+ All Categories

s-par

Date post: 01-Jun-2018
Category:
Upload: pankaj-dhiman
View: 239 times
Download: 5 times
Share this document with a friend

of 28

Transcript
  • 8/9/2019 s-par

    1/28

    S-PARAMETERS

    By:

     Namrata V. L.

    Assistant Professor 

    Government Engineering College, Rajkot

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    2/28

    INTRODUCTION

    Power dividers and directional couplers

    are passive microwave components used

    for power division or power combining,

    as illustrated in Figure.

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    3/28

    INTRODUCTION

     The coupler or divider may have  three ports,  four ports,

    or  more, and may be (ideally) lossless.  Three-port networks take the form of T-junctions and

    other power dividers.

     While four-port networks take the form of directionalcouplers and hybrids.

     A microwave junction is an interconnection of two or more microwave components as shown in figure.

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    4/28

    SCATTERING MATRIX

     The low frequency circuits can be

    represented in two port networks and

    characterized by their parameters i.e.

    impedances, admittances, voltage gain,current gain, etc. All these parameters relate

    total voltages and currents at the two ports.

     But as operational frequency increases, it is

    very hard to find correct voltage and current

    at any point, due to rapid fluctuation of 

    voltage and current.

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    5/28

    SCATTERING MATRIX  So at microwave frequency the logical variables used,

    are travelling waves with associated powers, rather thantotal voltages and total currents. These logical variablesare called as S- parameters.

     So in microwave analysis, the power relationship

     between the various ports of microwave junction isdefined in terms of parameters, called as   S-parametersor scattering parameters.

     As the microwave junction is a multiport junction, the power relationship between the various ports are definedin terms of matrix form, and called as  S-matrix, whicha   square matrix   giving all the power combinations between the input port and output ports.

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    6/28

    SCATTERING MATRIX  an   is the amplitude of voltage wave incident on

     port n  bn is the amplitude of the reflected voltage wave

    from port n.

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    7/28

    SCATTERING MATRIX The scattering matrix or [S] matrix is

    defined in relation to these incident andreflected voltage waves as

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    8/28

    SCATTERING MATRIX The specific element of S-matrix is

    i.e. scattering coefficient due to input at ith

     port and output taken from jth port.

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    9/28

    SCATTERING MATRIX

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    10/28

    SCATTERING MATRIX

    PROF. N.V.LANGHNOJA

     Properties of S-matrix for Reciprocal and

    Lossless Network 

    ◦ For reciprocal network   The impedance and

    admittance matrices are symmetric.

    ◦ For lossless network     The impedance and

    admittance matrices are imaginary.

     Scattering matrix for a reciprocal network issymmetric and unitary for lossless network.

  • 8/9/2019 s-par

    11/28

    SCATTERING MATRIX

    PROF. N.V.LANGHNOJA

     Properties of S-matrix for Reciprocal and

    Lossless Network 

    ◦ For reciprocal network [S] matrix is defined as

    Sij= S ji.

    ◦ Also it can be written as [S]=[S]t.

    ◦ For lossless network [S]t[S*]=[I]

    ◦ For unitary network  [S*]={[S]t}-1.

  • 8/9/2019 s-par

    12/28

    SCATTERING MATRIX

    PROF. N.V.LANGHNOJA

     Example

  • 8/9/2019 s-par

    13/28

    SCATTERING MATRIX

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    14/28

    WAVEGUIDE TEES

     WAVEGUIDE TEES

    ◦ E-Plane Tees.

    ◦ H-Plane Tees

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    15/28

    E-PLANE TEE

    1.   [S] Matrix of order 3 x 3.

    2.   The scattering coefficients are

    3.   If port 3 is perfectly matched to the junction

    4.   For symmetric property

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    16/28

    E-PLANE TEE

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    17/28

    E-PLANE TEE

     From equation 1 and 2, …………..(5)

     From equation 3, ………………...(6)

     From equation 4,

     Using the values of 6 and 7 in equation 1, we get

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    18/28

    E-PLANE TEE

     Thus resultant S-parameter will be,

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    19/28

    E-plane Tee

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    20/28

    E-PLANE TEE

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    21/28

    H-PLANE TEE

    1.   [S] Matrix of order 3 x 3.

    2.   The scattering coefficients are

    3.   If port 3 is perfectly matched to the junction

    4.   For symmetric property

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    22/28

    H-PLANE TEE

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    23/28

    H-PLANE TEE

     From equation 1 and 2, …………..(5)

     From equation 3, ………………...(6)

     From equation 4,

     Using the values of 6 and 7 in equation 1, we get

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    24/28

    H-PLANE TEE

     Thus resultant S-parameter will be,

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    25/28

    H-plane Tee

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    26/28

    H-PLANE TEE

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    27/28

    H-PLANE TEE

    PROF. N.V.LANGHNOJA

  • 8/9/2019 s-par

    28/28

    PROF N V LANGHNOJA

    Thank you


Recommended