+ All Categories
Home > Documents > SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

Date post: 10-Jan-2016
Category:
Upload: darci
View: 41 times
Download: 0 times
Share this document with a friend
Description:
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36. KFUPM Read 25.1-25.4, 26-2, 27-1. Outline of Topic 8. Lesson 1:Introduction to ODEs Lesson 2:Taylor series methods Lesson 3:Midpoint and Heun’s method Lessons 4-5: Runge-Kutta methods - PowerPoint PPT Presentation
Popular Tags:
39
CISE301_Topic8L8&9 KFUPM 1 Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36 KFUPM Read 25.1-25.4, 26-2, 27-1
Transcript
Page 1: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 1

SE301: Numerical Methods

Topic 8 Ordinary Differential

Equations (ODEs)Lecture 28-36

KFUPM

Read 25.1-25.4, 26-2, 27-1

Page 2: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 2

Outline of Topic 8 Lesson 1: Introduction to ODEs Lesson 2: Taylor series methods Lesson 3: Midpoint and Heun’s method Lessons 4-5: Runge-Kutta methods Lesson 6: Solving systems of ODEs Lesson 7: Multiple step Methods Lesson 8-9: Boundary value Problems

Page 3: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 3

Lecture 35Lesson 8: Boundary Value

Problems

Page 4: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 4

Outlines of Lesson 8

Boundary Value Problem

Shooting Method

Examples

Page 5: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 5

Learning Objectives of Lesson 8 Grasp the difference between initial value

problems and boundary value problems.

Appreciate the difficulties involved in solving the boundary value problems.

Grasp the concept of the shooting method.

Use the shooting method to solve boundary value problems.

Page 6: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 6

Boundary-Value and Initial Value Problems

Boundary-Value Problems

The auxiliary conditions are not at one point of the independent variable

More difficult to solve than initial value problem

5.1)2(,1)0(

2 2

xx

exxx t

Initial-Value Problems

The auxiliary conditions are at one point of the independent variable

5.2)0(,1)0(

2 2

xx

exxx t

same different

Page 7: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 7

Shooting Method

Page 8: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 8

The Shooting Method

Target

Page 9: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 9

The Shooting Method

Target

Page 10: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 10

The Shooting Method

Target

Page 11: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 11

Solution of Boundary-Value Problems Shooting Method for Boundary-Value Problems

1. Guess a value for the auxiliary conditions at one point of time.

2. Solve the initial value problem using Euler, Runge-Kutta, …

3. Check if the boundary conditions are satisfied, otherwise modify the guess and resolve the problem.

Use interpolation in updating the guess. It is an iterative procedure and can be

efficient in solving the BVP.

Page 12: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 12

Solution of Boundary-Value Problems Shooting Method

8.0)1(,2.0)0(

2

)(2

yy

xyyy

BVPsolvetoxyFind

Boundary-Value Problem

Initial-value Problem

convert

1. Convert the ODE to a system of first order ODEs.

2. Guess the initial conditions that are not available.

3. Solve the Initial-value problem.

4. Check if the known boundary conditions are satisfied.

5. If needed modify the guess and resolve the problem again.

Page 13: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 13

Example 1 Original BVP

2)1(,0)0(

044

yy

xyy

0 1 x

Page 14: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 14

Example 1 Original BVP

2)1(,0)0(

044

yy

xyy

2. 0

0 1 x

Page 15: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 15

Example 1 Original BVP

2)1(,0)0(

044

yy

xyy

2. 0

0 1 x

Page 16: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 16

Example 1 Original BVP

2)1(,0)0(

044

yy

xyy

to be determined

2. 0

0 1 x

Page 17: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 17

Example 1 Step1: Convert to a System of First Order ODEs

2y(1) have weuntil )0(y of valuesdifferent for

0.01h with RK2 using solved be willproblem The

?

0

)0(y

)0(y,

)4(y

y

y

y

Equationsorder first ofsystem atoConvert

2)1(,0)0(

044

2

2

1

1

2

2

1

x

yy

xyy

Page 18: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 18

Example 1 Guess # 1

0)0(

1#

y

Guess

-0.7688

0 1 x

2)1(,0)0(

044

yy

xyy

Page 19: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 19

Example 1 Guess # 2

1)0(

2#

y

Guess

0.99

0 1 x

2)1(,0)0(

044

yy

xyy

Page 20: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 20

Example 1 Interpolation for Guess # 3

2)1(,0)0(

044

yy

xyy

)0(yGuess y(1)

1 0 -0.7688

2 1 0.9900

0.99

0 1 2 y’(0)

-0.7688

y(1)

Page 21: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 21

Example 1 Interpolation for Guess # 3

2)1(,0)0(

044

yy

xyy

)0(yGuess y(1)

1 0 -0.7688

2 1 0.9900

0.99

0 1 2 y’(0)

-0.7688

1.5743

2

y(1)

Guess 3

Page 22: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 22

Example 1 Guess # 3

5743.1)0(

3#

y

Guess

2.000

0 1 x

2)1(,0)0(

044

yy

xyy

This is the solution to the boundary value problem.

y(1)=2.000

Page 23: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 23

Summary of the Shooting Method1. Guess the unavailable values for the

auxiliary conditions at one point of the independent variable.

2. Solve the initial value problem.3. Check if the boundary conditions are

satisfied, otherwise modify the guess and resolve the problem.

4. Repeat (3) until the boundary conditions are satisfied.

Page 24: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 24

Properties of the Shooting Method

1. Using interpolation to update the guess often results in few iterations before reaching the solution.

2. The method can be cumbersome for high order BVP because of the need to guess the initial condition for more than one variable.

Page 25: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 25

Lecture 36Lesson 9: Discretization

Method

Page 26: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 26

Outlines of Lesson 9

Discretization Method Finite Difference Methods for Solving Boundary

Value Problems

Examples

Page 27: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 27

Learning Objectives of Lesson 9

Use the finite difference method to solve BVP.

Convert linear second order boundary value problems into linear algebraic equations.

Page 28: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 28

Solution of Boundary-Value Problems Finite Difference Method

8.0)1(,2.0)0(

2

)(2

yy

xyyy

BVPsolvetoxyFind

y4=0.8

0 0.25 0.5 0.75 1.0 x

x0 x1 x2 x3 x4

y

y0=0.2

y1=?

y2=?

y3=?

Boundary-Value Problems

Algebraic Equations

convert

Find the unknowns y1, y2, y3

Page 29: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 29

Solution of Boundary-Value Problems Finite Difference Method

Divide the interval into n intervals. The solution of the BVP is converted to the

problem of determining the value of function at the base points.

Use finite approximations to replace the derivatives.

This approximation results in a set of algebraic equations.

Solve the equations to obtain the solution of the BVP.

Page 30: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 30

Finite Difference Method Example

8.0)1(,2.0)0(

2 2

yy

xyyy

y4=0.8

0 0.25 0.5 0.75 1.0 x

x0 x1 x2 x3 x4

y

y0=0.2

Divide the interval [0,1 ] into n = 4 intervals

Base points are

x0=0

x1=0.25

x2=.5

x3=0.75

x4=1.0

y1=?

y2=?

y3=?

To be determined

Page 31: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 31

Finite Difference Method Example

8.0)1(,2.0)0(

2 2

yy

xyyy

2112

11

2

11

211

22

2

2

2

2

Replace

iiiiiii

ii

iii

xyh

yy

h

yyy

Becomes

xyyy

formuladifferencecentralh

yyy

formuladifferencecentralh

yyyy

Divide the interval [0,1 ] into n = 4 intervals

Base points are

x0=0

x1=0.25

x2=.5

x3=0.75

x4=1.0

Page 32: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 32

Second Order BVP

211

22

2

1

43210

22

2

2)()(2)(

)()(

1,75.0,5.0,25.0,0

Points Base

25.0

8.0)1(,2.0)0(2

h

yyy

h

hxyxyhxy

dx

yd

h

yy

h

xyhxy

dx

dy

xxxxx

hLet

yywithxydx

dy

dx

yd

iii

ii

Page 33: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 33

Second Order BVP

2

11

2111

43210

43210

212

11

22

2

163924

8216

8.0?,?,?,,2.0

1,75.0,5.0,25.0,0

3,2,122

2

iiii

iiiiiii

iiiiiii

xyyy

xyyyyyy

yyyyy

xxxxx

ixyh

yy

h

yyy

xydx

dy

dx

yd

Page 34: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 34

Second Order BVP

0.74360.6477,0.4791,

)8.0(2475.0

5.0

)2.0(1625.0

39160

243916

02439

1639243

1639242

1639241

163924

321

2

2

2

3

2

1

23234

22123

21012

211

yyySolution

y

y

y

xyyyi

xyyyi

xyyyi

xyyy iiii

Page 35: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 35

Second Order BVP

2

11

2111

1003210

10099210

212

11

22

2

100002019910200

200210000

8.0?,?,?,,2.0

1,99.0,02.0,01.0,0

100,...,2,122

2

iiii

iiiiiii

iiiiiii

xyyy

xyyyyyy

yyyyy

xxxxx

ixyh

yy

h

yyy

xydx

dy

dx

yd

Page 36: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 36

Page 37: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 37

Summary of the Discretiztion Methods Select the base points. Divide the interval into n intervals. Use finite approximations to replace the

derivatives. This approximation results in a set of

algebraic equations. Solve the equations to obtain the solution

of the BVP.

Page 38: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 38

RemarksFinite Difference Method :

Different formulas can be used for approximating the derivatives.

Different formulas lead to different solutions. All of them are approximate solutions.

For linear second order cases, this reduces to tri-diagonal system.

Page 39: SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28-36

CISE301_Topic8L8&9 KFUPM 39

Summary of Topic 8Solution of ODEs

Lessons 1-3:• Introduction to ODE, Euler Method, • Taylor Series methods, • Midpoint, Heun’s Predictor corrector methods

Lessons 4-5:• Runge-Kutta Methods (concept & derivation) • Applications of Runge-Kutta Methods To solve first order ODE

Lessons 6:•Solving Systems of ODE

Lessons 8-9:• Boundary Value Problems• Discretization method

Lesson 7:Multi-step methods


Recommended