+ All Categories
Home > Documents > Search for Exotics (and Higgs) Physics beyond the Standard … · 2021. 1. 7. · Signature vs...

Search for Exotics (and Higgs) Physics beyond the Standard … · 2021. 1. 7. · Signature vs...

Date post: 20-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
42
01/12/2014 Kruger 2014, K. Hamano 1 Search for Exotics (and Higgs) Physics beyond the Standard Model with the ATLAS Detector Kenji Hamano (University of Victoria) on behalf of the ATLAS Collaboration
Transcript
  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    01/12/2014 Kruger 2014, K. Hamano 1

    Search for Exotics (and Higgs) Physics beyond the Standard Model with the ATLAS Detector

    Kenji Hamano (University of Victoria) on behalf of the ATLAS Collaboration

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Plan of this talk §  LHC and ATLAS detector. §  Signature based search strategy. §  Dileptons/Multi-leptons signature §  Lepton(s) + jet(s) signature §  Dijets/Multi-jets signature §  Top quarks signature §  Vector bosons signature §  Other signatures §  Conclusions.

    01/12/2014 Kruger 2014, K. Hamano 2

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Other topics §  BSM Higgs:

    §  “Beyond the Standard Model Higgs Physics Using the ATLAS Detector” (Guillermo Hamity).

    §  Dark Matter: §  “Searches for Dark Matter with the ATLAS

    Detector” (Ketevi Assamagan). §  Supersymmetry (SUSY):

    §  “SUSY Searches in the ATLAS Detector” (Lawrence Lee JR).

    01/12/2014 Kruger 2014, K. Hamano 3

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    LHC §  Large Hadron Collider (LHC)

    §  Collide two protons (pp-collision). §  Center of mass energy:

    §  Run1: 2011, 7 TeV, ~5 fb-1; 2012, 8 TeV, ~20 fb-1 §  Run2 (2015 ~): 13 TeV or 14 TeV

    01/12/2014 Kruger 2014, K. Hamano 4

    •  Only recent results with 8TeV data are presented in this talk.

    •  Selection is based on my preference.

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    ATLAS Detector §  From inside to outside

    §  Inner tracker: reconstruct charged tracks. §  Calorimeter: detect particle energies.

    §  Electromagnetic calorimeter: electros and photons §  Hadronic calorimeter: charged and neutral hadrons.

    §  Muon detector: detect muons.

    01/12/2014 Kruger 2014, K. Hamano 5

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Need for BSM physics §  There are many problems with the Standard

    Model (SM). §  Hierarchy Problem §  Neutrino mass term §  Dark matter §  Gravity §  …

    §  Possible solution is a Beyond the Standard Model (BSM) physics? §  Supersymmetry? §  Extra dimensions? §  Higher symmetry/Unified model? §  Seesaw mechanism? §  …

    01/12/2014 Kruger 2014, K. Hamano 6

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Signature based search (1) §  To search for a new physics, experimentalists

    look for particles in final states produced by the new physics.

    §  An example: Zee-Babu model §  Physics point of view:

    §  A model to generate small neutrino mass with a two loop diagram.

    §  Introduce two new scalar particles: h+, k++ §  Lepton flavor violation is also introduced.

    §  Experimental point of view: §  Look for the new particles. §  How they are produced in pp-collisions? §  How they decay?

    01/12/2014 Kruger 2014, K. Hamano 7

    h−

    eR

    k−−

    νL eR

    eL eL

    νL

    h−

    ⟨H⟩ ⟨H⟩

    Figure 1: Diagram contributing to the neutrino Majorana mass at two loops.

    for instance we can take fµτ real and positive. Of course the counting of parameters is the

    same as before: we will have 12 moduli (3 from Y , 3 from f and 6 from gab) and 5 phases

    (3 from gab and 2 from fab) and the real and positive parameter µ.

    In any of the discussed conventions, Y is directly related to the masses of charged leptons

    ma = Yaav, with v ≡ ⟨H0⟩ = 174 GeV, the VEV of the standard Higgs doublet. Then the

    physical scalar masses are

    m2h = m′2h + λhHv

    2 , m2k = m′2k + λkHv

    2 . (8)

    A. The neutrino masses

    The first contribution to neutrino masses involving the four relevant couplings appears

    at two loops [19, 20] and its Feynman diagram is depicted in fig. 1.

    The calculation of this diagram gives the following mass matrix for the neutrinos (defined

    as an effective term in the Lagrangian Lν ≡ −12νcLMννL + h.c.)

    (Mν)ab = 16µfacmcg∗cdIcdmdfbd , (9)

    with

    Icd =

    ∫d4k

    (2π)4

    ∫d4q

    (2π)41

    (k2 −m2c)1

    (k2 −m2h)1

    (q2 −m2d)1

    (q2 −m2h)1

    (k − q)2 −m2k. (10)

    Icd can be calculated analytically [33], however, since mc, md are the masses of the charged

    leptons, necessarily much lighter than the charged scalars, we can neglect them and obtain

    8

    ArXiv:0711.0483

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Signature based search (2) §  Production

    §  The new particle k is either pair produced or produced along with h.

    §  Decay §  k++ à e+e+, e+µ+, µ+µ+, etc.

    §  Look for same-sign lepton pair(s) in final states.

    01/12/2014 Kruger 2014, K. Hamano 8

    γ∗, Z∗

    q

    q

    k−−

    k++

    Figure 2: Pair production of k

    gauge charges as well as depending only on one unknown parameter: the mass of the scalar.

    The partonic cross section at LO reads

    σ =πα2Q2β3

    6

    [2Q2qŝ−

    2(gL + gR)Qqc2w

    ŝ−M2Z(ŝ−M2Z)2 + Γ2ZM2Z

    +(g2L + g

    2R)

    c4w

    (ŝ−M2Z)2 + Γ2ZM2Z

    ],

    (30)

    where ŝ is the energy squared in the center of mass frame (CM) of the quarks, Q stands for

    electric charges, gL and gR are given for the quarks by gL = T3 − s2wQq and gR = −s2wQqand β is the velocity of the produced scalars in this frame β =

    √1− 4m2/ŝ.

    Equation (30) shows that pair production is four times more efficient for k than for h due

    to their charges (assuming equal masses), which translates into a better discovery potential

    for k. The k pair production cross section, σkk, at NLO for the LHC and Tevatron is displayed

    in fig. 3. To compute it, we have used CompHEP [62] with CTEQ6.1L libraries [63] to find

    the LO cross section and afterwards we have included a K-factor of 1.25 for the LHC and

    1.3 for Tevatron to take into account NLO corrections, see [64].

    Single production might be also interesting when double production is not possible. Single

    production can proceed with a k accompanied by two singly charged scalars, fig. 4, or by

    two charged leptons replacing the scalar h’s. If the k is accompanied by two charged leptons

    the amplitudes are proportional to the Yukawa couplings, whose exact values we ignore and

    might be small.

    It is important to note that the cross section will be dominated by the virtual particles

    in the propagators if they could be on-shell. In the case of k being produced with two h, the

    single production will be dominated by the first diagram if ŝ > 2mk, because in this case

    k∗ can be created on-shell. One might argue that the energy in the center of mass frame of

    17

    500 1000 1500mk (GeV)

    0.001

    0.01

    0.1

    1

    10

    100

    σ (fb)

    14 TeV (LHC)2 TeV (Tevatron)

    Figure 3: Pair production cross section for k. We have used CompHEP (CTEQ6.1L) to obtain the

    LO and applied a K-factor of 1.25 for the LHC and 1.3 for Tevatron.

    γ∗, Z∗ k∗

    q

    q

    k++

    h−

    h−

    γ∗, Z∗h∗

    q

    q

    h−

    k++

    h−

    Figure 4: Single production diagrams.

    the colliding quarks is not fixed, instead it is a fraction of the total energy in the center of

    mass frame of the colliding protons, s. However, the cross section involves an integration

    over the possible values of ŝ. If s is large enough to create two k’s, the integration will be

    dominated by the real production of two k’s, thus reducing the single production to pair

    production. Specifically, σ(k++h−h−) ≈ σkkBr(k → hh). The same reasoning is valid in the

    case of single production with leptons. We have performed calculations using CompHEP to

    check this point. Therefore, single production is only important when the available energy,

    s, is not sufficient to create a pair of k.

    18

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Signature vs Physics models §  Many new physics models can be searched by

    same signature. §  (Example) Same-sign diletpon signature:

    §  SUSY, Universal Extra Dimensions, Left-right symmetric models, neutrino mass models, Doubly charged Higgs, Vector-like quarks.

    01/12/2014 Kruger 2014, K. Hamano 9

    §  A new model can be probed by many signatures. §  (Example) Type III

    seesaw model: §  2 leptons + 2 jets §  3 leptons §  4 leptons

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Dileptons/Multi-leptons §  Dileptons

    §  Opposite-sign same flavor §  High mass resonance search (arXiv:1405.4123, PRD90,052005(2014))

    §  Heavy gauge boson Z’, Excited boson Z*, Spin-2 graviton, Quantum Black Holes, Technicolor

    §  Non-resonant dileptons (arXiv:1407.2410, EPJC) §  Contact Interaction (llqq), Large Extra Dimensions

    §  Opposite-sign mixed flavor §  Lepton Flavor Violation: Z à e µ (arXiv:1408.5774, PRD90,072010(2014))

    §  Same-sign dileptons (arXiv:1412.0237, JHEP) §  SUSY, Extra dimension, Neutrino mass models, Doubly-

    charged Higgs

    §  3 or more leptons (arXiv:1411.2921) §  SUSY, Neutrino mass models, Doubly-charged Higgs

    01/12/2014 Kruger 2014, K. Hamano 10

    More details on Blue analysis

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Dileptons/Multi-leptons (2) §  Diphoton resonance (arXiv:1210.8389, NJP15,242(2013))

    §  KK Graviton (Extra dimensions)

    01/12/2014 Kruger 2014, K. Hamano 11

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Dilepton resonance (arXiv:1405.4123, PRD90,052005(2014))

    §  Z’ and Z* à l+l-

    01/12/2014 Kruger 2014, K. Hamano 12

    Even

    ts

    -110

    1

    10

    210

    310

    410

    510

    610

    710Data 2012

    *γZ/Top quarkDijet & W+JetsDibosonZ’ SSM (1.5 TeV)Z’ SSM (2.5 TeV)

    ATLAS ee →Z’

    -1 L dt = 20.3 fb∫ = 8 TeV s

    [TeV]eem0.08 0.1 0.2 0.3 0.4 0.5 1 2 3 4

    Dat

    a/Ex

    pect

    ed

    0.60.8

    11.21.4

    Even

    ts

    -110

    1

    10

    210

    310

    410

    510

    610

    710Data 2012

    *γZ/Top quarkDibosonZ’ SSM (1.5 TeV)Z’ SSM (2.5 TeV)

    ATLAS µµ →Z’

    -1 L dt = 20.5 fb∫ = 8 TeV s

    [TeV]µµm0.08 0.1 0.2 0.3 0.4 0.5 1 2 3 4

    Dat

    a/Ex

    pect

    ed

    0.60.8

    11.21.4

    ee mass µµ mass

    •  Two isolated opposite-charge same-flavor leptons.

    •  Electron: leding ET>40GeV, subleading ET>30GeV

    •  Muon pT>25GeV

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Dilepton Resonane (2)

    01/12/2014 Kruger 2014, K. Hamano 13

    [TeV]Z’M0.5 1 1.5 2 2.5 3 3.5

    B [p

    b]σ

    -410

    -310

    -210

    SSMObserved limit Z’χObserved limit Z’ψObserved limit Z’

    Observed limit Z*SSMZ’χZ’ψZ’

    Z*

    ATLAS = 8 TeVs

    -1 L dt = 20.3 fb∫ee: -1 L dt = 20.5 fb∫: µµ

    SSMObserved limit Z’χObserved limit Z’ψObserved limit Z’

    Observed limit Z*SSMZ’χZ’ψZ’

    Z*

    13

    [TeV]SSMZ’

    M0.5 1 1.5 2 2.5 3 3.5

    B [p

    b]σ

    -410

    -310

    -210

    -110µµExpected limit µµObserved limit

    Expected limit eeObserved limit eeExpected limit llObserved limit ll

    SSMZ’

    ATLAS

    ll→ SSMZ’ = 8 TeVs

    -1 L dt = 20.3 fb∫ee: -1 L dt = 20.5 fb∫: µµ

    µµExpected limit µµObserved limit

    Expected limit eeObserved limit eeExpected limit llObserved limit ll

    SSMZ’

    FIG. 4. Median expected (dashed line) and observed (solidline) 95% CL upper limits on cross-section times branchingratio (σB) for Z′SSM production for the exclusive dimuon anddielectron channels, and for both channels combined. Thewidth of the Z′SSM theory band represents the theoretical un-certainty from the PDF error set, the choice of PDF as wellas αS .

    Figure 3 also contains the Z ′SSM theory band for σB. Itswidth represents the theoretical uncertainty, taking intoaccount the following sources: the PDF error set, thechoice of PDF, and αS . The value of MZ′ at which thetheory curve and the observed (expected) 95% CL limitson σB intersect is interpreted as the observed (expected)mass limit for the Z ′SSMboson, and corresponds to 2.90(2.87) TeV.

    A comparison of the combined limits on σB and thosefor the exclusive dielectron and dimuon channel is givenin Figure 4. This demonstrates the contribution of eachchannel to the combined limit. As expected from Fig. 1,the larger values for A×ϵ in addition to the better resolu-tion in the dielectron channel results in a stronger limitthan in the dimuon channel. The observed (expected)Z ′SSM mass limit is 2.79 (2.76) TeV in the dielectron chan-nel, and 2.53 (2.53) TeV in the dimuon channel.

    Figure 5 shows the observed σB exclusion limits at95% CL for the Z ′SSM, Z

    ′χ, Z

    ′ψ and Z

    ∗ signal searches.Here only observed limits are shown, as they are alwaysvery similar to the expected limits (see Fig. 4). The the-oretical σB of the boson for the Z ′SSM, two E6-motivatedModels and Z∗ are also displayed. The 95% CL limits onσB are used to set mass limits for each of the consideredmodels. Mass limits obtained for the Z ′SSM, E6-motivatedZ ′ and Z∗ bosons are displayed in Table VII.

    As demonstrated in Fig. 5, for lower values of MZ′ thelimit is driven primarily by the width of the signal andgets stronger with decreasing width. At large MZ′ , theσB limit for a given Z ′ model worsens with increasingmass. This weakening of the limit is due to the pres-ence of the parton-luminosity tail in the mℓℓ line shape.The magnitude of this degradation is proportional to the

    [TeV]Z’M0.5 1 1.5 2 2.5 3 3.5

    B [p

    b]σ

    -410

    -310

    -210

    SSMObserved limit Z’χObserved limit Z’ψObserved limit Z’

    Observed limit Z*SSMZ’χZ’ψZ’

    Z*

    ATLAS = 8 TeVs

    -1 L dt = 20.3 fb∫ee: -1 L dt = 20.5 fb∫: µµ

    SSMObserved limit Z’χObserved limit Z’ψObserved limit Z’

    Observed limit Z*SSMZ’χZ’ψZ’

    Z*

    FIG. 5. Observed upper cross-section times branching ra-tio (σB) limits at 95% CL for Z′SSM, E6-motivated Z

    ′ and Z∗

    bosons using the combined dilepton channel. In addition, the-oretical cross-sections on σB are shown for the same models.The stars indicate the lower mass limits for each consideredmodel. The width of the Z′SSM band represents the theoret-ical uncertainty from the PDF error set, the choice of PDFas well as αS. The width of the Z

    ′SSM band applies to the

    E6-motivated Z′ curves as well.

    size of the low-mass tail of the signal due to much higherbackground levels at low mℓℓ compared to high mℓℓ. AllZ ′ models exhibit a parton-luminosity tail, the size ofwhich increases with increasing natural width of the Z ′

    resonance. The tail is most pronounced for Z ′SSM, andleast for Z ′ψ, in line with the different widths given inTable VII. Even though the width of the Z∗ is similar tothe width of the Z ′SSM, the tensor form of the coupling ofthe Z∗ to fermions strongly suppresses parton luminosityeffects. Limits on σB for the Z∗ interpretation thereforedo not worsen with increasing invariant mass. Quantita-tively, the observed Z ′SSM mass limit would increase from2.90 TeV to 2.95 TeV and 3.08 TeV, if the Z ′χ and Z

    ′ψ bo-

    son signal templates, with smaller widths, were used. Ifthe Z∗ boson template with negligible parton-luminositytail but similar width were used instead of the Z ′SSM tem-plate, the observed limit would increase to 3.20 TeV.

    TABLE VII. Observed and expected lower mass limits for Z′

    and Z∗ bosons, using the corresponding signal template for agiven model.

    Model Width Observed Limit Expected Limit[%] [TeV] [TeV]

    Z′SSM 3.0 2.90 2.87Z′χ 1.2 2.62 2.60Z′ψ 0.5 2.51 2.46Z∗ 3.4 2.85 2.82

    Mass limits

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    LFV Z à e µ (arXiv:1408.5774, PRD90,072010(2014)) §  Lepton Flavor Violation (LFV) decay Zàeµ.

    01/12/2014 Kruger 2014, K. Hamano 14

    [GeV]µem70 75 80 85 90 95 100 105 110

    Even

    ts /

    2 G

    eV

    0

    100

    200

    300

    400

    500

    600

    700MC stat. error

    µµ ee/→Z ττ →Z

    MultijetWDibosonTopData

    µ e→Z -5 10×B = 1.0

    -1 = 8 TeV, 20.3 fbs

    ATLAS

    [GeV]µem70 75 80 85 90 95 100 105 110

    Even

    ts /

    GeV

    50

    100

    150

    200

    250

    300Data

    Fit

    -7 10×B = 7.5

    -1 = 8 TeV, 20.3 fbs

    /DOF = 0.752χ

    ATLAS

    [GeV]µem70 75 80 85 90 95 100 105 110

    Dat

    a - F

    it

    -20-10

    01020

    B(Z à eµ) < 7.5*10-7

    Isolated e with ET>25GeV Isolated µ with pT>25GeV Missing ET

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Same-sign dilepton (arXiv:1412.0237, JHEP)

    01/12/2014 Kruger 2014, K. Hamano 15

    •  Two isolated same-sign leptons: •  Electron leading pT>12GeV, others pT>6GeV •  Muon leading pT>18GeV, others pT>12GeV

    •  Z-veto

    ) [GeV]±e±m(e

    0 100 200 300 400 500 600

    Elec

    tron

    pairs

    / 20

    GeV

    -110

    1

    10

    210

    310Data 2012PromptCharge misidγW

    Non-prompt 300 GeV±±LH 500 GeV±±LH

    ATLAS-1 = 8 TeV, 20.3 fbs

    ±e±e

    ) [GeV]±µ±m(e

    0 100 200 300 400 500 600

    Lept

    on p

    airs

    / 20

    GeV

    -110

    1

    10

    210

    310 Data 2012PromptCharge misidγW

    Non-prompt 300 GeV±±LH 500 GeV±±LH

    ATLAS-1 = 8 TeV, 20.3 fbs

    ±µ±e

    ) [GeV]±µ±µm(0 100 200 300 400 500 600

    Muo

    n pa

    irs /

    20 G

    eV

    -110

    1

    10

    210

    Data 2012PromptNon-prompt

    300 GeV±±LH 500 GeV±±LH

    ATLAS-1 = 8 TeV, 20.3 fbs

    ±µ±µ

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Same-sign dilepton (2) §  Fiducial cross section limits

    01/12/2014 Kruger 2014, K. Hamano 16

    ) [GeV]±e±m(e>15 >100 >200 >300 >400 >500 >600

    ) [fb

    e→

    (pp

    95fidσ

    -110

    1

    10

    210 ObservedMedian expected

    σ 1±Expected σ 2±Expected

    ATLAS Internal-1 = 8 TeV, 20.3 fbs

    ±e±e

    ) [GeV]±µ±m(e>15 >100 >200 >300 >400 >500 >600

    ) [fb

    ]±µ

    ± e

    →(p

    p 95fid

    σ

    -110

    1

    10

    210 ObservedMedian expected

    σ 1±Expected σ 2±Expected

    ATLAS Internal-1 = 8 TeV, 20.3 fbs

    ±µ±e

    ) [GeV]±µ±µm(>15 >100 >200 >300 >400 >500 >600

    ) [fb

    ]±µ

    ±µ

    →(p

    p 95fid

    σ

    -110

    1

    10

    210 ObservedMedian expected

    σ 1±Expected σ 2±Expected

    ATLAS Internal-1 = 8 TeV, 20.3 fbs

    ±µ±µ

    Doubly-charged Higgs mass limits: 95% CL lower limit [GeV]

    e±e± e±µ± µ±µ±

    Signal Expected Observed Expected Observed Expected Observed

    H±±L 553± 30 551 487± 41 468 543± 40 516

    H±±R 425± 30 374 396± 34 402 435± 33 438

    Table 9: Lower limits at 95% CL on the mass of H±±L and H±±R bosons, assuming a 100%

    branching ratio to e±e±, e±µ± and µ±µ± pairs. The 1σ variations are also shown for the

    expected limits.

    24

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    3 or more charged leptons (arXiv:1411.2921)

    §  Event selection

    §  This is a generic search and include multiple Signal Regions depending on §  On-Z, Off-Z §  MET = missing transverse energy §  HT = scalar sum of pT §  meff = scalar sum of missing ET, jet HT and lepton pT

    01/12/2014 Kruger 2014, K. Hamano 17

    •  3 or more isolated leptons •  Leading lepton: electron or muon with pT>26GeV •  Second lepton: electron or muon with pT>15GeV •  Third lepton: electron or muon with pT>15GeV or tau with pT>20GeV

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    3 or more leptons (2) §  Cross section limits in various signal regions:

    01/12/2014 Kruger 2014, K. Hamano 18

    All 200≥ 500≥ 800≥ 50≥ 100≥ 150≥ 1≥ 2≥ 600≥ 1000≥ 1500≥ 0≥ 600≥ 1200≥ 0≥ 600≥ 1200≥ 0≥ 100≥ 200≥ 300≥ 0≥ 100≥ 200≥ 300≥

    -10

    1µ3 e/

    All 200≥ 500≥ 800≥ 50≥ 100≥ 150≥ 1≥ 2≥ 600≥ 1000≥ 1500≥ 0≥ 600≥ 1200≥ 0≥ 600≥ 1200≥ 0≥ 100≥ 200≥ 300≥ 0≥ 100≥ 200≥ 300≥

    -10

    1τ + µ2 e/

    All 200≥ 500≥ 800≥ 50≥ 100≥ 150≥ 1≥ 2≥ 600≥ 1000≥ 1500≥ 0≥ 600≥ 1200≥ 0≥ 600≥ 1200≥ 0≥ 100≥ 200≥ 300≥ 0≥ 100≥ 200≥ 300≥

    -10

    1µ3 e/

    All 200≥ 500≥ 800≥ 50≥ 100≥ 150≥ 1≥ 2≥ 600≥ 1000≥ 1500≥ 0≥ 600≥ 1200≥ 0≥ 600≥ 1200≥ 0≥ 100≥ 200≥ 300≥ 0≥ 100≥ 200≥ 300≥

    -101

    10 τ + µ2 e/

    All 200≥ 500≥ 800≥ 50≥ 100≥ 150≥ 1≥ 2≥ 600≥ 1000≥ 1500≥ 0≥ 600≥ 1200≥ 0≥ 600≥ 1200≥ 0≥ 100≥ 200≥ 300≥ 0≥ 100≥ 200≥ 300≥

    -101

    10 µ3 e/

    All 200≥ 500≥ 800≥ 50≥ 100≥ 150≥ 1≥ 2≥ 600≥ 1000≥ 1500≥ 0≥ 600≥ 1200≥ 0≥ 600≥ 1200≥ 0≥ 100≥ 200≥ 300≥ 0≥ 100≥ 200≥ 300≥

    -101

    1020 τ + µ2 e/

    (95%

    CL

    Upp

    er L

    imit)

    [fb]

    vis

    95σ

    Off-Z,no-O

    SSFO

    ff-Z,OSSF

    On-Z

    [GeV]leptonsTH [GeV]lepT

    Min. p b-tags [GeV]effm [GeV]effm [GeV]effm [GeV]missTE [GeV]

    missTE

    Inclusive >100 GeVmissTE >100 GeVWTm 150 GeV≥jetsTH

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    3 or more leptons (3) §  Doubly-charged Higgs in tau decay mode:

    01/12/2014 Kruger 2014, K. Hamano 19

    mass [GeV]±±H100 200 300 400 500 600

    BR [f

    b]×

    σ

    -110

    1

    10

    210

    310ATLAS

    = 8 TeVs-1Ldt = 20.3 fb∫

    ±τ±e→L±±H

    ±τ±e→R±±H

    95% CL Upper LimitsObservedMedian Exp.

    σ 1±σ 2±

    mass [GeV]±±H100 200 300 400 500 600

    BR [f

    b]×

    σ

    -110

    1

    10

    210

    310ATLAS

    = 8 TeVs-1Ldt = 20.3 fb∫

    ±τ±µ→L±±H

    ±τ±µ→R±±H

    95% CL Upper LimitsObservedMedian Exp.

    σ 1±σ 2±

    Mass limit : HL++ > 400 GeV

    e tau µ tau

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Lepton + X §  Lepton + X general search (ATLAS-CONF-2014-006)

    §  Events with isolated electrons, photons, muons, jets. §  Lepton + MET (neutrino) (arXiv:1407.7494, JHEP09(2014)037)

    §  Heavy gauge boson W’, Exited boson W*. §  Lepton + jet

    §  Scalar Leptoquarks: §  1st generation (arXiv:1112.4828, PLB709(2012)158-176) §  2nd generation (arXiv:1203.3172, EPJ C72(2012)2151) §  3rd generation (arXiv:1303.0526, JHEP06(2013)033)

    §  Microscopic Black Holes (arXiv:1405.4254, JHEP08(2014)103) §  Quantum Black Holes (arXiv:1311.2006, PRL112,091804(2014)) §  Excited Leptons (arXiv:1308.1364, NJP15(2013)093011)

    01/12/2014 Kruger 2014, K. Hamano 20

    More details on Blue analysis

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    L + Missing energy (arXiv:1407.7494, JHEP09(2014)037)

    §  W’ and W* à l + v

    01/12/2014 Kruger 2014, K. Hamano 21

    [GeV]W’ m500 1000 1500 2000 2500 3000 3500 4000

    B [f

    b]σ

    -110

    1

    10

    210

    310NNLO theoryObserved limitExpected limit

    σ 1±Expected σ 2±Expected

    = 8 TeV,s ∫ -1 = 8 TeV, Ldt = 20.3 fbsν l →W’

    95% CL

    ATLAS

    [GeV]missT E

    210 310

    Eve

    nts

    1

    10

    210

    310

    410

    510

    610Data 2012W’(0.5 TeV)W’(1 TeV)W’(3 TeV)WZTop quarkDibosonMultijet

    ATLAS ν e→W’ = 8 TeVs

    -1 L dt = 20.3 fb∫

    [GeV]missT E210 310

    Dat

    a/Bk

    g

    00.5

    11.5

    2

    [GeV]missT E

    210 310

    Eve

    nts

    110

    210

    310

    410

    510

    610

    710

    810Data 2012W’(0.5 TeV)W’(1 TeV)W’(3 TeV)WZTop quarkDibosonMultijet

    ATLAS νµ →W’ = 8 TeVs

    -1 L dt = 20.3 fb∫

    [GeV]missT E210 310

    Dat

    a/Bk

    g

    00.5

    11.5

    2

    ev

    µv

    Missing energy

    Table 10. Observed upper limits on σB for W ′ and W ∗ with masses above 2000 GeV. Thecolumns are the same as in table 9.

    mW ′/W∗ [GeV] Channel 95% CL limit on σB [fb]W ′ W ∗

    none S SB SBL SBc SBcL none SBcL

    2250eν 0.453 0.455 0.455 0.456 0.458 0.459 0.830 0.859µν 0.853 0.859 0.859 0.862 0.866 0.869 0.726 0.734both 0.296 0.297 0.297 0.298 0.301 0.303 0.457 0.488

    2500eν 0.564 0.569 0.569 0.570 0.572 0.573 0.438 0.441µν 1.06 1.07 1.07 1.08 1.08 1.08 0.828 0.837both 0.368 0.370 0.370 0.371 0.376 0.377 0.287 0.289

    2750eν 0.629 0.643 0.643 0.644 0.648 0.649 0.459 0.462µν 1.16 1.19 1.19 1.20 1.21 1.21 0.917 0.928both 0.409 0.413 0.413 0.414 0.425 0.426 0.306 0.308

    3000eν 0.809 0.852 0.852 0.853 0.863 0.865 0.387 0.389µν 1.47 1.55 1.55 1.56 1.58 1.58 0.798 0.807both 0.523 0.534 0.534 0.536 0.566 0.567 0.261 0.263

    3250eν 1.20 1.37 1.37 1.37 1.40 1.40 0.338 0.340µν 2.14 2.45 2.45 2.45 2.52 2.52 0.678 0.687both 0.768 0.815 0.815 0.816 0.919 0.920 0.226 0.228

    3500eν 1.92 2.56 2.56 2.56 2.64 2.64 0.312 0.315µν 3.37 4.38 4.38 4.39 4.56 4.57 0.645 0.655both 1.22 1.38 1.38 1.38 1.72 1.73 0.210 0.213

    3750eν 3.12 4.90 4.90 4.90 5.07 5.08 0.297 0.307µν 5.32 7.85 7.85 7.86 8.22 8.24 0.605 0.630both 1.97 2.37 2.37 2.38 3.26 3.27 0.199 0.208

    4000eν 4.76 8.07 8.07 8.09 8.38 8.40 0.304 0.372µν 7.75 12.0 12.0 12.0 12.6 12.6 0.613 0.749both 2.95 3.66 3.66 3.66 5.24 5.24 0.203 0.255

    Table 11. Lower limits on the W ′ and W ∗ masses. The first column is the decay channel (eν, µνor both combined) and the following give the expected (Exp.) and observed (Obs.) mass limits.

    mW ′ [TeV] mW ∗ [TeV]Decay Exp. Obs. Exp. Obs.eν 3.13 3.13 3.08 3.08µν 2.97 2.97 2.83 2.83Both 3.17 3.24 3.12 3.21

    – 18 –

    Mass limits

    •  One isolated electron with ET>125GeV + MET>125GeV

    •  Or one muon with pT>45GeV + MET>45GeV

    •  No additional lepton with pT>20GeV

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Dijets/Multi jets §  Dijet resonance (arXiv:1407.1376, PRD)

    §  Excited quarks, Color octet scalars, Heavy and excited W bosons, Quantum black holes,

    §  Multi jets §  Resonant Higgs Pair Production (ATLAS-CONF-2014-005)

    §  X à HH à bbbb §  Two Higgs doublet models, KK graviton

    §  Photon + jet (arXiv:1309.3230, PLB728,562(2013)) §  Quantum Black Holes, Excited quarks

    §  Dark matter search: §  “Searches for Dark Matter with the ATLAS

    Detector” (Ketevi Assamagan).

    01/12/2014 Kruger 2014, K. Hamano 22

    More details on Blue analysis

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Dijet resonance (arXiv:1407.1376, PRD)

    01/12/2014 Kruger 2014, K. Hamano 23

    Pre

    scal

    e-w

    eigh

    ted

    even

    ts

    1

    10

    210

    310

    410

    510

    610

    710

    810

    910

    [dat

    a-fit

    ]/fit

    -1

    0

    1

    [TeV]jjReconstructed m0.3 0.4 0.5 1 2 3 4 5

    Sig

    nif.

    -202

    ATLAS-1L dt=20.3 fb∫=8 TeV, s

    DataFit

    *, m = 0.6 TeVq*, m = 2.0 TeVq*, m = 3.5 TeVq

    9

    [TeV]BWm1 2 3 4

    BR

    [pb]

    × A × σ

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    ATLAS

    =8 TeVs-1L dt = 20.3 fb∫

    BW/mBWΓ PDFgg

    0.050.030.010.005

    Figure 9. The 95% CL upper limits on � ⇥ A for a Breit–Wigner narrow resonance produced by a gg initial state de-caying to dijets and convolved with PDF e↵ects, dijet massacceptance and detector resolution as a function of the meanmass, mBW, for di↵erent values of intrinsic width over mass(�BW/mBW), taking into account both the statistical and sys-tematic uncertainties.

    [TeV]BWm1 2 3 4

    BR

    [pb]

    × A × σ

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    ATLAS

    =8 TeVs-1L dt = 20.3 fb∫

    BW/mBWΓ PDFqq

    0.050.030.010.005

    Figure 10. The 95% CL upper limits on � ⇥ A for a Breit–Wigner narrow resonance produced by a qq̄ initial state de-caying to dijets and convolved with PDF e↵ects, dijet massacceptance and detector resolution as a function of the meanmass, mBW, for di↵erent values of intrinsic width over mass(�BW/mBW), taking into account both the statistical and sys-tematic uncertainties.

    masses. The data sample used in the current analysisconsists of 20.3 fb�1 of pp collision data at

    ps = 8 TeV,

    and the resulting dijet mass distribution extends from250 GeV to approximately 4.5 TeV.No resonance-like features are observed in the dijet

    mass spectrum. This analysis places limits on the crosssection times acceptance at the 95% credibility level onthe mass or energy scale of a variety of hypotheses forphysics phenomena beyond the Standard Model.To illustrate the typical increases in sensitivity to new

    phenomena at the LHC up to the end of 2012 running,Table II shows the history of expected limits from AT-LAS studies using dijet resonance analysis of two bench-mark models, excited quarks and color-octet scalars. Thelimits set by this analysis on excited quarks, color-octetscalars, heavy W 0 bosons, chiral W ⇤ bosons, and quan-tum black holes, are summarized in Table I.

    Model and Final State 95% CL Limits [TeV]Expected Observed

    q⇤ ! qg 3.99 4.09s8 ! gg 2.83 2.72W 0 ! qq̄0 2.51 2.45Leptophobic W ⇤ ! qq̄0 1.93 1.75Leptophilic W ⇤ ! qq̄0 1.67 1.66Qbh black holes 5.82 5.82(q and g decays only)BlackMax black holes 5.75 5.75(all decays)

    Table I. The 95% CL lower limits on the masses and energyscales of the models examined in this study. All limit analy-ses are Bayesian, with statistical and systematic uncertaintiesincluded.

    ps L Citation q⇤ [TeV] s8 [TeV]

    7 TeV 36 pb�1 [11] 2.07 -7 TeV 1.0 fb�1 [12] 2.81 1.777 TeV 4.8 fb�1 [13] 2.94 1.978 TeV 20.3 fb�1 current 3.99 2.83

    Table II. ATLAS previous and current expected 95% CL up-per limits [TeV] on excited quarks and color-octet scalars.

    ACKNOWLEDGMENTS

    We thank CERN for the very successful operation ofthe LHC, as well as the support sta↵ from our institutionswithout whom ATLAS could not be operated e�ciently.We acknowledge the support of ANPCyT, Argentina;

    YerPhI, Armenia; ARC, Australia; BMWF and FWF,Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPqand FAPESP, Brazil; NSERC, NRC and CFI, Canada;CERN; CONICYT, Chile; CAS, MOST and NSFC,China; COLCIENCIAS, Colombia; MSMT CR, MPOCR and VSC CR, Czech Republic; DNRF, DNSRCand Lundbeck Foundation, Denmark; EPLANET, ERC

    Mass limits [TeV]*qm1 2 3 4 5

    [pb]

    A × σ

    -310

    -210

    -110

    1

    10

    210

    310

    ATLAS

    *qObserved 95% CL upper limitExpected 95% CL upper limit68% and 95% bands

    -1L dt = 20.3 fb∫=8 TeVs

    •  Two well measured jets with pT>50GeV •  mjj > 250GeV

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Dijet resonance (2)

    01/12/2014 Kruger 2014, K. Hamano 24

    [TeV]Gm1 2 3 4

    BR

    [pb]

    × A × σ

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    ATLAS

    =8 TeVs-1L dt = 20.3 fb∫

    G/mGσ0.150.100.07Resolution

    Gaussian resonance limits B-W narrow resonance limits

    [TeV]BWm1 2 3 4

    BR

    [pb]

    × A × σ

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    ATLAS

    =8 TeVs-1L dt = 20.3 fb∫

    BW/mBWΓ PDFgg

    0.050.030.010.005

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Top quark final states §  ttbar resonance (ATLAS-CONF-2013-052)

    §  Leptophobic topcolor Z’, Kaluza-Klein gluons §  Same-sign top etc. (ATLAS-CONF-2013-051)

    §  4th generation down-type chiral quarks (b’), Vector Like Quarks, Composite top partners (T5/3), Same-sign top pairs, Contact interactions.

    §  Vector Like Quarks (VLQ) §  Little Higgs, Composite Higgs. §  VLQ à H + t (ATLAS-CONF-2013-018) §  VLQ à W + b (ATLAS-CONF-2013-060) §  VLQ à Z + t/b (arXiv:1409.5500, JHEP)

    §  W’ à t b: §  l + jets final states (arXiv:1410.4103, PLB) §  qqbb final states (arXiv:1408.0889, EPJC)

    01/12/2014 Kruger 2014, K. Hamano 25

    More details on Blue analysis

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    ttbar resonance (ATLAS-CONF-2013-052) §  ttbar à b l + bbar l

    01/12/2014 Kruger 2014, K. Hamano 26

    Even

    ts /

    TeV

    110

    210

    310

    410

    510

    610

    710

    810 Data Z’ (1.5 TeV)×5 tt (2.0 TeV)KK g×5

    Multi-jets W+jetsOther Backgrounds

    0 0.5 1 1.5 2 2.5 3 3.5

    ATLAS Preliminary

    = 8 TeVs

    -1 L dt = 14.2 fb∫

    [TeV]recottm

    Dat

    a/Bk

    g

    0.51

    1.5

    0 0.5 1 1.5 2 2.5 3 3.5

    Z’ mass [TeV]0.5 1 1.5 2 2.5 3

    ) [pb

    ]t t

    → B

    R(Z

    ’×

    Z’σ

    -210

    -110

    1

    10

    210

    310Obs. 95% CL upper limitExp. 95% CL upper limit

    uncertaintyσExp. 1 uncertaintyσExp. 2

    Leptophobic Z’ (LO x 1.3)

    Obs. 95% CL upper limitExp. 95% CL upper limit

    uncertaintyσExp. 1 uncertaintyσExp. 2

    Leptophobic Z’ (LO x 1.3)

    ATLAS Preliminary

    -1 = 14.3 fbdt L ∫

    = 8 TeVs

    mass [TeV]KK

    g0.5 1 1.5 2 2.5

    ) [pb

    ]t t

    →KK

    BR

    (g×

    KKgσ

    -210

    -110

    1

    10

    210

    310Obs. 95% CL upper limitExp. 95% CL upper limit

    uncertaintyσExp. 1 uncertaintyσExp. 2

    Kaluza-Klein gluon (LO)

    Obs. 95% CL upper limitExp. 95% CL upper limit

    uncertaintyσExp. 1 uncertaintyσExp. 2

    Kaluza-Klein gluon (LO)ATLAS Preliminary

    -1 = 14.3 fbdt L ∫

    = 8 TeVs

    Topcolor Z’ mass < 1.9 TeV

    KK gluon mass < 2.1 TeV

    •  Isolated lepton (pT>25GeV) + well defined b-jet

    •  e+jets: MET>30GeV, mT>30GeV •  µ+jets: MET>20GeV, MET+mT>60GeV •  Angular distance between l and j

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    VLQ à Zt/b (arXiv:1409.5500, JHEP) §  T à Zt à llblv, B à Zb à llb

    01/12/2014 Kruger 2014, K. Hamano 27

    Eve

    nts

    / 1

    50

    Ge

    V

    5

    10

    15

    20

    25

    30

    35Data

    Z+light jets

    Z+bottom jet(s)

    tt

    Other bkg

    (650 GeV)BB

    (650 GeV)TT

    q (650 GeV)bB

    q (650 GeV)bT

    Uncertainty

    ATLAS

    -1 Ldt = 20.3 fb∫

    = 8 TeVs

    Dilepton

    2 b-tags≥ 1 fwd jet≥

    m(Zb) [GeV]

    0 200 400 600 800 1000 1200 1400

    Da

    ta /

    bkg

    0.5

    1

    1.5

    (jets+leptons) [GeV]TH0 400 800 1200 1600 2000

    Even

    ts /

    200

    GeV

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6DataOther bkg.WZ

    +Vtt (650 GeV)BB (650 GeV)TTq (650 GeV)bT

    Uncertainty

    ATLAS=8 TeVs

    -1 L dt = 20.3 fb∫

    1 b-tag≥ 1 fwd jet≥

    Trilepton

    •  Isolated electrons and muons •  Well defined b-jet •  Z candidate: opposite-charge,

    same –flavor leptons with |m(ll) – m(Z)| < 10GeV

    Event selectionZ boson candidate preselection

    � 2 central jetspT

    (Z) � 150 GeVDilepton channel Trilepton channel

    = 2 leptons � 3 leptons� 2 b-tagged jets � 1 b-tagged jet

    Pair production Single production Pair production Single productionH

    T

    (jets) � 600 GeV � 1 fwd. jet – � 1 fwd. jetFinal discriminant

    m(Zb) HT

    (jets+leptons)

    Table 1. Summary of the event selection criteria. Preselected Z boson candidate events aredivided into dilepton and trilepton categories. The requirements on the number of central jetsand the Z candidate transverse momentum are common to both channels, and for the pair- andsingle-production hypotheses. Other requirements are specific to a lepton channel or the targetedproduction mechanism. The last row lists the final discriminant used for hypothesis testing.

    after selecting events with a Z boson candidate and at least two central jets. The shapes ofthe signal and background distributions motivate separate criteria for events with exactlytwo leptons, and those with three or more, with the strategy for the former focused onbackground rejection, and the strategy for the latter focused on maintaining signal efficiency.The only signal hypothesis not expected to produce events with a third isolated lepton isthe B(! Zb)¯bq process. The other three processes are capable of producing, in additionto the Z boson, a W boson that decays to leptons. The W boson could arise from a topquark decay, or directly from the other heavy quark decay in the case of the pair-productionsignal.

    At least two central jets are required in both lepton channels, and when testing bothproduction mechanism hypotheses. The requirement is over 95% efficient for the pair-production signals, and over 70% efficient for the single-production signals, while sup-pressing the backgrounds by a factor of 20 and 5 in the dilepton and trilepton channels,respectively. A second common requirement is on the minimum transverse momentum ofthe Z boson candidate: p

    T

    (Z) > 150 GeV. Figure 4(b) presents the pT

    (Z) distribution insignal and background dilepton channel events after the Z+ � 2 central jets selection.

    Figure 4(c) presents the b-tagged jet multiplicity distribution, also after the Z+ � 2central jets selection in the dilepton channel. Pair-production signal events are expected toyield at least two b-jets, whether produced directly from a heavy quark decay, the decayof a top quark, or the decay of a Higgs boson. Single-production signal events also yieldtwo b-jets, but the one arising from the b-quark produced in association is less often in theacceptance for b-tagging. In order to effectively suppress the large Z + jets background,dilepton channel events are required to contain at least two b-tagged jets when testing boththe single- and pair-production hypotheses. A requirement of at least one b-tagged jet

    – 11 –

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    VLQ à Zt/b (2)

    01/12/2014 Kruger 2014, K. Hamano 28

    [GeV]Bm400 500 600 700 800 900 1000 1100 1200

    Zb)

    [pb]

    → B

    R(B

    ×q)

    bB

    →(p

    -210

    -110

    1

    10

    210

    ATLAS

    -1 Ldt = 20.3 fb∫

    =8 TeVs

    95% CL expected limit

    σ1±95% CL expected limit

    σ2±95% CL expected limit

    95% CL observed limit

    400 500 600 700 800 900 1000 1100-210

    -110

    1

    10

    210

    [GeV]Tm

    Zt)

    [pb]

    → B

    R(T

    ×q)

    b T

    →(p

    p

    σ

    ATLAS

    -1Ldt = 20.3 fb∫

    = 8 TeVs

    95% CL expected limit

    σ1±95% CL expected limit

    σ2±95% CL expected limit

    95% CL observed limit

    Singlet mass limit [GeV] Doublet mass limit [GeV]Hypothesis Dilepton Trilepton Comb. Dilepton Trilepton Comb.

    B ¯B 690 (665) 610 (610) 685 (670) 765 (750) 540 (530) 755 (755)T ¯T 620 (585) 620 (620) 655 (625) 705 (665) 700 (700) 735 (720)

    Table 8. Observed (expected) 95% CL limits on the T and B quark mass (GeV) assuming pairproduction of SU(2) singlet and doublet quarks, and using the dilepton and trilepton channelsseparately, as well as combined.

    For the pair-production hypotheses, the final discriminating variable in the dileptonchannel is the m(Zb) distribution shown in figure 7(d), while the final discriminating vari-able in the trilepton channel is the H

    T

    (jets + leptons) distribution shown in figure 9(b). Forthe single-production hypotheses, the final discriminating variable in the dilepton channelis the m(Zb) distribution shown in figure 10(d), while the final discriminating variable inthe trilepton channel is the H

    T

    (jets + leptons) distribution shown in figure 11(b).The data are found to be consistent with the background-only hypotheses in each

    of the four final distributions, and limits are subsequently derived according to the CLs

    prescription [70, 71]. Upper limits at the 95% confidence level (CL) are set on the pair- andsingle-production cross sections of vector-like T and B quarks. The cross-section limits arethen used to set lower limits on the quark masses, as well as upper limits on electroweakcoupling parameters.

    10.1 Limits on the pair-production hypotheses

    Figures 12(a,b) show the pair-production cross-section limit for B quark masses in theinterval 350–850 GeV, assuming the branching ratios of an SU(2) singlet B quark and aB quark in a (B, Y ) doublet, respectively. The theoretical curve represents the total pair-production cross section calculated with Top++, and the width of the curve indicatesthe uncertainty on the prediction from PDF+↵

    s

    and scale uncertainties. The observed(expected) limit on the mass of an SU(2) singlet B quark is 685 GeV (670 GeV), whilethe observed (expected) limit on the mass of a B quark in a (B, Y ) doublet is 755 GeV(755 GeV). These limits are derived by combining the dilepton and trilepton channels in asingle likelihood function. Table 8 lists the combined B quark mass limits along with themass limits obtained from the dilepton and trilepton channels independently. The dileptonchannel provides the greater degree of sensitivity for both the singlet and doublet B quarkhypotheses.

    Figures 12(c,d) show the pair-production cross-section limit for T quark masses in theinterval 350–850 GeV, assuming the branching ratios of an SU(2) singlet T quark and a Tquark in a (T, B) doublet, respectively. The observed (expected) limit on the mass of anSU(2) singlet T quark is 655 GeV (625 GeV), while the observed (expected) limit on themass of a T quark in a (T, B) doublet is 735 GeV (720 GeV). These limits are derived bycombining the dilepton and trilepton channels in a single likelihood function. Table 8 liststhe combined T quark mass limits along with the mass limits obtained from the dilepton

    – 26 –

    Single production cross section limits:

    Pair production mass limits:

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    W’ à tb (L+jets) (arXiv:1410.4103, PLB)

    01/12/2014 Kruger 2014, K. Hamano 29

    Data5×(1.75 TeV)RW'

    TopW+jetsZ+jets, dibosonsMultijetsUncertainty

    Even

    ts/4

    2 G

    eV

    1

    10

    210

    310

    410

    510

    610 Data5×(1.75 TeV)RW'

    TopW+jetsZ+jets, dibosonsMultijetsUncertainty

    ATLAS-1 = 8 TeV, 20.3 fbs

    2 jets 2 b-tags

    [GeV]btm400 600 800 1000 1200 1400 1600 1800 2000D

    ata/

    Pred

    .

    00.5

    11.5

    2 mass [TeV]LW'

    0.5 1 1.5 2 2.5 3

    ) [pb

    ]b t

    → LB(

    W'

    ×) LW

    '→

    (pp

    σ

    -210

    -110

    1

    10

    210

    310 ATLAS-1 = 8 TeV, 20.3 fbs

    TheoryExpected limitObserved limit

    σ 1 ±σ 2 ±

    WL’ > 1.70 TeV

    •  Isolated leptons with pT>30GeV •  Well measured jets with pT>25GeV

    •  W’ à t bbar à W(lv)b bbar

    •  1 lepton + 2 b-jets (+ jet) •  MET>35GeV •  mT(W)+MET>70GeV

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Vector boson final states §  Diboson resonances (V = Z or W)

    §  GUT, Little Higgs, Technicolor, Composite Higgs, Extra dimensions.

    §  WZ à lvll (full leptonic) (arXiv:1406.4456, PLB737,223(2014)) §  ZZ/ZW à lljj (arXiv:1409.6190, EPJC) §  Wγ and Zγ (arXiv:1407.8150, PLB738,428(2014)) §  WH/ZH à Wjj/Zjj (ATLAS-CONF-2013-074)

    §  Heavy lepton search §  Heavy neutrino à Wv (ATLAS-CONF-2012-139)

    §  Left-right symmetric model §  Heavy lepton à Zl (ATLAS-CONF-2013-019)

    §  Type III seesaw model

    01/12/2014 Kruger 2014, K. Hamano 30

    More details on Blue analysis

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    WZ à lvll (full leptonic) (arXiv:1406.4456, PLB737,223(2014))

    01/12/2014 Kruger 2014, K. Hamano 31

    200 400 600 800 1000 1200 1400 1600 1800

    Even

    ts /

    40 G

    eV

    -110

    1

    10

    210

    310ATLAS

    -1Ldt=20.3 fb∫=8 TeV, s

    : All channels combinedHMSR

    Data W’(600 GeV)

    WZ W’(1000 GeV)

    Other bkg W’(1400 GeV)

    stat.+syst.σ

    [GeV]WZm200 400 600 800 1000 1200 1400 1600 1800

    Dat

    a/Bk

    g

    0.51

    1.52

    2.53

    [GeV]m200 400 600 800 1000 1200 1400 1600 1800 2000

    WZ)

    [pb]

    → B

    (X×

    X)

    → (p

    -210

    -110

    1

    10

    210 Expected 95% CL Limitσ 1±95% CL σ 2±95% CL

    Observed LimitEGM W’HVT A(gv=1) HVT A(gv=3) HVT B(gv=3)

    ATLAS-1Ldt = 20.3 fb∫=8 TeV, s

    CLs, defined as the ratio CLs+b/CLb, is equal to 0.05. For themass points above 400 GeV, only the high-mass signal region isused in the calculation by statistically combining all lepton de-cay channels. For the mass points below or equal to 400 GeV,the two signal regions are further combined to maximize thesensitivity of the search.Fig. 5 presents the 95% CL upper limits on σ(pp → X) ×

    B(X → WZ) as a function of the signal resonance mass, whereX stands for the signal resonance, together with the theoreti-cal cross sections of the EGM W′ and HVT benchmark mod-els. The latter cross sections are calculated via the web in-terface [55] provided by the authors of Ref. [20]. The exclu-sion region in parameter space {(g2/gV)cF , gVcH} is shown inFig. 6. The fermion coupling cF was set to the same valuefor quarks and leptons. The couplings cVVV , cVVHH and cVVW ,which involve vertices with more than one heavy vector bosonand which have negligible effect on the cross section, were setto zero. Table 4 presents the expected and observed limits fora selected set of signal mass points as well as the EGM W′signal acceptance A and correction factor C. The acceptanceA is defined as the number of generated events found withinthe fiducial region at particle level divided by the total numberof generated events, while C is defined as the number of re-constructed events passing the nominal selection requirementsdivided by the number of generated events within the fiducialregion at particle level. The fiducial region selection criteriaconsist of the same kinematic selections (lepton pT, lepton η,Z boson mass, EmissT , ∆y(W, Z) and ∆φ(ℓ, E

    missT )) and lepton iso-

    lation requirements as in the nominal selections. Particle levelrefers to particle states that stem from the hard scatter, includ-ing those that are the product of hadronization, but before theirinteraction with the detector. Table 5 presents the 95% CL ex-pected and observed lower limits on the EGM W′ boson massfor each decay channel and their combination. The observed(expected) exclusion limit on the EGM W′ mass is found tobe 1.52 (1.49) TeV, and the limits in each channel are shownin Table 5. The simulated HVT resonances are found to havekinematic distributions similar to those of theW′ and thus havesimilar acceptances to the EGM model. The corresponding ob-served (expected) limits for the A(gV = 1), A(gV = 3), andB(gV = 3) HVT resonances from Ref. [20] are 1.49 (1.45) TeV,0.76 (0.69) TeV, and 1.56 (1.53) TeV respectively. In Fig. 5, theHVT benchmarkmodel curves are not shown for low resonancemass where the models do not apply.

    Table 5: Expected and observed lower mass limits at 95% CL in TeV for theEGM W′ boson in the eνee, eνµµ, µνee, µνµµ channels as well as the fourchannels combined.

    Excluded EGMW′ lower mass [TeV]eνee µνee eνµµ µνµµ combined

    Expected 1.21 1.16 1.17 1.16 1.49Observed 1.20 1.19 1.06 1.17 1.52

    [GeV]m200 400 600 800 1000 1200 1400 1600 1800 2000

    WZ)

    [pb]

    → B

    (X×

    X)

    → (p

    -210

    -110

    1

    10

    210 Expected 95% CL Limitσ 1±95% CL σ 2±95% CL

    Observed LimitEGM W’HVT A(gv=1) HVT A(gv=3) HVT B(gv=3)

    ATLAS-1Ldt = 20.3 fb∫=8 TeV, s

    Fig. 5: The observed 95% CL upper limits on σ(pp → X) × B(X → WZ)as a function of the signal mass m, where X stands for the signal resonance.The expected limits are also shown together with the ±1 and ±2 standard devi-ation uncertainty bands. Both the expected and observed upper limits assumethe EGM W′ signal acceptance times efficiency as presented in Table 4. The-oretical cross sections for the EGM W′ and the HVT benchmark models arealso shown. The uncertainty band around the EGM W′ cross-section line rep-resents the theoretical uncertainty on the NNLO cross-section calculation usingZWPROD [30].

    H cVg-3 -2 -1 0 1 2 3

    F) c V

    /g2(g

    -1

    -0.5

    0

    0.5

    1 ATLAS-1 L dt = 20.3 fb∫ = 8 TeV, s

    =1V

    gA

    =3V

    gA

    =3V

    gB1 TeV

    1.5 TeV

    2 TeV

    Fig. 6: Observed 95% CL exclusion contours in the HVT parameter space{(g2/gV )cF , gVcH } for resonances of mass 1 TeV, 1.5 TeV and 2 TeV. Alsoshown are the benchmark model parameters A(gV=1) (circle) and A(gV=3)(square) and B(gV=3) (triangle).

    8

    Extended Gauge Model W’ mass limits

    •  Exactly 3 isolated leptons with pT>25GeV •  MET>25GeV •  Z candidate: opposite-charge same-flavor leptons with |m(ll) – m(Z)| < 20GeV

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    ZZ/ZWàllqq (arXiv:1409.6190, EPJC)

    01/12/2014 Kruger 2014, K. Hamano 32

    Even

    ts /

    GeV

    -410

    -310

    -210

    -1101

    10

    210

    310

    410

    510 DataZ+jetsZZ/ZW/WW

    +Single TopttSys+Stat UncertaintyG*, m=500 GeV

    10.0× Nominalσ

    ATLAS = 8 TeVs

    -1L dt = 20.3 fb∫ Res. Region

    TLow-p

    Channelµµ ee, →Z

    [GeV]lljjm0 500 1000 1500 2000 2500

    Dat

    a / B

    G

    0.60.8

    11.21.4

    [GeV]G*m400 600 800 1000 1200 1400 1600 1800 2000

    ZZ)

    [pb

    ]→

    BR

    (G*

    × G

    *)

    →(p

    p σ

    -310

    -210

    -110

    1

    10

    210ATLAS

    = 8 TeVs-1L dt = 20.3 fb∫

    = 1PlMBulk RS graviton k/ = 0.5PlMBulk RS graviton k/

    Expected 95% CLObserved 95% CL

    uncertaintyσ 1 ± uncertaintyσ 2 ±

    [GeV]W’m400 600 800 1000 1200 1400 1600 1800 2000

    ZW

    ) [p

    b]→

    BR

    (W’

    × W

    ’) →

    (pp

    σ

    -310

    -210

    -110

    1

    10

    210ATLAS

    = 8 TeVs-1L dt = 20.3 fb∫

    EGM W’, c = 1Expected 95% CLObserved 95% CL

    uncertaintyσ 1 ± uncertaintyσ 2 ±

    EGM W’ mass > 1590 GeV

    Bulk RS G* mass > 740 GeV

    •  Extended Gauge Model W’ à WZ

    •  KK Graviton G* à ZZ •  Exactly two isolated oppsite-charge,

    same-flavor leptons with 66GeV < |m(ll) – m(Z)| < 116GeV •  qq side: two well measured jets or

    one large-R jet. Mass agrees with Z or W.

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Other Signatures §  Exotic charges

    §  Highly ionizing particles (arXiv:1207.6411, PRL109(2012)261803) §  Magnetic monopoles

    §  Long Lived Particles (LLP) §  LLP decays away from the pp interaction point. §  Look for displaced decay point (vertex). §  Special trigger is required. §  Displaced lepton-jets (LJ):

    §  H à dark photon (arXiv:1409.0746, JHEP) §  Displaced jets:

    §  Heavy scalar à Hidden Valley LLP pair (ATLAS-CONF-2014-041)

    §  BSM Higgs specific searches: §  “Beyond the Standard Model Higgs Physics Using the

    ATLAS Detector” (Guillermo Hamity). 01/12/2014 Kruger 2014, K. Hamano 33

    More details on Blue analysis

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Other Signatures §  Exotic charges

    §  Highly ionizing particles (arXiv:1207.6411, PRL109(2012)261803) §  Magnetic monopoles

    §  Long Lived Particles (LLP) §  LLP decays away from the pp interaction point. §  Look for displaced decay point (vertex). §  Special trigger is required. §  Displaced lepton-jets (LJ):

    §  H à dark photon (arXiv:1409.0746, JHEP) §  Displaced jets:

    §  Heavy scalar à Hidden Valley LLP pair (ATLAS-CONF-2014-041)

    §  BSM Higgs specific searches: §  “Beyond the Standard Model Higgs Physics Using the

    ATLAS Detector” (Guillermo Hamity). 01/12/2014 Kruger 2014, K. Hamano 34

    More details on Blue analysis

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    LLP à lepton-jets (arXiv:1409.0746, JHEP) §  pp à 2(4) dark photons à 2(4) lepton-jets (LJ) §  Dark photons decay in the calorimeter.

    01/12/2014 Kruger 2014, K. Hamano 35

    Cone%of%opening%angle%ΔR%

    J%%TYPE0%L%

    Cone%of%opening%angle%ΔR%

    J%%TYPE1%L%

    Cone%of%opening%angle%ΔR%

    ID#EMCAL#HCAL#MS#

    J%%TYPE2%L%

    •  LJ signature: •  µµ: two muons in the muon detector and no near-by jets. •  ee: one jet in the calorimeter. •  No matching tracks in the inner tracker. •  Type0 (muons),Type1 (muons and jets), Type2 (jets)

    •  Two LJs with back-to-back (large angular separation)

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    LLP à lepton-jets (2)

    01/12/2014 Kruger 2014, K. Hamano 36

    [mm]τDark photon c1 10 210 310

    ) [pb

    ]X+ dγ

    2→

    HBR

    (×σ

    95%

    CL

    Lim

    it on

    1

    10

    210ATLAS

    = 8 TeVs -120.3 fb

    modeldγFRVZ 2

    σ 2±expected σ 1±expected

    observed limitexpected limit

    ) = 100%X+dγ 2→HBR(

    ) = 10%X+dγ 2→HBR(

    = 400 MeVdγm

    [mm]τDark photon c1 10 210 310

    ) [pb

    ]X+ dγ

    4→

    HBR

    (×σ

    95%

    CL

    Lim

    it on

    1

    10

    210ATLAS

    = 8 TeVs -120.3 fb

    modeldγFRVZ 4

    σ 2±expected σ 1±expected

    observed limitexpected limit

    ) = 100%X+dγ 4→HBR(

    ) = 10%X+dγ 4→HBR(

    = 400 MeVdγm

    FRVZ model Excluded c⌧ [mm]BR(10%)

    H ! 2�d + X 14 c⌧ 140H ! 4�d + X 15 c⌧ 260

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Conclusions §  Signature based search was done to look for

    physics Beyond the Standard Model (BSM). §  Recent results with 2012, 8TeV data are

    presented. §  No significant deviation from the Standard

    Model. §  Limits are set for new physics models/particles. §  Please see other talks for BSM Higgs, Dark

    Matter and SUSY.

    01/12/2014 Kruger 2014, K. Hamano 37

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    §  Overview

    01/12/2014 Kruger 2014, K. Hamano 38

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    W’ à tb (qqbb) (arXiv:1408.0886, EPJC) §  W’ à t bbar à W(qq)b bbar

    01/12/2014 Kruger 2014, K. Hamano 39

    [GeV]W'm1500 2000 2500 3000

    tb) [

    pb]

    → W

    ') x

    BR(W

    '→

    (pp

    σ

    -210

    -110

    1

    1095% CL limit

    observedexpected

    σ 1 ±σ 2 ±

    signal prediction

    ATLAS-1 L dt = 20.3 fb∫

    = 8 TeVs

    LW'

    M(W’) > 1.68 TeV [GeV]W'm1600 1800 2000 2200 2400 2600 2800

    SMg'

    /g

    00.20.40.60.8

    11.21.4

    1.61.8

    2

    LW'

    observedexpected

    σ 1 ±

    ATLAS-1 L dt = 20.3 fb∫

    = 8 TeVs

    [GeV]tbm2000 3000 4000 5000

    Even

    ts /

    100

    GeV

    -110

    1

    10

    210

    310

    410

    510 databackground-only fit

    extrapolation to 5 TeV

    L1.5 TeV W'

    L2.0 TeV W'

    L2.5 TeV W'

    L3.0 TeV W'

    ATLAS-1 L dt = 20.3 fb∫

    = 8 TeVs

    /#bins = 26.5/292χone b-tag category

    [GeV]tbm1500 2000 2500 3000 3500 4000 4500 5000

    data

    / fit

    0.40.60.8

    11.21.41.6

    •  One large-R jet with pT>350GeV •  Large-R jet is widely distributed and

    include W(qq) and b. •  One b-jet with pT>350GeV •  Angular distance between large-R jet

    and b-jet > 2.0

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Wγ and Zγ (arXiv:1407.8150, PLB738,428(2014)) §  Wàlv, Zàll mode

    01/12/2014 Kruger 2014, K. Hamano 40

    Even

    ts /

    80 G

    eV

    -110

    1

    10

    210

    310

    410

    510 Data 2012γ)+νW(e

    )+jets-e+Z(e)+jetsνW(e

    +jetsγOther Backgrounds

    ) = 600 GeV x 10T

    m(aσ 1 ±Background Fit

    ATLAS

    = 8 TeVs, -1 L dt = 20.3 fb∫

    [GeV]γνeTm200 400 600 800 1000 1200 1400 1600

    Sign

    ifica

    nce

    -101

    Even

    ts /

    60 G

    eV

    -110

    1

    10

    210

    310

    410

    510Data 2012

    γ)++µ-µZ(

    )+jets+µ-µZ(

    Other Backgrounds

    ) = 500 GeV x 10Tωm(

    σ 1 ±Background Fit

    = 8 TeVs, -1 L dt = 20.3 fb∫ATLAS

    [GeV]γ-µ+µm

    200 400 600 800 1000 1200 1400 1600

    Sign

    ifica

    nce

    -2-1012

    Even

    ts /

    80 G

    eV

    -110

    1

    10

    210

    310

    410

    510Data 2012

    γ)+νµW()+jets-µ+µZ()+jetsνµW(

    +jetsγOther Backgrounds

    ) = 600 GeV x 10T

    m(aσ 1 ±Background Fit

    ATLAS

    = 8 TeVs, -1 L dt = 20.3 fb∫

    [GeV]γνµTm200 400 600 800 1000 1200 1400 1600

    Sign

    ifica

    nce-5

    0

    5

    Even

    ts /

    60 G

    eV

    -110

    1

    10

    210

    310

    410

    510Data 2012

    γ)++e-Z(e

    )+jets+e-Z(e

    Other Backgrounds

    ) = 500 GeV x 10Tωm(

    σ 1 ±Background Fit

    = 8 TeVs, -1 L dt = 20.3 fb∫ATLAS

    [GeV]γ-e+em

    200 400 600 800 1000 1200 1400 1600

    Sign

    ifica

    nce

    -2-1012

    evγ µvγ

    eeγ µµγ

    lvγ mode: •  Lepton pT>25GeV •  Photon ET>45GeV •  MET>35GeV llγ mode: •  65

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    Wγ and Zγ (2)

    01/12/2014 Kruger 2014, K. Hamano 41

    [GeV]Ta

    m400 600 800 1000 1200 1400 1600

    ) [fb

    ]γ) ν

    W(l

    → B

    R(X

    ×fidσ

    -210

    -110

    1

    10

    Observed 95% CL upper limitExpected 95% CL upper limit

    σ 1 ±Expected σ 2 ±Expected

    γ) ν W(l→ Ta

    =8 TeVs, -1 L dt = 20.3 fb∫ATLAS

    γν l→pp

    [GeV]Tω

    m200 400 600 800 1000 1200 1400 1600

    ) [fb

    ]γ)- l+

    Z(l

    → B

    R(X

    ×

    fidσ

    -210

    -110

    1

    10=8 TeVs, -1 L dt = 20.3 fb∫

    ATLAS

    γ-l+ l→pp

    Observed 95% CL upper limitExpected 95% CL upper limit

    σ 1 ±Expected σ 2 ±Expected

    γ) -l+ Z(l→ Tω

    [GeV]φm200 400 600 800 1000 1200 1400 1600

    ) [fb

    ]γ)- l+

    Z(l

    → φ B

    R(

    ×fidσ

    -310

    -210

    -110

    1

    10

    =8 TeVs, -1 L dt = 20.3 fb∫ATLAS

    γ-l+ l→pp

    Observed 95% CL upper limitExpected 95% CL upper limit

    σ 1 ±Expected σ 2 ±Expected

    , parameter set (a) γ) -l+ Z(l→ φ, parameter set (b)γ) -l+ Z(l→ φ

    •  Low Scale Technicolor model: •  M(aT) > 960 GeV •  M(ωT) > 890 GeV

    •  Singlet scalar resonance: •  M(φ) > 1180 GeV

  • Not

    revi

    ewed

    ,for

    inte

    rnal

    circ

    ulat

    ion

    only

    LLP pair (ATLAS-CONF-2014-041) §  Heavy scalar boson (ΦHS) à LLP (πv) pair

    01/12/2014 Kruger 2014, K. Hamano 42

    v proper decay length [m]π

    -110 1 10

    BR

    [pb]

    × σ95

    % C

    L U

    pper

    Lim

    it on

    -110

    1

    10

    210

    10 GeVvπ

    100 GeV - mΦ

    m

    25 GeVvπ

    100 GeV - mΦ

    mATLAS Preliminary

    BR (100%) = 29.7 pb× σ

    BR (10%) = 2.97 pb× σ

    -1 L dt = 20.3 fb∫

    = 8 TeVs

    proper decay length [m]v

    π

    -110 1 10

    BR

    [pb]

    × σ95

    % C

    L U

    pper

    Lim

    it on

    1

    10

    210 10 GeV

    vπ 140 GeV - mΦ

    m

    20 GeVvπ

    140 GeV - mΦ

    m

    40 GeVvπ

    140 GeV - mΦ

    m

    ATLAS Preliminary

    BR (100%) = 15.4 pb× σ

    BR (10%) = 1.54 pb× σ

    -1 L dt = 20.3 fb∫

    = 8 TeVs

    proper decay length [m]v

    π

    -110 1 10

    SMσ / σ

    95%

    CL

    Upp

    er L

    imit

    on

    -110

    1

    10 GeVvπ

    126 GeV - mΦ

    m

    25 GeVvπ

    126 GeV - mΦ

    m

    40 GeVvπ

    126 GeV - mΦ

    m

    10 GeVvπ

    126 GeV - mΦ

    m

    25 GeVvπ

    126 GeV - mΦ

    m

    40 GeVvπ

    126 GeV - mΦ

    m

    10 GeVvπ

    126 GeV - mΦ

    m

    25 GeVvπ

    126 GeV - mΦ

    m

    40 GeVvπ

    126 GeV - mΦ

    m

    ATLAS Preliminary

    BR 30%

    BR 10%

    -1 L dt = 20.3 fb∫

    = 8 TeVs

    100 GeV

    140 GeV

    126 GeV

    Excluded proper decay length

    •  LLP candidate: •  Narrow jet in hadronic calorimeter •  Small energy deposit in EM calorimeter. •  No matching track in the inner tracker.


Recommended