+ All Categories
Home > Documents > S19_Louisiana Tech University_LTC2013 (1)

S19_Louisiana Tech University_LTC2013 (1)

Date post: 03-Apr-2018
Category:
Upload: walaywan
View: 213 times
Download: 0 times
Share this document with a friend

of 52

Transcript
  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    1/52

    Tarbutton Road Interchange and I-20 Frontage Roads

    Dr. N. Wasiuddin Instructor

    Braden Smith Project Manager

    Jared Taylor Transportation GroupJohn Harrison Geotechnical Group

    Sarah Wells Water Group

    Samantha Tatro Structural Group

    Ryan Ross Estimating and Planning Group

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    2/52

    Project Overview

    Timeline

    Current State

    Transportation

    Geotechnical

    Water

    Structural

    Estimating and Planning

    Questions

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    3/52

    Working Period: September, 2012 May, 2013

    Objectives: Add Exit 83 at Tarbutton Road

    Construct a Wider Tarbutton Road Bridge

    Relativeness: Under Review by LA DOTD

    Preliminary Data:

    Survey Data Waggoner Engineering

    Boring Logs Copies Provided from DOTD Plans

    Traffic Data Copies Provided from DOTD Plans

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    4/52

    September

    Teams Formed and Project Defined

    October

    Researching Manuals and Software

    November Learning Software Packages

    December

    Calculations and ModifyingProcedures

    January Design/Calculations

    February

    Design/Calculations

    Transportation

    Structures

    Water

    Estimatingand

    Planning

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    5/52

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    6/52

    Geometric Design

    Followed AASHTO: Geometric Design of

    Highways and Streets

    AutoCad Civil3D Main Software

    Horizontal Alignment

    Vertical Alignment

    Pavement Cross-Sections

    Intersections Lane Widening

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    7/52

    AutoCad Civil3D

    Received *.dwg file

    from Waggoner

    Survey Data and

    Topographic Maps

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    8/52

    Tarbutton Road Alignment

    Multiple problem areas to avoid

    Main Roadway and all entrance

    and exit ramps

    Civil 3D uses Design Speed,

    minimum radius of curvature, and

    super elevation to govern curves

    45 mph design for Tarbutton

    35 mph design for ramps

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    9/52

    Vertical Alignment

    Tarbutton Road

    East Bound Ramps

    West Bound Ramps

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    10/52

    Cut/Fill

    Calculated from the corridor to the existing surface

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    11/52

    Pavement Design AI Method

    Initial AADT 3990 veh/day

    Asphalt Institute SW-1 Input: Vehicle Type Percentage

    Truck Factors

    Minor Arterial System

    Initial Year ESAL

    Design Period ESAL

    6.6 HMA over 8 Aggregate Base

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    12/52

    Pavement Analysis

    Mechanistic approach

    Two main failure modes

    Fatigue Cracking

    Rutting

    Causes Tensile Strain

    Compressive Strain

    Fatigue Cracking

    18 Kip ESAL

    Rutting

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    13/52

    Pavement Analysis

    Kenpave

    Evaluates Durability and Life Expectancy

    Based on Load Repetitions

    Repetitions Cause Pavement Failure

    Rutting and Fatigue Cracking

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    14/52

    Tasks

    Soil Investigation Fall Quarter

    Soil Sampling

    Soil Testing Soil Profile

    Pile Design Winter Quarter

    Ultimate Bearing Capacity

    Pile Grouping Design

    Slope Stability Spring Quarter

    Slope Stability

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    15/52

    Field Sampling

    Disturbed soil sampling

    1ft 4ft

    Hand augers

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    16/52

    Field Sampling

    Initially brown clayey

    soil.

    Transitioned into

    reddish sandy clay

    material around 3 ftdepth.

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    17/52

    Soil Tests

    Moisture Content

    Sieve Analysis

    Specific Gravity

    Plastic Limit

    Liquid Limit

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    18/52

    Soil Testing

    Results correlated with

    information provided inboring logs.

    Provided hands on

    experience withcollecting data and

    performing tests.

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    19/52

    Soil Profile

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    20/52

    Bearing Capacities

    Bearing Capacities

    Driven - Software

    LA DOTD Pile Capacity

    Design Guide

    Piles are being placed in

    very dense gray clayey

    sand layer.

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    21/52

    Pile Grouping

    3 or 4 Columns

    16(18 piles)

    Spacings

    4.5ft center to center.

    Group dimensions areB= 10.5ft and Z= 37.5ft

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    22/52

    Objectives

    Calculate Runoff

    Ditch Analysis

    Existing Culvert Analysis

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    23/52

    CATCHMENT 3

    AREA = 28.627 ACRE

    GRADE: 2%

    HYDRAULIC LENGTH: 2410FT

    CATCHMENT 2

    AREA = 11.485 ACRE

    GRADE: 1%

    HYDRAULIC LENGTH: 1733FT

    CATCHMENT 4

    AREA = 15.443 ACRE

    GRADE: 4%

    HYDRAULIC LENGTH: 1687FT

    CATCHMENT 1

    AREA = 11.577 ACRE

    GRADE: 2%

    HYDRAULIC LENGTH: 1733FT

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    24/52

    Introduction Existing Conditions Catchment Areas Analysis Conclusion

    College of Engineering and Science

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    25/52

    Introduction Existing Conditions Catchment Areas Analysis Conclusion

    College of Engineering and Science

    Project Classification

    Design type

    Rural

    Open ditch facilities

    Frequency

    50 year storm

    DRAINAGE CLASSIFICATION FREQUENCY

    Interstates 50 years

    Roadway Grade, Bridges, Cross Drains, or Side Drains under

    important side roads25 or 50 years

    Side Drains under private drives & average conditions 5 years

    Median Drains 10 years

    Storm Drains and Inlets 10 years

    Roadside Channel 5 years

    Detour Road Structures 1 year minimum

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    26/52

    Introduction Existing Conditions Catchment Areas Analysis Conclusion

    College of Engineering and Science

    Rational Method

    Catchment Areas

    Rainfall Region

    Runoff Coefficient Time of Concentration

    Intensity

    Final Peak Runoff Data

    Q= CiAQ= peak runoff rate (ft^3/sec)

    C= runoff coefficienti= average rainfall intensity at time of

    concentration

    A= drainage area

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    27/52

    Introduction Existing Conditions Catchment Areas Analysis Conclusion

    Runoff

    Coefficient

    Hydraulics Manual

    Industrial Light

    Areas

    Lincoln

    Parish

    C = 0.50

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    28/52

    Introduction Existing Conditions Catchment Areas Analysis Conclusion

    Results of Runoff

    Catchment Area (acre)Hydraulic

    Length (ft)Slope

    Time of

    Concentration

    (hr)

    Intensity

    (in/hr)

    Peak Runoff

    (ft3

    /sec)

    1 11.6 1733 2% 1.04 0.234 1.363

    2 11.5 1733 1% 1.19 0.215 1.243

    3 28.6 2410 2% 1.18 0.216 3.114

    4 15.4 1687 4% 0.89 0.255 1.986

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    29/52

    Drainage

    Side Ditch Cross Drain Culvert

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    30/52

    Side Drainage Calculations

    Side Drainage Calculations

    Hydraulic Radius

    Manning's Formula

    Critical Depth

    Ifd dc

    then the flow is tranquil

    Ifd dc

    then the flow is turbulen

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    31/52

    Side Ditch Results

    Side DitchFlow Rate(ft^3/sec)

    Slope(%)

    Depth(ft)

    Critical Depth(ft)

    New Slope(%)

    New Depth(ft)

    1 1.363 3.12 0.179 0.285 0.112 0.439

    2 1.243 3.12 0.17 0.269 0.112 0.42

    3 3.114 2.37 0.304 0.4517 0.37 0.494

    4 1.986 2.25 0.242 0.352 0.25 0.434

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    32/52

    Design Approach

    Manual Calculations using Excel Spreadsheets

    Verifying design through use of softwares

    Two main softwares used: QConBridge

    STAAD Pro

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    33/52

    QConBridge

    Check maximum moment and shear

    Manual calculations varied by less than 1%

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    34/52

    STAAD Pro Finite element analysis and design software

    Creates 3D model of bridge

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    35/52

    Project Overview

    Bridge length: 300 ft.

    4 lanes

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    36/52

    SideView

    Span 1: Span 2: Span 3: Span 4:

    50 ft. 80 ft. 80 ft. 90 ft.

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    37/52

    Maximum Span Length: 100 ft

    Girder Selection:

    AASHTO

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    38/52

    Bridge Cross-Section Girder spacing: 8ft.

    Overhang spacing: 3ft. - 11in

    Lane width: 12ft. Shoulder width: 10 ft.- 8 in

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    39/52

    Slab Design Maximum Design Span: 6.667 ft

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    40/52

    Slab Reinforcement

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    41/52

    F- Shape (PL-2)

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    42/52

    Initial Substructure Design

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    43/52

    Resources

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    44/52

    Calculating Estimate

    Unit Price * Quantity = Total Cost per Bid Item

    (7200 sy)*($38.43/sy) = $276,696.00

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    45/52

    Construction Cost Estimate Summary

    Project Estimated Cost

    Earthwork 3,001,674.15

    Tarbutton Road 797,136.00

    Interchange Ramps 1,217,707.00

    Drainage 142,268.63

    Bridge (Partial Estimate) 950,459.62Traffic Engineering 80,204.68

    Roadside Development 33,653.37

    $ 6,223,103.45

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    46/52

    Earthwork Roadway excavation

    Embankment Borrow

    $3,001,674.15

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    47/52

    Asphalt Pavement Superpave asphaltic concrete

    Class II Base Course (varying thicknesses)

    $2,014,843.00

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    48/52

    Drainage Storm drain pipe (18 RCP)

    Class A concrete

    Trenching

    $142,268.63

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    49/52

    Bridge Construction Class A & AA concrete

    Precast concrete test piles

    Reinforcing steel

    Expansion joint seal

    $950,459.62

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    50/52

    Traffic Engineering Traffic signals

    Signage

    Pavement markings

    $80,204.68

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    51/52

    Roadside Development

    Topsoil Seeding

    $33,653.37

  • 7/29/2019 S19_Louisiana Tech University_LTC2013 (1)

    52/52

    Questions


Recommended