+ All Categories
Home > Documents > SCPY152 General Physics II 19 Quantum Wells in Three...

SCPY152 General Physics II 19 Quantum Wells in Three...

Date post: 21-Jun-2018
Category:
Upload: vankhanh
View: 222 times
Download: 1 times
Share this document with a friend
32
SCPY152 General Physics II 19 Quantum Wells in Three Dimensions Udom Robkob Department of Physics, Faculty of Science, Mahidol University Office: SC4-202, Science 4 Bld., Salaya E-mail: [email protected] February 21, 2017 Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensi
Transcript
Page 1: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

SCPY152 General Physics II

19 Quantum Wells in Three Dimensions

Udom Robkob

Department of Physics, Faculty of Science, Mahidol UniversityOffice: SC4-202, Science 4 Bld., Salaya

E-mail: [email protected]

February 21, 2017

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 2: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Today Topics

Cartesian coordinates system

Schrodinger equation in 3D

Infinite potential box

3D harmonic potential well

Central potential problems

Spherical coordinate system

Radial and angular equations

Free angular solutions

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 3: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Cartesian coordinates system

One first reviews our mathematical formulation.

For position three dimensional Euclidean space, wedenoted it as ~r . In Cartesian coordinate system, one hasthree coordinates: ~r = x i + y j + zk ≡ (x , y , z), wherethe system of basis vectors (i , j , k) is understood.

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 4: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Cartesian coordinates system

In 3D Cartesian system, one define ”gradient” as adirectional derivative as

∇ = ∂x i + ∂y j + ∂z k = (∂x , ∂y , ∂z) (1)

with ∂x = ∂/∂x , and so on. It is used to apply on scalarfunction, f (x , y , z), to be vector function, i.e.,

∇f (x , y , z) = Fx i + fy j + Fz k ≡ ~g(fx , fy , fz) (2)

where fx = ∂f /∂x , and so on.The ”divergence” is the application on vector function toget scalar function, i.e.,

∇ · ~g = ∂x fx + ∂y fy + ∂z fz = (∂2x + ∂2

y + ∂2z )f (3)

The ”Laplacian” is defined to be

∇2 = ∇ · ∇ = ∂2x + ∂2

y + ∂2z (4)

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 5: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Schrodinger equation in Three Dimensions

On can write Schrodinger equation in 3D Euclideanspace, using Cartesian system, by first applying aparticle-wave correspondence:

1D 3D

x ↔ x , ~r ↔ ~r (5)

px ↔ −i~d

dx, ~p ↔ −i~∇ (6)

Then one has(− ~2

2m∇2 + V (~r)

)ϕ(~r) = Eϕ(~r) (7)

Or in a more suitable form:

∇2ϕ(~r) +2m

~2(E − V (~r))ϕ(~r) = 0 (8)

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 6: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Schrodinger equation in Three Dimensions

Equation (8) is partial differential equation. It is hard tofind solution.

We are looking at one special case in which the potentialfunction is ”separable”;

V (~r) ≡ V (x , y , z) = V (x) + V (y) + V (z) (9)

Since the Laplacian is already separated, i.e.∇2 = ∂2

x + ∂2y + ∂2

z , then one can apply the separation ofthe particle wave function in the form

ϕ(~r) ≡ ϕ(x , y , z) = ϕx(x)ϕy (y)ϕz(z) (10)

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 7: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Schrodinger equation in Three Dimensions

With the separated energy

E = Ex + Ey + Ez , (11)

equation (8) will be separated into three equation as(1

ϕx(x)ϕ′′x(x) +

2m

~2(Ex − V (x))

)+(

1

ϕy (y)ϕ′′y (y) +

2m

~2(Ey − V (y))

)+(

1

ϕz(z)ϕ′′z (z) +

2m

~2(Ez − V (z))

)= 0 (12)

Since (x , y , z) are independent variables, then theseequations must be separately equal to zero.

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 8: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Schrodinger equation in Three Dimensions

Then one has three independent Schrodinger equations ineach direction as

ϕ′′x(x) +

2m

~2(Ex − V (x))ϕx(x) = 0 (13)

ϕ′′y (y) +

2m

~2(Ey − V (y))ϕy (y) = 0 (14)

ϕ′′z (z) +

2m

~2(Ez − V (z))ϕz(z) = 0 (15)

So that quantum physics in three dimensions is justsolving three Schrodinger equations. After success, onejust recombine them as in equations (10,11).

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 9: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Infinite potential box

The first simplest case is the problem of infinite potentialbox of sizes (a, b, c), i.e., the potential function is

V (x , y , z) =

∞, x < 0, y < 0, z < 00, 0 < x < a, 0 < y < b, 0 < z < c∞, x > a, y > b, z > c

(16)

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 10: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Infinite potential box

There are no waves outside the box, but only standingwaves inside the box.

The Schrodinger equation is simply separated with zeropotential function inside the box, i.e.,

ϕ′′x + k2

xϕx = 0, ϕ′′y + k2

yϕy = 0, ϕ′′z + k2

zϕz = 0 (17)

where ϕx = ϕx(x), k2x = 2mEx/~2, and so on.

As we know, standing waves in three directions are

ϕnx (x) =

√2

asin(nxπx/a), nx = 1, 2, 3, ... (18)

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 11: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Infinite potential box

Cont.

ϕny (y) =

√2

bsin(nyπy/b), ny = 1, 2, 3, ... (19)

ϕnz (z) =

√2

csin(nzπz/c), nz = 1, 2, 3, ... (20)

The quantum energies of ap article is written in terms ofthree quantum numbers nx , ny , nz in the form

Enx ,ny ,nz = Enx +Eny +Enz =~2π2

2m

(n2x

a2+

n2y

b2+

n2z

c2

)(21)

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 12: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Infinite potential box

In case of potential cube, a = b = c , one has

Enx ,ny ,nz =~2π2

2ma2(n2

x + n2y + n2

z) (22)

Since a cube has four-fold symmetry in each direction,then one observe a numbers of ”degeneracy” of energylevels of the system. (Degeneracy means a number ofdifferent quantum states, specified with a different sets ofquantum numbers, that have the same quantum energy.)

Look at the following table:

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 13: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Infinite potential box

Degenerated states and degeneracy of a potential cube:

nx ny nz Enx ,ny ,nz ( ~2π2

2ma2 ) Degeneracy1 1 1 3 12 1 1 61 2 1 6 31 1 2 62 2 1 92 1 2 9 31 2 2 93 1 1 111 3 1 11 31 1 3 112 2 2 12 1

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 14: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

3D harmonic potential well

The three dimensional isotropic harmonic oscillatorpotential is

V (x , y , z) =1

2mω2(x2 + y 2 + z2) (23)

which appears in separable form.

The quantum energy of this system can be written in theform

Enx ,ny ,nz = ~ω(nx + ny + nz +

3

2

)(24)

with nx , ny , nz = 0, 1, 2, ....

Exercise Look for the degenerated states and count itsdegeneracy of this system.

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 15: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

3D harmonic potential well

This system contains more degenerated states:

nx ny nz Enx ,ny ,nz (~ω) Degeneracy0 0 0 3/2 11 0 0 5/20 1 0 5/2 30 0 1 5/21 1 0 7/21 0 1 7/20 1 1 7/2 62 0 0 7/20 2 0 7/20 0 2 7/2

It grows up like: 1, 3, 6, 9, 12, ..., with increasing energystep of ~ω.

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 16: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Central potential problems

In case of the potential function appear as a function ofradial distance r =

√x2 + y 2 + z2, i.e.,

V = V (r). (25)

On one hand, one says that the system has ”sphericalsymmetry”, i.e., have free angular motion.

On the other hand, one knows that Schrodinger equationof this system is not separable in Cartesian coordinatesystem.

But it is separable in ”spherical coordinate system”.

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 17: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Spherical coordinates system

One can change from Cartesian to spherical coordinatesas:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ (26)

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 18: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Spherical coordinates system

Mathematically, one says thatx = x(r , θ, φ), y = y(r , θ, φ) and z = z(r , θ).

One looks for the inversion: r = r(x , y , z), θ = θ(x , y , z)and φ = φ(x , y , z), by first apply the variations:

dx =∂x

∂rdr +

∂x

∂θdθ +

∂x

∂φdφ (27)

dy =∂y

∂rdr +

∂y

∂θdθ +

∂y

∂φdφ (28)

dz =∂z

∂rdr +

∂z

∂θdθ (29)

One can see the coefficients: ∂x/∂r , ... . Then oneevaluate their inversions: ∂r/∂x ,..., by inverse matrixmethod. (See details in the lecture notes.)

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 19: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Spherical coordinates system

Next one try to write

∂x=

∂r

∂x

∂r+∂θ

∂x

∂θ+∂φ

∂x

∂φ(30)

∂y=

∂r

∂y

∂r+∂θ

∂y

∂θ+∂φ

∂y

∂φ(31)

∂z=

∂r

∂z

∂r+∂θ

∂z

∂θ(32)

From this one has

∂x= sin θ cosφ

∂r+

cos θ cosφ

r

∂θ− sinφ

r sin θ

∂φ(33)

∂y= sin θ sinφ

∂r+

cos θ sinφ

r

∂θ+

cosφ

r sin θ

∂φ(34)

∂z= cos θ

∂r− sin θ

r

∂θ(35)

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 20: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Spherical coordinates system

And one write

∇2 =∂2

∂x2+

∂2

∂y 2+

∂2

∂z2

=1

r 2

∂r

(r 2 ∂

∂r

)+

1

r 2

[1

sin θ

∂θ

(sin θ

∂θ

)+

1

sin2 θ

∂2

∂φ2

](36)

Apply this into Schrodinger equation, and separate theparticle wave function into the form

ϕ(x , y , z)→ ϕ(r , θ, φ) = R(r)A(θ, φ) (37)

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 21: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Radial and angular equations

The Schrodinger equation will be separated into radialequation

d2R(r)

dr 2+

2

r

dR(r)

dr+

[2m

~2(E − V (r))− α

r 2

]R(r) = 0

(38)and the angular equation

1

sin θ

∂θ

(sin θ

∂A

∂θ

)+

1

sin2 θ

∂2A

∂φ2+ αA = 0 (39)

where α is a constant of independent.

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 22: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Free angular solution

For free angular equation

1

sin θ

∂θ

(sin θ

∂A

∂θ

)+

1

sin2 θ

∂2A

∂φ2+ αA = 0 (40)

It is known in the name of ”spherical harmonic equation”(Reference to:http://mathworld.wolfram.com/SphericalHarmonic.html)

Its solution exists when α = l(l + 1), with l = 0, 1, 2, ...,and additional index m, withm = −l ,−(l − 1),−(l − 2), ..., (l − 2), (l − 1), l .

The solution get the same name, spherical harmonic:Y ml (θ, φ).

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 23: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Free angular solution

References to:http://mathworld.wolfram.com/SphericalHarmonic.htmland https://en.wikipedia.org/wiki/Table-of-spherical-harmonics

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 24: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Free angular solution

and More

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 25: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Free angular solution

The angular distribution of particle wave function appearsas in the following figure:

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 26: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Radial solution

Radial solution relies on the potential function.

The simplest radial problem is a problem of free particle,i.e., V (r) = 0. The radial equation becomes

r 2R ′′ + 2rR ′ +(k2r 2 − l(l + 1)

)R = 0 (41)

After one has multiplied through with r 2 and definedk2 = 2mE/~2.

Let one define ρ = kr , then one get R = R(ρ) and

ρ2R ′′ + 2ρR ′ + (ρ2 − l(l + 1))R = 0 (42)

This equation is known in the name of ”spherical Besselequation”. (http://mathworld.wolfram.com/SphericalBesselDifferentialEquation.html)

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 27: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Radial solution

Its solution exists in the form of ”spherical Besselfunction”

R(ρ) = C1jl(ρ) + C2nl(ρ) (43)

where jl(ρ) is called ”spherical Bessel function of the firstkind”

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 28: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Radial solution

While nl(ρ) is known in the name of ”spherical Besselfunction of the second kind”’:

Since particle wave appear everywhere include origin, butnl(kr) not finite at r = 0, then one has to ignore it bychoosing C2 = 0.

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 29: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Radial solution

Our solution is then

R(r) = Cl jl(kr) (44)

See some examples

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 30: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Infinite potential sphere

The potential function of infinite potential sphere is

V (r) =

{0, 0 ≤ r < a∞, r ≥ a

(45)

The particle wave exists only inside the sphere and itswave function vanish at the spherical boundary.

From equation (41), one says that, for the l = 0 state

R0(a) = 0 = C0j0(k0a)→ k0a = nπ (46)

Or k0n = nπ/a. Then one has discrete energies

E0n =~2k2

0n

2m=

~2π2n2

2ma2, n = 1, 2, 3, ... (47)

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 31: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Infinite potential sphere

The other zeros of jl(kla) can be calculated athttp://keisan.casio.com/has10/SpecExec.cgi.

One can collect in a table form as

Let make a list of increasing energy levels from the lowestenergy state, (l = 0, n = 1), or ground state.

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions

Page 32: SCPY152 General Physics II 19 Quantum Wells in Three Dimensionseinstein.sc.mahidol.ac.th/~udom/Courses/scpy152/152lec19.pdf · 2017-02-22 · SCPY152 General Physics II 19 Quantum

Summary

Discrete energies of infinite potential box

Discrete energies of infinite potential cube, withdegeneracy

Discrete energies of isotropic harmonic oscillator, withdegeneracy

Particle wave function of free particle in sphericalcoordinates

Discrete energies of infinite potential sphere

Udom Robkob SCPY152 General Physics II 19 Quantum Wells in Three Dimensions


Recommended