+ All Categories
Home > Documents > Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Date post: 04-Jan-2016
Category:
Upload: sharon-snyder
View: 23 times
Download: 0 times
Share this document with a friend
Description:
Charged particle kinetics by the Particle in Cell / Monte Carlo method. Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR. The system under examination. - PowerPoint PPT Presentation
Popular Tags:
47
Charged particle kinetics by the Particle in Cell / Monte Carlo method Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR
Transcript
Page 1: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Charged particle kinetics by the Particle in Cell / Monte

Carlo method

Savino Longo

Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Page 2: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

The system under examination

A gas can be ionized under non equilibrium conditions (too low temperature for equilibrium ionization) with constant energy

dissipation, like in electric discharges, photoionized media, preshock regions, and so on.

The result is a complex system where the nonlinear plasma dynamics coexists with chemical kinetics, fluid dynamics,

thermophysics and chemical kinetics issues

Page 3: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Basic phenomenology

The gas is only weakly ionized

Molecules are only partially dissociated and exhibit their chemical properties

The electron temperature is considerably higher (about 1eV) than the neutral one (< 1000K)

Velocity and population distributions deviate from the equibrium laws i.e. Maxwell and Boltzmann respectively

Page 4: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Items to be included in a comprehensive model

Neutral particles and plasma interaction

Chemical kinetics of excited states

Plasma dynamics

Page 5: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Plasma dynamics

II

Page 6: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

The charged particle motion is affected by the electric field, but the electric field is influenced by the space distribution of

charged particles (space charge)

The problem of plasma dynamics

F qE / m

2 4

Page 7: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

t

solve Poisson Equationfor the electric potential

Integration of equationsof motions, moving particles

Particle to gridInterpolation

Grid to particleInterpolation

The method is based on the simulation of an ensemble of mathematical “particles” with adjustable charge which move like real particles and a

simultaneous grid solution of the field equation

Charge density

E field

Particle in Cell (PiC) method

Page 8: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Vlasov equation

3 3

11

sim D sim D

Vg

n N

2 30

( , , ) 0

ion

ef t

t m

e fd v

r v

Ev r v

E

Ideal plasma

Particles propagate the initial condition moving along characteristic

lines of the Vlasov equation

Page 9: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Particle/grid interpolation: linear

Particle move: “leapfrog”

v vqEm

t

x x v t

Dx

1/ plt

( ) ( )p pp

q i x q S x i x

Page 10: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Plasma oscillation

Page 11: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Plasma dynamics+

Neutral particles and plasma interaction

IIII

Page 12: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Vlasov-Boltzmann equation

2 30

3max

max

3 3

3

( , , )

11 / ( )

( , ; , ) ( , )

( , )

ion

v v

v v

v v

ef t Cf

t m

e fd v

Cf f d vp f

p d wd w v w v w gF

d v p

r v

Ev r v

E

v

r w

r v

Page 13: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Vlasov equation

Vlasov/Boltzmann equation

medium

event

“free flight”

Initial moves alongcharacteristic lines -->deterministic method

(PIC)

Dispersion of the initial -->“choice” -->

stochastic method(MC)

Lagrangian Particles as propagators

tcoll ?

v’ ?

Page 14: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

(1) Sampling of a collision partner velocity w from the

distribution F(r,w)/n

(2) rejection of null collisions with probability 1-ng(g)/ max

Statistical sampling of the linear collision operator

(3) kinematic treatment of the collision event for the

charged+neutral particle system

Af 1 r,v max

f r ,v 1

maxd3 v p v v f v

p v v d3wd3 w ( v ,w ;v, w )| v w| F(r ,w)

Page 15: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

A ‘virtual’ gas particle is generated as a candidate collision partner based on the

local gas density and temperature.

The collision is effective with a probability

Test particle Monte Carlo

ngasg

max(ngasg)

For an effective collision the new velocity of the charged particle is calculated

according to the conservation laws and the differential cross section

A random time to the next candidate collision is generated

Page 16: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Preliminary test: H3+ in H2

reduced mobilities of H3+ ions as

a function of E/n compared with experimental results of Ellis2 (dots)

11

12

13

14

15

16

17

10 1 10 2

K0 (c

m2 V

-1s

-1)

E/n(Td)

T=600 K

T=300 K

10 -2

10 -1

10 0

10 1

10 100

mea

n en

ergy

(eV

)E/n(Td)

T=600 K

T=300 K

mean energy of H3+ ions as a

function of E/n

2H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason and L. A. Vieland, Atomic Data Nucl. Data Tables 17, 177 (1976)

Page 17: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Example: H3+/H2 transport* in

a thermal gradient = 500 K/cm, costant p = 0.31 torr

f(x,y,0)=(x) (y) (x) E/N=100 Td

* only elastic collisions below about 10eV

Page 18: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

7s no field 7s withE field

0

0,2

0,4

0,6

0,8

1

1,2

-2 -1 0 1 2

h(y)

(cm

-1)

y (cm)

7s no field

E field

f(x,y)

f(y)

Page 19: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

t

solve Poisson Equationfor the electric potential

Integration of equationsof motions, moving particles

Particle to gridInterpolation

Grid to particleInterpolation

space charge

E field

Monte Carlo Collisions

Particle in Cell with Monte Carlo Collisions (PiC/MCC) method

Page 20: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

After R.W.Hockney, J.W.Eastwood, Computer Simulation using Particles, IOP 1988

Making the exact MC collision times compatiblewith the PIC timestep

Page 21: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Plasma turbulence due to charge exchange in Ar+/Ar(collaboration with H.Pecseli , S. Børve and J.Trulsen, Oslo)

2 component (e,Ar+) 1.5D PIC/MC106 superparticles

Initial beam: = 4 1013 m-3

< > = 1eV T = 100 KL = 0.05 m

Ar background:T = 100K, p= 0.3torr

vx

x

t = 0

The electron density is calculated as a Boltzmann distribution, this produces a

nonlinear Poisson equation solved iteratively

14e

2

nion ne0 exp(e / kTe)

Page 22: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

vx

x

inertia

collisions

electrostatic repulsion

The collisional production of the second (rest) ion beam can lead to a two stream instability

Page 23: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Two stream instability

The propagation of two charged particle beams in opposite directions is unstable under density/velocity perturbations and can

lead to plasma turbulence

vv

rr

2 1(v v ) pl

Page 24: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

0.050 0.100 0.150 0.200 0.250

-2000

0

2000

4000

vx (m/s)

x (m)

1 10 (log)

Simulation time. 2 10-5 s

Page 25: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

VRFsin(2RFt)

Capacitive coupled, parallel plate radio frequency (RF) discharge

Page 26: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

strong oscillating fieldregions (sheaths)

ambipolar potential energy well = -e

electron density

electrons

negativecharge

negativecharge

Page 27: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Simplified code implementation for nitrogen

2 particle species in the plasma phase: e, N2+

more than one charged speciesmore than one charged species

Page 28: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Process probability = relative contribution to the collision frequency

Selection of the collision process based on the cross section database

Page 29: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Particle position/energy plot

Page 30: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

1013

1014

1015

1016

0 0.01 0.02 0.03 0.04

Vrf = 500 V, p = 0.1 torr, f =13.5 MHzele

ctro

n a

nd ion d

ensi

ty (

m

-3)

position (m)

ions

electrons

Page 31: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

0.1

1

10

0 0.01 0.02 0.03 0.04

Vrf = 500 V, p = 0.1 torr, f =13.5 MHzele

ctro

n/ion m

ean e

nerg

y (

eV

)

position (m)

ions

electrons

Page 32: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

-1 104

-5000

0

5000

1 104

0 0.01 0.02 0.03 0.04

Vrf = 500 V, p = 0.1 torr, f =13.5 MHz

ele

ctro

n/ion d

rift

velo

city

(m

/s)

position (m)

ions

electrons

Page 33: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Plasma dynamics+

Neutral particles and plasma interaction+

Chemical kinetics of excited states

IIIIII

Page 34: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Kinetics of excited states

e A e A*

A* A hA*B A(h)B

e A* e(h) A

e A* 2e A

A2* A2(v) h

A*B A B

e A2(v) A B

Page 35: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

rcXcc1

N c rcXcc1

Nc

1rNr

Numerical treatment of state-to-state chemical kinetics of neutral particles (steady state)

(1) gas phase reactions:

are included by solving:

Dc2nc x x2

rc rc kr fe t r n c

rc

c

E.g.:

HH2(X,v) HH2(X, v )

(2) gas/surface reactions:

As r1A1r2A2 ... E.g.:

H(wall) 1

2H2

s1

4

8KTms

s

Dss

rss

r r s

r s rs s

are included by setting appropriate boundary conditions

Page 36: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

BoundaryConditions

Poisson Equation

Reaction/DiffusionEquations

Charged Particle Kinetics

space charge

eedfelectr./iondensity

electricfield

gas composition

surfacereactions

(wall)

absorption,sec.emission

Page 37: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

solve Poisson Equationfor the electric potential

Integration of equationsof motions, moving particles

Particle to gridInterpolation

Grid to particleInterpolation

Spacecharge

E field

Monte Carlo Collisions

Chemicalkinetics

equations

Page 38: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

code implementation for hydrogen

5 particle species in the plasma phase: e, H3+, H2

+, H+, H-

16 neutral components: H2(v=0 to 14) and H atoms

Page 39: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Charged/neutral particle collision processes

electron/molecule and electron/atom elastic, vibrational and electronic inelastic collisions, ionization, molecule dissociation, attachment, positive ion/molecule elastic and charge exchange collisions, positive elementary ion conversion reactions, negative ion elastic scattering, detachment, ion neutralization

Schematics of the state-to-state chemistry for neutrals

e + H2(v=0) e +H2(v=1,…,5) e + H2 H + H+ + 2e

e + H2(v=1,…,5) e +H2(v=0) e + H2 H2+ + 2e

H2(v) + H2(w) H2(v-1) + H2(w+1) H2+ + H2 H3

+ + H (fast)

H2(v) + H2 H2(v-1) + H2 H2(v>0) – wall H2(v=0)

H2(v) + H2 H2(v+1) + H2 H – wall 1/2 H2(v)

H2(v) + H H2(w) + H e + H 2e + H+

e + H2(v=0,…,14) H + H- e + H2 e + H + H(n=2-3)

e + H2(v) e + H2(v’) (via b1u+, c1u) e + H- 2e + H

e + H2 e +2H(via b3u+, c3u, a

3g+, e3u

+)

Page 40: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Simulation parameters:

Tg = 300 K

Vrf = 200 V

p = 13.29 Pa (0.1 torr)

rf = 13.56 MHz

L = 0.06 m, Vbias = 0 V

v = 0.65, H = 0.02

1012

1013

1014

1015

0 0,01 0,02 0,03 0,04 0,05 0,06

num

ber

dens

ity

(m-3

)

position (m)

H2

+

e

H3

+

H+

H-

-

primary positive ions

H2 H2 H3

Hsecondary ions from:

charged particle density

Page 41: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

1012

1014

1016

1018

1020

1022

0 2 4 6 8 10 12 14

0.6 cm1.2 cm1.8 cm2.4 cm

num

ber

dens

ity (

m-3

)

vibrational quantum number

plateau due toradiative EV processes

relatively lowT01 (~1000K)

Page 42: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

eedf

10-6

10-5

10-4

10-3

10-2

10-1

100

0 5 10 15 20 25 30 35 40

0.6 cm1.2 cm1.8 cm2.4 cm3.0 cm

eed

f (e

V-3/2)

energy (eV)

Page 43: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR
Page 44: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Double layer

O. Leroy, P. Stratil, J. Perrin, J. Jolly and P. Belenguer, “Spatiotemporal analysis of the double layer formation in hydrogen radio frequencies discharges”, J. Phys. D: Appl. Phys. 28 (1995) 500-507

Page 45: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Bias voltage

p = 0.3 torr L = 0.03 m H = 0.0033 V = 0.02

A. Salabas, L. Marques, J. Jolly, G. Gousset, L.L.Alves, “Systematic characterization of low-pressure capacitively coupled hydrogen discharges”, J. Appl. Phys. 95 4605-4620 (2004)

Page 46: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Conclusion

A very detailed view of the charged particle kinetics in weakly ionized gases can be obtained by Particle in Cell simulations including Monte Carlo collision of

charged particle and neutral particles.

Page 47: Savino Longo Dipartimento di Chimica dell’Università di Bari and IMIP/CNR

Items to study in the next future (students)

Charge particle kinetics in complex flowfields

Collective plasma dynamics in shock waves

Development of new MC methods for electrons matching the time scale for electron heating

….


Recommended