+ All Categories
Home > Documents > Sawan_Session3

Sawan_Session3

Date post: 09-Apr-2018
Category:
Upload: dipan-kadia
View: 215 times
Download: 0 times
Share this document with a friend

of 33

Transcript
  • 8/8/2019 Sawan_Session3

    1/33

  • 8/8/2019 Sawan_Session3

    2/33

    Brain Machine Interface : Bioelectronics

    Based on 3D Chip Stacking

    -- Research and Applications --

    Page 2

    Neuroscience High accuracy investigation tools are neededto study neural activity underlying cognitivefunctions and pathologies.

    Neural Prosthetics Intracortical stimulation forvision recovery Neuro-motor prosthesis: paralysis, physical

    impairments.

    Mind driven rehabilitation systems.

  • 8/8/2019 Sawan_Session3

    3/33

    Sensing and subsequent treatment-- Neurons, regions, and neural coding --

    Page 3

    Primary Sensoryand motor cortex

    Primary visual

    cortex

    Kandel et al., Principles of

    neural science, 4ed

    A. Sensory map B. Motor map

    t

    t

    CodingIntents

    Sensations

  • 8/8/2019 Sawan_Session3

    4/33

    Page 4

    Medical Microsystems for the Recovery of Vital Neural Functions-- Main projects in our Polystim Laboratory --I. Sensors and sensor network (e-Health)

    Sensors (pressure, volume, ENG, etc..) design and implementation

    II. Vision for blinds Modeling & devices : Recording, monitoring and electrical stimulation

    III. Bladder control Recuperate bladder functions : Sensing and electrical stimulation

    IV. Respiration and gastric functions Catheters and signal processing

    V. Optic and Ultrasound based medical devices Non-invasive diagnostic tools

    VI. Laboratory-on-chip Diagnostic tools (neurotransmitter detection) and drug delivery.

  • 8/8/2019 Sawan_Session3

    5/33

    Smart medical devices-- Typical topology --

    Modulator

    Demodu-lator

    Externalcontroller

    Dataprocessing

    Receiver

    AC/DCSupply

    Backtelemetry

    Measure&

    digitize

    MUX

    DeMUX

    MainController

    Stimuligenerator

    Currentsources

    Teststimuli

    ElectrodesSkin

    Page 5

  • 8/8/2019 Sawan_Session3

    6/33

    Brain Machine Interface : Bioelectronics Based on 3D

    Chip Stacking

    -- Outline --Introduction

    I. Parallel sensing from the cortex Multi-channel multi-chip neural sensors Microelectrodes arrays & Integration/assembly

    II. Microstimulation and Monitoring (treatment example) Intracortical visual implant

    III. Efficient energy delivery and bidirectional data transfer

    IV. Other project Lab-on-chip - based devices for better diagnostics

    V. Research team, labs & facilities (Polystim & ReSMiQ)

    Summary

  • 8/8/2019 Sawan_Session3

    7/33

    Parallel recording from the cortex-- Multichannel Implantable neural sensors --

    Page 7

    Ch1

    Vertical integration of several ASICs

    implementing different processing layers

    Post-processing of the array base withphotolithography and wet etching

    Cr-Au layer for contacts and metalpaths.

  • 8/8/2019 Sawan_Session3

    8/33

    Parallel recording from the cortex (Contd)

    -- Design challenges and bottlenecks --

    Data transmission bandwidth through tissues

    Present low-power telemetry allows around 2 Mb/s

    Energy transfer through tissues

    Thermal effects start to appear near 50 mW/cm2

    Size of implants

    Very small leaving tissues untouched at implantation.

    Design challenges are multidimensional

    Power consumption, frequency band allocations and standards,testability and fault detection, SNR (noise considerations), etc.

    Page 8

  • 8/8/2019 Sawan_Session3

    9/33

    Page 9

    Parallel recording from the cortex (Contd)

    -- Design challenges : Noise considerations --

    Time (s)

    Raw neural signal

    Action potentials

    Time (s)Needs to measure very low-voltages.Very Sensitive to Noise !

    Voltage(V)

  • 8/8/2019 Sawan_Session3

    10/33

    Multi-channel neural recording interface-- Mounted ASICs: Mixed-signal front-end --

    Mixed-signal front-end

    Digita

    lreadout

    Micro-electrodes

    array

    Page 10

    Conditioning: Amplification & FilteringConsumption : < 12 W

    Digitization: 8 bits, 30 ksps/Ch.Consumption : 7.4 W

    LN bioamplifier & dc

    suppression SA

    ADC

  • 8/8/2019 Sawan_Session3

    11/33

    Digital ASIC

    -- On-chip AP detection and buffering --

    Page 11

    Absolute value detector and on-chip SRAM

    Serial

    bus

    On-line AP detection & buffering(bandwidth reduction Strategy = up

    to 48 times):

    Absolute value detector

    On-chip SRAM FIFOs and memory buffer

  • 8/8/2019 Sawan_Session3

    12/33

    Multi-chip integration-- Design of microelectrodes array --

    Page 12

    Medical gradestainless-steel

    Electro-polishing

    Epoxy basebuilding

    Grinding ofthe baseandelectrodesinsulation

    2mm

  • 8/8/2019 Sawan_Session3

    13/33

    Multi-chip integration(Contd)-- Chip stacking and bonding --

    Page 13

    Conductive tracesare developed onthe back side

    Contacts are

    rerouted in anyconfiguration

    Wedge / ballbonders are usedfor connecting

    ASICs

  • 8/8/2019 Sawan_Session3

    14/33

    Measured performances-- Mixed-Signal ASIC (CMOS 0.18 m)--

    Page 14

    100 Hz 9.2 kHzBandwidth

    2.304 mm2

    ( 0.25 x 0.39 mm2/ch.)

    Die size

    680 WPower consump.

    7 bitsENOB

    < LSBINL, DNL

    8 bitsResolution

    30 kSps/chSampling rate

    5.4 VrmsInput-ref. noise

    72 dBMid-band gain

    Summary of characteristicsMicrophotograph of the 16-channel chip

    4 x 4 channels

    sensor

    Mult iplexing,

    bias and test

    circuits

    1 mixed-

    s igna l

    c ha nne lBias circuits

    Clock and con trol

    signals generator

    Test ing analog

    mult iplexer

    Digital multiplexers

    Bioamplifier

    Filter, amplifier,

    ADC

    -124 dB32 kHz 64 kHz

    96 kHz

    Inter-channel cross-talk < -57 dBbetween adjacent channels (< -67

    dB between opposite sides.

  • 8/8/2019 Sawan_Session3

    15/33

    Measured performances (Contd)-- Low-power low-noise Bioamplifier --

    Page 15

    Summary of bioamplifercharacteristicsAnticipatedvalue Measuredvalue

    52 dB V

    10 kHz

    Parameters

    1.8 Vupplyvoltage

    GainBandwidth

    51.5 dB V

    9.6 kHz

    5.6 Vrmsnput refer-red noise

    CMOS 0.18 mechnology260 m x 190 mrea size

    5.0 Vrms

    GOSSELIN,SAWAN, CHAPMAN,A Low-Power IntegratedBioamplifier With a New DC Rejection Scheme, IEEE Trans. onBiomedical Circuits & Systems, Vol. 1, No. 3,Sept.2007, pp. 184-192.

  • 8/8/2019 Sawan_Session3

    16/33

    Page 16

    CMOS 0.18 mProcess

    1.856 mm2Die size

    64 bytes per ch.Output memory size

    1.53 mW(96.5 W/ch)

    Power consump.

    16 MHzRef. clock freq.

    5.1 to 51 kbits per

    channel

    Neural data rate

    with BW reduction

    1.25 kB (69% ofchip area)

    Total on-chip SRAM

    16 bytes per ch.Input FIFO depth

    Microphotograph of the digital integrated

    circuit

    Summary of characteristics

    Measured performances (Contd)-- Digital ASIC --

  • 8/8/2019 Sawan_Session3

    17/33

    Page 17

    In vivo recording in the visual cortex of a rat

    In vivo validation (Acute exp.)-- Performance of the Bioamplifier (contd) --

    In vivo neural recording with rats

    Anesthetised animal

    Recording from 16 sites in theprimary visual cortex

    Dept. of Psychology, Concordia and Montreal Universities, Montreal

  • 8/8/2019 Sawan_Session3

    18/33

  • 8/8/2019 Sawan_Session3

    19/33

    Stimulation Module (4x4) CMOS 0.18 m, ~60 000 Gates

    Downlink

    > 1 Mbps @ 13.56 MHz, D = 67%

    Uplink : 200 kb/s

    Power: 100 mW load; P (err) < 10-6

    Downlink

    Monitoring

    CTRL

    TEST

    structures

    MONITORING

    R2R AMP

    ELECTRODES

    CONN / CTRL

    DACs

    BIAS

    Page 19

    The visual intracortical stimulator-- Implementation results --

  • 8/8/2019 Sawan_Session3

    20/33

    Brain Machine Interface : Bioelectronics Based on 3D

    Chip Stacking

    -- Outline --IntroductionI. Parallel sensing from the cortex

    Multi-channel, multi-chip neural sensors Microelectrodes arrays & Integration/assembly

    II. Microstimulation and Monitoring (treatment example) Intracortical visual implant

    III. Efficient energy delivery and bidirectional data transfer

    IV. Other project Lab-on-chip - based devices for better diagnostics

    V. Research team, labs & facilities (Polystim & ReSMiQ)

    Summary

  • 8/8/2019 Sawan_Session3

    21/33

    Wireless inductive link-- Power transfer efficiency --

    VDC

    LOAD

    * *R1 MC1

    L1 L2 C2

    VsC3

    ~

    V recVoltage

    regulator

    R2

    Inductive link Rectifier

    Linear

    regulator

    regulatorrectifierrflinktotal

    = ~ 12 % Page 21

    )2(2

    1

    21

    2

    2

    11

    222

    DC

    DC

    VVVCkPCR

    CVk

    dioderecload

    total

    ++

    =

  • 8/8/2019 Sawan_Session3

    22/33

    Power transfer-- Efficiency & safety --

    External Controller Implant

    Switching

    Regulator

    ASK Demodulator /

    DAC/Decoder

    Data

    ModulatorPA

    Battery

    Vdd Shuntregulator

    Rectifier

    LoadShiftKey(LSK)ASK/PSK Demodulator

    Encoder

    L2

    C2

    C1

    L1

    To/From

    Other

    parts

    Skin

    Page 22

  • 8/8/2019 Sawan_Session3

    23/33

    Wireless dedicated links-- The external interface --

    Switching power amplifier (AP)

    Modulator Demodulator

    Power link

    &

    bi-directional

    data

    transfer

    by

    externalinductor

    (antenna)

    Control unit

    - Power supply management

    - PA calibration- Inductive link coupling

    - Resonance frequency

    - Extensive data processing

    Frequency

    generator

    Power

    source

    UserInterface

    Page 23

  • 8/8/2019 Sawan_Session3

    24/33

    Wireless dedicated links-- The internal interface --

    Shuntregulator

    Rectifier LDO Reg 1SwitchedCapacitorDC/DC

    LoadShiftKey(LSK)ASK/PSKDemodulator

    ADCncoder MUX

    Controller/Stimulator

    VDD1

    VDD2

    VDDn

    AnalogFront-Ends(1..n) Ts

    ucoas

    Ofchpno

    LDO Reg 2

    LDO Reg n

    Start-upCircuit

    ProtectionCircuit

    Clock GeneratorCircuit

    Page 24

  • 8/8/2019 Sawan_Session3

    25/33

    RF LINK to Transfer Data

    -- BPSK demodulation --

    Hard-limited Costas loop circuit

    Coherent : recover carrier / data

    in the same loop

    VCOLow Pass

    Filter

    Data

    Out

    Data In

    Phase

    Shifter 90

    I branch

    Q branch

    Arm

    LP Filter

    m(t) sin(w1t+q1)

    m(t) = 1 or 1

    2 sin(w1t+q2)

    2 cos (w1t+q2)m(t) sin(q1-q2)

    m(t) cos(q1-q2)

    sin 2(q1-q2)m(t)

    2

    Gilbert multiplier

    Gilbert multiplier

    Gilbert

    multiplier

    Arm

    LP Filter

    Page 25

    VCOuadraturesignalgenerator

    LoopFilter

    Arm Filter

    Arm FilterReceivercoil

    I branch

    Q branch

    ClkDout

    Data in

    Choppermultiplier

    Digital domain Analog domain

    Requirements: 1) Fully integrated,2) Low power consumption, 3) Fully

    differential

  • 8/8/2019 Sawan_Session3

    26/33

    Page 26

    0.76 mW

    at 4Mbps

    4Mbps*

    2.2 Mbps**

    8Mbps***

    13.56

    MHz

    CMOS

    0.18m

    QPSK

    *Postlayout

    **Measured

    ***Matlab

    LPF

    )sin( 21 qwt+ -+

    Vd(t)

    )cos( 21 qwt+

    VCO

    InputSignal

    Vs(t)

    90 -Phase Shifter

    Data Out A

    Data Out B

    LPF

    LPF

    Voltage Controlled Oscillator Comparator

    540 um

    0.61 mW**

    1.6 Mbps*

    1.2 Mbps**

    13.56

    MHz

    CMOS

    0.18m

    BPSK

    BPSK QPSK

    QPSK

    Parallel recording from the cortex (Contd)

    -- Results : High data rate wireless link --

  • 8/8/2019 Sawan_Session3

    27/33

    Page 27

    Testing Challenges-- Engineering and Medical Validations --

    Functional tests (electrical, mechanical, ..)

    Circuits, Package, Heat, Reliability, Toxicity, .

    Self-test and fault detection after implantation

    Noise considerations and grounding (multichannel aspect)

    Analog/digital blocks, Scan and BIST, overhead resources power/area

    In vivo measurement and validation

    Humidity, temperature, Ion concentration, pH, interface to tissues,

    Experiments in animals and humans: spontaneous or evoked activity

    Ethics, experimental protocol and approvals.

  • 8/8/2019 Sawan_Session3

    28/33

    Page 28

    Polystim neurotechnologies Laboratory

    -- http: //www.polystim.ca -- Founded in 1994 Completed Degrees

    70 M.R. & 17 Ph.D. Currently supervised students

    12 M.R. (30% with scholarships), and 8 Ph.D. (50% with scholarships). Invited researchers, postdoctoral and research assistants 1 Technician & 1 Secretary Collaborators (Colleagues from)

    Several medical institutes and research centers in hospitals Sciences and applied sciences programs

    Support: NSERC, CIHR, FQRNT, CMC systems, CRC - DMI, FCI-DMI

    Industry: Victhom HB, INLB, DALSA Semiconductor, Scanview, Biophage, etc.

  • 8/8/2019 Sawan_Session3

    29/33

    Design, tests, assembly, packaging and in vitro

    validation facilities

    Page 29

    -- http://www.polymtl.ca/lasem --

    CFI Room A345

  • 8/8/2019 Sawan_Session3

    30/33

    Un courant porteur pour le Qubec

    Universit de MontralMcGill UniversityUniversit du Qubec Montralcole Polytechnique de Montralcole de technologie suprieureConcordia UniversityUniversit LavalUniversit du Qubec ChicoutimiUniversit du Qubec Trois-Rivires

    http://www.ttp://www.resmiqesmiq.orgorgMohamad Sawan, Director

    June 2009

  • 8/8/2019 Sawan_Session3

    31/33

    Un courant porteur pour le Qubec

    Fabrication,integration,Prototyping &validationTest, diagnostic,verification &characterization

    Specification,Designoptimization& simulationDesign methods,implementation,modeling

    EmergingTechnologies &standards

    LoC:Microfluidi

    c,optic,

    etc

    Micro&nano-electronics

    IndustrialControl

    MedicalDevices Telecom.

    optic&Wireless

    Security,Mult

    imediaRFIDSoC,Analog&Mixed-ignalPlatforms

    TechnologiesRFIC,MEMS,Data

    Convertors,etc.Net

    works

    Sensors

    ,

    Actuator

    sVideo&

    audioApplictions

    SignalProcessing

    Algorithms,architectures,synthesis &co-design

    Int.N

    EWCAS

    Conf.

  • 8/8/2019 Sawan_Session3

    32/33

    Multi-chip multi-channel 3D neural sensing from the cortex

    Low-power, chip area, vertical integration and packaging

    Test challenges: Noise, design ofin vivo experiments

    Reliability and safety are important facts.

    Typical SMD involve multi-disciplinary team : engineers, physicians,surgeons, health care professionals, etc;

    Challenges at the level of intracortical microsystems are all important(power issues, assembly, microelectrodes);

    Monitoring and recording permit to understand the accurate

    functions at the CNS; Technology progresses will allow the creation of many more reliable

    implantable devices;

    Diagnostic tools based on LoC (neurotransmitters detection) anddrug delivery.

    Summary

  • 8/8/2019 Sawan_Session3

    33/33

    Brain Machine Interface : Bioelectronics Based on 3D ChipStacking

    Acknowledgments-- http: //www.polystim.ca --

    Master & Ph.D. students Collaborators: Colleagues from different research centers Support: NSERC, CIHR, FQRNT, CMC systems, CRC-DMI, FCI-DMI Industry: Victhom, INLB, DALSA, Scanview, Clarovita.

    Thank You