modulus of elasticityT2-38, T3- 9, T3-88,

    T4-6

    Shft option disabledT3-98, T3-99

    Shft option enabledT3-99Shock

    definitionU8-14

    displacementT5-59

    load caseT5-56

    resultsU8-5


Recommended