+ All Categories
Home > Documents >  · S2 S2 X-ray Powder Diffraction Fig. S2 X-ray diffraction patterns of ZIF-8 monoliths before...

 · S2 S2 X-ray Powder Diffraction Fig. S2 X-ray diffraction patterns of ZIF-8 monoliths before...

Date post: 13-Apr-2018
Category:
Upload: trinhanh
View: 216 times
Download: 1 times
Share this document with a friend
13
S1 Electronic Supporting Information for: Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity Tian Tian, a Jose Velazquez-Garcia, a Thomas D. Bennett b and David Fairen-Jimenez a, * a Department of Chemical Engineering & Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom. Email: [email protected]; website: http://people.ds.cam.ac.uk/df334 b Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom Contents S1 Transmission Electron Microscopy (TEM) ........................................................................................................ S1 S2 X-ray Powder Diffraction ................................................................................................................................... S2 S3 N 2 adsorption isotherm ....................................................................................................................................... S3 S4 Mercury porosimetry .......................................................................................................................................... S4 S5 Nanoindentation ................................................................................................................................................. S5 S6 Chemical stability ............................................................................................................................................. S13 S1 Transmission Electron Microscopy (TEM) Fig. S1 TEM image of ZIF-8. 100 nm Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014
Transcript

S1

Electronic Supporting Information for:

Mechanically and chemically robust ZIF-8 monoliths with high

volumetric adsorption capacity

Tian Tian,a Jose Velazquez-Garcia,

a Thomas D. Bennett

b and David Fairen-Jimenez

a,*

aDepartment of Chemical Engineering & Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2

3RA, United Kingdom. Email: [email protected]; website: http://people.ds.cam.ac.uk/df334

bDepartment of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3

0FS, United Kingdom

Contents S1 Transmission Electron Microscopy (TEM) ........................................................................................................ S1

S2 X-ray Powder Diffraction ................................................................................................................................... S2

S3 N2 adsorption isotherm ....................................................................................................................................... S3

S4 Mercury porosimetry .......................................................................................................................................... S4

S5 Nanoindentation ................................................................................................................................................. S5

S6 Chemical stability ............................................................................................................................................. S13

S1 Transmission Electron Microscopy (TEM)

Fig. S1 TEM image of ZIF-8.

100 nm

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2014

S2

S2 X-ray Powder Diffraction

Fig. S2 X-ray diffraction patterns of ZIF-8 monoliths before grinding (a-c) and after grinding (d-f) compared

with the simulated pattern (g). Note that the position of the peaks and relative intensities from monolithic and

grinded samples are similar.

5 10 15 20 25 30

Inte

ns

ity (

a.u

.)

2q (o)

(g) ZIF-8

(f) ZIF-8LT

(e) ZIF-8LT-HT

(d) ZIF-8ER

(c) Monolithic ZIF-8LT

(b) Monolithic ZIF-8LT-HT

(a) Monolithic ZIF-8ER

S3

S3 N2 adsorption isotherm

Fig. S3 N2 Adsorption isotherms at 77 K for ZIF-8LT, red squares, ZIF-8HT, green triangles, ZIF-8LT-HT,

black diamonds, and ZIF-8ER, purple circles, in a semi-logarithmic (left) and linear (right) scale.

Table S1 Gravimetric and volumetric BET areas (SBET), micropore volume (W0), meso- and macropore

volume (V2), total pore volume (VTot) and bulk density (ρb) for the different ZIF-8 structures.

Material SBET W0a

V2 VTotb

ρbc

SBET(vol) W0(vol) V2(vol) VTot(vol)

m2/g cm

3/g cm

3/g cm

3/g g/cm

3 m

2/cm

3 cm

3/cm

3 cm

3/cm

3 cm

3/cm

3

ZIF-8HT 1387 0.552 0.277 0.829 0.35d

403 0.193 0.097 0.29

ZIF-8LT 1359 0.532 0.011 0.543 1.14 1594 0.606 0.013 0.619

ZIF-8LT-HT 1423 0.543 0.003 0.546 1.05 1494 0.570 0.003 0.573

ZIF-8ER 1395 0.535 0.010 0.545 1.19 1660 0.637 0.012 0.648

0

100

200

300

400

500

600

0.00 0.25 0.50 0.75 1.00

Vad

s (

cm

3/g

ST

P)

P/P0

0

100

200

300

400

500

600

1E-5 1E-4 1E-3 1E-2 1E-1 1E+0

Vad

s (

cm

3/g

ST

P)

P/P0

Theoretical single crystal capacity

Theoretical single crystal capacity

b

a

0

50

100

150

200

250

300

350

400

450

500

0.00 0.25 0.50 0.75 1.00

Vad

s (

cm

3/c

m3

ST

P)

P/P0

c

0

100

200

300

400

500

1E-5 1E-4 1E-3 1E-2 1E-1 1E+0

Vad

s (

cm

3/c

m3

ST

P)

P/P0

Theoretical single crystal capacity

d

S4

S4 Mercury porosimetry

Based on Archimedes’ method, it allows measuring the total volume including the volume of the skeleton

and the porosity of the MOF samples since mercury at ambient pressure does not penetrate any micro-,

meso- and macroporosity. Bulk densities of the samples can be calculated by dividing the mass of the sample

by the total volume. Figure S20 shows the pore size distribution of the macro- and mesoporosity of the

samples.

Fig. S4 Pore size distribution of the macro- and mesoporosity of ZIF-8LT and ZIF-8ER

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

110100100010000

dV

/dr

(cm

3/g

·nm

)

Pore size diameter (nm)

ZIF-8 LT

ZIF-8 ER

S5

S5 Nanoindentation

ZIF-8LT:

45 indents of 1000nm were performed (10 below on graph)

Fig. S5 Load-displacement data for 20 indents on ZIF-8LT, showing excellent consistency.

Fig. S6 2 Rows of 1000 nm indents made on a sample (5 x 5 mm) of ZIF-8LT.

0

1

2

3

4

5

6

7

0 500 1000 1500

Lo

ad

(m

N)

Depth into Surface (nm)

S6

Fig. S7 Elastic moduli of ZIF-8LT as a function of indentation depth, each error bar arises from the standard

deviation of 45 indents.

Fig. S8 Hardness of ZIF-8LT as a function of indentation depth, each error bar arises from the standard

deviation of 45 indents.

0

1

2

3

4

5

0 200 400 600 800 1000

Ela

sti

c M

od

ulu

s (

GP

a)

Indentation Depth (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

Hard

ness (

GP

a)

Indentation Depth (nm)

S7

ZIF-8LT-HT:

Fig. S9 Load-displacement data for 20 indents on ZIF-8LT-HT.

Fig. S10 2 Rows of 1000 nm indents made on a sample (5 x 5 mm) of ZIF-8LT-HT.

0

1

2

3

4

5

6

7

0 500 1000 1500

Lo

ad

(m

N)

Indentation Depth (nm)

S8

Fig. S11 Elastic moduli of ZIF-8LT-HT as a function of indentation depth, each error bar arises from the

standard deviation of 45 indents.

Fig. S12 Hardness of ZIF-8LT-HT as a function of indentation depth, each error bar arises from the standard

deviation of 45 indents.

0

1

2

3

4

5

0 200 400 600 800 1000 1200

Ela

sti

c M

od

ulu

s (

GP

a)

Indentation Depth (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000 1200

Hard

ness (

GP

a)

Indetation Depth (nm)

S9

ZIF-8ER

A) 15 indents of 1000 nm depth performed on one monolith

B) 6 indents of 3000 nm performed on a second monolith.

A) 3000nm data set:

Fig. S13 Load-displacement data for 6 indents on ZIF-8ER.

Fig. S14 Elastic moduli of ZIF-8ER as a function of indentation depth, each error bar arises from the

standard deviation of 6 indents.

0

20

40

60

80

100

0 1000 2000 3000 4000

Lo

ad

(m

N)

Indentation Depth (nm)

0

2

4

6

8

0 200 400 600 800 1000 1200

Ela

sti

c M

od

ulu

s (

GP

a)

Indentation Depth (nm)

S10

Fig. S15 Hardness of ZIF-8ER as a function of indentation depth, each error bar arises from the standard

deviation of 6 indents.

Fig. S16 1000 nm indent made on a sample (5 x 5 mm) of ZIF-8ER.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000 1200

Hard

ness (

GP

a)

Indentation Depth (nm)

S11

B) 1000 nm data set:

Fig. S17 Load-displacement data for 15 indents on ZIF-8ER.

Fig. S18 Hardness of ZIF-8ER as a function of indentation depth, each error bar arises from the standard

deviation of 15 indents.

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

Lo

ad

(m

N)

Indentation Depth (nm)

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

Hard

ness (

GP

a)

Indentation Depth (nm)

S12

Fig. S19 Elastic moduli of ZIF-8ER as a function of indentation depth, each error bar arises from the

standard deviation of 15 indents.

Fig. S20 2 Rows of 1000 nm indents made on a sample (5 x 5 mm) of ZIF-8ER.

0

2

4

6

8

0 200 400 600 800 1000

Ela

sti

c M

od

ulu

s (

GP

a)

Indentation Depth (nm)

S13

S6 Chemical stability

Fig. S21 PXRD patterns of ZIF-8-ER immersed in boiling water alongside a simulated pattern of ZIF-8.

5 10 15 20 25 30

Inte

ns

ity (

a.u

.)

2q (o)

ZIF-8

3 days in boiling water

5 days in boiling water

7 days in boiling water


Recommended