+ All Categories
Home > Documents > Searches for New Physics Beyond the Standard Model (BSM) · 2008. 7. 17. · Searches for New...

Searches for New Physics Beyond the Standard Model (BSM) · 2008. 7. 17. · Searches for New...

Date post: 07-Feb-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
8
Searches for New Physics Beyond the Standard Model (BSM) Problems of the Standard Model Supersymmetry (SUSY) Extra Dimensions Further Alternatives Standard Model Fermions Why 3 generations of quarks and leptons? Why so strange hypercharges? [Y = 2(Q T 3 )] Why flavour mixing for quarks (CKM) and neutrinos (MNS)? What to do with right-handed neutrinos? ν e e 1 2 L ν μ μ 1 2 L ν τ τ 1 2 L e 1 R μ 1 R τ 1 R u d 1 6 L,r c s 1 6 L,r t b 1 6 L,r u 2 3 R,r d 1 3 R,r c 2 3 R,r s 1 3 R,r t 2 3 R,r b 1 3 R,r u d 1 6 L,g c s 1 6 L,g t b 1 6 L,g u 2 3 R,g d 1 3 R,g c 2 3 R,g d 1 3 R,g t 2 3 R,g d 1 3 R,g u d 1 6 L,b c s 1 6 L,b t b 1 6 L,b u 2 3 R,b d 1 3 R,b c 2 3 R,b d 1 3 R,b t 2 3 R,b d 1 3 R,b
Transcript
  • Searches for New Physics

    Beyond the Standard Model (BSM)

    • Problems of the Standard Model• Supersymmetry (SUSY)• Extra Dimensions• Further Alternatives

    Standard Model Fermions

    • Why 3 generations of quarks and leptons?• Why so strange hypercharges?

    [Y = 2(Q − T3)]• Why flavour mixing for quarks (CKM)

    and neutrinos (MNS)?• What to do with right-handed neutrinos?

    (

    ν′e

    e

    )− 12

    L

    (

    ν′µ

    µ

    )− 12

    L

    (

    ν′τ

    τ

    )− 12

    L

    e−1R µ−1R τ

    −1R

    (

    ud′

    ) 16

    L,r

    (

    cs′

    ) 16

    L,r

    (

    tb′

    ) 16

    L,r

    u23R,r

    d− 13R,r

    c23R,r

    s− 13R,r

    t23R,r

    b− 13R,r

    (

    ud′

    ) 16

    L,g

    (

    cs′

    ) 16

    L,g

    (

    tb′

    ) 16

    L,g

    u23R,g

    d− 13R,g

    c23R,g

    d− 13R,g

    t23R,g

    d− 13R,g

    (

    ud′

    ) 16

    L,b

    (

    cs′

    ) 16

    L,b

    (

    tb′

    ) 16

    L,b

    u23R,b

    d− 13R,b

    c23R,b

    d− 13R,b

    t23R,b

    d− 13R,b

  • Standard Model Fermions

    • Why 3 generations of quarks and leptons?

    • Why so strange hypercharges?[Y = 2(Q − T3)]

    • Why flavour mixing for quarks (CKM)and neutrinos (MNS)?

    • What to do with right-handed neutrinos?• What is the origin of fermion masses?

    Why so huge fermion mass range?

    Standard Model Bosons

    • Does SM Higgs exist?• How can all gauge interactions be unified?

  • Standard Model Bosons

    • Does SM Higgs exist?• How can all gauge interactions be unified?

    • Why such an hierarchy of gauge fields?

    EnergyTemperature

    10 GeV

    10 K 100 GeV

    10 eV

    10 K

    10 K 10 GeV

    Quantum Gravity Era

    Present time

    Neutrino transparency

    EW scale

    GUT scale

    Quark confinement

    Planck scale

    Inflation

    Tim

    e (s

    eco

    nd

    s)

    Ele

    ctr

    om

    ag

    ne

    tic

    Gra

    vity

    Str

    on

    g

    We

    ak

    32

    27

    15

    14

    19

    −4

    1010

    1010

    1010

    101

    1020

    −40

    −30

    −20

    −50

    −10

    2.7 K

    Big Bang

    Light transparency

    Ele

    ctr

    ow

    ea

    k

    Cosmological Problems

    • What is dark matter?

    • What is dark energy?

  • Attempts to Solve the Problems of the Standard Model

    Many attemps going in different directions

    • Extended gauge symmetries• New mechanisms of symmetry breaking

    • More fundamental fields• Extra dimensions

    • . . .

    Radiative Corrections to Higgs Mass

    • Higgs Self-energy corrections in perturbation theory: M2H = M2H,bare + ∆M

    2H

    Have to integrate over all particle momenta in loops⇒ Loop corrections to Higgs mass rise with UV cut-off Λ2

    t

    H Ht−

    H HW,Z,γ

    H HH

    ∆M2H,1 = −3

    8π2g2fΛ

    2

    ∆M2H,2 =1

    16π2g2Λ2

    ∆M2H,3 =1

    16π2λ2Λ2 V(φ) = −µ2|φ†φ| + λ|φ†φ|2

    • Fine tuning to precision ∼ M2H/Λ2 is needed

    For Λ = MPlanck, MH ∼ 100 GeV: (Λ/MH)2 ∼ 1034 – gauge field scale hierarchy

    M2H = M2H,bare +

    116π2

    (−6g2t + g2+ λ2) · 1034M2H

    ︸ ︷︷ ︸

    − . . .︸ ︷︷ ︸

    ≃ (130 GeV)2

    SM New Physics

  • “Fine Tuning” Argument

    • Current exp. limits on Higgs mass:114.4 < MH < 144 GeV

    direct searches EW fits

    • If SM is valid up to MPlanck, theor. limits:135< MH < 175 GeV

    EW vacuum Triviality

    EW vacuum stability: Higgs mass cannot be toolight or the potential will not have a Mexican hat

    shape and will turn negative at large values

    V(φ) = −µ2|φ†φ| + λ|φ†φ|2

    Triviality: if the Higgs mass is too large, the Higgs

    self-coupling drives the mass to infinity above cer-tain scale

    Triviality and Vacuum Instability

    with MH ∝ "(#2) #2

    "(q)

    q!q0

    MH q

    Upper bound: q! < !

    Lower bound: q0 < ![Triviality, Landau Pole]

    [Vacuum Instability]

    Must be larger than scale ! at which SM breaks down}

    From RGEand MH ∝ "(#2)

    Higgsself coupling

    depends on MH

    scale[#: vacuum expectation value]

    [Running self coupling]

  • Even if new physics appears atΛ = 10 TeV, fine tuning is significant

    tree

    top

    gauge

    Higgsm2

    H

    However: SM can be valid up to the Plank scale!Fine tuning is just a “stomach problem”.

    Anthropic principle: properties of the universe are so specialbecause we happen to exist and be able to ask these very questions

    Electron in Classical Electrodynamics

    • E.m. self-energy

    ∆ECoulomb=1

    4πǫ0

    e2

    rere − “size”

    must be a part of the electron mass:

    (mec2)observed= (mec

    2)bare+ ∆ECoulomb

    • From experiments: re < 10−17 cm =⇒ ∆ECoulomb& 10 GeV

    0.511= −9999.489+ 10000.000 MeV

    ◮◮ Classical e.m. is not valid for scales where ∆ECoulomb& mec2:

    d <e2

    4πǫ0mec2= 2.8 · 10−13 cm

  • Quantum Effect – e+e− Pair Production

    • Self-energy e− e−e−γ ←

    the same diagram in QED

    • Positron exists. e+e− pair production

    +ee−

    e−γ

    Vacuum fluctuations at ∆t ∼~

    ∆E∼

    ~

    2mec2(Heisenberg’s uncertainty)

    modify physics at d ∼ c∆t ∼ 200· 10−13 cm

    ∆Epair = −1

    4πǫ0

    e2

    re+ . . . =⇒ ∆E = ∆ECoulomb+ ∆Epair =

    3α4π

    mec2log

    ~

    mecre

    • Mass correction

    (mec2)observed= (mec

    2)bare

    [

    1+3α4π

    log~

    mecre

    ]

    Even for re ∼ 1/MPlank ∼ 10−33 cm mass increases by 9%

    ◮◮ Doubling d.o.f. + symmetry =⇒ divergency cancellation

    Higgs Self-Energy

    t

    H Ht−

    ∆M2H,top = −3

    8π2g2tΛ

    2+ . . .

    Bosons and fermions produce different signs in loops =⇒

    Introduce “superpartner” for top = scalar top = “stop” = t̃

    H Ht~−

    t~

    ∆M2H,stop= +3

    8π2g2tΛ

    2+ . . .

    Total correction

    ∆M2H,top + ∆M2H,stop= −

    38π2

    g2t (m2t̃ − m

    2t )log

    Λ2

    m2t̃

    ◮◮ “Naturalness” argument: mt̃ should be not much larger than mt mt̃ ∼ TeV???

  • Supersymmetry (SUSY)

    SUSY Particles

    sleptons, squarks =sfermions = bosons

    . . . -inos = fermionshiggsinos, gauginos

    (photino, wino, . . . )= neutralinos,

    charginos

    Searches for New PhysicsStandard Model FermionsStandard Model FermionsStandard Model BosonsStandard Model BosonsCosmological ProblemsAttempts to Solve the Problems of the Standard ModelRadiative Corrections to Higgs Mass``Fine Tuning'' ArgumentTriviality and Vacuum InstabilityElectron in Classical ElectrodynamicsQuantum Effect -- e+e- Pair ProductionHiggs Self-EnergySupersymmetry (SUSY)SUSY ParticlesSUSY ModelsmSUGRATypical mSUGRA SpectrumR-ParityGrand Unification Theory (GUT)SUSY Production at LHCMissing ETSimulation: SUSY Event in ATLASSUSY Signatures at the LHCDiscovery Potential -- Example mSUGRADiscovery Potential -- Adding LeptonsSUSY Particle Mass ReconstructionSUSY Particle Mass ReconstructionSUSY Particle Mass Reconstruction(Quasi-)Stable Coloured Hadrons: R-Hadrons(Quasi-)Stable Coloured Hadrons: R-HadronsForest SketchArguments for SUSYChallenges for Low Energy SUSYScenarios for SUSY at the LHCExtradim SketchCompactified Extra DimensionsLarge Extra DimensionsNew Fundamental Planck ScalePossible Sizes of Extra DimensionsMotivation by the String TheoryKaluza--Klein Gravitons in ADDMonojetsMonojets -- Standard Model BackgroundsMonojets -- Standard Model BackgroundsMonojets @ Tevatron and LHCVirtual Graviton Exchange in ADDVirtual Graviton Exchange in ADD @ LHCLarge Extra Dimensions at LEPBlack HolesBlack Hole Formation @ Hadron CollidersBlack Hole Production @ LHCBlack Hole FactoryHawking RadiationBlack Hole Event Simulation @ ATLASBlack Hole Event SelectionBlack Hole Mass ReconstructionBlack Hole Discovery PotentialDemocratic Particle DistributionBlack Holes vs. SUSYExtraction of Model ParametersFurther AlternativesAdditional InformationWino Dark MatterProton Decay -- Higher OrdersAstrophysical Limits in ADD ModelsAstrophysical Limits in ADD ModelsWarped Extra DimensionsWarped Extra DimensionsKaluza--Klein Gravitons in RSRemark on RS Model ParametersRS Gravitons: Expectations for Tevatron and LHCKK Gravitons in RS: Reconstruction @ TevatronKK Gravitons in RS @ TevatronKK Gravitons in RS: Reach @ LHCKK Gravitons in RS: Reach @ LHCBlack Hole DecayCHARYBDIS MC Event GeneratorTriggering Black HolesHiggs in Black Hole DecaysBlack Holes in Cosmic RaysCosmic Ray Bounds in ADDFuture Bounds in ADDFuture Bounds in RSBlack Holes -- The End of The WorldBlack Holes as Energy Source


Recommended