+ All Categories
Home > Documents > Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear...

Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear...

Date post: 23-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
81
Scattering Amplitudes and Precision Simulations for the LHC Stefano Pozzorini Zurich University University of Vienna, 26 January 2016
Transcript
Page 1: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Scattering Amplitudesand

Precision Simulations for the LHC

Stefano Pozzorini

Zurich University

University of Vienna, 26 January 2016

Page 2: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Success of LHC Run 1 (+2)

pp

total

80 µb−1

JetsR=0.4

|y |<3.0

0.1< pT < 2 TeV

DijetsR=0.4

|y |<3.0y ∗<3.0

0.3<mjj < 5 TeV

W

fiducial

35 pb−1nj ≥ 0

nj ≥ 1

nj ≥ 2

nj ≥ 3

nj ≥ 4

nj ≥ 5

nj ≥ 6

nj ≥ 7

Z

fiducial

35 pb−1nj ≥ 0

nj ≥ 1

nj ≥ 2

nj ≥ 3

nj ≥ 4

nj ≥ 5

nj ≥ 6

nj ≥ 7

tt

fiducial

e, µ+X

nj ≥ 4

nj ≥ 5

nj ≥ 6

nj ≥ 7

nj ≥ 8

tt−chan

total

WW

total

γγ

fiducial

Wt

total

2.0 fb−1

H

fiducial

H→γγ

VBFH→WW

ggFH→WW

H→ZZ→4ℓ

total(γγ,ZZ )

H→ττ

WZ

total

13.0 fb−1

ZZ

total

fiducial

WW+WZ

semilept.fiducial

fiducial

ttW

total

ttZ

total

95% CL

upper

limit

ttγ

fiducial

ZjjEWK

fiducial

Wγγ

fiducialnjet=0

W±W±jjEWK

fiducial

ts−chan

total

95% CL

upper

limit

0.7 fb−1

σ[p

b]

10−3

10−2

10−1

1

101

102

103

104

105

106

1011

LHC pp√s = 7 TeV

Theory

Observed 4.5 − 4.9 fb−1

LHC pp√s = 8 TeV

Theory

Observed 20.3 fb−1

Standard Model Production Cross Section Measurements Status: March 2015

ATLAS Preliminary

Run 1√s = 7, 8 TeV

Data–theory consistency from milli-barn to femto-barn range

S. Pozzorini (Zurich University) Precision simulations DESY15 1 / 35

Page 3: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Success of Standard Model (Higgs discovery)

Run 1

SM promoted to realistic description of EW symmetry breaking(at present precision level and energy scales)

MH measurement ⇒ instead of disproving the SM, Run1 has turned it into a fullypredictive theory – at the quantum level!

Run2

can falsify or verify SM with more stringent tests at higher precision and higherenergy

S. Pozzorini (Zurich University) Precision simulations DESY15 2 / 35

Page 4: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Multi-TeV searches

2.5σ diboson anomaly at MV V ∼ 2 TeV (not confirmed at 13 TeV)

1.5 2 2.5 3 3.5

Eve

nts

/ 100

GeV

1−10

1

10

210

310

410DataBackground model1.5 TeV EGM W', c = 12.0 TeV EGM W', c = 12.5 TeV EGM W', c = 1Significance (stat)Significance (stat + syst)

ATLAS-1 = 8 TeV, 20.3 fbs

WZ Selection

[TeV]jjm1.5 2 2.5 3 3.5

Sig

nific

ance

2−1−0123

nontrivial multijet final states (oftenwith MET and/or leptons)

sophisticated selection strategies(e.g. boosted jets)

requires higher-order calculations atTeV energies (EW Sudakov logs,. . . )

TH precision crucial for direct/indirect BSM sensitivity and interpretation of discoveries

S. Pozzorini (Zurich University) Precision simulations DESY15 3 / 35

Page 5: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Theoretical simulations of LHC collisions

dσ = dσLO + αS dσNLO + αEW dσEWNLO + α2

S dσNNLO + . . .

High-energy scattering

NLO QCD+EW and NNLO “revolutions”

Parton-shower MC simulations

matching to (N)NLO matrix elements

multijet merging at NLO

More and more general and widely applicable algorithms

S. Pozzorini (Zurich University) Precision simulations DESY15 4 / 35

Page 6: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

NLO QCD calculations and NLO revolution

Born, virtual and real 2→ n contributions (|M|2, flux factor and PDFs implicit)

σNLOn =

∫dΦnB(Φn) +

∫dΦnV(Φn) +

∫dΦn+1R(Φn+1)

UV renormalisation ⇒ reduction of µR dependence

soft/collinear cancellations+PDF renormalisation ⇒ reduction of µF dependence

General “solution to NLO problem” exists since 1970s (tensor reduction) and 1990s(subtraction methods).

NLO revolution: 2→ 4 (5, 6) processes

“the barrier that has existed for 15 years to NLO computations for more than 5particles has been broken, allowing NLO computations for process of a complexitythat matches that of LHC events. This is the most important development intheoretical particle physics of the past few years.” [M. Peskin 2011]

S. Pozzorini (Zurich University) Precision simulations DESY15 5 / 35

Page 7: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

One-loop multi-leg methods and tools

First 6-particle NLO steps: pp→ ttbb [Bredenstein, Denner, Dittmaier, S.P. ’09]

g

g tt

bb

NLO =g

gg

t

t

bb

LO . . .+ + + . . .

103 diagrams ⇒ 100 MB algebraic expression

3 years

Solutions to one-loop multi-leg bottleneck

radically new approaches: on-shell method, OPP reduction, . . .

automated 1-loop algorithms (CutTools, BlackHat, Collier, GoSam, HELAC 1-loop, MadLoop,

NGluon, OpenLoops, Recola, Samurai, . . . )

vast range of multi-particle NLO predictions at LHC (pp→ 5j, W + 5j, Z + 4j, H + 3j,

WWjj, WZjj, γγ + 3j, Wγγj, WWbb, bbbb, ttbb, ttjj, tttt, . . . )

Flexibility and efficiency of best methods and tools is great but still insufficient

S. Pozzorini (Zurich University) Precision simulations DESY15 6 / 35

Page 8: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

This talk

1 Scattering Amplitudes with OpenLoops

2 (N)NLO QCD at parton level

3 Matching and Multi-jet Merging at NLO QCD

4 NLO EW corrections

Page 9: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

OpenLoops method [Cascioli, Maierhofer, S.P. ’11]

Strategy

handle all process-dependent one-loop ingredients via tree-like algorithm

hybrid “tree–loop” approach ⇒ very high speed and flexibility [Van Hameren ’09]

diagrammatic representation

n − 1

0

1

in−1in

i2i1

=

∫dDq N (In; q)

D0D1 . . . Dn−1=

R∑r=0

Nµ1...µr (In)

∫dDq qµ1 . . . qµr

D0D1 . . . Dn−1

︸ ︷︷ ︸numerical recursion

[OpenLoops]

︸ ︷︷ ︸tensor integrals

[Denner, Dittmaier]

S. Pozzorini (Zurich University) Precision simulations DESY15 7 / 35

Page 10: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

OpenLoops recursion [Cascioli, Maierhofer, S.P ’11]

Recursive merging of q-dependent trees

n∑r=0

N βµ1...µr ;α(In) qµ1 . . . qµr =

in

i1

Inβ

α=

in−1

i1

In−1

in

β

α

Interaction terms depend only on Lint ⇒ automation!

β γ

δ

= Y βγδ + Zβν;γδ qν

Recursion for polynomial coefficients ⇒ very high speed!

N βµ1...µr ;α(In) =

[Y βγδ N

γµ1...µr ;α(In−1) + Zβµ1;γδ N

γµ2...µr ;α(In−1)

]wδ(in)

S. Pozzorini (Zurich University) Precision simulations DESY15 8 / 35

Page 11: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

OpenLoops performance for 2→ 2, 3, 4 processes

Orders of magnitude improvements for multi-particle amplitudes

O(102–103) in code generation (code size and time for generation+compilation)

O(102)

in speed of amplitudes (wrt original OPP automation)

number of loop diagrams

t OPP/t

TI

104103102101

2

1

gg → tt + n g

uu → tt + n g

ud → W+g+n g

uu → W+W−+ n g

t TI[m

s]

1000

100

10

1

0.1

⇒ large scale applicability at the technical frontier

S. Pozzorini (Zurich University) Precision simulations DESY15 9 / 35

Page 12: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

OpenLoops 1.0 [Cascioli, Lindert, Maierhofer, S.P. ’14]

g

g tt

bb

NLO =g

gg

t

t

bb

LO . . .+ + + . . .

Automated generator of NLO QCD matrix elements (>30’000 lines of code)

public library with more than 100 LHC processes at openloops.hepforge.org

Interface to multi-purpose Monte Carlo programs

Munich [Kallweit] ⇒ very powerful (N)NLO parton level MC

Sherpa [Hoche, Krauss, Schonherr, Siegert et al.] ⇒ NLO matching and merging

Powheg [Nason, Oleari et al.]

Herwig [Gieseke, Platzer wt al.]

Geneva [Alioli, Bauer, Tackmann et al.]

Whizard [Kilian, Ohl, Reuter et al.]

Completely automated NLO simulations for any 2→ 2, 3, 4 SM processes at LHC

S. Pozzorini (Zurich University) Precision simulations DESY15 10 / 35

Page 13: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

State-of-the-art applications in Top, EW and Higgs physics

NLO QCD+EW

S–MC@NLO for pp→ ttbb with mb > 0 [Cascioli, Maierhofer, Moretti, S.P., Siegert, arXiv:1309.5912]

NLO for pp→W+W−bb with mb > 0 [Cascioli, Kallweit, Maierhofer, S.P., arXiv:1312.0546]

NLO QCD+EW for W + 1, 2, 3 jets [Kallweit, Lindert, Maierhofer, S.P., Schonherr, arXiv:1412.5157]

NLO QCD+EW for ``/`ν/νν + 0, 1, 2 jets [Kallweit, Lindert, Maierhofer, S.P., Schonherr, arXiv:1511.08692]

NLO merging

MEPS@NLO for ``νν+0,1 jets, [Cascioli, Hoche, Krauss, Maierhofer, S.P., Siegert, arXiv:1309.0500]

(1-loop)2 merging for pp→ HH+0,1 jets, [Maierhofer, Papaefstathiou, arXiv:1401.0007]

MEPS@NLO for WWW+0,1 jets, [ Hoche, Krauss, S.P., Schonherr, Thompson arXiv:1403.7516]

MEPS@NLO for tt+0,1,2 jets, [ Hoche, Krauss, Maierhofer, S.P., Schonherr, Siegert arXiv:1402.6293]

NNLO QCD

pp→ γZ and γW [Grazzini, Kallweit, Rathlev, Torre, arXiv:1309.7000; arXiv:1504.01330]

qq → tt [Abelof, Gehrmann–de Ridder, Maierhofer, S.P., arXiv:1404.6493]

pp→ ZZ [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhofer, von Manteuffel, S.P., Rathlev, Tancredi, Weihs, arXiv:1405.2219]

pp→W+W− [Gehrmann, Grazzini, Kallweit, Maierhofer, von Manteuffel, S.P., Rathlev, Tancredi arXiv:1408.5243]

S. Pozzorini (Zurich University) Precision simulations DESY15 11 / 35

Page 14: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Outline

1 Scattering Amplitudes with OpenLoops

2 (N)NLO QCD at parton level

3 Matching and Multi-jet Merging at NLO QCD

4 NLO EW corrections

Page 15: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

pp→ tt→ W+W−bb

Jet multiplicity

0 1 2 3 4 5 6 7

Eve

nts

500

1000

1500

2000

2500

3000 ATLAS Preliminary-1 Ldt = 20.3 fb∫ = 8 TeV, s

channelsν-µ ν+µ + ν- eν+e

Data

WW MC

Top MC

Zjets MC

Wjets MC

other diboson MC

stat. unc.

g

g

b

µ−νµ

b

νe

e+

W+

W−

t

t

t

Vast top-physics program at LHC

SM benchmark and omnipresent Higgs- and BSM-background

3 decades of precision calculations

full description of production×decay crucial: jet veto, mt-measurements, . . .

S. Pozzorini (Zurich University) Precision simulations DESY15 12 / 35

Page 16: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

W+W−bb production at NLO [Cascioli,Kallweit,Maierofer,S.P. ’13]

g

g

b

µ−νµ

b

νe

e+

W+

W−

t

t

t

g

g

b

µ−νµ

b

νe

e+

W+

t

b

t

W−

g

g

b

νe

e+

µ−νµ

b

W+

W−

b

b

Z,γ

First unified description of tt+Wt production and decay at NLO

full set of 2→ 6 diagrams (Γt > 0) and full b-quark phase space (mb > 0)

multi-particle, multi-scale (Γt,mb, . . . ,mtt) simulation with O(103)

loop diagrams

done with Munich+OpenLoops

S. Pozzorini (Zurich University) Precision simulations DESY15 13 / 35

Page 17: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

First W+W−bb NLO predictions for Njet = 0, 11−

σtt

σW

Wbb[%

]

njet

2+10

30

20

10

01−

σtt

σW

Wbb[%

]

njet

2+10

30

20

10

0

NLO

LO

1.8

1.4

1

NLO

LO

1.8

1.4

1

σ(n

jet)[fb]

pp → νee+µ−νµbb+X @ 8TeV

103

102

NLO

LON

σ(n

jet)[fb]

pp → νee+µ−νµbb+X @ 8TeV

103

102

Jet veto and jet bins

key to suppress top backgrounds inH →W+W− and many other analyses

Excellent perturbative convergence

small NLO correction and reduction ofscale uncertainty from 40% to < 10%

Single-top and other O (Γt/mt) effects

from 1% to 30–40% with jet veto

W+W−bb crucial for accurate simulation of top-production and decay

S. Pozzorini (Zurich University) Precision simulations DESY15 14 / 35

Page 18: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Diboson production at LHC

test SU(2)×U(1) gauge structure

interplay with H → V V

BSM searches, . . .

Some tensions between NLO QCD and Run1 data

[pb]WWtotσ

50 60 70 80 90 100

tot.)± stat. ±Data (

pb -5.0+5.6I 1.2 ±71.4

StatStat+syst

SM WW total error)± PDF ± (

CT10

MSTW2008

NNPDF2.3

ATLAS-epWZ12

ATLAS Preliminary-1

Ldt = 20.3 fb∫ = 8 TeVs

WW

∼ 2.5σ (20%) excess in σATLASW+W− ' 3× σ(H →W ∗W )

S. Pozzorini (Zurich University) Precision simulations DESY15 15 / 35

Page 19: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Diboson production at NNLO QCD

Wq

Wq

NNLO =

g

Wq

Wq

NLO . . .+ + + . . .

Flexible NNLO+NNLL framework based on qT -subtraction [Catani, Grazzini ’06]

CascioliMaierhofer

LindertS.P.

Kallweit

Grazzini, Kallweit, Rathlev, Wiesemann

Gehrmann, Tancredivon Manteuffel, Weihs;Caola, Henn, Melnikov

Smirnov, Smirnov

⇒ predictions for Zγ,Wγ at NNLO and ZZ,WW at NNLO+NNLL [2013–15]

S. Pozzorini (Zurich University) Precision simulations DESY15 16 / 35

Page 20: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

NNLO predictions for pp→ W+W−[Gehrmann et al. ’14]

Unexpectedly large QCD corrections

+58% NLO and +12% NNLO at 14 TeV

well beyond expected size from scaleuncertainties and gg →W+W− (+4%)

Residual scale uncertainty

3% NNLO scale variation

consistent with 2% higher-ordercorrection to gg →W+W− [Melnikov et

al., 1511.08617]

σ/σNLO

141387

1.15

1.1

1.05

1.00

0.95

CMSATLAS

added to all predictions

gg → H → WW∗

σ[pb]

√s [TeV]

pp → W+W−+X140

120

100

80

60

40

20LONN+ggNLON+ggNLO+ggNNNLO+gg

added to all predictions

gg → H → WW∗

σ[pb]

√s [TeV]

pp → W+W−+X140

120

100

80

60

40

20

Comparison with ATLAS and CMS data

NNLO reduces significance of excess in 8 TeV ATLAS measurement andagrees well with published 8 TeV result by CMS

S. Pozzorini (Zurich University) Precision simulations DESY15 17 / 35

Page 21: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Theoretical definition(s) of top-free W+W− production

Huge Wt and tt contamination from

+40% NLO︷ ︸︸ ︷W+W−b and

+400% NNLO︷ ︸︸ ︷W+W−bb

intimately connected with W+W− through g → bb singularities

top subtraction tricky and not unique ⇒ theoretical ambiguity in σ(N)NLOWW !

g

µ−νµ

b

νee+

W+

t

b

t

W− g

g

b

µ−νµ

b

νee+

W+

W−

t

t

t

g

g

b

νee+µ−νµb

b W+

t

b W−

Definition A: veto b-quark emissions in 4F scheme (mb > 0)

⇒ ln(mb/MW ) terms might jeopardize NNLO accuracy!

Definition B: top-resonance fit in 5F-scheme (mb = 0)

limξt→0

σ5Ffull(ξtΓt) = ξ−2

t

[σ5Ftt + ξt σ

5FWt + ξ2

t σ5FW+W−

]⇒ for inclusive σNNLO

WW only 1–2% ambiguity (A vs B)Γt/Γ

physt

tt

W−t +W+ t

W+W−

10.80.60.40.20

290

280

270

260

250

240

230

220

210

200

0

σNNLO[pb]pp → W+W−+X @ 8TeV290

280

270

260

250

240

230

220

210

200

0

Relevant issue for percent-precision tests of W+W− physics! . . . Relation to σEXPWW ?

S. Pozzorini (Zurich University) Precision simulations DESY15 18 / 35

Page 22: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Outline

1 Scattering Amplitudes with OpenLoops

2 (N)NLO QCD at parton level

3 Matching and Multi-jet Merging at NLO QCD

4 NLO EW corrections

Page 23: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

ttH searches in the dominant H → bb channel

∼ 3′000 ttH events but only 3–4×σSM exclusion at Run1

heavy background contamination with large theory uncertainty

requires nontrivial ttbb and tt+ 2 jet simulations

S. Pozzorini (Zurich University) Precision simulations DESY15 19 / 35

Page 24: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Irreducible ttbb QCD background at NLO

NLO ttbb [Bredenstein et al ’09/’10; Bevilacqua et al ’09];

ttbb dominates ttH(bb) systematics

NLO reduces uncertainty from 80% to 20–30%

NLO+PS ttbb 5F scheme (mb = 0) with Powhel [Garzelli et al ’13/’14]

ttbb NLO MEs cannot describe collinear g → bb splittings

⇒ inclusive tt+b-jets simulation requires parton shower in collinear bb region

⇒ NLO merging tt+ 0, 1, 2 jets (see later)

NLO+PS ttbb 4F scheme (mb > 0) with Sherpa+OpenLoops [Cascioli et al ’13]

ttbb NLO MEs cover full b-quark phase space

⇒ inclusive NLO accurate tt+b-jets simulation possible

S. Pozzorini (Zurich University) Precision simulations DESY15 20 / 35

Page 25: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

S–MC@NLO ttbb 4F scheme [Cascioli et al ’13]

Good perturbative stability but unexpected MC@NLO enhancementttb ttbb ttbb (mbb > 100)

σLO[fb] 2644+71%−38%

+14%−11% 463.3+66%

−36%+15%−12% 123.4+63%

−35%+17%−13%

σNLO[fb] 3296+34%−25%

+5.6%−4.2% 560+29%

−24%+5.4%−4.8% 141.8+26%

−22%+6.5%−4.6%

σNLO/σLO 1.25 1.21 1.15

σMC@NLO[fb] 3313+32%−25%

+3.9%−2.9% 600+24%

−22%+2.0%−2.1% 181+20%

−20%+8.1%−6.0%

σMC@NLO/σNLO 1.01 1.07 1.28

Large enhancement (∼30%) in Higgs region from double g → bb splittings

matching, shower and 4F/5F systematicsremain to be understood!

S. Pozzorini (Zurich University) Precision simulations DESY15 21 / 35

Page 26: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

tt+ multijet background and merging at NLO

NLO tt+ 2 jets [Bevilacqua, Czakon, Papadopoulos, Worek ’10/’11]

reduces uncertainty from 80% to 15%

experiments need inclusive particle-level simulation with tt+ 0, 1, 2 jets at NLO

MEPS@NLO merging [Hoche, Krauss, Schonherr, Siegert ’12]

0-jet NLO+PS tt1-jet NLO+PS tt+ 1 j. . . . . .≥ n jets NLO+PS tt+ n j

NLO and log accuracy for 0, 1, . . . n jets

separated via kT-algo at merging scale Qcut

smooth PS–MEs transition ↔ MEs with PS-likescale and Sudakov FFs

[see also FxFx, UNLOPS, GENEVA, MINLO]

NLO merging for tt+ 0, 1 jets

FxFx with Madgraph5/aMC@NLO [Frederix, Frixione ’12]

MEPS@NLO with Sherpa+GoSam [Hoche et al ’13]

S. Pozzorini (Zurich University) Precision simulations DESY15 22 / 35

Page 27: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

MEPS@NLO for tt+ 0, 1, 2 jets (Sherpa+OpenLoops)[Hoche, Krauss, Maierhofer, S. P. , Schonherr, Siegert ’14] I

Sherpa+OpenLoops

pl-jet⊥ > 40 GeV

pl-jet⊥ > 60 GeV

×0.1

pl-jet⊥ > 80 GeV

×0.01

[email protected] × MEPS@LOS-MC@NLO10−5

10−4

10−3

10−2

10−1

1Inclusive light jet multiplicity

σ(≥

Nl-

jet)

[pb]

pl-jet⊥ > 40 GeV

1

1.5

2

Rat

ioto

ME

PS@

NL

O

pl-jet⊥ > 60 GeV

1

1.5

2

Rat

ioto

ME

PS@

NL

O

pl-jet⊥ > 80 GeV

0 1 2 3

1

1.5

2

Nl-jet

Rat

ioto

ME

PS@

NL

O

Consistency with LO merging and NLO+PS

decent (10–20%) mutual agreement

Reduction of µR, µF , µQ variationsNlight−jet ≥ 0 1 2

LO 48% 65% 80%NLO 17% 18% 19%

More realistic uncertainties when multijetemission described by matrix elements instead ofparton shower!

S. Pozzorini (Zurich University) Precision simulations DESY15 23 / 35

Page 28: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

MEPS@NLO for tt+ 0, 1, 2 jets (Sherpa+OpenLoops)[Hoche, Krauss, Maierhofer, S. P. , Schonherr, Siegert ’14] II

Sherpa+OpenLoops

1st jet

2nd jet

3rd jet

[email protected] × MEPS@LOS-MC@NLO10−7

10−6

10−5

10−4

10−3

Light jet transverse momenta

/d

p T[p

b/G

eV]

1st jet0.5

1

1.5

Rat

ioto

ME

PS@

NL

O

2nd jet0.5

1

1.5

Rat

ioto

ME

PS@

NL

O

3rd jet

40 50 100 200 500

0.5

1

1.5

pT (light jet) [GeV]

Rat

ioto

ME

PS@

NL

O

Consistency with LO merging and NLO+PS

decent (10–20%) mutual agreement

Reduction of µR, µF , µQ variationsNlight−jet ≥ 0 1 2

LO 48% 65% 80%NLO 17% 18% 19%

Differential distributions

similarly mild scale dependence

small shape corrections

⇒ Precision for omnipresent tt+multijet background

S. Pozzorini (Zurich University) Precision simulations DESY15 24 / 35

Page 29: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Boosted ttH(bb) analysis [Plehn, Salam, Spannowsky ’10]

Original strategy

1 Two pT > 200 GeV fat jets (t→ bjj and H → bb)

2 identify t→ bjj with top tagger

3 identify H → bb with substructure and 2 b-tags

4 3rd b-tag for t→ b`ν

Significance in |mbb −mH | < 10 GeV window

strong tt+ jets suppression

⇒ ttbb dominated background

S/√B ' 4σ with 100 fb−1

S/B = 35% (decent systematics)

ttbb

ttjj

ttZ

ttHdσ/dmbb [fb/5 GeV]0.6

0.4

0.2

0

ttbb

ttjj

ttZ

ttHdσ/dmbb [fb/5 GeV]

mbb [GeV]

180150120906030

0.6

0.4

0.2

0

S. Pozzorini (Zurich University) Precision simulations DESY15 25 / 35

Page 30: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

New boosted ttH(bb) analysis [Moretti, Petrov, S.P., Spannowsky,

ArXiv:1510.08468]

(A) Update of original analysis

HEPTopTagger [Plehn et al. ’10]

more conservative b-tagging

LO → NLO simulations of ttbb and tt+ multijets

Higher background in Higgs signal region

S/B = 13% only!

only 17% pure H → bb jets

large tt+ jets contamination due to sizable (7%)probability that b-quark escapes top tagger

tt+ jets

ttbb

ttZ

ttH

mc [GeV]

dσ/d

mc[fb/8

GeV

]

200150100500

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

S. Pozzorini (Zurich University) Precision simulations DESY15 26 / 35

Page 31: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Expected σttH sensitivity [Moretti, Petrov, S.P., Spannowsky, ArXiv:1510.08468]

95% CL limits on ∆σttH/σttH for ∆B/B = 15% (or ∼ 1/√L above 300 fb−1)

exp

±1σ

∫ Ldt [fb−1]

µ95%

CL

limit

103102

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

(A) Update of original analysis

|∆σ/σ| <∼ 100% (50%) at 3 ab−1

exp

±1σ

∫ Ldt [fb−1]µ95%

CL

limit

103102

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

(B) Adding regions with one fat jet

|∆σ/σ| <∼ 50% (25%) at 3 ab−1

tt+X background systematics dominates above O(100 fb−1

)

S. Pozzorini (Zurich University) Precision simulations DESY15 27 / 35

Page 32: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Outline

1 Scattering Amplitudes with OpenLoops

2 (N)NLO QCD at parton level

3 Matching and Multi-jet Merging at NLO QCD

4 NLO EW corrections

Page 33: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

EW Sudakov logarithms at Q ∼ TeV�MW

Soft/collinear logarithms from virtual EW bosons

order αw ln2(Q2/M2W ) ∼ 25%� αS in any TeV scale observable!

analogies with IR QCD effects and EW symmetry breaking subtleties

γ,Z,W±

Universality and factorisation [Denner,S.P. ’01]

δM1−loopLL+NLL =

α

n∑k=1

1

2

∑l 6=k

∑a=γ,Z,W±

Ia(k)I a(l) ln2 sklM2

+ γew(k) lns

M2

M0

depend on external EW charges (anomalous dimensions) and kinematic details

large negative EW corrections exceed NLO QCD uncertainties at Q2 �M2W

⇒ EW corrections crucial for SM tests and BSM searches at TeV scale

S. Pozzorini (Zurich University) Precision simulations DESY15 28 / 35

Page 34: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Nontrivial NLO EW features (wrt NLO QCD)

protons and jets ⊃ g, q, γ (photon–jet separation subtle)

Subtle QCD–EW interplay, e.g. NLO EW emissions of photonsand QCD-partons

γ γ

α× αnSαm

γ, Z

αS × αn−1S αm+1

γq γ

g

more involved than NLO QCD: virtual corrections involvemassive particles (γ, Z,W,H, b, t) and tend to dominate

qi

g

qi

g

γ,Z,W

γ,Z,W

ℓ+ℓ−

nontrivial V → lepton decays: final-state interactions and non-fact effects

Z/γ∗p

p

ℓ−

ℓ+Z/γ∗p

p

ℓ−

ℓ+Z/γ∗p

p

ℓ−

ℓ+

S. Pozzorini (Zurich University) Precision simulations DESY15 29 / 35

Page 35: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

NLO EW automation

Technical tour de force

implementation of loop recursion, UV+R2 CTs, Catani-Seymour subtraction,general O (αnSα

m) bookkeeping at NLO, complex masses scheme,. . .

First automated tools and multi-particle applications (2014–15)

Tools first results

Recola+Collier pp→ `+`−jj [arXiv:1411.0916]

OpenLoops+ Munich/Sherpa pp→W + 1, 2, 3 jets [arXiv:1412.5156]

pp→ ``/`ν/νν + 0, 1, 2 jets [arXiv:1511.08692]

Madgraph5 aMC@NLO pp→ tt+ V [arXiv:1504.03446]

GoSam+ MadDipole pp→W + 2 jets [arXiv:1507.08579]

Full NLO QCD+EW automation [Kallweit,Lindert,Maierhofer,S.P.,Schonherr ’14]

Loop amplitudes: OpenLoops [Cascioli et al. ’13] and Collier [Denner et al. ’14]

Monte Carlo: Munich [Kallweit] or Sherpa [Hoeche et al.]

S. Pozzorini (Zurich University) Precision simulations DESY15 30 / 35

Page 36: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

pp→ W + 1, 2, 3 jets at NLO QCD+EW[Kallweit,Lindert,Maierhofer,S.P.,Schonherr ’14]

Technical motivation

highest # of jets with on-shell W ⇒ study tool performance for njets = 1, 2, 3

W + 3 jets # QCD trees # EW trees # QCD 1-loop # EW 1-loopuidi →W+qj qjg 12 33 352 1042uidi →W+qiqig 24 66 704 2084uidi →W+ggg 54 - 2043 2616

many flavour combinations & crossings ⇒ unconceivable w.o. automationNLO EW more complex but less CPU expensive than NLO EW!

Pheno importance of pp→ V+multijets

precision tests of QCD theory and tools

crucial for TeV scale searches with leptons+jets+MET

large EW corrections in Sudakov app. [Chiesa et al. ’13] untested in multijet regime

V + 1 jet production pathologic at NLO QCD+EW

S. Pozzorini (Zurich University) Precision simulations DESY15 31 / 35

Page 37: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

NLO QCD+EW corrections to pp→ W + 1 jet

pT [GeV]

pT,j1

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT [GeV]

pT,j1

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

j1/103

W+

dσ/d

pT[pb/G

eV]

pp → W+ + 1j @ 13TeV

103

100

10−3

10−6

10−9

10−12NLO QCD×EWNLO QCD+EWNLO QCDLON

j1/103

W+

dσ/d

pT[pb/G

eV]

pp → W+ + 1j @ 13TeV

103

100

10−3

10−6

10−9

10−12

Large NLO corrections at high pT,W

+100% (QCD) − 20–35% (EW)

large EW×QCD uncertainty!

Giant NLO corrections at high jet pT

+1000% (QCD) + 10–50% (EW)

huge uncertainties!

Problem of pp→W+ jet at high pT

NLO dominated by W + 2 jets at LO

soft W/Z

q

g

⇒W+multijets NLO QCD+EW mandatory!!

S. Pozzorini (Zurich University) Precision simulations DESY15 32 / 35

Page 38: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

NLO QCD+EW corrections to pp→ W + 2, 3 jets

pT [GeV]

pT,j2

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT [GeV]

pT,j2

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

j2/106

j1/103

W+

dσ/d

pT[pb/G

eV]

pp → W+ + 2j @ 13TeV

103

100

10−3

10−6

10−9

10−12

10−15

10−18 NLO QCD×EWNLO QCD+EWNLO QCDLON

j2/106

j1/103

W+

dσ/d

pT[pb/G

eV]

pp → W+ + 2j @ 13TeV

103

100

10−3

10−6

10−9

10−12

10−15

10−18

Stable NLO QCD behaviour

small and almost pT independent

<∼ 10% scale dependence at NLO

Large negative EW effects (resummation desirable)

−30–60% at pT,W =1–4 TeV

−15–25% at pT,j =1–4 TeV

Take home message

NLO QCD+EW for W + 2, 3 jets under control

next: NLO QCD+EW merging of W + 1, 2, 3 jets

⇒ reliable prediction for inclusive W+ jet production

S. Pozzorini (Zurich University) Precision simulations DESY15 33 / 35

Page 39: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

V + 0, 1, 2 jets with off-shell W → `ν and Z/γ∗ → ``/νν[Kallweit, Lindert, Maierhofer, S.P., Schonherr, arXiv:1511.08692]

NLO QCD+EWvirt multi-jet merging ⇒ inclusive V + 1 jet observables stable!

MEPS@LO

MEPS@NLO QCD

MEPS@NLO QCD+EWvirt

MEPS@NLO QCD+EWvirt w.o. LO mix

100

10–3

10–6

10–9

pp → ℓ−ν + 0,1,2 j @ 13 TeV

dσ/dpT,V

[pb/GeV

]

50 100 200 500 1000 20000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

pT,V [GeV]

dσ/d

σNLO

QCD

At pT,V ∼TeV EW effects enhancedthrough (soft) multi-jet contributions

MEPS@LO

MEPS@NLO QCD

MEPS@NLO QCD+EWvirt

MEPS@NLO QCD+EWvirt w.o. LO mix

100

10–3

10–6

10–9

pp → ℓ−ν + 0,1,2 j @ 13 TeV

dσ/dpT,j 1

[pb/GeV

]50 100 200 500 1000 2000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

pT,j1[GeV]

dσ/d

σNLO

QCD

At pT,jet ∼TeV EW effects cancel due to(hard) multi-jet contributions

Multi-jet NLO QCD+EW effects crucial at the TeV scale

S. Pozzorini (Zurich University) Precision simulations DESY15 34 / 35

Page 40: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Concluding remarks

Automation of (N)NLO QCD+EW simulations

high potential to improve sensitivity of many SM tests and BSM searches at LHC

Powerful tools (but can’t provide precision & physics insights if used as black boxes!)

technically and physically highly involved simulations (many particles, many scales,resonances, process interferences, EW–QCD interplay, . . . )

precision will require thorough understanding of physics and uncertainties

The NLO problem is solved (?)

fundamental problems solved in the ’70s –’90s (reduction, IR subtraction)

modern algorithms more automated and widely applicable

for complex LHC simulations still serious efficiency bottlenecks and lackingphysics+precision (chain decays at NLO, IR behaviour for NNLO subtraction, NLOEW matching, interplay of shower with resonances and multi-scale matrixelements,. . . )

⇒ the NLO business is still (and should remain!) work in progress

S. Pozzorini (Zurich University) Precision simulations DESY15 35 / 35

Page 41: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Backup slides

Page 42: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Structure of NLO Calculations

Born, virtual and real 2→ n contributions (|M|2, flux factor and PDFs implicit)

σNLOn =

∫dΦnB(Φn) +

∫dΦnV(Φn) +

∫dΦn+1R(Φn+1)

UV renormalisation ⇒ reduction of µR dependence

soft/collinear cancellations+PDF renormalisation ⇒ reduction of µF dependence

Dipole subtraction method [Catani, Seymour ’96; Catani, Dittmaier, Seymour,

Trocsanyi ’99]

factorisation and universality of IR (sof/collinear) singularities

R(Φn+1) −→ B(Φn)⊗ S(Φ1) I =

∫dΦ1S(Φ1) analytically

NLO formula suitable for numerical integration

σNLOn =

∫dΦnB(Φn) +

∫dΦn

[V(Φn) + B(Φn)⊗ I

]+

∫dΦn+1

[R(Φn+1)− B(Φn)⊗ S(Φ1)

]

S. Pozzorini (Zurich University) Precision simulations DESY15 36 / 35

Page 43: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Tree recursion

Colour-stripped tree diagrams are built numerically in terms of sub-trees

wβ(i) = i β ↔ off-shell line spin

and recursively merged by attaching vertices and propagators

i =

k

j

wβ(i) =Xβγδ(i, j, k)

p2i −m2

i

wγ(j) wδ(k)

(sub-tree = individual topology with off-shell line 6= off-shell current)

Completely generic and automatic

flexible (only Lint dependent)

fast (many diagrams share common sub-trees)

efficient colour bookkeeping (colour factorisation and algebraic reduction)

S. Pozzorini (Zurich University) Precision simulations DESY15 37 / 35

Page 44: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

i =

k

j

wβ(i) =Xβγδ(i, j, k)

p2i −m2

i

wγ(j) wδ(k)

sub-tree = individual topology with off-shell line 6= off-shell current

Example

wα(1) = = uα(p1, λ1) wµ(2) = = ε∗µ(p2, λ2)

wβ(12) = =gs [(p/12 +m)γµ]αβ

p212 −m2

wα(1) wµ(2) wν(3) = = ε∗ν(p3, λ3)

wγ(123) = =e [(p/123 +m)γν(1− γ5)]βγ

2√

2sw(p2123 −m2)

wβ(12) wν(3) etc.

Recursion terminates when full set of diagram can be obtained via sub-diagram merging

S. Pozzorini (Zurich University) Precision simulations DESY15 38 / 35

Page 45: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Colour-stripped loop diagrams

n − 1

0

1

in−1in

i2i1

=

∫dDq N (In; q)

D0D1 . . . Dn−1=

R∑r=0

Nµ1...µr (In)

∫dDq qµ1 . . . qµr

D0D1 . . . Dn−1︸ ︷︷ ︸tensor integral

OpenLoops computes symmetrised Nµ1...µr (In) coefficients

tensor-rank R 0 1 2 3 4 5 6 7

# coeff. per diagram(R+4

4

)1 5 15 35 70 126 210 310︸ ︷︷ ︸

6 particles

and applies two alternative methods for the reduction to scalar integrals:

(A) Tensor-integral reduction [Denner/Dittmaier ‘05]

(B) OPP reduction [Ossola, Papadopolous, Pittau ‘07] based on numerical evaluation ofN (In; q) =

∑Nµ1...µr (In) qµ1 . . . qµr at multiple q-values (strong speed-up!)

S. Pozzorini (Zurich University) Precision simulations DESY15 39 / 35

Page 46: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

One-loop amplitudes with conventional tree generators

in

i1

Inβ

α=

in−1

i1

in

In−1

β

α

Tree generators for “usual” OPP-input N (In; q)

Cut-open loops can be built by recursively attaching external sub-trees

N βα (In; q) = Xβ

γδ(In, in, In−1) N γα (In−1; q) wδ(in)

like in conventional tree generators

one-loop automation in Helac-NLO (off-shell recursion) and MadLoop (diagrams)

CPU expensive OPP reduction (multiple-q evaluations) since tree algorithmsconceived for fixed momenta

Nature of loop amplitudes requires loop-momentum functional dependence!

S. Pozzorini (Zurich University) Precision simulations DESY15 40 / 35

Page 47: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

OpenLoops recursion [Cascioli, Maierhofer, S.P ’11]

in

i1

Inβ

α=

in−1

i1

in

In−1

β

α

OpenLoops recursion for N βµ1...µr ;α(In)

Handle building blocks of recursion as polynomials in the loop momentum q

N βα (In; q)︸ ︷︷ ︸ = Xβ

γδ(In, in, In−1)︸ ︷︷ ︸ N γα (In−1; q)︸ ︷︷ ︸ wδ(in)

n∑r=0

N βµ1...µr ;α(In) qµ1 . . . qµr Y βγδ + qν Zβν;γδ

n−1∑r=0

N βµ1...µr ;α(In−1) qµ1 . . . qµr

and construct polynomial coefficients with “open loops recursion”

N βµ1...µr ;α(In) =

[Y βγδ N

γµ1...µr ;α(In−1) + Zβµ1;γδ N

γµ2...µr ;α(In−1)

]wδ(in)

S. Pozzorini (Zurich University) Precision simulations DESY15 41 / 35

Page 48: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Parent-child relations

Pinch relations

i1

in-2

n − 1

in-1in

n-point parent

In−2 open loop⇐=

i1

in-2

in-1in

(n− 1)-point child

n-point loop diagrams constructued from pre-computed (n− 1)-point child diagrams

Example

6-point parent 5-point child

Complicated diagrams require only “last missing piece” (always works in QCD!)S. Pozzorini (Zurich University) Precision simulations DESY15 42 / 35

Page 49: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Example of OpenLoops recursion: fermion loop

N βα (In; q) =

n− 1

1

β

α

in−1in

i2i1

= gs [(q/ + p/n +m)γν ]βγ Nγα (In−1; q) ε∗ν(pn, λn)

n-point open-loop coefficients of rank r = 0, 1, . . . , n

N β;α(In) = gs[(p/n +m)γν ]βγ N

γ;α(In−1) ε∗ν(pn, λn)

N βµ1;α(In) = gs

{[(p/n +m)γν ]βγ N

γµ1;α(In−1) + [γµ1γ

ν ]βγ Nγ;α(In−1)

]ε∗ν(pn, λn)

etc.

initial condition for 0-point rank-0 open loop

N γ;α(I0) = δγα

rank, i.e. complexity, increases with n ⇒ symmetrised µ1 . . . µr components!

bookkeeping of tensor components fully automated

S. Pozzorini (Zurich University) Precision simulations DESY15 43 / 35

Page 50: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

R2 rational terms

n − 1

0

1

in−1in

i2i1

=R∑r=0

Nµ1...µr (In)︸ ︷︷ ︸in D = 4

∫dDq qµ1 . . . qµr

D0D1 . . . Dn−1

Extra rational terms from 3 < µ1, . . . , µr ≤ D − 1 coefficient components

R2 =

D−1∑µ1...µr=0

Nµ1...µr

∣∣∣∣D=4−2ε

Tµ1...µrUV −

3∑µ1...µr=0

Nµ1...µr

∣∣∣∣D=4

Tµ1...µrUV

From catalogue of 2-, 3- and 4-point 1PI diagrams (depends only on model)Z

R2

= ×Z

= − g2s

16π2

N2c − 1

2Ncγµ(gZV − gZAγ5) etc.

[Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau ‘09–‘11; Shao, Zhang, Chao ‘11]

S. Pozzorini (Zurich University) Precision simulations DESY15 44 / 35

Page 51: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Flexibility and automation of OpenLoops generator

Process size [MB] tcode [s]

uu→ tt 0.1 2.2uu→ W+W− 0.1 7.2ud→ W+g 0.1 4.2gg → tt 0.2 5.4uu→ ttg 0.4 12.8uu→ W+W−g 0.4 39.8ud→ W+gg 0.5 22.9gg → ttg 1.2 52.9

uu→ ttgg 3.6 (200)∗ 236 (∼ 106)∗

uu→ W+W−gg 2.5 (1000)∗ 381.7 (∼ 106)∗

ud→ W+ggg 4.2 366.2gg → ttgg 16.0 3005

Fast code generation/compilation

few seconds to minutes

O(103) speed-up in 2→ 4

Compact code

100 kB to few MB object files

O(102–103) compression in 2→ 4

∗pp→ ttbb & WWbb (Bredenstein, Denner, Dittmaier, Kallweit, S.P. ‘09–‘11)

large-scale applicability!

S. Pozzorini (Zurich University) Precision simulations DESY15 45 / 35

Page 52: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Numerical stability with tensor reduction in doubleprecision

Stability ∆ in samples of 106 points (√s = 1 TeV, pT > 50 GeV, ∆Rij > 0.5)

2 → 4

2 → 3

2 → 2

gg → tt +ng

uu → tt +ng

ud → W+g +ng

uu → W+W− +ng

maximal precision ∆

fraction

ofevents

10010−410−810−1210−16

100

10−1

10−2

10−3

10−4

10−5

10−6

Average number of correct digits

11-15

Cross section accuracy

depends on tails

stability issues grow with npart

2→ 4 processes very stable<∼ 0.01% prob. that ∆S < 10−3

thanks to Gram-determinantexpansions in Collier!

Real-life NLO applications

O(10−4) unstable points in most challenging 2→ 4 calculations considered so far

can be monitored and safely suppressed thanks to online instability-trigger

S. Pozzorini (Zurich University) Precision simulations DESY15 46 / 35

Page 53: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Finite-width effects vs NWA [Cascioli, Maierhofer,Kallweit, S.P. ’13]

Examples of factorisable and non-factorisable 1-loop diagrams

t

t

t

t

t

t

t

t

t

t

t

t

Separation of narrow- and finite-top-width parts

via numerical Γt → 0 extrapolation

limξt→0

dσW+W−bb(ξtΓt) = ξ−2t [dσtt + ξt dσFtW]

⇒ permille-level convergence demonstrates nontrivialcancellation of soft-gluon ln(Γt/mt) singularities

NLO (inclusive)LON (inclusive)NLO (2 b-jets)LON (2 b-jets)

pp → νee+µ−νµbb+X @ 8TeV

Γt/Γphyst

σW

Wbb(Γ

t)/σ

WW

bb(Γ

phys

t)−

1[%]

10.80.60.40.20

0

−2

−4

−6

−8

σtt = on-shell tt production×decay

σFtW = O(Γt/mt) effects dominated by Wt + interference + off-shell tt +. . .

= 6–8% of σinclusive (cf. sub-percent effect with tt cuts!)

S. Pozzorini (Zurich University) Precision simulations DESY15 47 / 35

Page 54: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

σW+W−bb in Jet Bins [Cascioli, Maierhofer,Kallweit, S.P. ’13]I

Generic-Jet Bins: complete cross section and finite-top-width (FtW) effects

µ0 σ[fb] σ0[fb] σ1[fb] σ2+ [fb]

LO µWWbb 1232+34%−24%

37+38%−25%

367+36%−24%

828+33%−23%

NLO µWWbb 1777+10%−12%

41+3%−8%

377+1%−6%

1359+14%−14%

K µWWbb 1.44 1.09 1.03 1.64

LO mt 1317+35%−24%

35+37%−25%

373+36%−24%

909+35%−24%

NLO mt 1817+8%−11%

40+4%−8%

372+1%−8%

1405+13%−13%

K mt 1.38 1.14 1.00 1.55

µ0 σFtW[fb] σFtW0 [fb] σFtW

1 [fb] σFtW2+ [fb]

LO µWWbb 91+41%−27%

13+42%−27%

71+40%−27%

7+45%−29%

NLO µWWbb 107+6%−11%

13+1%−7%

61+2%−16%

33+51%−31%

K µWWbb 1.18 0.99 0.86 4.70

LO mt 63+36%−25%

8+36%−25%

49+36%−24%

6+46%−29%

NLO mt 100+17%−16%

13+14%−14%

65+9%−12%

23+42%−28%

K mt 1.58 1.47 1.32 3.89

S. Pozzorini (Zurich University) Precision simulations DESY15 48 / 35

Page 55: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

σW+W−bb in Jet Bins [Cascioli, Maierhofer,Kallweit, S.P. ’13]II

b-Jet Bins: complete cross section and finite-top-width (FtW) effects

µ0 σ[fb] σ0[fb] σ1[fb] σ2+ [fb]

LO µWWbb 1232+34%−24%

37+38%−25%

367+36%−24%

828+33%−23%

NLO µWWbb 1777+10%−12%

65+20%−17%

571+14%−14%

1140+7%−10%

K µWWbb 1.44 1.73 1.56 1.38

LO mt 1317+35%−24%

35+37%−25%

373+36%−24%

909+35%−24%

NLO mt 1817+8%−11%

63+20%−17%

584+14%−14%

1170+5%−9%

K mt 1.38 1.80 1.56 1.29

µ0 σFtW[fb] σFtW0 [fb] σFtW

1 [fb] σFtW2+ [fb]

LO µWWbb 91+41%−27%

13+42%−27%

71+40%−27%

7+45%−29%

NLO µWWbb 107+6%−11%

20+18%−17%

82+4%−10%

5+2%−10%

K µWWbb 1.18 1.49 1.16 0.77

LO mt 63+36%−25%

8+36%−25%

49+36%−24%

6+46%−29%

NLO mt 100+17%−16%

16+22%−18%

77+16%−15%

6+12%−16%

K mt 1.58 1.89 1.58 1.10

S. Pozzorini (Zurich University) Precision simulations DESY15 49 / 35

Page 56: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

WWbb cross section in jet bins [Cascioli, Maierhofer,Kallweit, S.P. ’13]

Jet-Veto and Binning Effects

0-jet bin vs pT-veto

smooth inclusive limit at large pT and very strongpT sensitivity below 50 GeV:

FtW effects increase up to 50%K-factor falls very fast

at low pT IR singularity calls for NLO+PS matching

typical veto pT ∼ 30 GeV yields 98% suppressionand still decent NLO stability (K ∼ 1)

1-jet bin vs pT threshold

low pT behaviour driven by veto on 2nd jet andanalogous to 0-jet case

high pT region driven by 1st jet and NLO radiationdominates over b-jets from W+W−bb

1−

σtt

σW

Wbb[%

]

pthrT,jet[GeV]2001501005010

40

20

01−

σtt

σW

Wbb[%

]

pthrT,jet[GeV]2001501005010

40

20

0

NLO

LO

1.5

1NLO

LO

1.5

1

σ0jet(pthr

T,jet)[fb]

pp → νee+µ−νµbb+X @ 8TeV

103

102

101NLOLON

σ0jet(pthr

T,jet)[fb]

pp → νee+µ−νµbb+X @ 8TeV

103

102

101

1−

σtt

σW

Wbb[%

]pthrT,jet[GeV]

2001501005010

30

20

10

01−

σtt

σW

Wbb[%

]pthrT,jet[GeV]

2001501005010

30

20

10

0NLO

LO

1.5

1NLO

LO

1.5

1

σ1jet(pthr

T,jet)[fb]

pp → νee+µ−νµbb+X @ 8TeV

103

102

101

NLOLON

σ1jet(pthr

T,jet)[fb]

pp → νee+µ−νµbb+X @ 8TeV

103

102

101

S. Pozzorini (Zurich University) Precision simulations DESY15 50 / 35

Page 57: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

WWbb cross section in b-jet bins [Cascioli, Maierhofer,Kallweit, S.P. ’13]1−

σtt

σW

Wbb[%

]

pthrT,b-jet[GeV]2001501005010

40

20

01−

σtt

σW

Wbb[%

]

pthrT,b-jet[GeV]2001501005010

40

20

0

NLO

LO

2

1.5

1

NLO

LO

2

1.5

1

σ0b-jet(p

thr

T,b-jet)[fb]

pp → νee+µ−νµbb+X @ 8TeV

103

102

101NLOLON

σ0b-jet(p

thr

T,b-jet)[fb]

pp → νee+µ−νµbb+X @ 8TeV

103

102

101

1−

σtt

σW

Wbb[%

]

pthrT,b-jet[GeV]2001501005010

20

10

01−

σtt

σW

Wbb[%

]

pthrT,b-jet[GeV]2001501005010

20

10

0

NLO

LO

1.5

1

NLO

LO

1.5

1

σ1b-jet(p

thr

T,b-jet)[fb]

pp → νee+µ−νµbb+X @ 8TeV

103

102

101

NLOLON

σ1b-jet(p

thr

T,b-jet)[fb]

pp → νee+µ−νµbb+X @ 8TeV

103

102

101

NLO radiation doesn’t change b-jet multiplicity ⇒ rather stable K-factor anduncertainties

single-top and off-shell effects still enhanced at small b-jet pT

In general: nontrivial interplay of NLO and off-shell/single-top effects

S. Pozzorini (Zurich University) Precision simulations DESY15 51 / 35

Page 58: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Top background to 0-jet bin of H → W+W− analysis1−

σtt

σW

Wbb[%

]

φe+µ−

π3π4

π2

π40

40

20

01−

σtt

σW

Wbb[%

]

φe+µ−

π3π4

π2

π40

40

20

0

NLO

LO

1.25

1

0.75

NLO

LO

1.25

1

0.75

dσ0jet/dφe+

µ−[fb]

pp → νee+µ−νµbb+X @ 8TeV

30

20

10

0

NLOLON

dσ0jet/dφe+

µ−[fb]

pp → νee+µ−νµbb+X @ 8TeV

30

20

10

0

1−

σtt

σW

Wbb[%

]

Me+µ− [GeV]300250200150100500

40

20

01−

σtt

σW

Wbb[%

]

Me+µ− [GeV]300250200150100500

40

20

0

NLO

LO

1.25

1

0.75

NLO

LO

1.25

1

0.75

dσ0jet/dM

e+µ−[fb/G

eV]

pp → νee+µ−νµbb+X @ 8TeV

0.1

0.01

NLOLON

dσ0jet/dM

e+µ−[fb/G

eV]

pp → νee+µ−νµbb+X @ 8TeV

0.1

0.01

NLO distributions in key variables for H →W+W− measurement

better than 10% accuracy and stable shape

O(Γt/Mt) contributions around 25–40%

⇒ requires full WWbb NLO simulation!

S. Pozzorini (Zurich University) Precision simulations DESY15 52 / 35

Page 59: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

NLO+PS for W+W−bb (conceptual and technical issues)

Need of NLO+PS matching

NLO precision in the context of fully exclusive simulations for experimental analysis

describes higher-order resummation effects in the shower aproximation and,possibly, related uncertainties (both should be small!)

NLO+PS matching for a process with intermediate resonances

matrix elements provide NLO accurate description of “Breit-Wigner”top-distributions (with off-shell effects,. . . )

crucial for precision observables sensitive to shape of top resonance (kinematic mt

measurements!), edges of on-shell tt phase space, single-top Wt contributions, . . .

Nontrivial conceptual and technical (open) issue

recoil of standard shower emissions off W+W−bb finalstates induce arbitrary kinematic distortions of mWb

potentially very strong distortions of Breit-Wigner shape(formally of order α2

Smt/Γt ∼ 1!)

requires yet unknown technique for matching PS tooff-shell resonances at NLO

g

g

b

µ−νµ

b

νe

e+

W+

W−

t

t

t

S. Pozzorini (Zurich University) Precision simulations DESY15 53 / 35

Page 60: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Theory priorities in ttH searches

Key priority is precision for backgrounds

various multi-particle processes: tt+ jets,ttV+ jets, ttγγ, V V+ jets

NLO automation crucial but 2→ 4 CPUintensive

ttH Analyses at the LHC

H

b

b

t

W q

q

b

t

W l

ν

b• direct probe of ttH Yukawa coupling

• ttH(bb) originally considered best discovery channel for

light Higgs

• complicated bbbbℓνjj final state hampers H → bb peak

reconstruction ⇒ very large QCD backgrounds

Status of ttH analyses in various channels

95% exclusion in σSMttH units H → bb H → V V ∗ H → γγ

ATLAS 4.1 (2.6) 4.7 (5.4)

CMS 5.2 (4.1) 6.6 (2.4) 5.3 (5.4)

• sensitivity already ∼ 100%λSMt and ttH searches still quite active

• expected sensitivity ∼ 10%λSMt with 300 fb−1

NLO matching & merging crucial

various new methods (FxFx, MEPS@NLO, MINLO, UNLOPS, GENEVA,MINLO,. . . )

various automated tools support NLO precision for signal and most backgrounds:MG5 aMC@NLO, Sherpa+OpenLoops/GoSam, Powheg/Powhel

Theory uncertainty estimates nontrivial

still limited experience in NLO matching+merging framework

sophisticated analyses (profile likelihood, MEM, background reweighting, . . . )

S. Pozzorini (Zurich University) Precision simulations DESY15 54 / 35

Page 61: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Parton Showers in a Nutshell

High-energy n-parton final state ⇒ realistic multi-parton/hadron event

Chain of ordered emissions µQ > t1 > t2 > · · · > tIR

dσn ' dσn−1αs2π

dtntn

dz dφP (z, φ)dt

t=

dk2T

k2T

Sudakov FF resums no-emission probability (V-like term)

∆(µ2Q, t0) = exp

{−αs

∫ µ2Q

tIR

dt

t

∫dz dφP (z, φ),

}

resummation scale µ2Q ∼ s and IR cut-off tIR ∼ 1 GeV

First emission master formula

σLO+PSn =

∫dΦnB(Φn)

{∆(µ2

Q, tIR) +

∫ µ2Q

t0

αs2π

dt1t1

∫dz dφP (z, φ)∆(µ2

Q, t1)

}unitarity leaves inclusive LO normalisation and uncertainty unchanged

emissions iterated with µ2Q → t1 → t2 → . . .

resummation of large logarithms in exclusive oservables (jet vetoes, etc.)

S. Pozzorini (Zurich University) Precision simulations DESY15 55 / 35

Page 62: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Sherpa Formulation of MC@NLO Matching

Matching NLO calculations to parton showers

NLO accuracy + shower resummation w.o. double counting of 1st emission

achieved in MC@NLO [Frixione, Webber ’02] by using shower kernels as NLOsubtraction terms

Sherpa shower ideally suited: dipole subtraction terms as splitting kernels

αs2π

dt

tdz dφP (z, φ) −→ θ(µQ − t)S(Φ1)dΦ1 t = t(Φ1)

Sherpa’s MC@NLO master formula [Hoche, Krauss, Schonherr, Siegert ’11]

σMC@NLOn =

∫dΦn

[B(Φn) + V(Φn) + B(Φn)⊗ I

]{∆(µ2

Q, tIR) +

∫ µ2Q

t0

dΦ1S(Φ1) ∆(µ2Q, t)

}+

∫dΦn+1

[R(Φn+1)− B(Φn)⊗ S(Φ1)

]

shower resummation effectively acts starting from O(α2s), and iterated emissions

yield fully realistic events

inclusive observables with n (n+ 1) particles preserve NLO (LO) accuracy

S. Pozzorini (Zurich University) Precision simulations DESY15 56 / 35

Page 63: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

MEPS@NLO for tt+ 0, 1, 2 jets (Sherpa+OpenLoops)[Hoche, Krauss, Maierhofer, S. P. , Schonherr, Siegert ’14] I

Sherpa+OpenLoops

MEPS@NLOMEPS@NLO Qcut = 20 GeVMEPS@NLO Qcut = 30 GeVMEPS@NLO Qcut = 40 GeV1.65×MEPS@LOS-MC@NLO

1

10 1

10 2

10 31 → 2 k⊥ jet resolution

/d

d 12

[pb/

GeV

]

1

1.5

→ ⊥

Rat

ioto

Qcu

t=

30G

eV

0.8

1

1.2

→ ⊥

Rat

ioto

Qcu

t=

30G

eV

3 10 100 3000

0.2

0.4

0.6

0.8tt+ 0j excl.tt+ 1j excl.tt+ 2j incl.

→ ⊥

d12 [GeV]

Rat

ioto

Qcu

t=

30G

eV

Small merging scale choice

Qcut = 30 GeV such that exp. resolvedjets are described by MEs

Merging scale uncertainty

Qcut = 30± 10 GeV

⇒ � 10% dependence

does not spoil tt+ 0, 1, 2 jets NLO precision

S. Pozzorini (Zurich University) Precision simulations DESY15 57 / 35

Page 64: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Les Houches priority list for pp→ V (V ′)+ jets

S. Pozzorini (Zurich University) Precision simulations DESY15 58 / 35

Page 65: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

EW Sudakov effects at 1 TeV

Typical size at 1-loop(δσ1

σ0

)LL

' − 4α

πs2w

ln2

(1 TeV

MW

)' −26.4%

(δσ1

σ0

)NLL

' +6α

πs2w

ln

(1 TeV

MW

)' +15.6%

Typical size at 2-loops [Bauer, Becher, Ciafaloni, Comelli, Denner, Fadin, Jantzen, Kuhn,

Lipatov, Manohar Martin, Melles, Penin, S.P., Smirnov, . . . ](δσ2

σ0

)LL

' +8α2

π2s4w

ln4

(1 TeV

MW

)' 3.5%

(δσ2

σ0

)NLL

' − 24α2

π2s4w

ln3

(1 TeV

MW

)' −4.1%

Bottom line

⇒ Large negative EW corrections exceed NLO QCD uncertainties at Q2 �M2W

⇒ systematic inclusion of EW effects important for any search at the TeV scale

S. Pozzorini (Zurich University) Precision simulations DESY15 59 / 35

Page 66: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Electroweak bremsstrahlung

Real photon emission

mandatory since soft/collinear γ unresolved

complete cancellation of QED singularities

γ

Real Z,W emission [Ciafaloni,Comelli]

inclusive emission: only partial ln(s/MW ) cancellation

↔ free SU(2) charges, collinear IS logs, kinematic MZ,W effects

typical experimental cuts: modest ln(s/MW ) cancellation(strongly dependent on process and analysis)

bottom line: needs to be considered but can be regarded asseparate (tree-level) process

Z,W±

S. Pozzorini (Zurich University) Precision simulations DESY15 60 / 35

Page 67: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Nontrivial QCD-EW interferences for qq → qq + . . .

LO contributions of order αm, αm+1,. . . , αm+k

QCD

γ, Z

mixed

γ, Z γ, Z

EW

NLO EW corrections of order αm+1 (nontrivial bookkeeping)

γ, Z

γ γ

“standard’

γ, Z

γ, Z

“mixed”

. . . + O(αm+k+1

)

⇒ EW corrections can involve emissions of photons and QCD-partons

S. Pozzorini (Zurich University) Precision simulations DESY15 61 / 35

Page 68: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Nontrivial QCD-EW interplay in pp→ X+ ≥ 2 jets

qq → qq + . . . cross sections receive various Born contributions

O (αnSαm)︸ ︷︷ ︸

“QCD”

+ O(αn−1S αm+1)︸ ︷︷ ︸

“EW−QCD interf.”

+ · · ·+ O(αn−kS αm+k

)︸ ︷︷ ︸

“EW”

O(αnSα

m+1)

NLO EW corrections to leading QCD Born, e.g. in qq → qq

EW corrections × QCD Born

γ γ γ, Z

QCD corrections × EW–QCD interference

γ, Z γ, Z γ, Z

In practice

only full O(αnSα

m+1)

IR finite ⇒ nontrivial bookkeeping (automated)

O (α) corrections can involve emissions of photons and QCD-partons

protons and jets ⊃ g, q, γ

S. Pozzorini (Zurich University) Precision simulations DESY15 62 / 35

Page 69: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Photons in the initial state

Factorisation of q → qγ singularities ⇒ QED PDFs with photon

γ

LO QED evolution

γ-fit to DIS+DY data(NNPDF)

O (50%) γ-uncertainty

Very large γ-induced effects with O (100%) uncertainty in TeV region

(GeV)llM500 1000 1500 2000 2500 3000 3500

Ra

tio t

o N

NP

DF

2.3

QE

D B

orn

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

qNNPDF2.3QED, Born q

) QEDαNNPDF2.3QED, full O(

) QEDαMRST2004QED, full O(

= 14 TeVs production @ LHC *

γRatio ­ Z/

(GeV)νlM

500 1000 1500 2000 2500 3000 3500

Ra

tio t

o N

NP

DF

2.3

QE

D B

orn

0

0.5

1

1.5

2

2.5

qNNPDF2.3QED, Born q

) QEDαNNPDF2.3QED, full O(

) QEDαMRST2004QED, full O(

= 14 TeVsRatio ­ W production @ LHC

(GeV)cutWWM

0 500 1000 1500 2000

qR

atio

to

NN

PD

F2

.3Q

ED

, q

0

0.5

1

1.5

2

2.5qNNPDF2.3QED, q

γγ+qNNPDF2.3QED, q

qMRST2004QED, q

γγ+qMRST2004QED, q

= 14 TeVsRatio ­ WW production @ LHC

Wanted: - NLO QED PDFs

- new fit of γ-PDF with accurate high-energy data & theory [Boughezal et al.’14]

S. Pozzorini (Zurich University) Precision simulations DESY15 63 / 35

Page 70: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Photons (and jets) in the final state

Cancellation of FS photon singularities

requires IR subtraction method [Catani,Dittmaier,Seymour,

Trocsanyi; Frixione, Kunszt, Signer]

photon emission off quarks renders IR safe jet definitionnontrivial at NLO EW

γ

Option A: Democratic jet-algorithm approach (jets ≡ photons)

γqcollinear q → qγ singularitiescancelled clustering q, g, γ onsame footing

γ

g

soft gluon singularities ↔ hardphotons inside jets: cancelled injet-production (NLO EW) +γ-production (NLO QCD)

Option B: Separation of jets from photons (Eγ/Ejet < zthr inside jets)

q → qγ singularity must be absorbed into fragmentation function

⇒ requires careful theoretical and experimental treatment of photon–jet interplay

S. Pozzorini (Zurich University) Precision simulations DESY15 64 / 35

Page 71: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Decays of Z/W bosons

Leptonic Z and W decays are notrivial at NLO EW (in contrast to NLO QCD)

NLO EW corrections to production×resonance×decay + non-fact corrections

W+p

p

ν

ℓ+W+p

p

ν

ℓ+W±p

p

ν

ℓ+

Option A: complex mass scheme [Denner, Dittmaier]

exact NLO description (always desirable)

high complexity corresponding to total number of particles after decays

Option B: narrow-width approximation (production×decay)

simpler but applicability to V+multijets limited to certain O(αnSα

m+1)

(see later)

captures all large ln(s/M2W ) effects (present only in production sub-process)

typical uncertainty <∼ 1–3% (apart form γ∗/Z∗ → `+`− at small m``)

S. Pozzorini (Zurich University) Precision simulations DESY15 65 / 35

Page 72: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

EW corrections to pp→ V + 1 jet

Very large EW corrections to pp→ Z/W + 1 jet

NLO (electro)weak [Maina, Ross, Moretti ’04;Kuhn,

Kulesza, S.P.,Schulze ’04–’07]

EW Sudakov logs beyond NLO [Kuhn, Kulesza,

S.P.,Schulze ’04–’07; Becher, Garcia i Tormo ’13]

NLO QCD+EW with off-shell Z/W decays[Denner,Dittmaier,Kasprzik,Muck ’09–’11]

NLO/LO− 1

NNLO/LO− 1

(b) W−

statistical error | | |

pcutT [GeV]

200018001600140012001000800600400200

0.00

-0.10

-0.20

-0.30

-0.40

-0.50

NLO/LO− 1

NNLO/LO− 1

(a) W+

statistical error | | |

0.00

-0.10

-0.20

-0.30

-0.40

S. Pozzorini (Zurich University) Precision simulations DESY15 66 / 35

Page 73: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Complexity and efficiency of pp→ W+ + n jets (n ≤ 3)

pp→ W + n jets @LO pp→ W + n jets @NLOαns α αn−1

s α2 αn−2s α3 αn−3

s α4 αn+1s α αns α

2 αn−1s α3 αn−2

s α4 αn−3s α5

uidi → W + ng × - - - × × - - -uidi → W + qq + (n − 2)g × × × - × × × × -γui → diW + (n − 1)g - × - - - - - - -γui → diW + qq + (n − 3)g - × × × - - - - -γγ → uidiW + (n − 2)g - - × - - - - - -

uidi → W + (n + 1)g - - - - × - - - -uidi → W + qq + (n − 1)g - - - - × × × - -uidi → W + qqq′ q′ + (n − 3)g - - - - × × × × ×uidi → W + ng + γ - - - - - × - - -uidi → W + qq + (n − 2)g + γ - - - - - × × × ×

× (×) = (not) included in 1412.5156

Ingredients of order αn+1S α+ αnSα

2 calculation

very many crossings and flavour combinations (ui, di, q, q′ ∈ {u, d, c, s, b})

2000–3000 virtual EW diagrams/channel: more complex than QCD but faster

“Pseudo resonances” in QCD×EW interferences (IR EW singularities tricky. . . )

external W stable (ΓW = 0) but small Γreg → 0 for s-channel t,W,Z,H prop.

W

ui

di

W+

q

q

γ, Z,W

ui q

W+

di q

W+

W H

ui

di

×QCD Born⇒ Q2 −M2

(Q2 −M2)2 + Γ2regM2

S. Pozzorini (Zurich University) Precision simulations DESY15 67 / 35

Page 74: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

NLO QCD vs EW complexity in pp→ W + 1, 2, 3 jets

Number of diagrams in pp→W + 1, 2, 3 jets (in parenthesis: q = ui, di case)

Channel QCD trees EW trees QCD 1-loop EW 1-loopuidi →W+g 2 - 11 32uidi →W+qq 2 (4) 7 (14) 33 (66) 105 (210)uidi →W+gg 8 - 150 266uidi →W+qqg 12 (24) 33 (66) 352 (704) 1042 (2084)uidi →W+ggg 54 - 2043 2616

moderate growth of complexity wrt NLO QCD (up to 3×more loop diagrams)

1-loop QCD and EW similarly fast ⇒ 0.1% stat precision for W + 1, 2, 3 jets atNLO QCD+EW costs 13,210,6300 CPU h (dominated by NLO QCD!)

S. Pozzorini (Zurich University) Precision simulations DESY15 68 / 35

Page 75: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

LO EW–QCD interplay in pp→ W+ + 2, 3 jets at 13 TeV

pT [GeV]

pT,j1

dσ/dσLO

2000100050020010050

100

10−1

10−2

10−3

10−4

10−5

10−6

pT [GeV]

pT,j1

dσ/dσLO

2000100050020010050

100

10−1

10−2

10−3

10−4

10−5

10−6

dσ/dσLO

pT,W+

100

10−1

10−2

10−3

10−4

10−5

10−6

dσ/dσLO

pT,W+

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−5

10−10

10−15

10−20

10−25

10−30pp O(α3)

pp −O(αSα2)

pp O(αSα2)

pp O(α2Sα)

100

10−5

10−10

10−15

10−20

10−25

10−30

j2/1012

j1/106

W+

dσ/d

pT[pb/G

eV]

pp → W+ + 2j @ 13TeV

100

10−5

10−10

10−15

10−20

10−25

10−30

pT [GeV]

pT,j1

dσ/dσLO

2000100050020010050

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

pT [GeV]

pT,j1

dσ/dσLO

2000100050020010050

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

dσ/dσLO

pT,W+

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

dσ/dσLO

pT,W+

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

100

10−5

10−10

10−15

10−20

10−25

10−30

10−35

10−40

10−45

10−50

10−55 pp O(αSα3)

pp −O(α2Sα

2)

pp O(α2Sα

2)

pp O(α3Sα)

100

10−5

10−10

10−15

10−20

10−25

10−30

10−35

10−40

10−45

10−50

10−55

j3/1027

j2/1018

j1/109

W+

dσ/d

pT[pb/G

eV]

pp → W+ + 3j @ 13TeV

100

10−5

10−10

10−15

10−20

10−25

10−30

10−35

10−40

10−45

10−50

10−55

“QCD cuts” throughout

pT > 30 GeV, η < 4.5

⇒ QCD dominates

EW contributions(WV, VBF, single-t)

3–6% in σint

10–20% at 1–4 TeV

EW–QCD interference

O(10−3

)in σint

10–50% at 1–4 TeV(dominant!)

⇒ nontrivial QCD–EW interplay at the TeV scale (with V+jets “QCD cuts”)

S. Pozzorini (Zurich University) Precision simulations DESY15 69 / 35

Page 76: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

LO γ-induced contributions in pp→ W+ + 1, 2, 3 jets

pT [GeV]

pT,j1

dσ/dσLO

2000100050020010050

100

10−1

10−2

10−3

pT [GeV]

pT,j1

dσ/dσLO

2000100050020010050

100

10−1

10−2

10−3

dσ/dσLO

pT,W+

100

10−1

10−2

10−3

dσ/dσLO

pT,W+

100

10−1

10−2

10−3

100

10−5

10−10

γp O(α2)

pp O(αSα)

100

10−5

10−10

j1/103

W+

dσ/d

pT[pb/G

eV]

pp/γp → W+ + 1j @ 13TeV

100

10−5

10−10

pT [GeV]

pT,j1

dσ/dσLO

2000100050020010050

100

10−1

10−2

10−3

10−4

10−5

10−6

pT [GeV]

pT,j1

dσ/dσLO

2000100050020010050

100

10−1

10−2

10−3

10−4

10−5

10−6

dσ/dσLO

pT,W+

100

10−1

10−2

10−3

10−4

10−5

10−6dσ/dσLO

pT,W+

100

10−1

10−2

10−3

10−4

10−5

10−6

100

10−5

10−10

10−15

10−20

10−25

10−30γγ O(α3)

γp O(αSα2)

pp O(α2Sα)

100

10−5

10−10

10−15

10−20

10−25

10−30

j2/1012

j1/106

W+

dσ/d

pT[pb/G

eV]

pp/γp/γγ → W+ + 2j @ 13TeV

100

10−5

10−10

10−15

10−20

10−25

10−30

pT [GeV]

pT,j1

dσ/dσLO

2000100050020010050

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

pT [GeV]

pT,j1

dσ/dσLO

2000100050020010050

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

pT,W+

dσ/dσLO

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7 pT,W+

dσ/dσLO

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

γγ O(αSα3)

100

10−5

10−10

10−15

10−20

10−25

10−30

10−35

10−40

10−45

10−50

10−55 γp O(α4)

γp −O(αSα3)

γp O(αSα3)

γp O(α2Sα

2)

pp O(α3Sα)

100

10−5

10−10

10−15

10−20

10−25

10−30

10−35

10−40

10−45

10−50

10−55

j3/1027

j2/1018

j1/109

W+

dσ/d

pT[pb/G

eV]

pp/γp/γγ → W+ + 3j @ 13TeV

100

10−5

10−10

10−15

10−20

10−25

10−30

10−35

10−40

10−45

10−50

10−55

Single-γ contributions

from O(10−3

)in σint to 5–100% at pT,W =1–4 TeV!

driven by γ-PDF (NNPDF2.3 QED) at large x (huge γ-PDF uncertainty. . . )

S. Pozzorini (Zurich University) Precision simulations DESY15 70 / 35

Page 77: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

NLO QCD+EW corrections to pp→ W+ + 1 jet

pT [GeV]

pT,j1

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT [GeV]

pT,j1

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

j1/103

W+

dσ/d

pT[pb/G

eV]

pp → W+ + 1j @ 13TeV

103

100

10−3

10−6

10−9

10−12NLO QCD×EWNLO QCD+EWNLO QCDLON

j1/103

W+

dσ/d

pT[pb/G

eV]

pp → W+ + 1j @ 13TeV

103

100

10−3

10−6

10−9

10−12

Inclusive σ(pp→W + 1, 2, 3 jets) (pT,j > 30 GeV)

<∼ 1% EW correction

W -boson pT (Sudakov behaviour)

+100% QCD correction in the tail

−20–35% EW correction at 1–4 TeV

Jet pT (pathologic behaviour!)

factor-10 QCD correction in the tail!

positive 10–50% EW correction

(QCD-EW real emission!)

Origin of dramatic instability

huge di-jet contributions at high jet pT

soft W/Z

q

g

S. Pozzorini (Zurich University) Precision simulations DESY15 71 / 35

Page 78: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Same observables with “dijet-veto cut” φjj <3

pT [GeV]

pT,j1

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

pT [GeV]

pT,j1

σ/σNLO

QCD

2000100050020010050

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

σ/σNLO

QCD

pT,W+

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

j1/103

W+

dσ/d

pT[pb/G

eV]

∆φj1j2 < 3π/4

pp → W+ + 1j @ 13TeV

103

100

10−3

10−6

10−9

10−12NLO QCD×EWNLO QCD+EWNLO QCDLON

j1/103

W+

dσ/d

pT[pb/G

eV]

∆φj1j2 < 3π/4

pp → W+ + 1j @ 13TeV

103

100

10−3

10−6

10−9

10−12

QCD corrections

moderate at high pT,jet

EW corrections

Sudakov behaviour in both tails

−20–50% at 1–4 TeV (more pronounced)

Bottom line

W + 1 jet at NLO ok for exclusive case

inclusive case requires W + 2 jets at NLO

⇒ strong motivation for V+multijets!

S. Pozzorini (Zurich University) Precision simulations DESY15 72 / 35

Page 79: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

NLO corrections to HT,tot in pp→ W+ + 1, 2, 3 jets

HT,tot [GeV]

σ/σNLO

QCD

500020001000500200100

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

HT,tot [GeV]

σ/σNLO

QCD

500020001000500200100

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

dσ/d

HT,tot[pb/G

eV]

pp → W+ + 1j @ 13TeV103

100

10−3

10−6

10−9

NLO QCD×EWNLO QCD+EWNLO QCDLON

dσ/d

HT,tot[pb/G

eV]

pp → W+ + 1j @ 13TeV103

100

10−3

10−6

10−9

HT,tot [GeV]

σ/σNLO

QCD

500020001000500200100

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

HT,tot [GeV]

σ/σNLO

QCD

500020001000500200100

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

dσ/d

HT,tot[pb/G

eV]

pp → W+ + 2j @ 13TeV103

100

10−3

10−6

10−9 NLO QCD×EWNLO QCD+EWNLO QCDLON

dσ/d

HT,tot[pb/G

eV]

pp → W+ + 2j @ 13TeV103

100

10−3

10−6

10−9

HT,tot [GeV]

σ/σNLO

QCD

500020001000500200100

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

HT,tot [GeV]

σ/σNLO

QCD

500020001000500200100

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

dσ/d

HT,tot[pb/G

eV]

pp → W+ + 3j @ 13TeV103

100

10−3

10−6

10−9 NLO QCD×EWNLO QCD+EWNLO QCDLON

dσ/d

HT,tot[pb/G

eV]

pp → W+ + 3j @ 13TeV103

100

10−3

10−6

10−9

NLO QCD in HT,tot tail well behaved only starting from W + 3 jets(calls for NLO multi-jet merging)

only −20% EW corrections at very high HT,tot

(more if also pT,W is high!)

S. Pozzorini (Zurich University) Precision simulations DESY15 73 / 35

Page 80: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

pp→ W+W− at NNLO vs jet vero in the 5F scheme

Top resonances, g → bb singularities and b-jet veto (pT < pvetoT,bjet)

∣∣σ5FNSfull /σ4FNS − 1

∣∣

103102101

1

10−1

10−2

10−3

σfull[pb]

pvetoT,bjet [GeV]

pp → W+W−+X @ 8TeV500

200

100

50

LONNNLONNNLO

σfull[pb]

pvetoT,bjet [GeV]

pp → W+W−+X @ 8TeV500

200

100

50

∣∣σ5FNSWW /σ4FNS − 1

∣∣

103102101

1

10−1

10−2

10−3

σWW[pb]

pvetoT,bjet [GeV]

pp → W+W−+X @ 8TeV64

62

60

58

56

54

LONNNLONNNLO

σWW[pb]

pvetoT,bjet [GeV]

pp → W+W−+X @ 8TeV64

62

60

58

56

54

Full 5F cross section vs 4F

top contamination huge at largepveto

T,bjet and 10% at 10 GeV, wheresensitivity to singularity shows up

no “robust” W+W− definition

Top-free 5F cross section vs 4F

very stable top subtraction atpveto

T,bjet > 10 GeV

1% agreement with 4FNS

⇒ NNLO prediction solid!

S. Pozzorini (Zurich University) Precision simulations DESY15 74 / 35

Page 81: Scattering Amplitudes and Precision Simulations for the LHC · 2017. 5. 3. · soft/collinear cancellations+PDF renormalisation )reduction of F dependence General \solution to NLO

Jet-veto efficiency for pp→ W+W−[Grazzini et al. (preliminary)]

NNLO vs NLO

0.5

0.6

0.7

0.8

0.9

1.0

ε(pT,veto)

pp→W+W−√s =8 TeV

NLONNLO

15 20 25 30 35 40pT,veto [GeV]

0.85

0.90

0.95

1.00

ε(pT,veto)/ε

NLO(p

T,veto)

fiducial region of ATLAS (CMS)measurement involves jet veto atpT = 25(30) GeV

NNLO correction of −8% wrt NLO

NNLO seems consistent with Powheg

NNLO vs MEPS@NLO (Sherpa)

0.5

0.6

0.7

0.8

0.9

1.0

ε(pT,veto)

pp→W+W−√s =8 TeV

NLOMEPSNNLO

15 20 25 30 35 40pT,veto [GeV]

0.85

0.90

0.95

1.00

ε(pT,veto)/ε

NLO(p

T,veto)

MEPS@NLO ⇒ 1st emission at NLO+ LLs + particle level

quite stable wrt scale variations

consistent with NNLO

S. Pozzorini (Zurich University) Precision simulations DESY15 75 / 35


Recommended