+ All Categories
Home > Documents > Santos Monroy and Moreno - Technological Change and Labor...

Santos Monroy and Moreno - Technological Change and Labor...

Date post: 11-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
18
Technological Change and Labor Market Disruptions: evidence from the developing world By Indhira Santos, Sebastian Monroy and Martin Moreno March 15, 2015 ABSTRACT Digital technologies are changing the world of work. They are shifting the skills a worker needs to success in “new economy” jobs. This technological change, together with globalization and urbanization, is likely to generate important labor market disruptions. It may generate them because it is skillbiased and labor saving. However, the evidence to date has been limited to advanced countries – mostly the U.S. We use novel data for developing world countries to assess the potential disruption to their labor market, to provide a typology on the extent of this disruption, and to classify the countries on their capacity of their skill development systems to adapt to this disruption. EXTENDED ABSTRACT Digital technologies are changing the world of work. The use of digital technologies, such as computers, mobile phones and the internet, are modifying, expanding and replacing specific tasks or even complete jobs. The main channel through which these digital technologies are shifting the world of work is by changing the skills that workers need to succeed in “new economy” jobs (Autor, Levy and Murnane 2003). The evidence, so far limited to advanced countries– mostly the U.S. – on how technology affects the labor markets points to two forces. The first one is that technological change is skill biased (Acemoglu & Autor, 2011; Autor & Handel, 2013). Similarly to other waves of technological waves, digital technologies disproportionally increases the productivity of highskilled workers. More specifically, the skillbiased nature of this technological change comes in form of a reduction in the demand for workers doing tasks that are mostly routine (those more likely to be computerized), while it increases the demand for workers doing tasks that are mostly nonroutine. (Acemoglu, 2002; Autor, Katz, & Kearney, 2008; Autor D. H., 2014). This leads inevitably to the polarization of the labor market (Autor D. H., 2014; Autor & Dorn, 2013). The second force is that this technological change is labor saving (D. H. Autor 2014). In this case, occupations with a substantial number of tasks that are routine can be fully automated. This has been the case, for example, of many travel agents (Frey & Osborne, 2013; Brynjolfsson & McAfee, 2014). Through these forces, technological change, together with globalization and urbanization, is likely to generate important disruptions in the labor market. Yet the evidence to date is limited to advanced economies (for instance, Krueger, 1993; DiNardo & Pischke, 1997; SpitzOener, 2006; Handel, 2007). There is little evidence on how technological change has affected the labor market in the developing world. This is the gap that this paper seeks to fill. Using novel data from the Skill Towards Employment and Productivity (STEP) surveys in 10 countries and 1 Chinese province, and expanding it to around 30 developing world countries, we address this gap in three ways: 1. We measure the extent of use of digital technologies at work and, how this correlates with changes skill requirements for a set of developing world countries. In order to measure the
Transcript
Page 1: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

   

Technological  Change  and  Labor  Market  Disruptions:  evidence  from  the  developing  world  

By  Indhira  Santos,  Sebastian  Monroy  and  Martin  Moreno    

March  15,  2015      

ABSTRACT  

Digital  technologies  are  changing  the  world  of  work.  They  are  shifting  the  skills  a  worker  needs  to  success  in  “new  economy”  jobs.  This  technological  change,  together  with  globalization  and  urbanization,  is  likely  to  generate  important  labor  market  disruptions.  It  may  generate  them  because  it  is  skill-­‐biased  and  labor  saving.  However,  the  evidence  to  date  has  been  limited  to  advanced  countries  –  mostly  the  U.S.  We  use  novel  data  for  developing  world  countries  to  assess  the  potential  disruption  to  their  labor  market,  to  provide  a  typology  on  the  extent  of  this  disruption,  and  to  classify  the  countries  on  their  capacity  of  their  skill  development  systems  to  adapt  to  this  disruption.    

EXTENDED  ABSTRACT  

Digital  technologies  are  changing  the  world  of  work.  The  use  of  digital  technologies,  such  as  computers,  mobile  phones  and  the  internet,  are  modifying,  expanding  and  replacing  specific  tasks  or  even  complete  jobs.  The  main  channel  through  which  these  digital  technologies  are  shifting  the  world  of  work  is  by  changing  the  skills  that  workers  need  to  succeed  in  “new  economy”  jobs  (Autor,  Levy  and  Murnane  2003).      

The  evidence,  so  far  limited  to  advanced  countries–  mostly  the  U.S.  –  on  how  technology  affects  the  labor  markets  points  to  two  forces.  The  first  one  is  that  technological  change  is  skill  biased  (Acemoglu  &  Autor,  2011;  Autor  &  Handel,  2013).  Similarly  to  other  waves  of  technological  waves,  digital  technologies  disproportionally  increases  the  productivity  of  high-­‐skilled  workers.  More  specifically,  the  skill-­‐biased  nature  of  this  technological  change  comes  in  form  of  a  reduction  in  the  demand  for  workers  doing  tasks  that  are  mostly  routine  (those  more  likely  to  be  computerized),  while  it  increases  the  demand  for  workers  doing  tasks  that  are  mostly  non-­‐routine.  (Acemoglu,  2002;  Autor,  Katz,  &  Kearney,  2008;  Autor  D.  H.,  2014).  This  leads  inevitably  to  the  polarization  of  the  labor  market  (Autor  D.  H.,  2014;  Autor  &  Dorn,  2013).      

The  second  force  is  that  this  technological  change  is  labor  saving  (D.  H.  Autor  2014).  In  this  case,  occupations  with  a  substantial  number  of  tasks  that  are  routine  can  be  fully  automated.  This  has  been  the  case,  for  example,  of  many  travel  agents  (Frey  &  Osborne,  2013;  Brynjolfsson  &  McAfee,  2014).    

Through  these  forces,  technological  change,  together  with  globalization  and  urbanization,  is  likely  to  generate  important  disruptions  in  the  labor  market.  Yet  the  evidence  to  date  is  limited  to  advanced  economies  (for  instance,  Krueger,  1993;  DiNardo  &  Pischke,  1997;  Spitz-­‐Oener,  2006;  Handel,  2007).  There  is  little  evidence  on  how  technological  change  has  affected  the  labor  market  in  the  developing  world.  This  is  the  gap  that  this  paper  seeks  to  fill.  Using  novel  data  from  the  Skill  Towards  Employment  and  Productivity  (STEP)  surveys  in  10  countries  and  1  Chinese  province,  and  expanding  it  to  around  30  developing  world  countries,  we  address  this  gap  in  three  ways:    

1. We  measure  the  extent  of  use  of  digital  technologies  at  work  and,  how  this  correlates  with  changes  skill  requirements  for  a  set  of  developing  world  countries.  In  order  to  measure  the  

Page 2: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

   

extent  of  use  of  digital  technology  at  work,  we  build  an  index  of  ICT  intensity.  The  index  contains  information  about  computer  frequency  and  complexity  of  use,  as  well  as  use  of  digital  technologies  such  as  internet  and  mobile  phones.  We  later  use  the  average  index  at  an  occupation  level  to  extrapolate  to  other  countries  and  discuss  the  correlations  with  the  changes  in  skill  requirements.  

2. We  measure  the  extent  to  which  the  risk  of  automation,  as  estimated  by  Frey  &  Osborne  (2013),  can  affect  labor  markets.  The  risk  of  automation  was  estimated  by  Frey  and  Osborne  (2013)  for  the  U.S.  We  extrapolate  the  information  of  the  probability  of  being  automated  to  the  same  data  sets  we  used  to  estimate  the  index  of  use  of  digital  technology.  We  do  this  at  an  occupation  level.  This  gives  us  information  on  the  magnitude  and  characteristics  of  the  jobs  that  are  in  high  risk  of  being  automated  based  on  the  technological  feasibility  of  such  automation.  We  take  it  a  step  beyond  to  adjust  for  the  fact  that  are  adopted  and  diffused  with  a  time  lag  in  the  developing  world.  To  adjust  for  this,  we  use  information  from  Comin  and  Hobijn  (2010)  on  the  adoption  lags  of  20th  century  technologies.  

3. We  put  together  our  estimates  of  use  of  digital  technologies  at  work  with  those  for  the  risk  of  automation  to  build  a  more  complete  picture  of  the  extent  of  the  labor  market  disruption  that  developing  countries  can  face  as  a  result  of  these  forces.  The  goal  of  putting  together  the  estimates  of  use  of  digital  technology  at  work  with  those  of  automation  is  to  build  a  typology  of  countries  based  on  the  relative  degree  of  labor  market  disruption  of  these  two  forces.  Similarly,  we  classify  countries  according  to  their  capacity  to  respond  and  adapt  to  technological  changes  in  the  labor  market,  mostly  determined  by  their  quality  of  their  skill  development  systems.  

 

Page 3: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

1    

   

1. Introduction    

2. Literature  Review    

3. Measuring  the  use  of  digital  technologies  at  work    • Index  constructed  using  STEP  surveys.  

o What  are  the  STEP  surveys?  § This  paper  uses  the  STEP  surveys  from  one  province  in  China  (Yunnan)  and  ten  

countries:  Armenia,  Bolivia,  Colombia,  Georgia,  Ghana,  Kenya,  Lao  PDR,  Macedonia,  Sri  Lanka,  and  Vietnam.  These  surveys  contain  comparable  information  on  cognitive  skills,  socio-­‐emotional  skills  and  the  use  of  job-­‐related  tasks  use.  In  addition  to  the  skills  measures  described  above,  the  surveys  gather  extensive  information  on  education  and  employment  outcomes,  and  individual  and  household  characteristics.    

o What  were  the  inputs  for  the  index?  § STEP  includes  in  the  employment  module  a  block  of  questions  aimed  to  

measure  the  use  of  ICT  technologies  for  everyday  work  activities.    Several  questions  of  those  questions  were  selected  to  assemble  the  ICT  index  (the  details  are  reported  in  the  Appendix).  Questions  included  in  the  index  are  self-­‐reports  of  the  use  of  mobile  phones  and  computers  at  work,  a  measure  of  frequency  of  use  of  computers  at  work,  and  the  requirement  to  use  to  perform  certain  activities  (such  as  emailing,  data  entry,  word  processing)  and  the  use  of  different  type  of  some  software  tools  (spreadsheet,  word  processors,  presentation).  

§ How  was  the  index  constructed?  • The  index  is  a  summative  measure  based  on  a  set  of  items/components.  The  items  

are  derived  from  responses  to  several  questions  in  the  survey  to  the  population  currently  employed.  Except  for  a  question  that  measures  the  frequency  of  use,  most  of  the  responses  are  transformed  into  binary  indicator  (0/1)  to  represent  the  absence/presence  of  each  trait.    

• Index  is  estimated  separately  per  country  using  survey  weighting  to  expand  results  for  the  full  sample.  Indices  per  country  are  then  aggregated  to  obtain  the  pooled  sample  index.  No  weighting  scheme  is  used  in  this  step.    

• The  pooled  index  only  includes  the  urban  subset  of  country  level  samples;  hence  Yunnan  Province  in  China  (not  a  country),  Sri-­‐Lanka  and  Lao  PDR  samples  are  excluded.  Also,  due  to  lack  of  consistent  data  at  occupation  level,  data  from  Ukraine  is  excluded  from  the  pooled  sample  estimation.  

• In  theory,  the  index  can  assume  values  ranging  from  0  to  19,  but  the  spare  use  of  ICTs  at  work  tend  to  concentrate  responses  around  the  zero  value.    

• The  observed  mean  of  the  index  for  the  pooled  sample  is  3.498.    • To  address  the  validity  in  the  process  of  constructing  the  index  we  explore  the  

ranking  of  occupations.  The  rank  of  occupations  based  on  a  3-­‐digit  level  ISCO-­‐08  

Page 4: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

2    

classification  is  consistent  with  level  of  ICT  intensity  expected  (ref:  graph,  Pooled  Sample)  

 Source:  Step  surveys  

§ Does  the  estimation  procedure  matter?    • A  summative  index  assumes  that  each  component  weights  equal.  An  alternative  

assumption  is  to  weight  each  item  differently  by  using  and  IRT  model.  • We  re-­‐assemble  the  index  using  a  Rasch  model  to  capture  differences  in  the  

probability  of  responding  to  some  components.  Overall,  the  IRT  version  of  the  index  behaves  in  a  similar  manner  to  the  summative  index.    

• Ordering  among  most  of  the  occupations  is  preserved:  Pearson:  .968,  Spearman:  .999.  (ref  rank  plot  of  professionals  and  technicians).  

• Further  inspection  for  occupations  with  high  skill  demands  shows  that  some  reordering  occurs;  most  occupations  retain  their  positions  within  the  ranking.  

• Because  it  is  a  parsimonious  solution,  we  decided  to  retain  the  simple  summative  index.  

Page 5: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

3    

 Source:  STEP  surveys  

• Evidence  from  developing  world  o Descriptive  analysis.    

§ In  a  sample  of  developing  countries,  the  ICT  intensity  index  exhibits  a  low  value:  the  mean  value  of  the  index  is  3.498  in  a  range  of  0-­‐19.  This  value  is  driven,  in  large  part,  by  the  high  proportion  of  the  employed  population  who  do  not  actively  used  ICT  in  their  everyday  jobs.  

§ Differences  are  observed  among  some  subgroups.  The  use  of  ICT  is  slightly  intensity  among  males  than  females.  Based  on  the  age  of  respondents,  a  U-­‐shaped  relationship  is  observed  but  some  caution  should  be  observed  given  the  low  share  of  the  15-­‐24  among  the  employed  population.    

§ As  expected,  the  intensity  of  used  increases  with  education,  with  the  higher  education  holders,  with  an  index  value  two-­‐fold  the  value  observed  in  the  closest  education  level.    

§ The  employed  population  in  the  wealthier  group  (top  40%  of  the  assets  wealth  index)  shows  an  intensive  ICT  in  comparison  with  those  in  the  bottom  group.  

§ On  average,  the  mean  value  of  the  index  observed  by  occupational  group  at  1  digit  shows  a  clear  divide.    On  one  side,  the  white  collar  occupations  including  

5.338

5.876

4.899

6.448

10.135

9.904

8.861

6.181

6.787

10.912

11.138

5.585

5.993

8.725

7.918

9.247

7.994

10.341

8.510

10.486

5.515

4.811

0.815

4.812

5.571

4.539

9.773

5.866

6.202

3.589

5.171

11.084

8.809

10.186

12.66911.430

9.859

4.069

6.758

9.724

4.713

7.397

5.501

5.363

7.977

5.677

4.533

3.0501.206

6.000

5.389

9.691

7.433

6.310

9.731

8.020

5.002

3.058

5.113

9.970

8.920

0.620

1.436

-0.124

2.034

4.850

4.731

3.602

1.738

2.456

5.744

5.398

1.3761.347

3.692

2.588

3.651

2.657

4.904

2.886

4.718

1.187

0.411

-2.719

0.688

1.188

0.418

4.376

1.5281.516

-0.769

0.538

5.651

4.028

4.796

6.522

5.585

4.717

-0.162

1.963

4.095

0.330

3.102

1.083

0.918

3.217

0.970

0.344

-1.083

-3.316

2.132

1.016

4.604

2.622

1.901

4.969

3.051

0.721

-1.278

0.737

4.417

3.682

Commissioned armed forces officers

Non-commissioned armed forces officers

Armed forces occupations, other ranks

Legislators and senior officials

Managing directors and chief executives

Business services and administration managers

Sales, marketing and development managers

Production managers in agriculture, forestry and fisheries

Manufacturing, mining, construction, and distribution managers

Information and communications technology service managers

Professional services managers

Hotel and restaurant managers

Retail and wholesale trade managers

Other services managers

Physical and earth science professionals

Mathematicians, actuaries and statisticians

Life science professionals

Engineering professionals (excluding electrotechnology)

Electrotechnology engineers

Architects, planners, surveyors and designers

Medical doctors

Nursing and midwifery professionals

Traditional and complementary medicine professionals

Paramedical practitioners

Veterinarians

Other health professionals

University and higher education teachers

Vocational education teachers

Secondary education teachers

Primary school and early childhood teachers

Other teaching professionals

Finance professionals

Administration professionals

Sales, marketing and public relations professionals

Software and applications developers and analystsDatabase and network professionals

Legal professionals

Librarians, archivists and curators

Social and religious professionals

Authors, journalists and linguists

Creative and performing artists

Physical and engineering science technicians

Mining, manufacturing and construction supervisors

Process control technicians

Life science technicians and related associate professionals

Ship and aircraft controllers and technicians

Medical and pharmaceutical technicians

Nursing and midwifery associate professionalsTraditional and complementary medicine associate professionals

Veterinary technicians and assistants

Other health associate professionals

Financial and mathematical associate professionals

Sales and purchasing agents and brokers

Business services agents

Administrative and specialised secretaries

Regulatory government associate professionals

Legal, social and religious associate professionals

Sports and fitness workers

Artistic, cultural and culinary associate professionals

ICT operations and user support technicians

Telecommunications and broadcasting technicians

Summative Index Rasch Index

Page 6: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

4    

managers,  professionals,  technicians  and  clerical  workers  have  an  intense  use  of  ICT  with  a  mean  score  value  of  6  and  over.  In  the  other  extreme,  blue  collar  occupations  show  a  low  use  of  ICT  (score  less  than  2).  

§ The  differences  for  the  pooled  sample  hold  when  each  country  is  analyzed  separately.    

 

Graphs:  Mean  value  of  ICT  Intensity  Index  by  selected  characteristics  

Source:  STEP  surveys  

 

Source:  STEP  surveys  

 

§ Ordering  of  countries  according  the  mean  index  value  places  Macedonia  at  the  top  of  the  list,  and  Lao  PDR  and  Ghana  at  the  lowest  extreme.    

§ As  it  was  indicated  previously,  the  sample  corresponding  to  Yunnan  Province  was  not  included  for  the  estimation  of  the  Pooled  Sample  index.  However,  if  we  took  the  aggregated  mean  score  for  this  territory  and  compare  it  with  the  countries  included  in  the  pooled  sample,  Yunnan  would  have  ranked  right  after  Macedonia.  Similar  exercise  with  Ukraine  would  have  ranked  it  after  but  close  to  Armenia.  

0  1  2  3  4  5  6  7  

Male   Female   15-­‐24   25-­‐34   35-­‐44   45-­‐54   55+   Lower    Secondary    or  less  

Upper    Secondary  

Vocalonal    and  

Technical  

Terlary    educalon  

Top  40%   Bomom  60%  

Gender   Age   Highest  ISCED  completed   Asset  Wealth  Index  

0  1  2  3  4  5  6  7  8  

Managers   Professionals   Technicians  and  associate  

professionals  

Clerical  support  workers  

Service  and  sales  workers  

Skilled  agricultural,  forestry  and  

fishery  workers  

Crao  and  related  trades  workers  

Plant  and  machine  

operators,  and  assemblers  

Elementary  occupalons  

Occupalon  Group  

Page 7: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

5    

 

 

Source:  STEP  surveys  

 

• The  index  can  be  expanded  to  other  countries.  o Data  availability  represents  a  problem  in  some  countries.  Not  always  is  possible  to  

obtain  micro-­‐data  coded  at  detailed  levels  for  occupations  (3  digits  or  more).  In  many  countries,  the  data  is  even  coded  using  national  variations  of  ILO-­‐ISCO.  

o To  extend  this  analysis  to  more  countries  an  alternative  is  to  aggregate  the  results  of  the  index  at  2  digits  taking  advantage  of  the  hierarchical  nature  of  the  ISCO-­‐08  scheme.  Then,  secondary  data  sources  of  other  countries  with  occupations  coded  at  2-­‐digit  level  using  ISCO-­‐08  (or  88  via  a  crosswalk).  Using  STEP,  a  2-­‐digit  aggregation  preserved  the  order  of  occupations  with  the  ICT-­‐related  group  of  occupations  ranking  in  the  top  position.  

0.000  

1.000  

2.000  

3.000  

4.000  

5.000  

6.000  

7.000  

Page 8: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

6    

 Source:  STEP  surveys  

 

§ A  similar  exercise  is  performed  extrapolating  the  ICT  index  to  more  countries  using  ILO  Laborsta  data  with  ISCO  08  codes  at  2  digits.    

§ The  sorting  of  countries  is  as  one  could  expect.  Lower  income  countries  tend  to  use  less,  on  average,  ICT  at  work  less  intensively.    

 Source.  ILO  Laborsta.      

0  

1  

2  

3  

ETH  

ALB  

THA  

GTM  

SLV  

CHN  

ROU  

TUR  

ECU  

MKD

 UKR

 PSE  

SRB  

PAN  

MEX  

CRI  

MUS  

MYS  

ARG  

ZAF  

SYC  

BGR  

HUN  

PRT  

HRV  

POL  

ESP  

GRC  

SVK  

LTU  

EST  

CYP  

LVA  

CZE  

SVN  

ITA  

FRA  

FIN  

AUT  

DEU  

IRL  

BEL  

NLD

 AU

S  DN

K  ISL  

MLT  

NOR  

GBR  

SWE  

CHE  

ISR  

LUX  

Average  intesnity

 of  ICT

 use  at  w

ork  

(Score  0-­‐6)  

Page 9: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

7    

• Given  that  STEP  is  a  survey  aimed  to  developing  countries;  the  ICT  intensity  index  is  able  to  capture  the  intensity  of  use  based  on  the  patterns  prevalent  in  these  countries.  If  we  aim  to  extend  these  findings  to  additional  countries  we  also  need  to  confirm  that  the  variations  in  the  use  of  ICT  varies  by  type  of  economy  (low  vs  high  income),  do  not  affect  the  index  values.    

• We  devise  a  method  to  assemble  a  comparable  ICT  intensity  index  based  on  information  from  different  type  of  economies.  For  that  matter,  we  use  the  PIAAC  survey.  This  is  a  survey  conducted  in  many  OECD  economies  which  includes  a  module  about  ICT  use  at  work,  and  a  set  of  similar  questions  to  the  ones  available  in  STEP.  Common  questions  were  identified  and  used  to  assemble  a  new  version  of  the  ICT  index  comparable  for  STEP  and  PIAAC.  Further  analysis  was  conducted  to  assure  the  comparability  between  both  indices.  

• The  order  of  the  countries  using  a  comparable  ICT  intensity  index  the  block  of  advanced  economies  included  in  PIAAC  rank  higher  than  their  countries  counterparts  in  STEP.  Except  for  Macedonia  and  the  Province  of  Yunnan  in  China,  and  Russia  the  order  observed  is  consistent  with  the  level  of  development  of  the  countries  included  in  each  of  the  samples.  Other  relevant  trait  is  that  the  variation  of  the  index  among  countries  that  participated  in  PIAAC  is  smoother  than  the  variation  observed  among  participant  countries  in  STEP.    

Average  ICT  Intensity  Index  (comparable  version)  by  survey  sample    

 

Source:  STEP  and  PIAAC  surveys  

 

4. Linking  the  use  digital  technologies  at  work  with  changing  skill  needs.      

• Skills  scores  are  composite  measures  built  based  on  (Acemoglu  and  Autor  2011).  Scores  at  detailed  occupation  level  are  extracted  and  assembled  from  the  ONET  v19  database.  Scores  are  aggregated  to  the  SOC2010  level,  then  crosswalked  with  ISC08  at  4-­‐digit  level.  Further  simple  aggregations  at  3,  2  and  1  digits  are  performed.  

0.0  

0.5  

1.0  

1.5  

2.0  

2.5  

3.0  

3.5  

Nethe

rland

s  Norway  

Denm

ark  

United  Kingdo

m  

Swed

en  

Belgium  

Finland  

Canada  

United  States  

China,  Yun

nan  P  

Austria

 Ge

rmany  

Maced

onia,  FYR

 Czech  Re

public  

PIAA

C  (Poo

led  Sample)  

Estonia  

Ireland

 France  

Japan  

South  Ko

rea  

Slovak  Rep

ublic  

Spain  

Georgia  

Poland

 Armen

ia  

Ukraine

 Ita

ly  

Vietnam  

Colombia  

STEP  (P

ooled  Sample)  

Bolivia  

Kenya  

Rusia

 Sri  Lanka  

Lao  PD

R  Gh

ana  

PIAAC  STEP  

Page 10: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

8    

• Graphs  show  the  correlation  between  the  ICT  Intensity  Index  estimated  for  the  STEP  Pooled  Sample  and  skills  scores  at  ISCO-­‐08  3-­‐digit  occupation  level.  

• At  occupation  level,  the  ICT  index  exhibits  a  positive  relationship  with  the  cognitive  analytical  skill,  and  negative  manual  skills.  Occupations  intense  in  the  use  of  ICT  are  more  likely  to  be  occupations  with  a  high  demand  of  cognitive  skills  and  a  spare  use  of  routine  and  non-­‐routine  manual  skills.      

 

 

 

5. Potential  risk  of  automation  in  the  developing  world.    

Technological  feasibility  

Page 11: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

9    

• Forward  looking  aspect  ICT  use  at  work  and  the  change  in  skill  needs.    • Frey  &  Osborne  (2013)  work.  

o Computerization:  job  automation  by  means  of  computer-­‐controlled  equipment.    o More  than  automation,  there  is  a  role  for  computerization  of  tasks  in  jobs.  The  more  

tasks  can  be  computerized  in  a  job,  the  more  likely  a  job  will  be  fully  automated.    o Change  from  SOC  to  ISCO  in  the  US  

• Technology  stand  point.    o “Rather  we  aim,  from  a  technological  capabilities  point  of  view,  to  determine  which  

problems  engineers  need  to  solve  for  specific  occupations  to  be  automated”  (Frey  and  Osborne  2013,  4)  

o The  ranges  to  determine  the  risk  level  of  computerization  are:    § Low:  less  than  0.3  § Medium:  0.3  to  0.7  § High:  more  than  0.7.  

o The  employment  shares  for  2013  for  the  US:  low  risk  26%,  medium  risk  33%  and  high  risk  41%,  using  ISCO  08  at  3  digit.  This  are  slightly  different  from  the  SOC  presented  in  Frey  and  Osborne  (33%,  19%,  and  47%)  due  to  aggregation  to  a  higher  level  within  ISCO,  because  when  using  ISCO  08  at  4  digit,  the  shares  are  32,  20  and  48  respectively.    

o The  order  of  occupations  still  makes  sense.  For  instance,  medical  doctors,  teachers  and  managers  have  a  low  probability  of  being  computerized,  while  salesperson,  operators  and  ticket  clerks  have  high  probability  of  being  automated.  This  ordering  is  fairly  consistent  to  the  one  presented  by  Frey  and  Osborne  (2013)  using  the  SOC  codes.    

 Source:  STEP  surveys.    Note:  Urban  employment  only.  The  probability  was  imputed  per  occupation  at  a  3  digit  level  (ISCO  08).    

 • How  do  the  risk  of  computerization  play  out  in  the  developing  world  using  STEP  countries?  

Low ProbabilityAverage: 24.2%

Medium ProbabilityRange: 25.4%

High ProbabilityRange: 50.4%

Medical DoctorsTeachersManagersLegislators

ICT TechniciansLibrariansManufacturing LabourersCleaners/Helpers

SalespersonOperatorsWaitersClerks

0

.2

.4

.6

.8

1

Prob

ablity

of co

mpute

rizati

on

Street and Related Service Workers Business Services and Administration Mgrs. Building and Housekeeping Superv. Cashiers/Ticket ClerksOccupation Code (ISCO Rev.08)

Urban population only

Page 12: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

10    

o Poorer  countries  would  face  a  grimmer  panorama  on  the  share  of  employment  that  can  face  computerization,  only  from  a  technology  stand  point.  

o This  is  because  most  of  the  employment  in  the  poorer  countries  are  mostly  in  routine  occupations.    

 Source:  STEP  surveys.    Note:  Urban  employment  only.  The  probability  was  imputed  per  occupation  at  a  3  digit  level  (ISCO  08).    

 

Who  are  the  ones  affected  in  these  countries?  

• The  gender  composition  in  the  occupations  with  high  risk  of  computerization,  is  on  average  equally  distributed.    

• However,  there  is  large  heterogeneity  across  countries,  ranging  from  a  34%  of  women  in  Sri  Lanka,  to  a  67%  in  Ghana.    

   Source:  STEP  surveys.    

30  38   43   45   49   51   51   55   56  

65   71  25  

22  26   26  

34   26   31   25   28  19  

17  44   39  31   29  

17   24   18   20   16   16   11  

0  

20  

40  

60  

80  

100  

Georgia   Armenia   Macedonia   Sri  Lanka   Bolivia   Yunnan   Kenya   Vietnam   Colombia   Ghana   Lao  

Share  of  urban  employmen

t  (%

)  

 High  risk   Medium  risk   Low  risk  

34  47  48  50  54  55  56  

61  61  63  67  

66  53  52  50  46  45  44  

39  39  37  33  

0   10   20   30   40   50   60   70   80   90   100  

Sri  Lanka  Kenya  

Macedonia  Colombia  Yunnan  Georgia  Armenia  

Lao  Vietnam  Bolivia  Ghana  

ComposiNon  in  occupaNons  with  high  risk  of  computerizaNon  (%)  

Women   Men  

Page 13: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

11    

Note:  Urban  employment  only.  The  probability  was  imputed  per  occupation  at  a  3  digit  level  (ISCO  08).      

• In  most  countries,  except  Armenia  and  Georgia,  there  is  between  a  70  to  a  97  percent  of  the  employed  population  in  occupations  with  high  risk  of  computerization  with  an  educational  attainment  of  secondary  or  less.    

 Source:  STEP  surveys.    Note:  Urban  employment  only.  The  probability  was  imputed  per  occupation  at  a  3  digit  level  (ISCO  08).      

• Those  in  the  bottom  40  of  the  distribution  are  more  likely  to  be  on  occupations  with  high  risk  of  computerization.  They  share  of  bottom  40  workers  in  urban  areas  for  these  countries  go  from  40  percent  in  Georgia  to  81  percent  in  Lao  PDR.    

 Source:  STEP  surveys.    Note:  Urban  employment  only.  The  probability  was  imputed  per  occupation  at  a  3  digit  level  (ISCO  08).      

3   5   6   6  16   17   19   19  

28  

53  65  

50  

18  

40  

17  

44   35  43  

68  35  

37  30  

30  

34  

15  

23  

20  25   7  

13  

31  

9   3  17  

44   40  53  

21   23  31  

0   6   1   1  

0  

20  

40  

60  

80  

100  

Sri  Lanka   Ghana   Kenya   Lao   Bolivia   Vietnam   Colombia   Macedonia   Yunnan   Armenia   Georgia  

Compo

siNo

n  in  occup

aNon

s  with

 high  risk  of  

compu

terizaN

on    

(%)  

Terlary       Upper  Secondary       Lower  Secondary       Primary  or  Less      

35   43   45   54   56   57  

25  39  

59  73  

51   51  64  

81  

36  58  

40   49   51  62  

51   49  

23  21  

30  

38  24  

32  

23  

30  

18  

20  

26  38   21  

12  

26  

27  

24  31   23  

27  24   29  

42   36  25  

8  20  

10  

52  31   23  

7  23  

11   15   7  

39  15  

35  21   26  

11  25   22  

0  

20  

40  

60  

80  

100  

Upp

er  60      

Bomom

 40      

Upp

er  60      

Bomom

 40      

Upp

er  60      

Bomom

 40      

Upp

er  60      

Bomom

 40      

Upp

er  60      

Bomom

 40      

Upp

er  60      

Bomom

 40      

Upp

er  60      

Bomom

 40      

Upp

er  60      

Bomom

 40      

Upp

er  60      

Bomom

 40      

Upp

er  60      

Bomom

 40      

Upp

er  60      

Bomom

 40      

Armenia   Bolivia   Colombia   Georgia   Ghana   Kenya   Lao  PDR   Sri  Lanka   Macedonia   Vietnam   Yunnan  

Share  of  urban

 employmen

t    (%

)  

High  risk   Medium  risk   Low  risk  

Page 14: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

12    

• The  gap  of  in  the  median  hourly  earnings  (2010  US  constant)  between  those  in  occupations  with  low  risk  of  computerization  and  those  in  high  risk  is  on  average  78  cents  across  these  countries.    

• They  can  go  from  around  17  cents  in  Lao  PDR  to  $1.75  in  Colombia.    

 Source:  STEP  surveys.    Note:  Urban  employment  only.  The  probability  was  imputed  per  occupation  at  a  3  digit  level  (ISCO  08).    

 

Taking  into  account  the  adoption  lags  

• The  time  frame  of  Frey  and  Osborne  in  these  changes  to  happen  is  around  2  to  3  decades.    • However,  the  technology  will  not  be  immediately  adopted  in  the  developing  world.  There  will  be  

a  time  lag  between  the  invention  and  the  technology  being  introduced  in  a  given  country.    • One  would  ideally  want  to  control  for  lag  in  adoption  and  diffusion  of  such  technologies.    There  

is  no  information  about  the  diffusion,  so  we  use  Comin  and  Hobijn  (2010)  adoption  time  lags.  Thus,  our  estimates  will  become  a  lower  bound  estimation.    

• This  should  not  matter  because  we  are  more  interested  in  the  relative  position  between  countries:  rich  countries  are  more  of  early  adopters  while  poorer  countries  are  late  adopters.    

• One  of  the  main  results  from  Comin  and  Hobijn  (2010)  suggest  that  adoption  lags  are  large,  with  substantial  variation  across  countries  and  technologies.  Newer  technologies  have  been  adopted  faster  than  older  ones.  (p.  2033).    

• We  took  only  into  account  technologies  in  the  20th  century,  from  the  ones  listed  in  Table  2  (Comin  and  Hobjin  (2010)  p.  2048).    

 

Technology   Invention  Year  Adoption  Lags  

10%   50%   90%  Aviation  –  passengers   1903   21   29   53  Aviation  –  freight   1903   24   42   61  Cell  phones   1973   10   16   19  PCs   1973   10   14   17  Internet  users   1983   5   8   11  

0.70  

1.36  1.52  

1.72   1.79  

2.67  

1.47  

1.90  1.77  

2.87  

3.41  

0.64  0.93   0.98  

0.75  1.04  

1.43  1.15  

1.39   1.29  

1.95   1.87  

0.52  0.68   0.78  

0.91  1.06  

1.19   1.21   1.31  1.58   1.64   1.67  

0  

1  

2  

3  

4  

Lao  PDR   Ghana   Sri  Lanka   Kenya   Vietnam   Bolivia   Armenia   Georgia   Yunnan   Macedonia   Colombia  

Med

ian  ho

urly  earnings  

(2010  USD

 con

stant)  

Low  risk   Medium  risk   High  risk  

Page 15: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

13    

MRIs   1977   3   5   7  Blast  oxygen  steel   1950   9   16   28  

Average  Adoption  Lag   11.71   18.57   28  Source:  Comin  and  Hobjin  (2010)  p.  2048    

• We  assume  that  the  developed  world  will  take  30  years  to  adopt  the  necessary  technologies  to  realize  the  risk  of  computerization  in  their  labor  market.  We  also,  assume  that  the  upper  middle  income  countries  are  the  next  in  line  to  adopt,  thus  they  are  part  of  the  first  10%;  lower  middle  income  countries  are  in  the  50%  of  the  adoption  lags;  and,  the  low  income  are  in  the  90%.    

• In  other  words,  for  automation  to  take  place  in  a  lower  middle  income  country,  we  are  assuming  that  it  will  take  48.57  years  (the  30  years  of  the  benchmark  –  high  income  countries-­‐  plus  18.57  years).    

• We  use  this  information  to  adjust  the  share  of  employment  that  can  be  computerized  in  a  given  country.    

• For  instance,  in  the  urban  Bolivia,  the  unadjusted  share  of  employment  that  can  be  computerized  is  61%.  Bolivia  is  a  low  middle  income,  so  the  average  adoption  lag  is  18.57.  So,  adjusting  for  the  adoption  time  lag,  the  share  of  employment  that  can  be  computerized  is  38%.    

 Source:  STEP  surveys.    Note:  Urban  employment  only.  The  probability  was  imputed  per  occupation  at  a  3  digit  level  (ISCO  08).      

• How  does  this  affect  the  rest  of  the  developing  world?  • We  use  the  ILO  data  that  contains  information  of  the  employment  share  by  ISCO  08  occupations  

at  2  digit  level  of  aggregation.  We  aggregated  and  imputed  the  probability  at  this  2  digit  level.    

26   29  38   33  

42   38   38   33  46   42   43  

42  46  

53   54  59   61   61   64   65   67   69  

0  

20  

40  

60  

80  

100  

Georgia   Armenia   Macedonia   Sri  Lanka   Yunnan   Bolivia   Vietnam   Kenya   Colombia   Ghana   Lao  PDR  

Share  of  urban  employmen

t  that  can  be  

compu

terized

 (%

)  

Adjusted  (technological  feasability  +  adoplon  lme  lags)   Unadjusted  (technological  feasability)  

Page 16: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

14    

 Source:  ILO  laborsta.    Note:  Total  employment.  Occupations  aggregated  at  2  digit  level.      

6. The  link  between  the  use  of  technologies  at  work  and  automation,  with  labor  market  disruptions.      

• Index  of  labor  market  disruption.  o Standardized  summation  o Rescaling  o Quality  adjusted  years  of  education    

• Evidence  from  the  developing  world.    

 

Source:  ILO  laborsta.  Barro  and  Lee.    World  Economic  Forum.    Note:  Total  employment.  Occupations  aggregated  at  2  digit  level.    

0  

20  

40  

60  

80  

100  

LTU  

MLT  

LVA  

OEC

D  

ESP  

KSV  

CYP  

SYC  

BGR  

GEO  

HRV  

PSE  

UKR

 

ARG  

PAN  

SRB  

ZAF  

MUS  

MYS  

CRI  

ECU  

ROU  

THA  

ALB  

SLV  

GTM  

CHN  

ETH  

Share  of  employmen

t  that  can  be  compu

tarized

 (%

)  

Adjusted  (technological  feasability  +  adoplon  lme  lags)   Unadjusted  (technological  feasability)  

0  

2  

4  

6  

8  

10  

12  

14  

0  

0.1  

0.2  

0.3  

0.4  

0.5  

0.6  

LUX  

ITA  

AUT  

MLT  

CHE  

DEU  

CYP  

HRV  

CZE  

GRC  

SVK  

FIN  

ISR  

NLD

 AU

S  SV

N  

NOR  

DNK  

POL  

FRA  

IRL  

ESP  

PRT  

GBR  

MYS  

SWE  

BEL  

LVA  

HUN  

CRI  

ARG  

EST  

MEX  

ISL  

BGR  

ZAF  

LTU  

MUS  

SRB  

SYC  

TUR  

THA  

ROU  

PAN  

MKD

 CH

N  

ECU  

SLV  

GTM  

UKR

 GE

O  

ALB  

ETH  

Quality  Ad

justed

 Years  of  Schoo

ling  

Expe

cted

 labo

r  market  d

isrup

lon  

(Inde

x  0-­‐1)  

Page 17: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

15    

 

7. References  Autor,  David  H.,  Frank  Levy,  and  Richard  J.  Murnane.  "The  Skill  Content  of  Recent  Technological  Change."  The  Quaterly  Journal  of  Economics,  2003:  1279-­‐1333.  

Autor,  David  H.  "Polanyi's  Paradox  and  the  Shape  of  Employment  Growth."  Re-­‐evaluating  Labor  Market  Dynamics.  Jackson  Hole,  Wyoming:  Federal  Reserve  Bank,  2014.  

Autor,  David  H.,  and  Michael  J.  Handel.  "Putting  Tasks  to  the  Test:  Human  Capital,  Job  Tasks  and  Wages."  Journal  of  Labor  Economics  31,  no.  2  (2013):  S59-­‐S96.  

Spitz-­‐Oener,  Alexandra.  "Technical  Change,  Job  Taks,  and  Rising  Educational  Demands:  Looking  outside  the  Wage  Structure."  Journal  of  Labor  Economics  24,  no.  2  (2006):  235-­‐270.  

Acemoglu,  Daron.  "Technical  Change,  Inequality  and  the  Labor  Market."  Journal  of  Economic  Literture  40  (2002):  7-­‐72.  

Autor,  David,  Lawrence  Katz,  and  Melissa  Kearney.  "Trends  in  U.S.  Wage  Inequality:  Revising  the  Revisionists."  Review  of  Economics  and  Statistics  90,  no.  2  (2008):  300-­‐323.  

Brynjolfsson,  Erik,  and  Andrew  McAfee.  The  Second  Machine  Age:  Work,  Progress  and  Proseperity  in  a  Time  of  Brilliant  Technologies.  New  York:  W.W.  Norton  and  Company,  2014.  

Krueger,  A.  B.  "how  computers  have  changed  the  wage  structure:  Evidence  from  microdata,  1984-­‐1989."  Quaterly  Journal  of  Economics  108  (1993):  33-­‐61.  

DiNardo,  J.E.,  and  J.-­‐S  Pischke.  "The  returns  to  computer  use  revisited:  Have  pencils  changed  the  wage  structure  too?"  Quaterly  Journal  of  Economics  112  (1997):  290-­‐303.  

Comin,  Diego,  and  Bart  Hobijn.  "An  Exploration  of  Technology  Diffusion."  American  Economic  Review  100,  no.  5  (2010):  2031-­‐2059.  

Handel,  Michael  J.  "Computers  and  the  wage  structure."  Aspects  of  Worker  Well-­‐Being,  Research  in  Labor  Economics  26  (2007):  157-­‐198.  

Acemoglu,  Daron,  and  David  H.  Autor.  "Skills,  Tasks,  and  Technologies:  Implications  for  Employment  and  Earnings."  Handbook  of  Labor  Economics  4b  (2011).  

Frey,  Carl,  and  Michael  Osborne.  "The  future  of  Employment:  How  susceptible  are  jobs  to  computerisation?"  Oxfort  University  Working  Paper,  2013.  

Autor,  David,  and  David  Dorn.  "The  Growth  of  Low-­‐Skill  Service  Jobs  and  the  Polarization  of  the  US  Labor  Market."  American  Economic  Review  103,  no.  5  (2013):  1553-­‐1597.  

 

   

Page 18: Santos Monroy and Moreno - Technological Change and Labor ...conference.iza.org/conference_files/worldb2015/monroy-taborda_s2… · Technological!change!and!labor!market!disruption!(Draft!–!March,!2015)!

Technological  change  and  labor  market  disruption  (Draft  –  March,  2015)  

16    

Appendix  

Table:  STEP  questions  used  to  assemble  the  ICT  Index  

Question Round 1 Round 2 Responses Values As part of this work do you (did you) regularly

use.... A TELEPHONE, MOBILE PHONE, PAGER OR OTHER COMMUNICATION

DEVICE?

m5b_q13_1 m5b_q15_1 1 Yes 1

2 No 0

As a part of your work do you (did you) use a computer?

m5b_q16 m5b_q18 1 Yes 2 No 0

How often do you (did you) use a computer at work? m5b_q17 m5b_q19

1 Every day 4 2 Three times or more per week 3

3 Less than three times per week 2 4 Almost never 1

Does (did) your work as [OCCUPATION] require the use of the following?

m5b_q18_1 m5b_q20_1 Email 1 m5b_q18_2 m5b_q20_2 Searching for information on the internet 1 m5b_q18_3 m5b_q20_3 Data entry 1 m5b_q18_4 m5b_q20_4 Word processing (such as word) 1 m5b_q18_5 m5b_q20_5 Spreadsheets (such as excel) 1 m5b_q18_6 m5b_q20_6 Databases (such as access) 1

Does (did) your work as [OCCUPATION] require the use of other software packages, OR designing websites, OR doing programming or

managing networks? m5b_q19 m5b_q21

1 Yes

2 No

Does (did) your work as [OCCUPATION] require the use of? m5b_q20_1 m5b_q22_1 Advanced functions in spreadsheets such

as macros and complex equations 1

m5b_q20_2 m5b_q22_2 Book-keeping, accounting or financial software 1

m5b_q20_3 m5b_q22_3 Presentation, graphics software (such as powerpoint) 1

m5b_q20_4 m5b_q22_4 Designing websites 1 m5b_q20_5 m5b_q22_5 Cad software (computer aided design) 1 m5b_q20_6 m5b_q22_6 Statistical analysis or other analysis 1 m5b_q20_7 m5b_q22_7 Software programming 1 m5b_q20_8 m5b_q22_8 Managing computer networks 1 m5b_q20_9 m5b_q22_9 Other (specify)

m5b_q20_9

_other m5b_q22_9

_other

Minimum Score 0 Maximum Score 19

 


Recommended