+ All Categories
Home > Documents > Scansorial Landing and Perching - Stanford...

Scansorial Landing and Perching - Stanford...

Date post: 28-Mar-2018
Category:
Upload: nguyenque
View: 216 times
Download: 0 times
Share this document with a friend
28
Scansorial Landing and Perching Alexis Lussier-Desbiens, Alan Asbeck and Mark R. Cutkosky ISRR 2009, Aug 31 - Sep 3, Lucerne CH Biomimetics and Dextrous Manipulation Laboratory Stanford University http://bdml.stanford.edu 1
Transcript
Page 1: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Scansorial Landing and Perching

Alexis Lussier-Desbiens, Alan Asbeck and Mark R. Cutkosky

ISRR 2009, Aug 31 - Sep 3, Lucerne CH

Biomimetics and Dextrous

Manipulation Laboratory

Stanford University

http://bdml.stanford.edu

1

Page 2: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

2

Page 3: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Advantages of Perching

• Greatly extend mission time

• Stable vantage point while perched

• Possibility of landing and physically interacting with a surface.

• Perching combines the best of climbing and flying: – Agile and fast while flying

– Can cover long distances

– Low energy consumption while perched

– Wait for better weather conditions

– Quiet (no motor noise)

3RiSE platform climbing library at

SwRI, San Antonio, TX

3

Page 4: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Why vertical surfaces?• Common in urban environments

• Easy to detect

• Often provide a large surface to simplify landing

• After an explosion, earthquake, etc. walls may be comparatively safe, clean and uncluttered

4

4

Page 5: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Related Work

• On agile flight: – How et al. (MIT) on indoor flying and hovering

– Oh et al. (Drexel) on autonomous hovering

• On perching aerodynamics & control:

– Wickenheiser et al. (Cornell) on vehicle morphing for perching

– Tedrake et al. (MIT) on controllability of fixed-wing plane for perching on a wire

• Hybrid aerial/terrestrial vehicle (Quinn)

• No detailed consideration of the landing system

• Slow maneuvers sensitive to disturbances

• Use of highly accurate motion capture system/sensors to enable control

[Cory & Tedrake, 2008]

[Wickenheiser, 2007]

[Green & Oh, 2006] 5

5

Page 6: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

6

Approach:

• Conventional plane

• Quick maneuver to minimize

disturbance effects

• Focus on suspension and spines

to simplify sensing and control

• Everything onboard

Sonar

Spines

Paparazzi Autopilot & sensors

2) Wall detection

5) Rest

1) Approach

3) Pitch up

4) Touchdown

Elevator

Modified FlatanaAirplane

Suspension

6

Page 7: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Perching Strategy

1. Fly toward wall ~ 9 m/s

2. Detect wall with ultrasonic sensor

• 20 Hz, 6 m range

3. Pitch up to slow down (takes about 2-3m)

4. Touchdown possible for about 1.5 m before impact

5. Touchdown at 1-3 m/s. Let suspension absorb impact

7

Pitching up Successful landingWaiting for wall detection

!6 !5 !4 !3 !2 !1 0

!0.8

!0.6

!0.4

!0.2

0

x (m)

y (

m)

Simulated trajectory of the perching maneuver

(inspired by [Cory & Tedrake 2008])

7

Page 8: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

8

8

Page 9: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Clinging with spines

• Used on Spinybot and RiSE to climb brick, stucco, concrete rock...

• Spine mechanisms take advantage of

robot's control over foot trajectories

and forces.

• With UAVs, the challenge is to

provide desired trajectory and forces

using momentum of the plane.

9

Why spines?– require no power

– work on a range of outdoor surfaces

– relatively unaffected by films of dirt and moisture

– leave no trace of their passage

– provide many loading cycles

9

Page 10: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Spine suspensions

• Small spines (10-15 µm tip radius) catch and hang on asperities

• Individual spine suspensions distribute the load

• Loading trajectory required

10

1

2

34 5

Approach volume

Loading ForcesVolume

y

x

Loading cycle

1. Normal force

2. P

ull d

ow

n3. P

ull a

way

10

Page 11: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Spine/surface interaction

11

mg

11

Page 12: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Spine limit curve -- 1 foot, 10 spines

(for roofing paper -- similar to stucco or composite roof shingles)

12

!" ! " "! #" #! $"

!#"

!#%

!"

!

"

&"$

#!$

"%!

&'()*($+

,-(.(*

&+$'./0

%&123/'

,,,,,-(.(*

&./4-(.(*

5/63,738($+

523/',&$')3,9:;

:$'./0,&$')3,9:;

-(.(*,5<'6/)3,6$',=/'>/>3'?,"!,1>(+31

738<0/',*/',>/>3'

@0<3A,*/',>/>3'

mg

12

Page 13: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

overload

limits

friction

limit

Limit on

Fn/Ftan

safe region

Fn

Ftan

gravitypull-in

Revisit spine constraints, from standpoint of the plane

13

13

Page 14: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

mg

Fpull-in

Fstatic

F0

Fmax

Spine constraints, from the standpoint of the plane

14

14

Page 15: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

!2 ! 2 " # $ %! 12 %" %#

!6

!4

!2

!

2

"

#

"&'

20'

()*+,-.',/*-012

1',3+4-.',/*-012

!

"

#

$

%

5*+67,*8-.',/*6

(9374+:9';

The actual picture is a bit messier...

15

Fn

Ftan

Fmax

Fstatic

measuredsimulated

• Loading trajectory is important

• Low damping ratio: – Ratio Fn/Ftan too high

– Rebound

• High damping ratio: – High peak force

15

Page 16: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Leg suspension requirements

Early tests revealed that vertical rebound was the main failure

16

Solution: design suspension (links, springs, dampers, nonlinear elements) to absorb kinetic energy and direct forces toward spines with:

– moderate peak landing force

– moderate suspension travel(no knee contact)

– no negative tangential forces (vertical rebound, detachment)

– small negative normal forces (no horizontal bounce-off)

16

Page 17: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Pseudo-elasticlink model accountsfor bending.

Suspension model

17

!!

!"

#$%&'$

!

""

"!

#$

()$#(!

*

%&'

()**

+'&)*

,!&-

()$#("

#$

%&'

()**

+,

+-

+'&)*

.*/!&-01231/4*1-*5

6.

!6)/01"!26

)

6,34

!!

3!

/!

3"

75

8)9-*

Hip damping is large and nonlinear

Toe suspension(new)

(dynamic equations via Autolev; simulations in Matlab)

17

Page 18: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Leg Structure

Foam

hip

Balsa/Carbon

femur

Sorbothane

knee

Carbon

tibia

Foam

ankle

Spines

Attachment

points

18

18

Page 19: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Nonlinear elements

19

Scansorial Landing and Perching 9

100 105 110 115 120 125 130 135 1400

0.1

0.2

0.3

0.4

Hip angle (deg)

Mo

me

nt (N

m)

100 105 110 115 120 125 130 135 1400

0.01

0.02

0.03

0.04

0.05

0.06

Hip angle (deg)

Stiff

ne

ss (

Nm

/deg

)k = 0.0041 + 0.05/(! ! 100)

Fit

Data

Fig. 6 Hip joint stiffness as a function of the hip angle. The non-linearity prevents excessive com-pression for high landing forces.

4.2 Planar landing model

In order to predict and tune the forces during landing, a simple planar model of theairplane and suspension was created as shown in fig. 7. In this model we ignore rolland yaw motions and lump the two legs together as a single mechanism. The planeis modeled as a rigid body subject to gravity. We ignore aerodynamic forces as wehave determined that they do not contribute significantly to the motion of our planeafter contact.

We introduce four right-handed reference frames: The wall frame W is definedwith the unit vector wx oriented toward the wall and wy upward along the surface;the airplane frame A is rotated by ! from W around wz, with its origin at the airplanecenter of mass; the femur frame F is rotated by qH from A with its origin at the hipjoint; and the tibia frame T , is rotated by qK from F with its origin at the knee.

Intermittent contact forces, N, with the wall are modeled at the knee and the tailby the use of a spring and damper:

N =

!"

#

0 if xc < 0kgxcwx if xc > 0 and xc < 0

(kgxc +bgxc)wx if xc > 0 and xc > 0(2)

where kg and bg are the properties of the ground and xc = xtail ! xwall for the tailpoint.

Friction at the contact points is modeled using the continuous model from (Mit-iguy and Banerjee, 1999):

F f =!µk |N| v|v|+ "v

(3)

Where µk is the coefficient of kinetic friction, |N| is the magnitude of the normalforce, v is the velocity of the point in contact and "v is a small positive number.

Because of its light weight, the suspension is modeled as two massless links,ignoring the ankle joint and the spine suspension because of their small motions in

Hip stiffness versus hip angle

(damping follows similar trend)

• Material properties +

kinematics to create roughly constant force

• Damping scaled w.r.t position and velocity

• Urethane foam exhibits reduced damping at high velocity

19

Page 20: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

! !"# !"$ !"% !"& !"' !"( !") !"* !"+!5

!

'

#!

#'

$!

,-./012/34

56/7809:83/01;4 !

"

#

! !"# !"$ !"% !"& !"' !"( !") !"* !"+

!5

!

'

#!

,-./012/34

;:8.7<09:83/01;4

$

=/72>8/?09:83/201%08>@24

=:?/<0A-,60=/72"0B787."

=/72>8/?09:83/201%08>@24

=:?/<0A-,60=/72"0B787."

Comparing model & force plate data

20

spine dragging effects

20

Page 21: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Touchdownpossible

Pitch upmaneuver

Elevatorup

Walldetection

9 m/s

2 m/s

xy

21

30/40 successful landings (10 autonomous, 20 in manual control)

• Pitch = 65 to 110 deg

• Pitch rate = 0 to 200 deg/s• vx = 1 - 2.7 m/s (forward)

• vy = up to 1 m/s (downward)

21

Page 22: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Improvements and future work

22

• Land on other surfaces (horizontal, inverted)

– > use opposed spines

• Real conditions (windy, etc.)

• Maneuver on the wall(hybrid scansorial robotics)

• Take off from the wall!

Spiny Gripper

!""#""$"""%""""!&""""!&&"""!&&&

'() *(+,

-(./0 12(()0

34) 567

*+489 5:6)7

;"<=4=

*.6649)">8?8@:+:):4=A

B+8994,">8?8@:+:):4=A

!""#""$"""%""""!&""""""#&"""""""$&C8DE"+(8, F+@=EG

• Grips to rough surfaces – concrete,

stucco, tar paper

• Multiple uses per mission

• Leaves no trace

• Spines engage bumps/pits on the

surface

• Spines undergo hundreds of

attach/detach cycles before dulling

• Current linkage material (the hard part)

deforms in heat (140°F)

– Heat-resistant polyurethanes are

available, will be used in future versions

Spine –

steel

fishhook

140°F 32°F

22

Page 23: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Improvements and future work

23

23

Page 24: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

http://bdml.stanford.edu

24

24

Page 25: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Limits for directional adhesion(e.g. Stickybot)

25

pulloff

limits

-10 0 10 20

-10

0

10

20

Tangential Force (mN/stalk)

Normal Force (mN/stalk)

500µm

-10 0 10 20

-10

0

10

20

Tangential Force (mN/stalk)

Normal Force (mN/stalk)

500µm

600µm

-10 0 10 20

-10

0

10

20

Tangential Force (mN/stalk)

Normal Force (mN/stalk)

500µm

600µm

700µm

FN

Ftan

25

Page 26: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Spine limit curve -- 1 foot, 10 spines

(for roofing paper -- similar to stucco or composite roof shingles)

26

!" ! " "! #" #! $"

!#"

!#%

!"

!

"

&"$

#!$

"%!

&'()*($+

,-(.(*

&+$'./0

%&123/'

,,,,,-(.(*

&./4-(.(*

5/63,738($+

523/',&$')3,9:;

:$'./0,&$')3,9:;

-(.(*,5<'6/)3,6$',=/'>/>3'?,"!,1>(+31

738<0/',*/',>/>3'

@0<3A,*/',>/>3'

mg

26

Page 27: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

Onboard Sensors

• Simple wall detection using the LV-Maxsonar:

– Range of 6 m

– Update rate of 20 Hz

• Onboard accelerometer and gyro are used for data analysis

• Combined using a second order complementary filter:

• Need something better!!!

27

65 70 75 80 85 90

!20

0

20

40

60

80

Pit

ch

(d

eg

)

time (sec)

Different techniques for measuring pitch

Complementary Filter

Rate Gyro Integration

Gravity measurement

Sensitive to vibrations

Drifting

!!s + 1!s + 1

"2

"(s) =!2s

(!s + 1)2"(s) +

2!s + 1(!s + 1)2

"(s)

Hgravity =0.03292z ! 0.03265z2 ! 1.967z + 0.9672

Hgyro =0.01639z ! 0.01639z2 ! 1.967z + 0.9672

Cyaw = 2000" 0.6426z!1 ! 0.5861z!2

1! 0.8508z!1 + 0.1337z!2

Croll = 150" 0.189z!1

1! 0.8511z!1

1

27

Page 28: Scansorial Landing and Perching - Stanford Universitybdml.stanford.edu/twiki/pub/Main/PerchingProject/ISRR09-compact.pdf · Autolev; simulations in ... Sorbothane knee Carbon tibia

CL = 2 sin(!) cos(!)CD = 2 sin2(!)

L =12!v2ACL

D =12!v2ACD

!!

"!

"!#$%!

!

!&

"&

"

'(

)*!")

)!'

+

),

#$%

&'()*+,(-.%"((((((((/'(012%234(.,563

783+38#59:(+733;

<'(=6"(%.%"(

((((((((((19(52+(>%$?)-

,-

#2

"-

28

Aero Model(inspired by [Cory & Tedrake 2008])

28


Recommended