+ All Categories
Home > Documents > Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau...

Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau...

Date post: 26-Jun-2020
Category:
Upload: others
View: 18 times
Download: 0 times
Share this document with a friend
20
Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s function at Anderson transitions with Coulomb interaction Igor Burmistrov "Workshop: Anderson Localization in Topological Insulators", PSC, Daejeon, South Korea 1/20
Transcript
Page 1: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Russian Academy of Sciences

Landau Institute for Theoretical Physics

Mesoscopic fluctuations of the single-particle Green’s function

at Anderson transitions with Coulomb interaction

Igor Burmistrov

"Workshop: Anderson Localization in Topological Insulators", PSC, Daejeon, South Korea

1/20

Page 2: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

in collaboration with

Igor Gornyi (Karlsruhe Inst. of Technology)Alexander Mirlin (Karlsruhe Inst. of Technology)Eugene Repin (Delft Univ. of Technology / Landau Inst.)

details can be found in

Phys. Rev. Lett. 111, 066601 (2013)Phys. Rev. B 89, 035430 (2014)Phys. Rev. B 91, 085427 (2015)Phys. Rev. B 93, 205432 (2016)arXiv:1609.0XXXX

2/20

Page 3: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Introduction: non-interacting multifractality in mesoscopic fluctuations of LDOS at Anderson transition

[Wegner (1980,1987); Kravtsov, Lerner (1985); Pruisken(1985); Castellani, Peliti (1986)]

local density of states (LDOS) in the cube of size L

ρ(E, r ) =∑

α

∣∣ψα (r )∣∣2δ(E − εα )

where ψα (r ) and εα w. f. and energy for a given disorder realization

scaling of the moments of LDOS⟨

[ρ(E, r )]q⟩

dis∼ L−∆q , q = 0, 1, 2, . . .

multifractality: the exponent ∆q 6 0 is nonlinear function of q

spatial correlations of LDOS

〈ρ(E, r )ρ(E, r + R)〉dis ∼ (R /L)∆2 , R ≪ L

examples for Anderson transitions in d = 2:∆2 = −0.34 (class AII, spin-orbit coupling)∆2 = −0.52 (class A, integer qHe)∆2 = −1/4 (class C, spin qHe)

[see for a review, Evers&Mirlin (2008)]3/20

Page 4: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Introduction: experiments on non-interacting multifractality

ultrasound speckle in the system of randomly packed Al beads[Faez et al., 2009]

localization of light in an array of dielectric nano-needles[Mascheck et al., 2012]

4/20

Page 5: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Introduction: non-interacting multifractality of the single-particle Green’s function

scaling of other combinations of wave functions, e.g.,

⟨∣∣∣ψα (r1)ψβ (r2)− ψβ (r1)ψα (r2)∣∣∣2⟩

dis∼ L−µ2 µ2 > 0.

determines the scaling of dephasing rate due to short-rangeinteraction at the Anderson transition in class A, τ−1

φ ∼ T 1+2µ2 /d

[Lee, Wang (1996); Wang, Fisher, Girvin, Chalker (2000)]

[Burmistrov, Bera, Evers, Gornyi, Mirlin (2011)]

exact relations between anomalous dimensions of very differentcorrelation functions of single-particle Green’s functions at Andersontransitions

[Gruzberg, Ludwig, Mirlin, Zirnbauer (2013); Gruzberg, Mirlin, Zirnbauer (2013)]

5/20

Page 6: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Introduction: LDOS suppression at the Fermi energy due to Coulomb interaction

[Altshuler, Aronov, Lee (1980), Finkelstein (1983), Castellani, DiCastro, Lee, Ma (1984)]

[Nazarov (1989), Levitov, Shytov (1997), Kamenev, Andreev (1999)]

zero bias anomaly in d = 2 (L = ∞)

⟨ρ(E, r )

⟩dis ∼ exp

(−

14πg ln

(|E|τ

)ln |E|

D2κ

)

where g is a bare conductance in units e2/h, D diffusion coefficient,

τ elastic mean free time, κ = e2ρ0/ε inverse static screening length.

zero-bias anomaly in d = 2 + ε at Anderson transitions

⟨ρ(E, r )

⟩dis ∼ |E|β , β = O(1)

in the absence of interaction average LDOS is non-critical (β = 0) for Wigner-Dyson classes

[see for a review, Finkelstein (1990), Kirkpatrick&Belitz (1994)]6/20

Page 7: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Introduction: differential conductance maps from scanning tunneling microscopy experiments

2DEG in InSb at B = 12 T[Morgenstern et al. (2012)]

Ga1−xMnxAs with x = 1.5%[Richardella et al. (2010)]

NbN films nearsuperconducting transition

[Noat et al. (2013)]

7/20

Page 8: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Introduction: numerics with Coulomb interaction

• numerics for moments of Kohn-Sham w. f. within DFT[Harashima, Slevin (2012, 2013)]

• numerics for local DOS correlation function[Amini, Kravtsov, Muller (2013)]

〈ρHF (E, r )ρHF (E, r + R)〉〈ρHF (E, r )〉2

made from Hartree-Fock w.f.

8/20

Page 9: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Introduction: the question

how presence of interaction affects mesoscopic fluctuationsof the single-particle Green’s function?

9/20

Page 10: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Model: hamiltonian H = H0 + Hdis + Hint

free electrons in d dimensions

H0 =∫

dd r ψ(r )[−

∇2

2m

]ψ(r ),

scattering off white-noise random potential

Hdis =∫

dd r ψ(r )V (r )ψ(r ), 〈V (r )V (0)〉 = 12πρ0τ

δ(r )

effective electron-electron interaction:

Hint = 12

∫dd r1d

d r2 U(|r1 − r2|)ψσ (r1)ψσ (r1)ψσ ′ (r2)ψσ ′ (r2)

disorder-averaged moments of the LDOS

⟨[ρ(E, r )

]q⟩

dis=

⟨[−

ImGR (E, r , r)]q⟩

dis, GR (r t ; r ′t ′) = −iθ(t − t ′)

⟨ψσ (r t), ψσ (r ′t ′)

standard assumptions (diffusive regime): chemical potential µ ≫ 1/τ ≫ T , |E |

10/20

Page 11: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Model: field-theory approach

[Efetov, Larkin, Khmelnitskii (1980); Finkelstein (1983); Baranov, Pruisken, Skoric (1999)]

nonlinear sigma-model action (class AI)

S[Q] = −g

32

∫dr tr(∇Q)2 + 4πTZω

∫dr tr ηQ −

πT

4∑

α,n,r ,j

∫dr Γj tr Iαn trjQ tr Iα−ntrjQ

where the matrix field Q (in Matsubara, replica, spin and Nambu spaces)satisfies

Q2(r ) = 1, trQ = 0, Q = C TQTQ, C = it12

the matrices are as follows

Λαβnm = sgn n δnmδαβ, ηαβnm = n δnmδ

αβ, (Iγk )αβnm = δn−m,kδαβδαγ , trj = τr⊗σj

matrix field Q ∈ Sp(8NrNm)/Sp(4NrNm) × Sp(4NrNm), Nr → 0 and Nm → ∞

Γj = Γs , Γt , Γt , Γt stand for the interaction amplitudes, Finkelstein parameter Zω describes

renormalization of frequency. Coulomb interaction corresponds to γ = Γs /Zω = −1

11/20

Page 12: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Results: pure scaling operators in the interacting theory - I

operator linear in Q

K1(E) = 14 ReP+

1 (E), P1(iεn) = spQααnn (r )

where εn = πT (2n + 1) is the fermionic Matsubara frequencies, iεn → E + i0+

operators bilinear in Q:

K2(E, E ′) = 164

p1,p2=±

p1p2Pp1p22 (E, E ′)

P2(iεn, iεm) = spQα1α1nn (r ) spQα2α2

mm (r ) + µ2 sp[Qα1α2nm (r )Qα2α1

mn (r )], α1 6= α2

iεn → E + ip10+ and iεm → E ′ + ip20+

12/20

Page 13: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Results: pure scaling operators in the interacting theory - II

operators of higher order in Q:

Kq(E1, . . . , Eq) = 123q

p1,...pq=±

q∏

j=1pj

Pp1,...,pqq (E1, . . . , Eq)

Pq(iεn1 , . . . , iεnq ) =∑

k1,...,kq

µk1,...,kq

⟨Ak1,...,kq

⟩,

Ak1,...,kq =kq∏

r=k1

sp[Q

αj1 αj2nj1 nj2

Qαj2 αj3nj2 nj3

. . . Qαjr αj1njr nj1

], αj 6= αk

k1 + k2 + · · · + kq = q, k1 > k2 > · · · > kq > 1

13/20

Page 14: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Results: mesoscopic fluctuations of the single-particle Green’s function

disorder-averaged LDOS

〈K1(E)〉S =⟨ρ(E, r )

dis/ρ0

disorder-averaged second moment of LDOS

〈K(−2)2 (E, E ′)〉S =

⟨ρ(E, r )ρ(E ′, r )

dis/ρ2

0

non-local correlations of the Green’s function (λF ≪ |r − r ′| ≪ l):

〈K(µ2)2 (E, E ′)〉S ∝

⟨ImGR (E, rr ) ImGR (E ′, r ′r ′) − µ2 ImGR (E, rr ′) ImGR (E ′, r ′r )

dis

non-local correlations of the LDOS (λF ≪ |r − r ′| ≪ l):

〈K(1)2 (E,E )〉S ∝

⟨3ρ(E, r )ρ(E, r ′) − ρ(E, r )ρ(E, r ′)

dis

14/20

Page 15: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Reminder: pure scaling operators in the noninteracting theory

[Hof&Wegner (1986), Wegner (1987)]

averaging over rotations in replica space; energies do not mixed, e.g.

K(µ2 )2 → Tr ΛQ Tr ΛQ + µ2 Tr(ΛQ)2

classification of operators by irreducible rep. of the symmetric groupSp(8Nr )

anomalous dimension of pure scaling operators

ζ (q)µ (t) = µ2,1,...,1t + ζ(3)c3t4 + O(t5), t = 2/(πg).

µ2,1,...,1 and c3 are computed from the group theory, e.g.

µ2,1,...,1 -2 1 -6 -1 3c3 3/2 -3/2 21/2 3 -12

15/20

Page 16: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Results: pure scaling operators in the interacting theory - III

two-loop computations in d = 2 + ε dimensions: K(µ)q = Z q/2 m

(µ)q

−d lnm(µ)

q

d ln L = ζ (µ)q (t, γj ) = µ2,1,...,1

[t + [c(γs) + 3c(γt )]t2/2

]+ a

(q)µ

εt2 + . . .

c(γ) = 2 + 2 + γ

γli2(−γ) + 1 + γ

2γ ln2(1 + γ)

a(µ)q = 0 ⇔ µ2

2,1,...,1 + µ2,1,...,1 = 3µ3,1,...,1 + 2µ2,2,...,1 + q(q − 1)

a(q)µ is independent of γ and, consequently, vanishes for the same sets of µ2,1,...,1, . . . as in

the noninteracting case. In particular, a(2)µ ∝ (µ2

2 + µ2 − 2) vanishes for µ2 = −2 and µ2 = 1.

one-loop computations for the average LDOS: K1 = Z 1/2

−d ln Zd ln L = ζ = −t [ln(1 + γs) + 3 ln(1 + γt )] + O(t2)

[Finkelstein (1983), Castellani, DiCastro, Lee, Ma (1984)]

N.B.: one-loop background field method is insensitive to interaction and fixes µ2,1,...,1, . . . to

their noninteracting values

N.B.: two-loop computation for q > 3 is not enough to fix coefficients µ2,1,...,1, µ3,1,...,1, . . . , µq16/20

Page 17: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Results: background field renormalization - I

backround field method (slow U and fast Q fields)

QαβnmQ

γηmn →

[U−1QU

]αβ

nm

[U−1QU

]γη

mn

in the absence of interactions correlation functions of Q field arefixed by the symmetry of the action:

〈Qαβ±±Q

γη±±〉0 = a0δ

αβδγη + b0δαηδβγ ,

〈Qαβ++Q

γη−−〉0 = c0δ

αβδγη,

〈Qαβ±∓Q

γη∓±〉0 = f0δ

αηδβγ

17/20

Page 18: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Results: background field renormalization - II

one-loop approximation for fast fields (for r = 0, 3 and j = 0, 1, 2, 3):⟨

[Qrj (p)]α1β1n1m1 [Qrj (−p)]β2α2

m2n2

⟩= 2

gδα1α2δβ1β2δn12,m12Dp(iΩε

nm)[δn1n2 −

32πTΓjg

δα1β1D (j)p (iΩε

nm)],

where n12 = n1 − n2 > 0, m12 = m1 − m2 > 0, Ωεnm = εn1 − εm1 ≡ εn2 − εm2 , and Qrj = sp[Qtrj ]/4.

D −1p (iωn) = p2 + h2 + 16Zω|ωn |/g, [D s/t

p (iωn)]−1 = p2 + h2 + 16(Zω + Γs/t )|ωn |/g.

one-loop approximation for fast fields (for r = 1, 2 and j = 0, 1, 2, 3):⟨

[Qrj (p)]α1β1n1m1 [Qrj (−p)]β2α2

m2n2

⟩= 2

gδα1α2δβ1β2δn1n2δm1m2 Dp(iΩε

nm).

one-loop renormalization(

A2[Q]A1,1[Q]

)→

[1 + 2(Z 1/2 − 1)

] (A2[Q0]A1,1[Q0]

)+ t ln LM2

(A2[Q0]A1,1[Q0]

),

where the mixing matrix

M2 =

(−1 12 0

)

with eigenvalues −2 and 1.18/20

Page 19: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Results: background field renormalization - III

n′n′′ < 0, m′m′′ < 0 and n′m′′ > 0 (for r = 0, 3 and j = 0, 1, 2, 3):⟨

[Qrj ]α ′

1α′′1

n′n′′ [Qrj ]α ′

2α′′2

m′m′′

⟩= Zδα

′1α

′′1 δα

′2α

′′2 δn′−n′′,m′′−m′B1

[δn′m′′ + TC1δ

α ′1α

′′1],

n′n′′ < 0, m′m′′ < 0 and n′m′′ > 0 (for r = 1, 2 and j = 0, 1, 2, 3):⟨

[Qrj ]α ′

1α′′1

n′n′′ [Qrj ]α ′

2α′′2

m′m′′

⟩= ZB1δ

α ′1α

′′1 δα

′2α

′′2 δn′m′′δn′′m′

n′n′′ < 0 and m′m′′ > 0〈Q

α ′1α

′′1

n′n′′ Qα ′

2α′′2

m′m′′ 〉f ∝ T .

n′n′′ > 0, m′m′′ > 0, and n′m′ > 0

〈[Qrj ]α ′

1α′′1

n′n′′ [Qrj ]α ′

2α′′2

m′m′′ 〉f = Zδr0δj0δn′n′′δm′m′′δα′1α

′′1 δα

′2α

′′2 + B2δn′m′′δm′n′′δα

′1α

′′2 δα

′2α

′′1

−B24

sp[trjCtTrjC ] × δn′m′δn′′m′′δα

′1α

′2δα

′′1 α

′′2 .

n′n′′ > 0, m′m′′ > 0, and n′m′ < 0 〈Qα ′

1,α′′1

n′n′′ Qα ′

2α′′2

m′m′′ 〉f = ZB3Λα ′

1α′′1

n′n′′ Λα ′

2α′′2

m′m′′ .(

A2[Q]A1,1[Q]

)→ Z (1 + B3)/2

(A2[Q0 ]A1,1[Q0 ]

)+ 2Z (B1 − B2)M2

(A2[Q0 ]A1,1[Q0]

).

19/20

Page 20: Russian Academy of Sciences Landau Institute for ... · Russian Academy of Sciences Landau Institute for Theoretical Physics Mesoscopic fluctuations of the single-particle Green’s

Conclusions:

multifractality in single-particle Green’s functions does exist ininteracting disordered systems

multifractal exponents are different from ones at the non-interactingcritical point

20/20


Recommended