+ All Categories
Home > Documents > Sag TensionCalcs OHL Tutorial 14Jan2013

Sag TensionCalcs OHL Tutorial 14Jan2013

Date post: 04-Apr-2018
Category:
Upload: eduardo777777
View: 223 times
Download: 2 times
Share this document with a friend

of 32

Transcript
  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    1/32

    Sag-tension Calculations

    A CIGRE Tutorial Based onTechnical Brochure 324

    Dale Douglass, PDCPaul Springer, Southwire Co

    14 January, 2013

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    2/32

    1/14/13 IEEE Sag-Ten Tutorial

    Why Bother with Sag-Tension?

    Sag determines electrical clearances, right-of-way width (blowout), uplift (wts & strain), thermal

    rating Sag is a factor in electric & magnetic fields,

    aeolian vibration (H/w), ice galloping

    Tension determines structure angle/dead-end/broken wire loads Tension limits determine conductor system

    safety factor, vibration, & structure cost2

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    3/32

    1/14/13 IEEE Sag-Ten Tutorial

    Sag-tension Calculations KeyLine Design Parameters

    Maximum sag minimum clearance toground and other conductors must bemaintained usually at high temp.

    Maximum tension so that structures canbe designed to withstand it.

    Minimum sag to control structure upliftproblems & H/w during coldest month tolimit aeolian vibration.

    3

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    4/32

    1/14/13 IEEE Sag-Ten Tutorial

    Key Questions

    What is a ruling span & why bother with it? How is the conductor tension related to the

    sag? Why define initial & final conditions? What are typical conductor tension limits?

    Modeling 2-part conductors (e.g. ACSR).

    4

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    5/32

    1/14/13 IEEE Sag-Ten Tutorial

    What is a ruling span?

    5

    Strain Structure Suspension Structure

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    6/32

    1/14/13 IEEE Sag-Ten Tutorial

    ( )max23 Average Average RS S S S +

    S 1 S 2 S 3

    RS

    6

    S +----+S +S

    S +----+S +S = RS n21

    3n

    32

    31

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    7/32

    The Ruling Span

    Simpler concept than multi-span linesection.

    For many lines, the tension variation withtemperature and load is the same for theruling span and each suspension span.

    Stringing sags calculated as a function ofsuspension span length and temperaturesince tension is the same in all.

    1/14/13 IEEE Sag-Ten Tutorial 7

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    8/32

    1/14/13 IEEE Sag-Ten Tutorial

    The Catenary Curve

    HyperbolicFunctions & Parabolas Sag vs weight & tension

    Length between supports What is Slack?

    8

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    9/32

    The Catenary Level Span

    Sag D

    H - Horizontal Component of Tension (lb) L - Conductor length (ft)T - Maximum tension (lb) w - Conductor weight (lb/ft)x, y - wire location in xy coordinates (0,0) is the lowest point (ft)D - Maximum sag (ft) S - Span length (ft)

    y(x)

    D (sag at belly)

    D

    Max .

    Tension H

    (S/2, D) (end support)

    S + S +

    1/14/13 IEEE Sag-Ten Tutorial 9

    Span

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    10/32

    1/14/13 IEEE Sag-Ten Tutorial

    Catenary Sample Calcsfor Arbutus AAC

    20.7453 60012.064 3 678

    8 2780D ft ( . m) =

    w=0.7453 lbs/ft Bare Weight H=2780 lbs (20% RBS)S=600 ft ruling span

    600 0.7453 8 12.064 600.64724 2780 3 600

    2 2 2

    2 2 L 600 1 + 600 1 + ft

    = = 2

    2

    8 12.0640.647

    3 600Slack = L - S = 600 ft

    =

    ( )0.64712.064 (3.678 )

    8

    3 600Sag = ft m

    =

    10

    Notice that 8inches of slackproduces 12 ft ofsag!!

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    11/32

    Catenary Observations

    If the weight doubles, and L & D stay thesame, the tension doubles (flexible chain).

    Heating the conductor and changing theconductor tension can change the length &thus the sag.

    If the conductor length changes even by asmall amount, the sag and tension canchange by a large amount.

    1/14/13 IEEE Sag-Ten Tutorial 11

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    12/32

    1/14/13 IEEE Sag-Ten Tutorial

    Conductor Elongation

    Elastic elongation (conductor stiffness)

    Thermal elongation

    Plastic Elongation of Aluminum

    Settlement & Short-term creep Long term creep

    L H L E A

    = =

    A A

    LT

    L

    =

    12

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    13/32

    1/14/13 IEEE Sag-Ten Tutorial

    Conductor Elongation

    Manufactured Length

    T h e rm a l S tr a i n

    Elastic Strain

    Long-time

    Creep Strain Settlement &1-hr creep Strain

    13

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    14/32

    1/14/13 IEEE Sag-Ten Tutorial

    Sag-tension Envelope

    GROUND LEVEL

    Minimum ElectricalClearance

    Initial Installed Sag @15C

    Final Unloaded Sag @15C

    Sag @ Max Ice/Wind Load

    Sag @ Max ElectricalLoad, Tmax

    Span Length

    14

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    15/32

    Simplified Sag-Tension Calcs

    1/14/13 IEEE Sag-Ten Tutorial

    w=0.7453 lbs/ft BareH=2780 lbs (20% RBS)S=600 ft

    ( )( )12.8 6* 167 60 600.647*(1.00137) 601.470 L 600.647 1 + e ft = = Slack = L - S = 1.470 ft

    ( )1.470 18.1878

    3 600 D = ft =

    L = 600.647 ftL-S = Slack = 0.647 ftD = 12.064 ft

    795kcmil 37 strand Arbutus AAC @60F

    Now increase cond temp to 167F

    2 20.7453 6001844

    8 8 18.187w S

    H lbs D

    = = =

    15

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    16/32

    Simplified Sag-Ten Calcs (cont)

    1/14/13 IEEE Sag-Ten Tutorial

    ( )1844 2780601.470* (0.999786) 601.341

    0.6245*7 6 L 601.470 1 + ft

    e

    = =

    Slack = L - S = 1.341 ft

    ( )1.34117.37

    8

    3 600 D = ft

    =

    795kcmil 37 strand Arbutus AAC @60F

    Increasing the cond temp from 60F to 167F, causedthe slack to increase by 130%, the tension to drop byfrom 2780 to 1844 lbs (35%) & sag to increase from

    12.1 to 18.2 ft (50%).

    After multiple iterations, the exact answer is 1931 lbs

    16

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    17/32

    Numerical Calculation

    1/14/13 IEEE Sag-Ten Tutorial 17

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    18/32

    1/14/13 IEEE Sag-Ten Tutorial

    Tension Limits and Sag

    Tension at 15Cunloaded initial- %RTS

    Tension at maxice and windload - %RTS

    Tension at maxice and windload - kN

    Initial Sag at100C - meters

    Final Sag at100C - meters

    10 22.6 31.6 14.6 14.615 31.7 44.4 10.9 11.020 38.4 53.8 9.0 9.425 43.5 61.0 7.8 8.4

    18

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    19/32

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    20/32

    IEEE Sag-Ten Tutorial 20

    Given the link between stress and strain in each component as shown in equations (13),the composite elastic modulus, E AS of the non-homogeneous conductor can be derived bycombining the preceding equations:

    The component tensions are then found by rearranging equations (17):

    AS AS

    A A AS A A E

    A E H H = (18a) and

    AS AS

    S S AS S A E

    A E H H = (18b)

    Finally, in terms of the modulus of the components, the composite linear modulus is:

    AS

    S S

    AS

    A A AS A

    A E

    A

    A E E += (19)

    S S

    S

    A A

    A

    AS AS

    AS AS E A

    H E A

    H E A

    H == (17)

    Component Tensions ACSRCIGRE Tech Brochure 324

    1/14/13

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    21/32

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    22/32

    IEEE Sag-Ten Tutorial 22

    For example, with 403mm2, 26/7 ACSR (403-A1/S1A-26/7) Drake conductor, thecomposite modulus and thermal elongation coefficient, according to (19) and (20) are:

    MPa E AS 746.4688.65

    1906.4688.402

    55 =

    +

    =

    66 1084.186.468

    8.65

    74

    190105.11

    6.468

    8.402

    74

    55623 =

    +

    = e AS

    Example Calculations ACSRCIGRE Tech Brochure 324

    1/14/13

    35% higher than alumalone

    20% less than alum alone

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    23/32

    Experimental Conductor Data& Numerical Sag-Tension

    CalculationsPaul Springer

    Southwire

    1/14/13 IEEE Sag-Ten Tutorial 23

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    24/32

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    25/32

    Early work station analog computer

    Alcoa Graphical Method workstation 1920s to 1970s1/14/13 IEEE Sag-Ten Tutorial 25

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    26/32

    Stress-Strain Model Type 13 ACSR

    Initial Modulus

    Core Initial Modulus

    Aluminum Initial Modulus

    10-year Creep Modulus

    Aluminum 10-year Creep

    26

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    27/32

    Stress-Strain Model Type 13 ACSS

    27

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    28/32

    IEEE Sag-Ten Tutorial

    28

    Modeling thermal strains Almost all composite conductors exhibit a knee

    point in the mechanical response At low temperature, thermal strain (or sag with

    increasing temperature) is the weighted average

    of the aluminum and core strain Above the knee point temperature, thermal sag is

    governed by the thermal elongation of the core

    Thermal strains cause changes in elastic strains.The computations are iterative and extremelytedious but an ideal computer application

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    29/32

    1/14/13 IEEE Sag-Ten Tutorial

    SAG10 Calculation Table

    From Southwire SAG10 program 29

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    30/32

    1/14/13 IEEE Sag-Ten Tutorial

    Summary of Some Key Points

    Tension equalization between suspension spansallows use of the ruling span

    Initial and final conditions occur at sagging andafter high loads and multiple years

    For large conductors, max tension is typicallybelow 60% in order to limit wind vibration & uplift

    Negative tensions (compression) in aluminum

    occur at high temperature for ACSR because ofthe 2:1 diff in thermal elongation between alum& steel

    30

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    31/32

    1/14/13 IEEE Sag-Ten Tutorial

    General Sag-Ten References Aluminum Association Aluminum Electrical Conductor Handbook Publication No. ECH-56" Southwire Company "Overhead Conductor Manual Barrett, JS, Dutta S., and Nigol, O., A New Computer Model of A1/S1A (ACSR) Conductors , IEEE Trans., Vol.

    PAS-102, No. 3, March 1983, pp 614-621. Varney T., Aluminum Company of America, Graphic Method for Sag Tension Calculations for A1/S1A (ACSR)

    and Other Conductors., Pittsburg, 1927 Winkelman, P.F., Sag-Tension Computations and Field Measurements of Bonneville Power Administration, AIEE

    Paper 59-900, June 1959. IEEE Working Group, Limitations of the Ruling Span Method for Overhead Line Conductors at High Operating

    Temperatures. Report of IEEE WG on Thermal Aspects of Conductors, IEEE WPM 1998, Tampa, FL, Feb. 3,1998 Thayer, E.S., Computing tensions in transmission lines, Electrical W orld, Vol.84, no.2, July 12, 1924 Aluminum Association, Stress-Strain-Creep Curves for Aluminum Overhead Electrical Conductors, Published

    7/15/74. Barrett, JS, and Nigol, O., Characteristics of A1/S1A (ACSR) Conductors as High Temperatures and Stresses ,

    IEEE Trans., Vol. PAS-100, No. 2, February 1981, pp 485-493 Electrical Technical Committee of the Aluminum Association, A Method of Stress-Strain Testing of Aluminum

    Conductor and ACSR and A Test Method for Determining the Long Time Tensile Creep of Aluminum Conductorsin Overhead Lines, January, 1999, The aluminum Association, Washington, DC 20006, USA.

    Harvey, JR and Larson RE. Use of Elevated Temperature Creep Data in Sag-Tension Calculations . IEEE Trans.,Vol. PAS-89, No. 3, pp. 380-386, March 1970 Rawlins, C.B., Some Effects of Mill Practice on the Stress-Strain Behaviour of ACSR, IEEE WPM 1998, Tampa,

    FL, Feb. 1998.

    31

  • 7/29/2019 Sag TensionCalcs OHL Tutorial 14Jan2013

    32/32

    The End

    A Sag-tension Tutorial

    Prepared for the IEEE TP&CSubcommittee by Dale Douglass


Recommended